Powered by Deep Web Technologies
Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park  

DOE Green Energy (OSTI)

Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.

Mead, David [University of Wisconsin, Madison; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Brumm, Catherine [United States Department of Energy Joint Genome Institute; Hochstein, Rebecca [Lucigen Corporation, Middleton, Wisconsin; Schoenfeld, Thomas [Lucigen Corporation, Middleton, Wisconsin; Brumm, Phillip [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

2

Toyota Prius Fuel Use in Yellowstone National Park - October...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Use in Yellowstone National Park - October 2006 Four 2004 Toyota Prius hybrid electric vehicles (HEVs) were introduced into the Yellowstone National Park motor pool during the...

3

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

4

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

5

Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al., 2003) Exploration Activity...

6

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

7

Yellowstone Capital | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Capital Yellowstone Capital Jump to: navigation, search Logo: Yellowstone Capital Name Yellowstone Capital Address 5555 San Felipe, Suite 1650 Place Houston, Texas Zip 77056 Region Texas Area Product Private equity and venture capital investment firm Phone number (713) 650-0065 Website http://www.yellowstonecapital. Coordinates 29.749479°, -95.471973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.749479,"lon":-95.471973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003)  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003) Exploration Activity Details Location Obsidian Cliff Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown References Jeff Hulen, Denis Norton, Dennis Kaspereit, Larry Murray, Todd van de Putte, Melinda Wright (2003) Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Obsidian_Cliff_Area_(Hulen,_Et_Al.,_2003)&oldid=388945" Category: Exploration

9

Multispectral Imaging At Yellowstone Region (Hellman & Ramsey...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleMultispectralImagin...

10

Microsoft Word - Obsidian Finance Group Integration.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

James Hall - TPC-TPP-4 James Hall - TPC-TPP-4 Project Manager Proposed Action: Obsidian Finance Group, LLC Generation Interconnection Requests Budget Information: Sage Solar Work Order # 231305, Task 01 Outback Renewables Work Order # 231307, Task 01 Lost Forest Solar Work Order # 231312, Task 01 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 "Acquisition, installation, operation, and removal of communication systems, data processing equipment, and similar electronic equipment." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Lake County, Oregon Proposed by: Bonneville Power Administration (BPA)

11

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

12

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

13

Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Mudpots, Mud Pools, or Mud Volcanoes Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mudpots, Mud Pools, or Mud Volcanoes Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes: A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mudpot in Yellowstone National Park(reference: nps.gov) Mudpots and mud pools are actually hot springs or fumaroles with limited amounts of water but a lot of clay from surrounding rock and soil causing a boiling slurry. Not to be confused with mud volcanoes, which are the

14

Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6)  

Open Energy Info (EERE)

Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Details Activities (2) Areas (1) Regions (0) Abstract: A working conceptual model has been developed for the southwestern portion of the Salton Sea geothermal system, the region encompasing CalEnergy Operating Company's imnent 'Unit 6' field expansion (185 megawatts). The model is based on examination and analysis of several thousand borehole rock samples combined with a wealth of subsurface information made available for the first time from the databases of present

15

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

16

Yellowstone Agencies Plan to Reduce Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions Yellowstone Agencies Plan to Reduce Emissions March 15, 2010 - 11:14am Addthis Castle Geyser at Yellowstone National Park | File photo Castle Geyser at Yellowstone National Park | File photo Joshua DeLung The 10 federal land organizations - including two national parks, six national forests and two national wildlife refuges - in the Greater Yellowstone Area comprise an entire ecosystem of their own. Straddling Wyoming's borders with Montana and Idaho, the region draws millions of visitors a year, attracted by the dramatic landscapes, geothermal activity and chances to spot wildlife like bison, elk and grizzly bear. Thanks to funding from the U.S. Department of Energy's Federal Energy Management Program, the Greater Yellowstone Coordinating Committee will

17

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

18

Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes There are two possible explanations for the inferred presence of relatively 18O-enriched thermal water at Yellowstone in the past: (1) meteoric

19

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

20

Evidence For Gas And Magmatic Sources Beneath The Yellowstone...  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleSoilSamplingAtYel...

22

Geodetic Survey At Yellowstone Region (Hellman & Ramsey, 2004...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleGeodeticSurveyAtY...

23

Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleRockSamplingAtYel...

24

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

25

Compound and Elemental Analysis At Yellowstone Region (Hurwitz...  

Open Energy Info (EERE)

Hurwitz, Jacob B. Lowenstern, Henry Heasler (2007) Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Yellowstone National Park- Inferences From River Solute...

26

Trace element and technological analyses of obsidian artifacts from the Northern ridge of Lake Atitlan, Department of Solola, Guatemala  

E-Print Network (OSTI)

One hundred obsidian artifacts from the San Jose Chacaya site area located along the northern ridge of Lake Atitlan, Guatemala were subjected to Neutron Activation Analysis (NAA) to determine their provenience. In addition, sixty-six samples from the obsidian sources of Rio Pixcaya, El Chayal, and Ixtepeque were analyzed to provide source groups for the artifacts. NAA results indicated that seventy-five artifacts compare with Rio Pixcayi, eight compare with El Chayal, and thirteen are unassigned. None of the artifacts shared similar chemical signatures with Ixtepeque. In addition to the NAA analyses, the geology and geography of the Lake Atitlan region were examined to establish the absence of exploitable lithic sources in the area, as well as to define the site formation processes affecting the archaeological remains of San Jose Chacaya. This lack of lithic materials supports the importation of obsidian to the San Jose Chacaya area by way of regional and interregional trade routes. Several trade routes spanning from the Preclassic to the Postclassic were presented and compared to the location of San Jose Chacaya and its obsidian artifact assemblage. It was hypothesized the inhabitants of San Jose Chacaya relied upon these trade routes for their obsidian supply and may have been under the influence of emerging polities nearby. In conclusion, the archaeological evidence and the NAA analyses indicate the obsidian collection from San Jose Chacaya site area is Middle to Late Preclassic (500-100 BC) in age.

Woodward, Michelle Ruth

1996-01-01T23:59:59.000Z

27

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

28

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

29

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

30

Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) | Open  

Open Energy Info (EERE)

Yellowstone Region (Morgan, Et Al., 2003) Yellowstone Region (Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Yellowstone Region (Morgan, Et Al., 2003) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Simultan eously, we surveyed over 2500 linear km with high-resolution seismic reflection profling that penetrated the upper ~25 m of the lake bottom. References L. A. Morgan, W. C. Shanks, D. A. Lovalvo, S. Y. Johnson, W. J. Stephenson, K. L. Pierce, S. S. Harlan, C. A. Finn, G. Lee, M. Webring, B. Schulze, J. Duhn, R. Sweeney, L. Balistrieri (2003) Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging,

31

Yellowstone River Compact (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) Yellowstone River Compact (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as for the conservation,

32

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone  

Open Energy Info (EERE)

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic

33

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone-Teton Clean Energy Coalition Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Yellowstone-Teton Clean Energy coalition Contact Information Phillip Cameron 307-413-1971 phil@ytcleanenergy.org Coalition Website Clean Cities Coordinator Phillip Cameron Photo of Phillip Cameron Phillip Cameron became the coordinator of the Yellowstone-Teton Clean Energy Coalition in November 2009. He brings a diverse professional experience to this position with strong background in environmental outreach and education, grant writing, community service, and resource management. He has experience in both board and staff positions with a variety of regional and local non-profit environmental organizations.

34

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile  

Open Energy Info (EERE)

Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Stratigraphic Record Of The Yellowstone Hotspot Track, Neogene Sixmile Creek Formation Grabens, Southwest Montana Details Activities (1) Areas (1) Regions (0) Abstract: The Sixmile Creek Formation fills deep grabens in southwest Montana and preserves a stratigraphic record of the evolution of the Yellowstone hotspot track from ~ 17 Ma to ~ 2 Ma. The Ruby, Beaverhead, Big Hole, Deer Lodge, Medicine Lodge-Grasshopper, Three Forks, Canyon Ferry, Jefferson, Melrose, Wise River, and Paradise grabens were active during outbreak of the hotspot. They appear to be parts of a radial system of

35

Analysis Of Hot Springs And Associated Deposits In Yellowstone National  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Details Activities (6) Areas (1) Regions (0) Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the

36

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

37

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

38

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

39

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to

40

Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles  

SciTech Connect

Spherulites are spherical clusters of radiating crystals that occur naturally in rhyolitic obsidian. The growth of spherulites requires diffusion and uptake of crystal forming components from the host rhyolite melt or glass, and rejection of non-crystal forming components from the crystallizing region. Water concentration profiles measured by synchrotron-source Fourier transform spectroscopy reveal that water is expelled into the surrounding matrix during spherulite growth, and that it diffuses outward ahead of the advancing crystalline front. We compare these profiles to models of water diffusion in rhyolite to estimate timescales for spherulite growth. Using a diffusion-controlled growth law, we find that spherulites can grow on the order of days to months at temperatures above the glass transition. The diffusion-controlled growth law also accounts for spherulite size distribution, spherulite growth below the glass transition, and why spherulitic glasses are not completely devitrified.

Watkins, Jim; Watkins, Jim; Manga, Michael; Huber, Christian; Martin, Michael C.

2007-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mid-Yellowstone Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Elec Coop, Inc Yellowstone Elec Coop, Inc Jump to: navigation, search Name Mid-Yellowstone Elec Coop, Inc Place Montana Utility Id 12463 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm, Residential, and Public Buildings General Service 1 Phase General Service 3 Phase Irrigation Service > 200 HP Commercial Irrigation Service < 200 HP Commercial Seasonal Services Seasonal Services Security Light 400 watt light Lighting Security Lights 175 watt light Lighting

42

The objectives for deep scientific drilling in Yellowstone National Park  

DOE Green Energy (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

43

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

44

The Teton-Yellowstone Tornado of 21 July 1987  

Science Conference Proceedings (OSTI)

The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup ...

T. Theodore Fujita

1989-09-01T23:59:59.000Z

45

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

46

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004)  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=401329" Category: Exploration Activities

47

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Yellowstone_Region_(Goff_%26_Janik,_2002)&oldid=687484"

48

Patricia Poole-Shirriel  

Energy.gov (U.S. Department of Energy (DOE))

Patricia Poole-Shirriel is the human resources/administrative team leader for the Office of Legacy Management (LM) in the Office of Business Operations Division.Ms. Poole-Shirriel comes to LM from...

49

Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data

50

West Yellowstone, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yellowstone, Montana: Energy Resources Yellowstone, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6621493°, -111.1041092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6621493,"lon":-111.1041092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early  

Open Energy Info (EERE)

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Details Activities (1) Areas (1) Regions (0) Abstract: The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He,

52

Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open Energy  

Open Energy Info (EERE)

Sturchio, Et Al., 1990) Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Core Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The samples used for this study were 43 hydrothermal minerals (silica, clay and calcite) from Yellowstone drill cores Y-5, Y-6, Y-7, Y-8, Y-11, Y-12, and Y-13 (Fig. 1). References N. C. Sturchio, T. E. C. Keith, K. Muehlenbachs (1990) Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Yellowstone_Region_(Sturchio,_Et_Al.,_1990)&oldid=401307"

53

O R I G I N A L P A P E R Thermodesulfobacterium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermodesulfobacterium Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park Scott D. Hamilton-Brehm * Robert A. Gibson * Stefan J. Green * Ellen C. Hopmans * Stefan Schouten * Marcel T. J. van der Meer * John P. Shields * Jaap S. S. Damste ´ * James G. Elkins Received: 20 July 2012 / Accepted: 4 January 2013 Ó Springer Japan (outside the USA) 2013 Abstract A novel sulfate-reducing bacterium designated OPF15 T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism dis- played hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H 2 or formate

54

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb.  

NLE Websites -- All DOE Office Websites (Extended Search)

Feb. Feb. 2010, p. 1014-1020 Vol. 76, No. 4 0099-2240/10/$12.00 doi:10.1128/AEM.01903-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park ᰔ Scott D. Hamilton-Brehm, Jennifer J. Mosher, Tatiana Vishnivetskaya, Mircea Podar, Sue Carroll, Steve Allman, Tommy J. Phelps, Martin Keller, and James G. Elkins* BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Received 7 August 2009/Accepted 2 December 2009 A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47 T , was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram- positive

55

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

56

Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

A, Inc (North Dakota) Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place North Dakota Utility Id 11272 References EIA Form EIA-861 Final Data File for 2010 -...

57

Vp-Vs Ratios In The Yellowstone National Park Region, Wyoming...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: In this paper we study the variation of VpVs and Poisson's ratio () in the Yellowstone National Park region, using earthquakes which were well...

58

Some Effects of the Yellowstone Fire Smoke Cloud on Incident Solar Irradiance  

Science Conference Proceedings (OSTI)

The influence of the 1988 Yellowstone National Park fire, smoke cloud on incident broadband and spectral solar irradiance was studied using measurements made at the Solar Energy Research Institute's Solar Radiation Research Laboratory, Golden, ...

Roland L. Hulstrom; Thomas L. Stoffel

1990-12-01T23:59:59.000Z

59

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution  

Open Energy Info (EERE)

Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Details Activities (1) Areas (1) Regions (0) Abstract: No portion of the American continent is perhaps so rich in wonders as the Yellow Stone' (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal

60

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Yellowstone Region (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

62

Lower Yellowstone R E A, Inc | Open Energy Information  

Open Energy Info (EERE)

R E A, Inc R E A, Inc Jump to: navigation, search Name Lower Yellowstone R E A, Inc Place Montana Utility Id 11272 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Residential Net Metering Rate Schedule - Base #3 Commercial Net Metering Rate Schedule - Base 1 Residential Net Metering Rate Schedule - Base 2 Commercial Schedule A Residential Schedule AS - Annual Service Residential Schedule DC-1 Commercial Schedule EH - Electric Heat Rate Commercial Schedule GS - Single Phase Commercial

63

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Covers Swimming Pool Covers Swimming Pool Covers May 29, 2012 - 6:40pm Addthis Swimming Pool Covers What does this mean for me? Pool covers minimize evaporation from both outdoor and indoor pools. Covering a pool when it is not in use is the single most effective means of reducing pool heating costs. Savings of 50%-70% are possible. You can significantly reduce swimming pool heating costs by using a pool cover. On the following pages, see the tables showing the costs of heating pools with and without pool covers in different U.S. cities: Estimating Heat Pump Swimming Pool Heater Costs and Savings Estimating Swimming Pool Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work

64

Swimming Pool Covers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from an outdoor pool varies depending on the pool's temperature, air temperature and humidity, and the wind speed at the pool surface. The higher the pool temperature and wind...

65

Solar pool heater  

SciTech Connect

A solar pool heater is defined by a submersible tubular ring attached to the perimeter of a transparent or translucent sheet. Floatation of the heater is obtained through an air bubble captured by the sheet and maintained by the ring. The ring is perforated to permit the entry of water within the ring to induce partial submersion and thereby establish a peripheral seal about the captured air bubble. The submersed ring also prevents overlapping of adjacent heaters and reduces the likelihood of the heaters being blown off the pool by wind. By developing the sheet from material transparent to at least a spectrum of the solar rays, the air space intermediate the sheet and the underlying water surface will provide a ''greenhouse'' effect to heat the water through direct impingement by the received radiant energy; additionally, radiation of heat from the water will be reduced by the sheet, whereby, the heater not only collects but retains the impinged radiant energy.

Acker, L.C.

1980-09-16T23:59:59.000Z

66

Installing and Operating an Efficient Swimming Pool Pump | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water with an Efficient Swimming Pool Installing and Operating an Efficient Swimming Pool Pump Swimming Pool Covers An example of a solar pool heater. Solar Swimming Pool Heaters...

67

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network (OSTI)

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Fleskes, Joe

68

Some Effects of the Yellowstone Fire Smoke Plume on Northeast Colorado at the End of Summer 1988  

Science Conference Proceedings (OSTI)

Extensive fires in Yellowstone National Park, Wyoming, during the summer of 1988 resulted in considerable smoke transport to surrounding states. The present note provides an observational evaluation of the effects of this plume on (i) surface ...

M. Segal; J. Weaver; J. F. W. Purdom

1989-10-01T23:59:59.000Z

69

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool A flow control valve -- automatic or manual device that diverts pool

70

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

71

Swimming Pool Covers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Heating Costs and Savings Use of a pool cover also can help reduce the size of a solar pool heating system, which can save money. How They Work Swimming pools lose energy in...

72

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Swimming Pool Heaters Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool

73

Gas Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can be a good choice for pools that aren't used on a regular basis. Unlike heat pump and solar pool heaters, gas pool heaters can maintain any desired temperature regardless of...

74

Solar Pool Heating | Open Energy Information  

Open Energy Info (EERE)

icon Solar Pool Heating Jump to: navigation, search TODO: Add description List of Solar Pool Heating Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolar...

75

Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) | Open Energy  

Open Energy Info (EERE)

Hurwitz, Et Al., 2007) Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to monthly sampling enables the examination of spatial and temporal patterns

76

Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park  

Science Conference Proceedings (OSTI)

Intensive chemical studies were made of S(-II), O/sub 2/, Al, Fe, Mn, P, As(III), As(V), and Li in waters from two high-Cl, low Ca-Mg hotspring drainages in the Lower Geyser Basin, a warm spring system rich in Ca and Mg in the Yellowstone Canyon area, and the Madison River system above Hebgen Lake. Analyses were also made of other representative thermal waters from the Park.

Stauffer, R.E.; Jenne, E.A.; Ball, J.W.

1980-01-01T23:59:59.000Z

77

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

DOE Green Energy (OSTI)

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30T23:59:59.000Z

78

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

79

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

80

Solar pool heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar pool heating Jump to: navigation, search Pool Heating is a great use for solar energy. Solar pool heating systems can be very effective and inexpensive. The pool itself is the thermal storage unit and the existing pump that the pool uses will circulate the water through the solar collectors. Pool Covers Having a good pool cover is one of the best ways to conserve energy and use solar energy to heat the pool. If you don't have a pool cover the solar energy being used will be wasted and you will be using three times as much energy that is necessary. Solar Sun Rings- instead of using a full pool cover sun rings are

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

Science Conference Proceedings (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

82

Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins  

Science Conference Proceedings (OSTI)

The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

1982-02-01T23:59:59.000Z

83

Swimming Pool Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

84

Report on Solar Pool Heating Quantitative Survey  

DOE Green Energy (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar pool-heating systems from the perspective of residential pool owners.

Synapse Infusion Group, Inc. (Westlake Village, California)

1999-05-06T23:59:59.000Z

85

Why Are There Tropical Warm Pools?  

Science Conference Proceedings (OSTI)

Tropical warm pools appear as the primary mode in the distribution of tropical sea surface temperature (SST). Most previous studies have focused on the role of atmospheric processes in homogenizing temperatures in the warm pool and establishing ...

Amy C. Clement; Richard Seager; Raghu Murtugudde

2005-12-01T23:59:59.000Z

86

Spent Fuel Pool Accident Characteristics  

Science Conference Proceedings (OSTI)

Spent fuel pools (SFPs) at nuclear reactor sites contain used fuel assemblies, control rods, used radioactive sources, and used instrumentation. Cooling of the used fuel is required to remove the decay heat generated by radioactive decay.BackgroundThe SFPs include heat removal systems to provide methods to cool the used fuel and inventory makeup systems as backup methods to preserve water inventory if the SFP cooling system is ineffective. These two methods ...

2013-05-27T23:59:59.000Z

87

Payette Idaho Pool Energy Conservation Study  

DOE Green Energy (OSTI)

Staff at PNNL studied and performed evaluations on the pool facility for energy conservation measures and actions to lower the annual energy costs of the pool complex. PNNL staff analyzed the utility billing data and a number of energy conservation opportunities. Conservation opportunities analyzed include adding pool covers and a solar water heating system, sealing and insulating the building envelope, optimizing the pool schedule, and incorporating several no- or low-cost energy saving recommendations.

Larson, Loren L.; Hillman, Timothy C.; McCullough, Jeffrey J.; Roy, Nicole D.

2001-11-01T23:59:59.000Z

88

Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain  

DOE Green Energy (OSTI)

Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability.

P. F. Dobson; T. J. Kneafsey; A. Simmons; J. Hulen

2001-05-29T23:59:59.000Z

89

Solar Heated Pools for Your Commercial Property  

SciTech Connect

A brochure describing the energy-saving and cost-saving benefits of using solar water heating in commercial swimming pools.

American Solar Energy Society

2001-06-19T23:59:59.000Z

90

Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bonneville Seabase Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Bonneville Seabase Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Grantsville, Utah Coordinates 40.5999425°, -112.4643988° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Moana Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Moana Swimming Pool Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

92

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Facility Stacy Park Pool Sector Geothermal energy Type Pool and Spa Location Austin, Texas Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

93

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Public Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Public Swimming Pool Sector Geothermal energy Type Pool and Spa Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Baker Swimming Pool Sector Geothermal energy Type Pool and Spa Location Baker, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

95

Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Swimming Pool Pool & Spa Low Temperature Geothermal Facility Swimming Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Swimming Pool Pool & Spa Low Temperature Geothermal Facility Facility Cove Swimming Pool Sector Geothermal energy Type Pool and Spa Location Cove, Oregon Coordinates 45.2965256°, -117.8079872° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Crater Scuba Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Homestead Crater Scuba Dive Pool Sector Geothermal energy Type Pool and Spa Location Midway, Utah Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

97

Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Soaking Pools Pool & Spa Low Temperature Geothermal Facility Soaking Pools Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs Soaking Pools Sector Geothermal energy Type Pool and Spa Location Hay-Yo-Kay, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

98

Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pools (5) Pool & Spa Low Temperature Geothermal Facility Pools (5) Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Swimming Pools (5) Pool & Spa Low Temperature Geothermal Facility Facility Klamath Swimming Pools (5) Sector Geothermal energy Type Pool and Spa Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

99

Hobo Pool Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool Pool & Spa Low Temperature Geothermal Facility Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Pool Pool & Spa Low Temperature Geothermal Facility Facility Hobo Pool Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621°, -106.8064263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor  

DOE Patents (OSTI)

An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for  

E-Print Network (OSTI)

Motor Pool Guidelines for Geosciences · A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf · If the trip be submitted with the Motor Pool Request. · A list of passengers and drivers is for all motor pool travel (this

Holliday, Vance T.

102

Managing the Yellowstone River System with Place-based Cultural Data  

E-Print Network (OSTI)

This project aims to create new research tools within the human dimensions (HD) of the natural resources field to improve environmental policy decision making. It addresses problems that arise from the recent trend towards decentralized natural resource management (NRM) and planning (e.g., community-based planning, watershed-based and collaborative management, others). By examining one decentralized riparian management planning effort along the Yellowstone River (Montana), this study finds that decentralization forces new needs such as localized information requirements and a better understanding of the rationales behind local interests. To meet these new scale demands and to ensure that policy best fits the social and biophysical settings, this project argues that local cultural knowledge can serve as an organizing framework for delivering the kinds of understanding needed for decentralized planning. This was tested by interviewing 313 riverfront landowners, recreationalists, and civic managers to understand how residents conceptualize the rivers natural processes, its management, and their desires for the future of the river. Analysis of the transcribed in-depth interview textsthe Yellowstone River Cultural Inventory (YRCI)found that: (1) altering decision venues places more significance upon interpersonal working relationships between managers and citizens; (2) while local expertise can provide higher quality information to managers, local decision making cultures still retain power dynamics that can inhibit or advance conservation policies; (3) how natural resource places are symbolically communicated has a material impact upon resource uses; (4) how residents conceptualize the ownership of land is complicated along a dynamic river; and (5) this dynamism impacts planning efforts. In sum, this project argues that for social research to provide the data and analysis appropriate, a modification in scale and a commensurate shift in the lenses used for social inquiry is necessary. An in-depth understanding of local cultureslike the YRCIenables agencies to best manage in decentralized scales of planning by calling attention to site-specific nuances such as power dynamics and place representation which are often missed in traditional large-scale HD methods and lenses. This research also functions as a preemptive way to engage the public in environmental planning helping decision makers best fit policy to particular socio-cultural and ecological settings.

Hall, Damon M.

2010-08-01T23:59:59.000Z

103

Southwest Power Pool | OpenEI  

Open Energy Info (EERE)

Southwest Power Pool Southwest Power Pool Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 90, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power projections South Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Southwest Power Pool / South- Reference Case (xls, 259 KiB)

104

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

105

Hydrocarbon pool and vapor fire data analysis  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

106

Gas Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You'll probably need to tune up your pool heater annually. Also, scaling in the burner or heat exchanger may decrease efficiency over a period of time. With proper installation and...

107

Northwest Power Pool Area | OpenEI  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 93, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northwest Power Pool Area projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Northwest Power Pool Area (xls, 259.1 KiB)

108

Performance Study of Swimming Pool Heaters  

Science Conference Proceedings (OSTI)

The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

McDonald, R.J.

2009-01-01T23:59:59.000Z

109

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

110

EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: K Pool Fish Rearing, Hanford Site, Richland, Washington EA-1111: K Pool Fish Rearing, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of...

111

Algae Computer Simulation: Growth Forecasting Within A Swimming Pool Environment.  

E-Print Network (OSTI)

??An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris (more)

Ballard, Roderick Chevelle

2012-01-01T23:59:59.000Z

112

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot...

113

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

114

Caliente City Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente City Pool Pool & Spa Low Temperature Geothermal Facility Facility Caliente City Pool Sector Geothermal energy Type Pool and Spa Location Caliente, Nevada Coordinates 37.6149648°, -114.5119378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Remote sensing in a water-resources study of Yellowstone National Park, Wyoming, Montana, and Idaho  

DOE Green Energy (OSTI)

This report describes the usefulness of remote-sensing data in a water-resources study of Yellowstone National Park by delineating warm and cool ground-water areas. Remote-sensing data from aircraft missions in August 1966, September 1967, August 1969, and May 1970 were compared with reconnaissance, ground-temperature surveys, and test-hole data. Thermal-water discharge areas can be determined from infrared imagery and photography from the aircraft missions. Contrasts on infrared imagery caused by differences in vegetative cover, particularly between forested and nonforested areas, often mask the effects of ground-water temperature differences. The imagery, however, shows relatively warm and cool land surface in some areas. Color and color infrared photographs have been useful in reconnaissance. Aerial photographs and field studies of snowpack conditions indicated the usefulness of aerial photography taken during spring snowmelt to determine relatively cool and warm land-surface areas. A snowline in Nez Perce Creek Valley corresponds to a boundary between cool and warm ground water that was determined from augered test holes and ground-temperature surveys. Remnants of the snowpack correlate well with cool areas interpreted from infrared imagery. Relatively cool areas are easier to determine from photographs of snowpack than they are from infrared imagery. Thermal-contour maps could be made from a series of aerial photographs or repetitive data from a satellite taken during the melting of the snowpack.

Cox, E.R.

1973-01-01T23:59:59.000Z

116

Managing Swimming Pool Temperature for Energy Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency Managing Swimming Pool Temperature for Energy Efficiency May 29, 2012 - 7:42pm Addthis Managing Swimming Pool Temperature for Energy Efficiency What does this mean for me? The temperature you keep your pool affects the pool heater size as well as your operating costs. Turn the temperature down or turn off the heater when your pool won't be used for several days. The water temperature you desire for your swimming pool not only affects the size of the pool's heater, but also your heating costs if use a gas or heat pump pool heater. Pool water temperatures typically range from 78ºF to 82ºF. The American Red Cross recommends a temperature of 78ºF for competitive swimming. This coincides with good fuel savings. However, this may be too cool for young

117

STATE OF CALIFORNIA POOL AND SPA HEATING SYSTEMS  

E-Print Network (OSTI)

Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Pool and Spa solar heating. 2. A cover for outdoor pools or spas that have a heat pump or gas heater. 3. Pool system shall be calculated based on pool sizing table below. 3. The pump is capable of operating at 2 or more

118

2015 Resource Pool - Sierra Nevada Region - Western Area Power  

NLE Websites -- All DOE Office Websites (Extended Search)

2015 Resource Pool 2015 Resource Pool 2015 Resource Pool Updates 2015 Base Resource Percentages Including Resource Pool Allocations Federal Register Notices Final 2015 Resource Pool Allocations (PDF 147KB) Proposed Allocations FRN (PDF - 59KB) Notice of Extension (PDF - 49KB) Applicant Profile Data Form (WORD - 89KB) Call for 2015 Resource Pool Applications (PDF - 70KB) Final 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 57.4KB) Proposed 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 60.7KB) Public Meetings Comment Forum on the Proposed 2015 Resource Pool Size and Eligibility Criteria Date: Wednesday, May 21, 2008, at 1:00 p.m., PST Location: Lake Natoma Inn located at 702 Gold Lake Drive, Folsom, California Comments on 2015 Resource Pool Size and General Eligibility Criteria

119

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state  

E-Print Network (OSTI)

Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 and equipment costing $3,000 or more for the Institute's vehicle fleet program. The mission of the Motor Pool form when bringing their vehicles, LSVs, golf carts or equipment to the Motor Pool for service (see

Li, Mo

120

Mitigation of Nuclear Fuel Pool Leaks  

Science Conference Proceedings (OSTI)

The used or spent fuel from nuclear reactors is stored in spent fuel pools, which require canals for fuel transfer activities. These pools--3540 feet or more in depth--are lined with stainless steel ranging in thickness from ~.19 in~.38 in (~4.8 mm~9.5 mm). The liners are anchored to the walls and slab via welds that can leak or crack. lectricit de France (EDF) has developed tools to check suspect areas of the liner seam welds for cracking or leakage. This report ...

2013-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region  

DOE Green Energy (OSTI)

The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

2000-12-30T23:59:59.000Z

122

Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics  

Science Conference Proceedings (OSTI)

Moderately thermophilic acidophilic bacteria were isolated from geothermal (3083 C) acidic (pH 2.7 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 C, and pH 1.01.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

D. B. Johnson; N. Okibe; F. F. Roberto

2003-07-01T23:59:59.000Z

123

NGO collaborations: sharing and pooling projects  

Science Conference Proceedings (OSTI)

Humanitarian non-governmental organizations (NGOs) are increasingly facing challenges due to the growing number of actors in the humanitarian relief sector as well as the high incidence of natural disasters. A prominent means of mitigating these challenges ... Keywords: NGO, collaboration bodies, infrastructure, resource pooling, resource sharing

Kartikeya Bajpai; Edgar Maldonado; Louis-Marie Ngamassi; Andrea H. Tapia; Carleen Maitland

2011-02-01T23:59:59.000Z

124

The Persistent Cold-Air Pool Study  

Science Conference Proceedings (OSTI)

The Persistent Cold-Air Pool Study (PCAPS) was conducted in Utah's Salt Lake valley from 1 December 2010 to 7 February 2011. The field campaign's primary goal was to improve understanding of the physical processes governing the evolution of multiday cold-...

Neil P. Lareau; Erik Crosman; C. David Whiteman; John D. Horel; Sebastian W. Hoch; William O. J. Brown; Thomas W. Horst

2013-01-01T23:59:59.000Z

125

Modeling of LNG Pool Spreading and Vaporization  

E-Print Network (OSTI)

In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due to preferential boiling within the mixture and the effect of boiling on conductive heat transfer. The heat, mass and momentum balance equations are derived for continuous and instantaneous spills and mixture thermodynamic effects are incorporated. A parameter sensitivity analysis was conducted to determine the effect of boiling heat transfer regimes, friction, thermal contact/roughness correction parameter and VLE/mixture thermodynamics on the pool spreading behavior. The aim was to provide a better understanding of these governing phenomena and their relative importance throughout the pool lifetime. The spread model was validated against available experimental data for pool spreading on concrete and sea. The model is solved using Matlab for two continuous and instantaneous spill scenarios and is validated against experimental data on cryogenic pool spreading found in literature.

Basha, Omar 1988-

2012-12-01T23:59:59.000Z

126

Spent fuel pool analysis using TRACE code  

SciTech Connect

The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S. [Dept. of Chemical and Nuclear Engineering, Universitat Politenica de Valencia, Cami de Vera s/n, 46021, Valencia (Spain)

2012-07-01T23:59:59.000Z

127

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

128

Warm Pool Physics in a Coupled GCM  

Science Conference Proceedings (OSTI)

The physics of the IndoPacific warm pool are investigated using a coupled ocean atmosphere general circulation model. The model, developed at the Max-Planck-Institut fair Meteorologic, Hamburg, does not employ a flux correction and is used with ...

Niklas Schneider; Tim Barnett; Mojib Latif; Timothy Stockdale

1996-01-01T23:59:59.000Z

129

Forming test collections with no system pooling  

Science Conference Proceedings (OSTI)

Forming test collection relevance judgments from the pooled output of multiple retrieval systems has become the standard process for creating resources such as the TREC, CLEF, and NTCIR test collections. This paper presents a series of experiments examining ... Keywords: evaluation of qrel sets, test collection formation

Mark Sanderson; Hideo Joho

2004-07-01T23:59:59.000Z

130

Installing and Operating an Efficient Swimming Pool Pump | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump Installing and Operating an Efficient Swimming Pool Pump May 29, 2012 - 7:54pm Addthis Photo courtesy iStockphoto.com Photo courtesy iStockphoto.com What does this mean for me? Use the smallest size pump possible for your swimming pool. Reduce the time your pool pump operates to save money while still keeping your pool clean. You can save energy and maintain a comfortable swimming pool temperature by using a smaller, higher efficiency pump and by operating it less. In a study of 120 pools by the Center for Energy Conservation at Florida Atlantic University, some pool owners saved as much as 75% of their original pumping bill when they used these energy conservation measures (see table below). Table 1. Savings from Pump Conservation Measures

131

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

132

Pool boiling on nano-finned surfaces  

E-Print Network (OSTI)

The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: microlayer disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

Sriraman, Sharan Ram

2007-12-01T23:59:59.000Z

133

Suncatcher and cool pool. Project report  

DOE Green Energy (OSTI)

The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

Hammond, J.

1981-03-01T23:59:59.000Z

134

Managing Swimming Pool Temperature for Energy Efficiency | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduce the cost of heating your swimming pool by installing a high-efficiency or solar heater, using a pool cover, managing the water temperature, and using a smaller pump less...

135

Heat Pump Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

from the hot gas to the cooler pool water circulating through the heater. The heated water then returns to the pool. The hot gas, as it flows through the condenser coil, returns...

136

The Heat Balance of the Western Hemisphere Warm Pool  

Science Conference Proceedings (OSTI)

The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in ...

David B. Enfield; Sang-ki Lee

2005-07-01T23:59:59.000Z

137

Object-Centric spatial pooling for image classification  

Science Conference Proceedings (OSTI)

Spatial pyramid matching (SPM) based pooling has been the dominant choice for state-of-art image classification systems. In contrast, we propose a novel object-centric spatial pooling (OCP) approach, following the intuition that knowing the location ...

Olga Russakovsky; Yuanqing Lin; Kai Yu; Li Fei-Fei

2012-10-01T23:59:59.000Z

138

Heat Pump Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

139

Investigation of the condition of spent-fuel pool components  

Science Conference Proceedings (OSTI)

It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

1981-09-01T23:59:59.000Z

140

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed competitive levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Definition: Mudpots, Mud Pools, or Mud Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Mudpots, Mud Pools, or Mud Volcanoes Jump to: navigation, search Dictionary.png Mudpots, Mud Pools, or Mud Volcanoes A kind of hot spring or fumarole with limited water causing a bubbling pool with a consistency of mud or clay. View on Wikipedia Wikipedia Definition A mudpot - or mud pool - is a sort of acidic hot spring, or fumarole, with limited water. It usually takes the form of a pool of bubbling mud. The acid and microorganisms decompose surrounding rock into clay and mud. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Mudpots,_Mud_Pools,_or_Mud_Volcanoes&oldid=684824" Category:

142

Retail Demand Response in Southwest Power Pool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

143

Modelling spreading, vaporisation and dissolution of multi-component pools.  

E-Print Network (OSTI)

??The present work describes the fundamental extension of an integral pool spreading, vaporisation and dissolution model, part of the Process Hazard Assessment Tool (Phast) software. (more)

Fernandez, MI

2013-01-01T23:59:59.000Z

144

ANALYSIS OF MILP TECHNIQUES FOR THE POOLING PROBLEM ...  

E-Print Network (OSTI)

Some variants of pooling problem have cost of per unit flow in arcs, profit per ...... and Analytics in the Oil and Gas Industry, International Series in Operations Re-.

145

Transient Melt Pool Response in Wire Feed Electron Beam Direct ...  

Science Conference Proceedings (OSTI)

Presentation Title, Transient Melt Pool Response in Wire Feed Electron Beam Direct ... Abstract Scope, Wire feed electron beam direct digital manufacturing...

146

Low Temperature Direct Use Pool & Spa Geothermal Facilities ...  

Open Energy Info (EERE)

Low Temperature Direct Use Pool & Spa Geothermal Facilities Jump to: navigation, search No facilities found CSV Retrieved from "http:en.openei.orgwindex.php?titleLowTemperatu...

147

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

148

Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool  

DOE Patents (OSTI)

An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

Heiple, C.R.; Burgardt, P.

1984-03-13T23:59:59.000Z

149

Maintenance of a Mountain Valley Cold Pool: A Numerical Study  

Science Conference Proceedings (OSTI)

A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was ...

Brian J. Billings; Vanda Grubii?; Randolph D. Borys

2006-08-01T23:59:59.000Z

150

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools  

E-Print Network (OSTI)

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental

Jeavons, Peter

151

Pennsylvania Pool Chemical Business Soaks Up Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays September 7, 2010 - 3:00pm Addthis MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Stephen Graff Former Writer & editor for Energy Empowers, EERE Most people catching rays poolside don't realize this, but it takes a lot

152

The ecology of southern California vernal pools: A community profile  

SciTech Connect

Vernal pools are shallow temporary bodies of water that form in winter and spring in the Mediterranean climate region of the Pacific coast. They occur in a diversity of natural settings, often in association with mounded topography. The origin of this mounded topography is still controversial. The short duration of pools and the extreme variation from standing water to severe drought favor a unique fauna and flora. The organisms of vernal pools have special life history features that fit them to this environment. Some of the plants and many of the animals have cosmopolitan distribution, and are found in temporary wetlands at widely scattered locations. Others are extremely restricted in distribution and many are endemic to clusters of pools within the California biotic province. Vernal pools have disappeared at an increasing rate over the past 100 years; because of this, several plant taxa associated with them are listed as rare and endangered by the Federal Government and the State of California.

Zedler, P.H.

1987-05-01T23:59:59.000Z

153

Swimming Pool Granuloma, Fish Tank Granuloma,  

E-Print Network (OSTI)

Mycobacteriosis is a chronic or acute, systemic, granulomatous disease that occurs in aquarium and culture food fish, particularly those reared under intensive conditions. Mycobacteriosis results from infection by several species of Mycobacterium, aerobic, Gram-positive, pleomorphic rods which are members of the order Actinomycetales and family Mycobacteriaceae. Mycobacteria are widespread in the environment, particularly in aquatic reservoirs. The two most important species causing mycobacteriosis in fish and humans are Mycobacterium marinum and Mycobacterium fortuitum. Other species known to cause mycobacterial disease in fish include M. chelonei, M neoaurum, M simiae, and M scrofulaceum. Mycobacterium marinum was first recognized in 1926 from the liver, spleen and kidney of tropical coral fish kept in the Philadelphia Aquarium. M. marinum can grow prolifically within fibroblast, epithelial cells and macrophages. In the past, human outbreaks of M. marinum were sporadic and most commonly assoicated with contaminated swimming pools. Chlorination practices used today have greatly minimized to frequency of outbreaks from these sources. In the last decade, a small but

Fish Tuberculosis; Fish Handlers Disease; Fish Handlers Nodules

2007-01-01T23:59:59.000Z

154

Loss of spent fuel pool cooling PRA: Model and results  

Science Conference Proceedings (OSTI)

This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

1996-09-01T23:59:59.000Z

155

Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs  

DOE Green Energy (OSTI)

There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

2012-05-01T23:59:59.000Z

156

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camperworld Hot Springs Sector Geothermal energy Type Pool and Spa Location Garland, Utah Coordinates 41.7410387°, -112.1616194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Huckelberry Hot Springs Sector Geothermal energy Type Pool and Spa Location Grand Teton Nat'l Park, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOERA-1 11 1 DOERA-1 11 1 Environmental Assessment K Pool 'Fish Rearing, Hanford Site, Richland, Washington U.S. Department of Emrgy Richland, Washington December 1996 DOEEA-1111 ENVIRONMJ3'NTAL ASSESSMENT K POOL 'F'ISH REARING HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY RICHLAND, WASHINGTON December 1996 This page intentionally left blank. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. 1 ' U.S. Department of Energy summary The U.S. Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public h

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Safford Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Pool & Spa Low Temperature Geothermal Facility Facility Safford Sector Geothermal energy Type Pool and Spa Location Safford, Arizona Coordinates 32.8339546°, -109.70758° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

162

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

163

California Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot Springs Sector Geothermal energy Type Pool and Spa Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

Melozi Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Pool & Spa Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Pool and Spa Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

165

Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Pool and Spa Location Lehi, Utah Coordinates 40.3916172°, -111.8507662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

166

Jones Splashland Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jones Splashland Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jones Splashland Pool & Spa Low Temperature Geothermal Facility Facility Jones Splashland Sector Geothermal energy Type Pool and Spa Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Calvary Chapel Conference Center Pool & Spa Low Temperature Geothermal Facility Facility Calvary Chapel Conference Center Sector Geothermal energy Type Pool and Spa Location Murrieta, California Coordinates 33.5539143°, -117.2139232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Brockway Springs Resort Sector Geothermal energy Type Pool and Spa Location King's Beach, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Natatorium Pool & Spa Low Temperature Geothermal Facility Natatorium Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Natatorium Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Natatorium Sector Geothermal energy Type Pool and Spa Location American Falls, Idaho Coordinates 42.7860226°, -112.8544377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Esalen Institute Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Esalen Institute Pool & Spa Low Temperature Geothermal Facility Esalen Institute Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Esalen Institute Pool & Spa Low Temperature Geothermal Facility Facility Esalen Institute Sector Geothermal energy Type Pool and Spa Location Big Sur, California Coordinates 36.270241°, -121.8074545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tassajara Buddhist Meditation Pool & Spa Low Temperature Geothermal Facility Facility Tassajara Buddhist Meditation Sector Geothermal energy Type Pool and Spa Location Carmel Valley, California Coordinates 36.4860728°, -121.723836° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Greenbrier Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Greenbrier Pool & Spa Low Temperature Geothermal Facility Facility Greenbrier Sector Geothermal energy Type Pool and Spa Location White Sulphur Springs, West Virginia Coordinates 37.7965107°, -80.2975704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baumgartner Hot Springs Sector Geothermal energy Type Pool and Spa Location Featherville, Idaho Coordinates 43.6098966°, -115.2581378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Goddard Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Goddard Pool & Spa Low Temperature Geothermal Facility Goddard Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goddard Pool & Spa Low Temperature Geothermal Facility Facility Goddard Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

175

Comment to NOI re Retrospective Risk Pooling Program For Suppliers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NOI re Retrospective Risk Pooling Program For Suppliers to NOI re Retrospective Risk Pooling Program For Suppliers Comment to NOI re Retrospective Risk Pooling Program For Suppliers Comment by Cameco Resources On Retrospective Risk Pooling Program For Suppliers, 75 Fed. Reg. 43945 (July 27, 2010), Section 934 Rule Making. As discussed below, Cameco believes that producers and providers of uranium concentrates and UF6 conversion services, whether directly or as an intermediary, should be excluded from the definition of nuclear supplier. In this regard, Cameco generally agrees with the comments submitted by the Nuclear Energy Institute ("NEI") on behalf of its members; however, Cameco disagrees with the implication of NEl's comments that producers of uranium concentrates and providers of conversion services should be included in the

176

Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mineral Springs Pool & Spa Low Temperature Geothermal Facility Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart Mineral Springs Sector Geothermal energy Type Pool and Spa Location Weed, California Coordinates 41.4226498°, -122.3861269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

177

Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bathhouse Pool & Spa Low Temperature Geothermal Facility Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Jemez Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Tenakee Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Tenakee Pool & Spa Low Temperature Geothermal Facility Tenakee Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tenakee Pool & Spa Low Temperature Geothermal Facility Facility Tenakee Sector Geothermal energy Type Pool and Spa Location Chichigaf Island, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents (OSTI)

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

180

Hydrocarbon pool and vapor fire data analysis. Final report  

SciTech Connect

The flame geometry and thermal radiation data from a series of large scale experiments involving liquefied petroleum gas (LPG) and gasoline spills on water were analyzed. The experiments were conducted at the Naval Weapons Center, China Lake, California. Two types of fires have been studied; namely, pool fires and vapor fires. The spill quantity varied from 4 m/sup 3/ to approximately 6 m/sup 3/. The LPG pool fire flame height to diameter ratio were between 3.5 and 4.5. The gasoline flame height was about 2. The flame emissive powers for LPG pool fires ranged from 78 kW/m/sup 2/ to 115 kW/m/sup 2/. The average surface emissive power for gasoline pool fire was 40 kW/m/sup 2/. The LPG vapor fire emissive power ranged from 159 to 269 kW/m/sup 2/. 63 figures, 13 tables.

Mudan, K.S.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Conserving Energy and Heating Your Swimming Pools with Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

measures (see table on page 2). Conserving Energy and Heating Your Swimming Pool with Solar Energy CLEARINGHOUSE ENERGY EFFICIENCY AND RENEWABLE ENERGY T O F E N E R G Y D E P...

182

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8OE-160W) have been objectively processed to reveal tropical cloud clusters with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

183

Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, and electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included.

NONE

1996-12-01T23:59:59.000Z

184

Riverdale Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Facility Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverdale Resort Pool & Spa Low Temperature Geothermal Facility Facility Riverdale Resort Sector Geothermal energy Type Pool and Spa Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

185

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Sligar's Thousand Springs Resort Sector Geothermal energy Type Pool and Spa Location Hagerman, Idaho Coordinates 42.8121244°, -114.898669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

186

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackalope Plunge Pool & Spa Low Temperature Geothermal Facility Facility Jackalope Plunge Sector Geothermal energy Type Pool and Spa Location Douglas, Wyoming Coordinates 42.7596897°, -105.3822069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Pooled Bond Program (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) Pooled Bond Program (South Dakota) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Bond Program Provider South Dakota Governor's Office of Economic Development The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt or taxable bond issuances. Bond proceeds can be used to finance 80 percent of new construction, and 75 percent of new equipment costs, with no greater than 25 percent of the bond proceeds being used for ancillary activities such as

188

Baranof Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Baranof Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Pool & Spa Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Test results of lithium pool-air reaction suppression systems  

Science Conference Proceedings (OSTI)

Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

Jeppson, D.W.

1987-02-01T23:59:59.000Z

190

Pool heating system on island brings year-round enjoyment  

SciTech Connect

The Bahamas is not generally thought of as a place in need of pool heating. However, the remote Bahamian island of Treasure Cay is actually situated north of Ft. Lauderdale, Florida. Pool temperatures drop during the winter, thus shortening the swimming season. The Beach Villas Homeowners Association of Treasure Cay investigated pool-heating options some time ago. Energy on Treasure Cay is expensive - about 25 cents/kWh - making cost a major concern for the association as they evaluated their choices. An electric heat pump was rule out as it would place too great a burden on the electricity load of the remote island. Heating the pool with propane gas was deemed far too costly. After evaluating each of these heating methods on the basis of economics, energy efficiency, and comfort, the association concluded that solar would be the best method. They selected a solar pool heating system manufactured by FAFCO, Inc. and installed by SUNWORKS in Ft. Lauderdale. The system requires virtually no daily maintenance, and there have been no problems with the system since its installation. In addition to being trouble-free, the FAFCO solar pool heater has saved Treasure Cay a great deal of money. The equipment cost about $9,500; lumber, PVC, and labor brought the total cost to $13,000. By comparison, a propane-gas system would have cost $4,000 but would have generated a yearly gas bill of $12,000. Therefore, payback on the system began immediately upon installation.

Not Available

1993-01-01T23:59:59.000Z

191

Retail Demand Response in Southwest Power Pool  

SciTech Connect

In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

2009-01-30T23:59:59.000Z

192

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, Douglas M. (San Jose, CA)

1996-01-01T23:59:59.000Z

193

Water inventory management in condenser pool of boiling water reactor  

DOE Patents (OSTI)

An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

Gluntz, D.M.

1996-03-12T23:59:59.000Z

194

Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings  

Science Conference Proceedings (OSTI)

The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

Hunt, A.; Easley, S.

2012-05-01T23:59:59.000Z

195

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Pool and Spa Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

196

ARM - Publications: Science Team Meeting Documents: Tropical Warm Pool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool International Cloud Experiment Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWPICE) in the area around Darwin in late 2005 and early 2006. The aims of the experiment will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment design includes an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with a large range of low, mid and high altitude aircraft for in-situ and remote sensing

197

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

Dam Pool Power Agency FDPPA Dam Pool Power Agency FDPPA Jump to: navigation, search Name Four Dam Pool Power Agency (FDPPA) Place Anchorage, Alaska Zip 99515 Sector Hydro Product Joint action agency consisting of four hydroelectric projects that was organized by five electric cooperatives that purchase power from the facilities. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

New England Power Pool (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

England Power Pool (Multiple States) England Power Pool (Multiple States) New England Power Pool (Multiple States) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Interconnection Independent System Operator (ISO) New England helps protect the health of New England's economy and the well-being of its people by ensuring the constant availability of electricity, today and for future generations. ISO New England meets this obligation in three ways: by ensuring the day-to-day reliable operation of New England's bulk power generation and transmission system, by overseeing and ensuring the fair administration of the region's wholesale electricity markets, and by managing comprehensive, regional

199

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Breitenbush Community Pool & Spa Low Temperature Geothermal Facility Facility Breitenbush Community Sector Geothermal energy Type Pool and Spa Location Detroit, Oregon Coordinates 44.7340108°, -122.1497982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

200

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Warm Pool Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped with sophisticated instruments for measuring cloud and other atmospheric properties to provide a long-term record of continuous observational data. Measurements obtained from the other experiment components (explained below) will complement this dataset to provide a detailed description of the tropical atmosphere.

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

202

Operating Room Pooling and Parallel Surgery Processing Under Uncertainty  

Science Conference Proceedings (OSTI)

Operating room (OR) scheduling is an important operational problem for most hospitals. In this study, we present a novel two-stage stochastic mixed-integer programming model to minimize total expected operating cost given that scheduling decisions are ... Keywords: multiple operating rooms, operating room pooling, operating room scheduling, parallel surgery processing, two-stage stochastic mixed-integer programs

Sakine Batun; Brian T. Denton; Todd R. Huschka; Andrew J. Schaefer

2011-04-01T23:59:59.000Z

203

Identifying incompatible service implementations using pooled decision trees  

Science Conference Proceedings (OSTI)

We study fault localization techniques for identification of incompatible configurations and implementations in service-based applications (SBAs). Practice has shown that standardized interfaces alone do not guarantee compatibility of services originating ... Keywords: dependability, fault localization, pooled decision trees, service-oriented architecture

Christian Inzinger; Waldemar Hummer; Benjamin Satzger; Philipp Leitner; Schahram Dustdar

2013-03-01T23:59:59.000Z

204

A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

R. L. Demmer

2011-04-01T23:59:59.000Z

205

Update on use of mine pool water for power generation.  

Science Conference Proceedings (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

206

Assessing Fossil and Recent Carbon Pools in Reclaimed Mined Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4638 Heino.Beckert@netl.doe.gov Rattan Lal Principal Investigator The Ohio State University Research Foundation 210 Kottman Hall School of Natural Resources Columbus, OH 43210 614-292-9069 lal.1@osu.edu Assessing Fossil And Recent cARbon Pools in ReclAimed mined soils Background There is ample indication that reclaimed mine lands have great capacity to be used to sequester carbon dioxide (CO 2 ) generated by coal-fired utility and industrial power plants. This carbon could offset CO 2 emissions associated with extraction and burning of coal and provide public utilities and other industries with carbon credits. However, the present estimates of carbon pools in reclaimed mined lands are uncertain. This uncertainty is linked primarily

207

LCG Persistency Framework (CORAL, COOL, POOL): Status and Outlook  

SciTech Connect

The Persistency Framework consists of three software packages (CORAL, COOL and POOL) addressing the data access requirements of the LHC experiments in different areas. It is the result of the collaboration between the CERN IT Department and the three experiments (ATLAS, CMS and LHCb) that use this software to access their data. POOL is a hybrid technology store for C++ objects, metadata catalogs and collections. CORAL is a relational database abstraction layer with an SQL-free API. COOL provides specific software tools and components for the handling of conditions data. This paper reports on the status and outlook of the project and reviews in detail the usage of each package in the three experiments.

Valassi, A.; /CERN; Clemencic, M.; /CERN; Dykstra, D.; /Fermilab; Frank, M.; /CERN; Front, D.; /Weizmann Inst.; Govi, G.; /Northeastern U.; Kalkhof, A.; /CERN; Loth, A.; /CERN; Nowak, M.; /Brookhaven; Pokorski, W.; /CERN; Salnikov, A.; /SLAC; Schmidt, S.A.; /Mainz U., Inst. Kernphys.; Trentadue, R.; /CERN; Wache, M.; /Mainz U., Inst. Kernphys.; Xie, Z.; /Princeton U.

2012-04-19T23:59:59.000Z

208

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents (OSTI)

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

209

Nondestructive Evaluation: NDE for Fuel Pool and Transfer Canal Liners  

Science Conference Proceedings (OSTI)

This project addresses results of studies conducted with the long-range ultrasonic guided wave technique using magnetostrictive (MsS) sensors, rotational scanner with eddy current (EC) probes, alternating current field measurement (ACFM), and infrared thermography (IRT). Additionally, through collaborative work with EPRIs Critical Power division, remotely operated vehicles (ROVs) were identified for delivering nondestructive evaluation (NDE) tools into spent fuel pools where extreme high ...

2013-11-26T23:59:59.000Z

210

Annual grassland resource pools and fluxes: sensitivity to precipitation  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual grassland resource pools and fluxes: sensitivity to precipitation Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Title Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils Publication Type Journal Article Year of Publication 2012 Authors Sudderth, Erika A., Samuel B. St. Clair, Sarah A. Placella, Stéphanie M. Swarbreck, Cristina Castanha, Donald J. Herman, Marc L. Fischer, Markus Kleber, Erik B. Sudderth, Margaret S. Torn, Mary K. Firestone, Gary L. Andersen, and David D. Ackerly Journal Ecosphere Volume 3 Issue 8 Keywords Avena barbata, Bayesian ANOVA, carbon, climate change, dry periods, Grassland, nitrogen, phenology, precipitation, soil type, water Abstract In ecosystems throughout the world climate models project increased variability in precipitation patterns that may strongly affect the above- and below-ground processes that control carbon, water, and nutrient cycles. Uncertainty about how plant and soil processes respond to wet and dry periods at different times in the growing season is a barrier to understanding how changing rainfall patterns will affect ecosystem function in annual grasslands. We used mesocosm systems to test the sensitivity to mid- and late-season dry periods of twenty response variables related to nitrogen, carbon, and water cycling in Avena barbata monocultures. We compared the responses of individual variables and of grassland systems under low and high cumulative rain treatments and between two contrasting soil types.

211

Condition Controlling and Monitoring of Indoor Swimming Pools  

E-Print Network (OSTI)

VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning tools. The prevailing conditions make special demands for planning, constructing, repairing and maintaining the indoor swimming pools. Main topics are usually connected with shortening of the service lives of the building parts and technical installations and the indoor air quality. Also the yearly running costs can be remarkable high. VTT has created the technical risk map for indoor swimming pool repairs. This risk map presents the most significant factors that must be taken into account in order to repair facilities successfully. Due to optimizing the operation and maintenance VTT has developed operation and maintenance manual software that is specially targeted for indoor swimming facilities. This paper presents the technical risk map, the condition survey procedure, the energy saving methods and the maintenance record book for indoor swimming facilities to secure the success of a refurbishment project.

Nissinen, K.; Kauppinen, T.; Hekkanen, M.

2004-01-01T23:59:59.000Z

212

A Novel Approach to Spent Fuel Pool Decommissioning  

SciTech Connect

The Dresden Nuclear Power Station Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included.

R.L. Demmer; J.B. Panozzo; R.J. Christensen

2008-09-01T23:59:59.000Z

213

Decommissioning the Dresden Unit 1 Spent Fuel Pool  

Science Conference Proceedings (OSTI)

The Dresden Nuclear Power Station, Unit 1 Spent Fuel Pool (SFP) (Exelon Generation Co.) was decommissioned using a new underwater coating strategy developed in cooperation with the Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating approach. This approach has advantages in many aspects, particularly in reducing airborne contamination and in safer, more cost effective deactivation. The process was pioneered at the INL and used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. The INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by the INL and Exelon on the pathway for this activity. The rationale used to select the underwater coating option and the advantages and disadvantages are shown. Special circumstances, such as the use of a remotely operated underwater vehicle to map (visually and radiologically) the pool areas that were not readily accessible, are discussed. Several specific areas where special equipment was employed are given and a lessons learned evaluation is included. (authors)

Demmer, R.L.; Bargelt, R.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-7113 (United States); Panozzo, J.B.; Christensen, R.J. [Exelon Generation Company, LLC, Dresden Nuclear Power Station, Warrenville, IL 60555 (United States)

2006-07-01T23:59:59.000Z

214

A new implementation of high-throughput five-dimensional clone pooling strategy for BAC library screening  

E-Print Network (OSTI)

PP), column super-pools (CSP), and row super-pools (RSP) isa positive plate RSP, plate CSP, clone RP and clone CP forof plate RSP and plate CSP in the super pool 2-D design

You, Frank M; Luo, Ming-Cheng; Xu, Kenong; Deal, Karin R; Anderson, Olin D; Dvorak, Jan

2010-01-01T23:59:59.000Z

215

Jandy Pool Products: Proposed Penalty (2010-CE-1111) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jandy Pool Products: Proposed Penalty (2010-CE-1111) Jandy Pool Products: Proposed Penalty (2010-CE-1111) Jandy Pool Products: Proposed Penalty (2010-CE-1111) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Jandy Pool Products, Inc. failed to certify a variety of pool heaters as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Jandy Pool Products: Proposed Penalty (2010-CE-1111) More Documents & Publications Jandy Pool Products: Order (2010-CE-1111)

216

Reactor closure design for a pool-type fast reactor  

SciTech Connect

The reactor closure is the topmost structural part of a reactor module. For a pool-type fast reactor it is an especially important structure because it provides the interface between the primary coolant system and the main access area above the closure. The reactor closure comprises a stationary deck, a rotatable plug, the boundary elements of primary system and containment penetrations for equipment and auxiliary systems. This paper evaluates two different reactor closure design concepts, referred to as ''warm'' deck and ''hot'' deck, for a pool-type fast reactor with respect to their design features, technical merits, and economic benefits. The evaluation also includes functional, structural, and thermal analyses of the two deck design concepts. Issues related to their fabrication and shipping to the plant site are also addressed. The warm deck is a thick solid steel plate with under-the-deck insulation consisting of many layers of steel plates. The hot deck is a box-type structure consisting of a bottom plate reinforced with vertical ribs and cylinders. For insulation and radiation shielding, the region of the hot deck above the bottom plate is filled with steel balls. Conventional insulation is added on the top to further reduce heat loss into area above the deck. The design choice of the closure deck is strongly dependent on design features of the reactor; especially on the reactor module support. While the warm deck is preferable with the top support, the hot deck is better suited for the bottom support design of the module.

Chung, H.; Seidensticker, R.W.; Kann, W.J.; Bump, T.R.; Schatmeier, C.

1986-01-01T23:59:59.000Z

217

Evaluation of the Storms Pool Improved Waterflood Project  

Science Conference Proceedings (OSTI)

A review of the performance of the Storms Pool Improved Waterflood Project has been completed. This project was designed to evaluate the efficiency of polymer flooding in a reservoir which had been extensively waterflooded. The project was conducted in a 100-acre pattern in the Waltersburg sandstone of the Storms Pool Field, located in White County, Illinois. This field is typical of many old oil fields in the Illinois Basin. A total of 703,000 barrels of biopolymer-thickened water was injected, which represents about 23% of the pore volume. The project was terminated early, as expenses were greatly exceeding revenues. The project resulted in little or no incremental oil production. The lack of response is attributed mainly to the conditions in which the polymer was injected. The project indicates that the injection of a polymer which acts dominantly to increase viscosity has little potential for increasing oil recovery under the conditions where a waterflood has been successful, the mobility ratio is favorable, and when initiated in the latter stages of the flood. The movable oil saturation is thought to have been lower than anticipated by the operators. Biodegradation of the polymer probably occurred, as evidenced by the lack of polymer in offset wells and in back-produced injection water. The lack of data collected and/or reported prevented a thorough analysis of the project. Field equipment and procedures appeared adequate for the mixing, filtration, and injection of polymer made up in river water. Some problems occurred during those periods of the year when the river water contained a large amount of dispersed fines. The use of a river water is questioned due to the problems of removing dispersed fines and to the increased protection required to prevent biodegradation of the biopolymer. 26 refs., 13 figs., 3 tabs.

Norton, D.K.; Dauben, D.L.

1986-03-01T23:59:59.000Z

218

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

219

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

220

An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor  

SciTech Connect

The existing sodium cooled fast reactors (SFR) have two types of designs loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphnix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANLs Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

Haihua Zhao; Hongbin Zhang

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field,  

E-Print Network (OSTI)

(reviewed in [6,7]). This area has received considerable interest lately, propelled by developments in Biotechnology 2006, 17:250­255 www.sciencedirect.com #12;geothermal spring in Yellowstone National Park as environmental, community genomics or metagenomics. Few areas of biology have witnessed such a surge in interest

Mazzini, Adriano

222

Spent Fuel Pool Cooling and Cleanup During Decommissioning: Experience at Trojan Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Operation of original in-plant spent fuel pool facilities at shutdown power plants is expensive compared to available alternatives and can interfere with the decommissioning process. This report describes the approach taken in the Trojan Decommissioning Project to establish independent cooling and cleanup services for the fuel pool until the spent fuel is placed in dry storage.

1999-03-15T23:59:59.000Z

223

Treasurer's Annual Report, University of California, 2007-2008 Short Term Investment Pool (STIP)  

E-Print Network (OSTI)

Treasurer's Annual Report, University of California, 2007-2008 Short Term Investment Pool (STIP) Treasurer's Annual Report, University of California, 2007-2008 The Short Term Investment Pool (STIP of the University are the major funds invested in STIP until expended. Pension, endowment, and defined contribution

Russell, Lynn

224

The Relationship Between the Metabolic Pools of Photosynthetic andRespiratory Intermediates  

DOE Green Energy (OSTI)

Using radioactive carbon dioxide, an attempt has been made to distinguish the various pools of intermediary metabolism which may be physically or chemically separate within the cell. Some correlation between the structural elements of the cells and these pools appears possible.

Moses, V.; Calvin, M.; Holm-Hansen, O.; Bassham, J.A.

1958-07-01T23:59:59.000Z

225

Examination of Spent CANDU (TM) Fuel Following 27 Years of Pool Storage  

Science Conference Proceedings (OSTI)

After 27 years in pool storage, the Zircaloy cladding of CANDU fuel showed no deterioration. Further, in deliberately defected fuel elements, uranium oxide surface oxidation appeared to have no impact on fuel-cladding integrity. These results increase utilities' confidence that the fuel can be stored in pools for periods of at least 50 years.

1992-05-01T23:59:59.000Z

226

The impact of Microsoft Windows pool allocation strategies on memory forensics  

Science Conference Proceedings (OSTI)

An image of a computer's physical memory can provide a forensic examiner with a wealth of information. A small area of system memory, the nonpaged pool, contains lots of information about currently and formerly active processes. As this paper shows, ... Keywords: Microsoft Windows, Pool memory, Process Persistence, Volatile data

Andreas Schuster

2008-09-01T23:59:59.000Z

227

Time-Dependent Internal Energy Budgets of the Tropical Warm Water Pools  

Science Conference Proceedings (OSTI)

The exchange of internal energy between the warm water pools of the tropical oceans and the overlying atmosphere is thought to play a central role in the evolving climate system of the earth. Spatial displacements of the warm water pools are ...

John M. Toole; Huai-Min Zhang; Michael J. Caruso

2004-03-01T23:59:59.000Z

228

Warm Pool SST Variability in Relation to the Surface Energy Balance  

Science Conference Proceedings (OSTI)

The warm tropical oceans underlie the most convective regions on earth and are a critical component of the earths climate, yet there are differing opinions on the processes that control warm pool SST. The IndoPacific warm pool is characterized ...

John Fasullo; Peter J. Webster

1999-05-01T23:59:59.000Z

229

Dynamical Aspects of Wintertime Cold-Air Pools in an Alpine Valley System  

Science Conference Proceedings (OSTI)

This study presents high-resolution numerical simulations in order to examine the dynamical mechanisms controlling the persistence of wintertime cold-air pools in an Alpine valley system. First, a case study of a cold-pool episode is conducted, ...

Gnther Zngl

2005-09-01T23:59:59.000Z

230

Reegle mentions OpenEI in video on new Content Pool API | OpenEI Community  

Open Energy Info (EERE)

Reegle mentions OpenEI in video on new Content Pool API Reegle mentions OpenEI in video on new Content Pool API Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 15 February, 2013 - 15:25 data energy OpenEI REEEP REEGLE structured tagging API Reegle and OpenEI share the vision that easy access to energy information will help drive future developments in clean energy development. As part of this path forward, REEEP has developed a 'Content Pool' surrounding their original term extraction API. The idea behind the content pool is that, when contributing agencies submit content to the pool via the API, they'll receive extracted energy keywords, relevant thesaurus definitions, and a link of other content with similar result sets. Florian Bauer, featured in the video, describes how the reegle tagging api

231

EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Test Area North Pool Stabilization Project, Idaho Falls, 50: Test Area North Pool Stabilization Project, Idaho Falls, Idaho EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and commercial fuels from the Test Area North Pool and transfer them to the Idaho Chemical Processing Plant for interim dry storage until an alternate storage location other than INEL, or a permanent federal spent nuclear fuel repository is available. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 1996 EA-1050: Finding of No Significant Impact Test Area North Pool Stabilization Project

232

Stay Above Water with an Efficient Swimming Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Above Water with an Efficient Swimming Pool Above Water with an Efficient Swimming Pool Stay Above Water with an Efficient Swimming Pool August 10, 2009 - 10:38am Addthis Allison Casey Senior Communicator, NREL All eyes were on the pool recently for swimming's 2009 World Championships in Rome. As a former competitive swimmer (though I was a dog-paddler compared to the likes of Michael Phelps and Ariana Kukors), these events hold a special place in my heart, and I managed to catch a few exciting moments in the competition. I'm no longer involved in the world of swimming, but I can only imagine that interest in the sport has skyrocketed since last year's thrilling Olympics in Beijing. Maybe you or your children were inspired to get serious about swimming; maybe you've even decided to install a pool at your

233

Sodium/water pool-deposit bed model of the CONACS code. [LMFBR  

SciTech Connect

A new Pool-Bed model of the CONACS (Containment Analysis Code System) code represents a major advance over the pool models of other containment analysis code (NABE code of France, CEDAN code of Japan and CACECO and CONTAIN codes of the United States). This new model advances pool-bed modeling because of the number of significant materials and processes which are included with appropriate rigor. This CONACS pool-bed model maintains material balances for eight chemical species (C, H/sub 2/O, Na, NaH, Na/sub 2/O, Na/sub 2/O/sub 2/, Na/sub 2/CO/sub 3/ and NaOH) that collect in the stationary liquid pool on the floor and in the desposit bed on the elevated shelf of the standard CONACS analysis cell.

Peak, R.D.

1983-12-17T23:59:59.000Z

234

Bases for extrapolating materials durability in fuel storage pools  

SciTech Connect

A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

Johnson, A.B. Jr.

1994-12-01T23:59:59.000Z

235

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E T€& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

236

Post-test examination of a pool boiler receiver  

DOE Green Energy (OSTI)

A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 {degrees}C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 percent) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 percent. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined. 3 refs.

Dreshfield, R.L.; Moore, T.J.; Bartolotta, P.A.

1992-04-01T23:59:59.000Z

237

Structural analysis of a reflux pool-boiler solar receiver  

DOE Green Energy (OSTI)

Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth. 15 refs., 30 figs., 3 tabs.

Hoffman, E.L.; Stone, C.M.

1991-06-01T23:59:59.000Z

238

The Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation  

Science Conference Proceedings (OSTI)

A high-resolution numerical investigation of a cold-air pooling process (under quiescent conditions) is carried out that systematically highlights the relations between the characteristics of the cold-air pools (e.g., slope winds, vertical ...

Marwan Katurji; Shiyuan Zhong

2012-10-01T23:59:59.000Z

239

A Possible Effect of an Increase in the Warm-Pool SST on the Magnitude of El Nio Warming  

Science Conference Proceedings (OSTI)

El Nio warming corresponds to an eastward extension of the western Pacific warm pool; one thus naturally wonders whether an increase in the warm pool SST will result in stronger El Nios. This question, though elementary, has not drawn much ...

De-Zheng Sun

2003-01-01T23:59:59.000Z

240

Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Pool and Spa Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior  

SciTech Connect

the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

Allison, C.M.; Rempe, J.L.; Chavez, S.A.

1994-11-01T23:59:59.000Z

242

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal Facility Facility Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

243

McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility McCauley Hot Spring Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

244

Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Medicine Hot Springs Sector Geothermal energy Type Pool and Spa Location Conner, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

245

Aqua Caliente Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Caliente Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Aqua Caliente Springs Resort Sector Geothermal energy Type Pool and Spa Location Sonoma County, California Coordinates 38.5779555°, -122.9888319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

246

Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Spring Pool & Spa Low Temperature Geothermal Facility Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates 42.7921493°, -111.0032647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

247

The Lodge at Riggins Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

at Riggins Hot Springs Pool & Spa Low Temperature Geothermal at Riggins Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Lodge at Riggins Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility The Lodge at Riggins Hot Springs Sector Geothermal energy Type Pool and Spa Location Riggins, Idaho Coordinates 45.4221105°, -116.315411° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

248

Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Pool and Spa Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

249

Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Campbell Hot Springs Sector Geothermal energy Type Pool and Spa Location Sierraville, California Coordinates 39.5896256°, -120.3674301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

250

The Homestead Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Homestead Resort Pool & Spa Low Temperature Geothermal Facility Homestead Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Homestead Resort Pool & Spa Low Temperature Geothermal Facility Facility The Homestead Resort Sector Geothermal energy Type Pool and Spa Location Midway, Utah Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

251

Keough's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Keough's Hot Springs Pool & Spa Low Temperature Geothermal Facility Keough's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Keough's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Keough's Hot Springs Sector Geothermal energy Type Pool and Spa Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

252

Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Crystal Hot Springs Sector Geothermal energy Type Pool and Spa Location Honeyville, Utah Coordinates 41.638542°, -112.0793935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

253

Konocti Harbor Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Konocti Harbor Inn Pool & Spa Low Temperature Geothermal Facility Konocti Harbor Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Konocti Harbor Inn Pool & Spa Low Temperature Geothermal Facility Facility Konocti Harbor Inn Sector Geothermal energy Type Pool and Spa Location Kelseyville, California Coordinates 38.9779531°, -122.8394375° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

254

Robinson Bar Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Robinson Bar Pool & Spa Low Temperature Geothermal Facility Robinson Bar Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Robinson Bar Pool & Spa Low Temperature Geothermal Facility Facility Robinson Bar Sector Geothermal energy Type Pool and Spa Location Clayton, Idaho Coordinates 44.2593623°, -114.4017296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

255

Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Heise Hot Springs Sector Geothermal energy Type Pool and Spa Location Ririe, Idaho Coordinates 43.6318575°, -111.773575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

256

Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Kaiser Hot Springs Sector Geothermal energy Type Pool and Spa Location Wickieup, Arizona Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

257

Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Facility Bashfords Hot Mineral Spa Sector Geothermal energy Type Pool and Spa Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

258

Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mystic Hot Springs Sector Geothermal energy Type Pool and Spa Location Monroe, Utah Coordinates 38.6299724°, -112.1207573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

259

Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Guest Ranch Pool & Spa Low Temperature Geothermal Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Blue Mountain Hot Spring Guest Ranch Sector Geothermal energy Type Pool and Spa Location Prairie City, Oregon Coordinates 44.4632135°, -118.7099477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

260

Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Miracle Hot Springs Sector Geothermal energy Type Pool and Spa Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Veyo Resort Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Veyo Resort Pool & Spa Low Temperature Geothermal Facility Veyo Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Veyo Resort Pool & Spa Low Temperature Geothermal Facility Facility Veyo Resort Sector Geothermal energy Type Pool and Spa Location St. George, Utah Coordinates 37.1041476°, -113.5841233° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

262

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Hotel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

263

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Drakesbad Guest Ranch Sector Geothermal energy Type Pool and Spa Location Mineral, California Coordinates 40.3476588°, -121.5949804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

264

The Saratoga Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Saratoga Inn Pool & Spa Low Temperature Geothermal Facility Facility The Saratoga Inn Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621°, -106.8064263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

265

Camp Aqua Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Camp Aqua Pool & Spa Low Temperature Geothermal Facility Camp Aqua Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Aqua Pool & Spa Low Temperature Geothermal Facility Facility Camp Aqua Sector Geothermal energy Type Pool and Spa Location Hot Springs, Montana Coordinates 47.6091041°, -114.6687414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

266

Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mono Hot Springs Sector Geothermal energy Type Pool and Spa Location Fresno, California Coordinates 36.7477272°, -119.7723661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

267

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility 4 UR Guest Ranch Sector Geothermal energy Type Pool and Spa Location Creede, Colorado Coordinates 37.8491662°, -106.9264345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

268

DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility DeMaris Hot Springs Sector Geothermal energy Type Pool and Spa Location Cody, Wyoming Coordinates 44.5263422°, -109.0565308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

269

Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Facility Aqua Caliente County Park Sector Geothermal energy Type Pool and Spa Location Anna-Borrego Desert State Park, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

270

Sam's Family Spa Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Sam's Family Spa Pool & Spa Low Temperature Geothermal Facility Sam's Family Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sam's Family Spa Pool & Spa Low Temperature Geothermal Facility Facility Sam's Family Spa Sector Geothermal energy Type Pool and Spa Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

271

Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mimbres Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075°, -108.280326° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

272

Bowers Mansion Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Bowers Mansion Pool & Spa Low Temperature Geothermal Facility Bowers Mansion Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bowers Mansion Pool & Spa Low Temperature Geothermal Facility Facility Bowers Mansion Sector Geothermal energy Type Pool and Spa Location Carson City, Nevada Coordinates 39.192232°, -119.7344478° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

273

Riverside Inn Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Riverside Inn Pool & Spa Low Temperature Geothermal Facility Riverside Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Riverside Inn Pool & Spa Low Temperature Geothermal Facility Facility Riverside Inn Sector Geothermal energy Type Pool and Spa Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

274

Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal Facility Facility Palm Springs Spa Resort Casino Sector Geothermal energy Type Pool and Spa Location Palm Springs, California Coordinates 33.8302961°, -116.5452921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

275

Pah Temple Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pah Temple Pool & Spa Low Temperature Geothermal Facility Pah Temple Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Pah Temple Pool & Spa Low Temperature Geothermal Facility Facility Pah Temple Sector Geothermal energy Type Pool and Spa Location Hurricane, Utah Coordinates 37.1752607°, -113.2899484° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

276

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement Creek Ranch Sector Geothermal energy Type Pool and Spa Location Crested Butte, Colorado Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

277

Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Health and Rec. Pool & Spa Low Temperature Geothermal Health and Rec. Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal Facility Facility Steamboat Springs Health and Rec. Sector Geothermal energy Type Pool and Spa Location Steamboat Springs, Colorado Coordinates 40.4849769°, -106.8317158° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

278

Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs Vapor Caves Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

279

Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sol Duc Hot Springs Sector Geothermal energy Type Pool and Spa Location Port Angeles, Washington Coordinates 48.118146°, -123.4307413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

280

Notaras Lodge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Notaras Lodge Pool & Spa Low Temperature Geothermal Facility Notaras Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Notaras Lodge Pool & Spa Low Temperature Geothermal Facility Facility Notaras Lodge Sector Geothermal energy Type Pool and Spa Location Soap Lake, Washington Coordinates 47.389307°, -119.490591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Lolo, Montana Coordinates 46.75898°, -114.091003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

282

Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Matilija Hot Springs Sector Geothermal energy Type Pool and Spa Location Ventura County, California Coordinates 34.3704884°, -119.1390642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

283

Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Alive Polarity's Murrietta Hot Spring Sector Geothermal energy Type Pool and Spa Location Murrieta, California Coordinates 33.5539143°, -117.2139232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

284

Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Spring Pool & Spa Low Temperature Geothermal Facility Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Salmon Hot Spring Sector Geothermal energy Type Pool and Spa Location Salmon, Idaho Coordinates 45.1757547°, -113.8959008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

285

Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Glen Ivy Hot Springs Sector Geothermal energy Type Pool and Spa Location Riverside County, California Coordinates 33.6825587°, -115.4733554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

286

Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

State Park Pool & Spa Low Temperature Geothermal Facility State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

287

Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Hot Springs Resort Pool & Spa Low Temperature Geothermal Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Lost Trail Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Sula, Montana Coordinates 45.8365869°, -113.9817463° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

288

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Facility Campbells Gila Hot Springs Rv Park Sector Geothermal energy Type Pool and Spa Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

289

Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Quinn's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Quinn's Hot Springs Sector Geothermal energy Type Pool and Spa Location Paradise, Montana Coordinates 47.3893776°, -114.8020757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

290

Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

291

Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lope Hot Springs Sector Geothermal energy Type Pool and Spa Location Ridgway, Colorado Coordinates 38.1527685°, -107.7617263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

292

Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Grande Lodge Pool & Spa Low Temperature Geothermal Facility Grande Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

293

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's Ash Springs Sector Geothermal energy Type Pool and Spa Location Hiko, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

294

Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Pool and Spa Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

295

Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Broadwater Hot Spring Sector Geothermal energy Type Pool and Spa Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

296

Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Whitmore Hot Springs Sector Geothermal energy Type Pool and Spa Location Bishop, California Coordinates 37.3635404°, -118.3951101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

297

Spa Motel Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Spa Motel Pool & Spa Low Temperature Geothermal Facility Spa Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Spa Motel Pool & Spa Low Temperature Geothermal Facility Facility Spa Motel Sector Geothermal energy Type Pool and Spa Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

298

Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot Springs Sector Geothermal energy Type Pool and Spa Location Sublette County, Wyoming Coordinates 42.8138723°, -109.7591675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

299

Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter's Lodge Pool & Spa Low Temperature Geothermal Facility Facility Hunter's Lodge Sector Geothermal energy Type Pool and Spa Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

300

Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bagby Hot Springs Sector Geothermal energy Type Pool and Spa Location Clackamas County, Oregon Coordinates 45.2023855°, -122.1188945° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear Trap Hot Spring Sector Geothermal energy Type Pool and Spa Location Norris, Montana Coordinates 45.5679836°, -111.690808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

302

Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baileys Hot Springs Sector Geothermal energy Type Pool and Spa Location Death Valley Nat'l Monument, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

303

Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Givens Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Givens Hot Springs Sector Geothermal energy Type Pool and Spa Location Owyhee County, Idaho Coordinates 42.6827359°, -116.0622892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

304

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Facility Waunita Hot Springs Ranch Sector Geothermal energy Type Pool and Spa Location Gunnison, Colorado Coordinates 38.5458246°, -106.9253207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

305

Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Facility Paynes Fountain of Youth RV Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

306

Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cody Athletic Club Pool & Spa Low Temperature Geothermal Facility Facility Cody Athletic Club Sector Geothermal energy Type Pool and Spa Location Cody, Wyoming Coordinates 44.5263422°, -109.0565308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

307

Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Tolovana Hot Springs Sector Geothermal energy Type Pool and Spa Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Barkell's Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver Star, Montana Coordinates 45.690204°, -112.2830556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

309

Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Murphy Hot Springs Sector Geothermal energy Type Pool and Spa Location Rogerson, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

310

Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dr. Wilkinson's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dr. Wilkinson's Hot Springs Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

311

Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Belknap Hot Springs Sector Geothermal energy Type Pool and Spa Location Lane County, Oregon Coordinates 43.9610092°, -122.6618227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

312

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot Springs, Montana Coordinates 47.6091041°, -114.6687414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

313

Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Fire Water Lodge Pool & Spa Low Temperature Geothermal Facility Facility Fire Water Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

314

Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Democrat Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Democrat Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

315

Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Frank Nixon Residence Pool & Spa Low Temperature Geothermal Facility Facility Frank Nixon Residence Sector Geothermal energy Type Pool and Spa Location Saratoga, Wyoming Coordinates 41.4549621°, -106.8064263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

316

Lake Elsinore Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Elsinore Pool & Spa Low Temperature Geothermal Facility Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector Geothermal energy Type Pool and Spa Location Lake Elsinore, California Coordinates 33.6680772°, -117.3272615° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

317

Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Harbin Hot Springs Sector Geothermal energy Type Pool and Spa Location Middletown, California Coordinates 38.7524045°, -122.6149853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

318

Warner Springs Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Warner Springs Pool & Spa Low Temperature Geothermal Facility Warner Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Pool & Spa Low Temperature Geothermal Facility Facility Warner Springs Sector Geothermal energy Type Pool and Spa Location Warner Springs, California Coordinates 33.2822596°, -116.6336303° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

319

Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Goldmeyer Hot Springs Sector Geothermal energy Type Pool and Spa Location North Bend, Washington Coordinates 47.4956579°, -121.7867775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

320

Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bronze Boot Spa Pool & Spa Low Temperature Geothermal Facility Facility Bronze Boot Spa Sector Geothermal energy Type Pool and Spa Location Cody, Wyoming Coordinates 44.5263422°, -109.0565308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Motel Pool & Spa Low Temperature Geothermal Facility Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal Facility Facility Caliente Hot Springs Motel Sector Geothermal energy Type Pool and Spa Location Caliente, Nevada Coordinates 37.6149648°, -114.5119378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

322

Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ritter Hot Springs Sector Geothermal energy Type Pool and Spa Location Ritter, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

323

Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Pool and Spa Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

324

Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ringboldt Rapids Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ringboldt Rapids Hot Springs Sector Geothermal energy Type Pool and Spa Location Mojave County, Arizona Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

325

Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal Facility Facility Sycamore Hot Spring Resort Sector Geothermal energy Type Pool and Spa Location San Luis Obispo County, California Coordinates 35.3102296°, -120.4357631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

326

Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature  

Open Energy Info (EERE)

Pool & Spa Low Temperature Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Pool and Spa Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

327

Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Roman Spa Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

328

Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Pool and Spa Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

329

Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lehman Hot Springs Sector Geothermal energy Type Pool and Spa Location Ukiah, Oregon Coordinates 45.13403°, -118.9324815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

330

Wiesbaden Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Wiesbaden Hot Springs Pool & Spa Low Temperature Geothermal Facility Wiesbaden Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wiesbaden Hot Springs Sector Geothermal energy Type Pool and Spa Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

331

Imperial Sea View Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sea View Hot Springs Pool & Spa Low Temperature Geothermal Sea View Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Imperial Sea View Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Imperial Sea View Hot Springs Sector Geothermal energy Type Pool and Spa Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

332

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Woody's Feather River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Woody's Feather River Hot Springs Sector Geothermal energy Type Pool and Spa Location Twain, California Coordinates 40.0201673°, -121.0719031° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

333

Reds Meadow Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Reds Meadow Hot Springs Pool & Spa Low Temperature Geothermal Facility Reds Meadow Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Reds Meadow Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Reds Meadow Hot Springs Sector Geothermal energy Type Pool and Spa Location Devils Postpile Nat'l Monument, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

334

Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Marshall Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

335

Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot Springs Sector Geothermal energy Type Pool and Spa Location Elk City, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy Type Pool and Spa Location Mammoth Lakes Park Area, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

337

Big Caliente Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Caliente Pool & Spa Low Temperature Geothermal Facility Caliente Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Big Caliente Pool & Spa Low Temperature Geothermal Facility Facility Big Caliente Sector Geothermal energy Type Pool and Spa Location Santa Barbara, California Coordinates 34.4208305°, -119.6981901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

338

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Facility Artesian Bathhouse and RV Park Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

339

Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal Facility Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Astoria Mineral Hot Springs Sector Geothermal energy Type Pool and Spa Location Jackson, Wyoming Coordinates 43.4799291°, -110.7624282° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

340

Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bubbles Hot Spring Sector Geothermal energy Type Pool and Spa Location Catron County, New Mexico Coordinates 34.1515173°, -108.4276047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Nance's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Nance's Hot Springs Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

342

Evan's Plunge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Evan's Plunge Pool & Spa Low Temperature Geothermal Facility Facility Evan's Plunge Sector Geothermal energy Type Pool and Spa Location Hot Springs, South Dakota Coordinates 43.431646°, -103.4743625° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

343

Baker's Bar M Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Facility Baker's Bar M Sector Geothermal energy Type Pool and Spa Location Adams, Oregon Coordinates 45.767354°, -118.5624734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

344

Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183°, -116.84503° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

345

Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paraiso Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Paraiso Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Monterey County, California Coordinates 36.3136201°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

346

Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Faywood Hot Springs Sector Geothermal energy Type Pool and Spa Location Faywood, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

347

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Facility Jacumba Hot Springs Health Spa Sector Geothermal energy Type Pool and Spa Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

348

Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jim's Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jim's Hot Springs Sector Geothermal energy Type Pool and Spa Location New Meadows, Idaho Coordinates 44.9712808°, -116.2840176° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

349

Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Home Hotel and Motel Pool & Spa Low Temperature Geothermal Facility Facility Home Hotel and Motel Sector Geothermal energy Type Pool and Spa Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

350

Carson Hot Mineral Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Carson Hot Mineral Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot Mineral Springs Resort Sector Geothermal energy Type Pool and Spa Location Carson, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

351

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Horse Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location North Fork, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

352

La Vide Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vide Mineral Springs Pool & Spa Low Temperature Geothermal Facility Vide Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name La Vide Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility La Vide Mineral Springs Sector Geothermal energy Type Pool and Spa Location Brea, California Coordinates 33.9166805°, -117.9000604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

353

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Facility Doe Bay Village Resort Sector Geothermal energy Type Pool and Spa Location Olga, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

354

Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sierra Hot Springs Sector Geothermal energy Type Pool and Spa Location Sierraville, California Coordinates 39.5896256°, -120.3674301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

355

Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Orr Hot Springs Sector Geothermal energy Type Pool and Spa Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

356

White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility White Sulphur Hot Springs Sector Geothermal energy Type Pool and Spa Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

357

Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Elkhorn Hot Springs Sector Geothermal energy Type Pool and Spa Location Polaris, Montana Coordinates 45.3696461°, -113.1194871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

358

The Spa Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Spa Pool & Spa Low Temperature Geothermal Facility Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Spa Pool & Spa Low Temperature Geothermal Facility Facility The Spa Sector Geothermal energy Type Pool and Spa Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

359

Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wheeler Hot Springs Sector Geothermal energy Type Pool and Spa Location Ojai, California Coordinates 34.4480495°, -119.242889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

360

Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Verde Hot Springs Sector Geothermal energy Type Pool and Spa Location Camp Verde, Arizona Coordinates 34.5636358°, -111.8543178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Downatta Hot Springs Sector Geothermal energy Type Pool and Spa Location Downey, Idaho Coordinates 42.4285297°, -112.1244073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

362

Indian Springs Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

363

Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Darrough Hot Springs Sector Geothermal energy Type Pool and Spa Location Austin, Nevada Coordinates 39.4932589°, -117.0695342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

364

Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Radium Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Radium Springs, New Mexico Coordinates 32.501453°, -106.926575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

365

Worswick Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Worswick Hot Springs Pool & Spa Low Temperature Geothermal Facility Worswick Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Worswick Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Worswick Hot Springs Sector Geothermal energy Type Pool and Spa Location Camas County, Idaho Coordinates 43.5093688°, -114.8243665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

366

Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dunton Hot Springs Sector Geothermal energy Type Pool and Spa Location Dolores, Colorado Coordinates 37.4738818°, -108.5045356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

367

Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mercey Hot Springs Sector Geothermal energy Type Pool and Spa Location Firebaugh, California Coordinates 36.8588376°, -120.4560072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

368

Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Austin Hot Springs Sector Geothermal energy Type Pool and Spa Location Clackamas County, Oregon Coordinates 45.2023855°, -122.1188945° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

369

New Biltmore Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Biltmore Hot Springs Pool & Spa Low Temperature Geothermal Facility Biltmore Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name New Biltmore Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility New Biltmore Hot Springs Sector Geothermal energy Type Pool and Spa Location Madison County, Montana Coordinates 45.466729°, -111.8865015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

370

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Hot Springs State Park Pool & Spa Low Temperature Geothermal Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Grover Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Alpine County, California Coordinates 38.5940736°, -119.8815203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

371

A Coupled Theory of Tropical Climatology: Warm Pool, Cold Tongue, and Walker Circulation  

Science Conference Proceedings (OSTI)

Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the ...

Zhengyu Liu; Boyin Huang

1997-07-01T23:59:59.000Z

372

The Accumulation and Pooling of Drainage Flows in a Large Basin  

Science Conference Proceedings (OSTI)

We describe a sequence of tethersonde and solar measurements showing the effects of the pooling of cold air drainages in a basin located along the Colorado River below the Brush drainage. Results obtained during periods of weak ambient winds show ...

W. D. Neff; C. W. King

1989-06-01T23:59:59.000Z

373

Atlantic Warm-Pool Variability in the IPCC AR4 CGCM Simulations  

Science Conference Proceedings (OSTI)

This study investigates Atlantic warm pool (AWP) variability in the twentieth century and preindustrial simulations of coupled GCMs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In the twentieth-...

Hailong Liu; Chunzai Wang; Sang-Ki Lee; David Enfield

2012-08-01T23:59:59.000Z

374

Mechanisms for the Interannual Variability of SST in the East Pacific Warm Pool  

Science Conference Proceedings (OSTI)

In comparison with the western and equatorial Pacific Ocean, relatively little is known about the east Pacific warm pool (EPWP). Observations indicate that the interannual variability of sea surface temperature (SST) in the EPWP is highly ...

Kristopher B. Karnauskas; Antonio J. Busalacchi

2009-03-01T23:59:59.000Z

375

Pacific Warm Pool Temperature Regulation during TOGA COARE: Upper Ocean Feedback  

Science Conference Proceedings (OSTI)

The Hasselmann feedback model was applied to hindcast western Pacific warm pool sea surface temperatures (SST) with heat flux observations obtained near 2S, 156E from October 1992 to February 1993 during the Tropical Ocean Global Atmosphere ...

Gary S. E. Lagerloef; Roger Lukas; Robert A. Weller; Steven P. Anderson

1998-09-01T23:59:59.000Z

376

Did English generators play cournot? : capacity withholding in the electricity pool  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

Green, Richard

2004-01-01T23:59:59.000Z

377

Task pool teams implementation of the master equation approach for random sierpinski carpets  

Science Conference Proceedings (OSTI)

We consider the use of task pool teams in implementation of the master equation on random Sierpinski carpets. Though the basic idea of dynamic storage of the probability density reported earlier applies straightforward to random carpets, the randomized ...

K. H. Hoffmann; M. Hofmann; G. Rnger; S. Seeger

2006-08-01T23:59:59.000Z

378

Simulation of the Tropical Pacific Warm Pool with the NCAR Climate System Model  

Science Conference Proceedings (OSTI)

The simulation of the tropical western Pacific warm pool is explored with the NCAR Climate System Model (CSM). The simulated sea surface temperatures in the Pacific basin have biases that are similar to other coupled model simulations in this ...

J. T. Kiehl

1998-06-01T23:59:59.000Z

379

Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah  

Science Conference Proceedings (OSTI)

The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah ...

Craig B. Clements; C. David Whiteman; John D. Horel

2003-06-01T23:59:59.000Z

380

Heat Balance in the Pacific Warm Pool Atmosphere during TOGA COARE and CEPEX  

Science Conference Proceedings (OSTI)

The atmosphere above the western equatorial Pacific warm pool (WP) is an important source for the dynamic and thermodynamic forcing of the atmospheric general circulation. This study uses a high-resolution reanalysis and several observational ...

Baijun Tian; Guang Jun Zhang; V. Ramanathan

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Analysis on Distribution Characteristics of Soil Carbon Pool in Mining Subsidence Wetlands  

Science Conference Proceedings (OSTI)

There are short cycle, intensity disturbance and other characteristics about formation of subsided wetlands in mining coal area with higher groundwater table, ?nthere are also differences to general wetlands about conversion of carbon sources, ... Keywords: Carbon Pool, Distribution, Mining Areas

Qu Junfeng, Zhang Shaoliang, Xu Zhanjun, Zhang Ying

2013-01-01T23:59:59.000Z

382

Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling  

E-Print Network (OSTI)

A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

Shai, Isaac

1967-01-01T23:59:59.000Z

383

Convection and Easterly Wave Structures Observed in the Eastern Pacific Warm Pool during EPIC-2001  

Science Conference Proceedings (OSTI)

During SeptemberOctober 2001, the East Pacific Investigation of Climate Processes in the Coupled OceanAtmosphere System (EPIC-2001) intertropical convergence zone (ITCZ) field campaign focused on studies of deep convection in the warm-pool ...

Walter A. Petersen; Robert Cifelli; Dennis J. Boccippio; Steven A. Rutledge; Chris Fairall

2003-08-01T23:59:59.000Z

384

Numerical modeling of pool spreading, heat transfer and evaporation in liquefied natural gas (LNG).  

E-Print Network (OSTI)

?? This master's thesis is a continuation of previous theses written at ComputIT AS. It treats heat transfer to LNG pools boiling on water through (more)

Myrmo, ystein

2011-01-01T23:59:59.000Z

385

What Drives the Seasonal Onset and Decay of the Western Hemisphere Warm Pool?  

Science Conference Proceedings (OSTI)

The annual heat budget of the Western Hemisphere warm pool (WHWP) is explored using the output of an ocean general circulation model (OGCM) simulation. According to the analysis, the WHWP cannot be considered as a monolithic whole with a single ...

S-K. Lee; D. B. Enfield; C. Wang

2007-05-01T23:59:59.000Z

386

Decomposition algorithms for global solution of deterministic and stochastic pooling problems in natural gas value chains  

E-Print Network (OSTI)

In this thesis, a Benders decomposition algorithm is designed and implemented to solve both deterministic and stochastic pooling problems to global optimality. Convergence of the algorithm to a global optimum is proved and ...

Armagan, Emre

2009-01-01T23:59:59.000Z

387

Influence of Cold Pools Downstream of Mountain Barriers on Downslope Winds and Flushing  

Science Conference Proceedings (OSTI)

The influence of cold pools downstream of mesoscale mountain barriers on downslope winds and flushing is investigated in this study by means of a numerical mesoscale model. The model is compared with existing analytical and numerical solutions. ...

Tsengdar J. Lee; Roger A. Pielke; Robert C. Kessler; John Weaver

1989-09-01T23:59:59.000Z

388

Multiscale Variability of the Atmospheric Mixed Layer over the Western Pacific Warm Pool  

Science Conference Proceedings (OSTI)

Sounding data from Tropical Ocean Global Atmosphere Coupled OceanAtmosphere Response Experiment (TOGA COARE) have provided a first opportunity to document the variability of the atmospheric mixed layer over the western Pacific warm pool on ...

Richard H. Johnson; Paul E. Ciesielski; Jennifer A. Cotturone

2001-09-01T23:59:59.000Z

389

Meteorological Events Affecting Cold-Air Pools in a Small Basin  

Science Conference Proceedings (OSTI)

Meteorological events affecting the evolution of temperature inversions or cold-air pools in the 1-km-diameter, high-altitude (~1300 m MSL) Grnloch basin in the eastern Alps are investigated using data from lines of temperature dataloggers ...

Manfred Dorninger; C. David Whiteman; Benedikt Bica; Stefan Eisenbach; Bernhard Pospichal; Reinhold Steinacker

2011-11-01T23:59:59.000Z

390

Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility Facility Avila Hot Springs Spa & RV Resort Sector Geothermal energy Type Pool and Spa Location Pismo Beach, California Coordinates 35.1427533°, -120.6412827° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

391

Gerlach Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Gerlach Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Gerlach Hot Springs Sector Geothermal energy Type Pool and Spa Location Gerlach, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility River Inn Natural Hot Spring Sector Geothermal energy Type Pool and Spa Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

393

Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lincoln Avenue Spa Pool & Spa Low Temperature Geothermal Facility Facility Lincoln Avenue Spa Sector Geothermal energy Type Pool and Spa Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

394

The Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075°, -108.280326° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

395

Walley's Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Walley's Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Walley's Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

397

Charles Motel & Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Motel & Bathhouse Pool & Spa Low Temperature Geothermal Facility Motel & Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Charles Motel & Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Charles Motel & Bathhouse Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

398

Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Challis Hot Spring Sector Geothermal energy Type Pool and Spa Location Challis, Idaho Coordinates 44.5046445°, -114.2317308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

399

Chief Washakie Plunge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Washakie Plunge Pool & Spa Low Temperature Geothermal Facility Washakie Plunge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chief Washakie Plunge Pool & Spa Low Temperature Geothermal Facility Facility Chief Washakie Plunge Sector Geothermal energy Type Pool and Spa Location Fort Wahakie, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

400

Town of Tecopa Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Town of Tecopa Pool & Spa Low Temperature Geothermal Facility Facility Town of Tecopa Sector Geothermal energy Type Pool and Spa Location Tecopa, California Coordinates 35.8482993°, -116.2264127° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Trimble Hot Springs Sector Geothermal energy Type Pool and Spa Location Durango, Colorado Coordinates 37.27528°, -107.8800667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

402

Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wilbur Hot Springs Sector Geothermal energy Type Pool and Spa Location Wilbur Springs, California Coordinates 39.0393387°, -122.4196995° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

403

Russian John Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Russian John Hot Springs Pool & Spa Low Temperature Geothermal Facility Russian John Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Russian John Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Russian John Hot Springs Sector Geothermal energy Type Pool and Spa Location Blaine County, Idaho Coordinates 43.4743428°, -113.9664446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

404

Como Springs Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Como Springs Resort Sector Geothermal energy Type Pool and Spa Location Morgan, Utah Coordinates 41.036056°, -111.6768769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

405

Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kah-nee-ta Pool & Spa Low Temperature Geothermal Facility Facility Kah-nee-ta Sector Geothermal energy Type Pool and Spa Location Warm Springs, Oregon Coordinates 44.7634519°, -121.2661625° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

406

Tecopa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Tecopa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Tecopa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Tecopa Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Tecopa, California Coordinates 35.8482993°, -116.2264127° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

407

Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility Facility Ojo Caliente Resort Sector Geothermal energy Type Pool and Spa Location Ojo Caliente, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

408

Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jackson Hot Springs Sector Geothermal energy Type Pool and Spa Location Ashland, Oregon Coordinates 42.1853257°, -122.6980457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

409

Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sawtooth Lodge Pool & Spa Low Temperature Geothermal Facility Facility Sawtooth Lodge Sector Geothermal energy Type Pool and Spa Location Grandjean, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

410

Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Pool & Spa Low Temperature Geothermal Facility Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility Facility Mountain Spa Resort Sector Geothermal energy Type Pool and Spa Location Midway, Utah Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

411

Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Pool and Spa Location Boulder, Montana Coordinates 46.2365947°, -112.1208336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

412

Meteorological Processes Affecting the Evolution of a Wintertime Cold Air Pool in the Columbia Basin  

Science Conference Proceedings (OSTI)

Meteorological mechanisms affecting the evolution of a persistent wintertime cold air pool that began on 2 January and ended on 7 January 1999 in the Columbia basin of eastern Washington were investigated using a mesoscale numerical model ...

Shiyuan Zhong; C. David Whiteman; Xindi Bian; William J. Shaw; John M. Hubbe

2001-10-01T23:59:59.000Z

413

Car pools and ridesharing. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the implementation and utilization of ridesharing programs. Park and ride programs that tie commuters to buses or van pools, shared automobile usage, and company encouraged ridesharing plans are discussed. Cost effectiveness, impediments to car pooling, and evaluation of rideshare programs are considered. Ways to estimate the demand for ridesharing services and marketing strategies for these services are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

414

Car pools and ridesharing. (Latest citations from the NTIS bibliographic database). NewSearch  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the implementation and utilization of ridesharing programs. Park and ride programs that tie commuters to buses or van pools, shared automobile usage, and company encouraged ridesharing plans are discussed. Cost effectiveness, impediments to car pooling, and evaluation of rideshare programs are considered. Ways to estimate the demand for ridesharing services and marketing strategies for these services are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

415

Car pools and ridesharing. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the implementation and utilization of ridesharing programs. Park and ride programs that tie commuters to buses or van pools, shared automobile usage, and company encouraged ridesharing plans are discussed. Cost effectiveness, impediments to car pooling, and evaluation of rideshare programs are considered. Ways to estimate the demand for ridesharing services and marketing strategies for these services are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

416

Advanced Electromagnetic Inspection Methods for Fuel Pool and Transfer Canal Liners  

Science Conference Proceedings (OSTI)

Liner leakage is prevalent in spent fuel pools (SPFs) and transfer canals, with some plants experiencing leakage since early in plant life. Leakage concerns are more critical in the pressurized water reactor (PWR) fleet due to the undesirable consequences that can be encountered with the release of boron. These can include, but are not limited to, (1) degradation of the reinforced concrete and rebar that form the pool structure and (2) uncontrolled release of radioactive nuclides that have the potential ...

2012-07-30T23:59:59.000Z

417

Solar-heated municipal swimming pools, a case study: Dade County, Florida  

DOE Green Energy (OSTI)

The experience of installing a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described and the mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The performance and economics of the system are discussed as well as future plants. (LEW)

Levin, M.

1981-09-01T23:59:59.000Z

418

Seismic responses of a pool-type fast reactor with different core support designs  

Science Conference Proceedings (OSTI)

In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs.

Wu, Ting-shu; Seidensticker, R.W. (Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

419

Spent Fuel Pool Risk Assessment Integration Framework (Mark I and II BWRs) and Pilot Plant Application  

Science Conference Proceedings (OSTI)

This report documents the development and pilot application of a generic framework and methodology for conducting a probabilistic risk assessment (PRA) for spent fuel pools at BWR plants with Mark I or II containment designs. A key aspect of the study is the consideration of potential synergistic relationships between adverse conditions in the reactor and the spent fuel pool.BackgroundUsed nuclear fuel from the operation of nuclear power plants is typically ...

2013-05-01T23:59:59.000Z

420

Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report  

SciTech Connect

Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

2006-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An analysis of radionuclide behavior in water pools during accidents at the Annular Core Research Reactor  

SciTech Connect

Physical and chemical phenomena that will affect the behavior of radionuclides released from fuel in the Annular Core Research Reactor during a hypothetical, core disruptive accident are described. The phenomena include boiling of water on heated clad, metal-water reactions, vapor nucleation to form aerosol particles, coagulation of aerosol particles, aerosol deposition within bubbles rising through the shield pool, vapor dissolution in the shield pool, and revaporization of radionuclides from the shield pool. A model of these phenomena is developed and applied to predict the release of radionuclides to the confinement building of the Annular Core Research Reactor. It is found that the shield pool provides overall decontamination factors for particulate of about 2.8 {times} 10{sup 5} and decontamination factors for noble gases of about 2.5--3.7. These results are found to be sensitive to the predicted clad temperature and bubble behavior in the shield pool. Slow revalorization of krypton, xenon and iodine from the shield pool is shown to create a prolonged, low-intensity source term of radioactive material to the confinement atmosphere.

Powers, D.A.

1992-08-01T23:59:59.000Z

422

Cool pool development. Quarterly technical report No. 1, April-June 1979  

DOE Green Energy (OSTI)

The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. It is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.

Crowther, K.

1979-10-15T23:59:59.000Z

423

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

424

Ciccotelli et al. --Vernal Pool Plants of Acadia A preliminary study of the vegetation of vernal pools of Acadia National Park, Maine, USA  

E-Print Network (OSTI)

of Maine's wetlands, including those of Acadia National Park (ANP) on Mt. Desert Island (MDI; Calhoun et al vegetation of ANP. Recent floristic treatments for ANP make no reference to vernal pool vegetation (Greene et al. 2005; Mittelhau- ser et al. 2010). Nearly 12% (133 taxa) of vascular plants in ANP have been

Rajakaruna, Nishanta

425

Well-characterized open pool experiment data and analysis for model validation and development.  

SciTech Connect

Four Well-Characterized Open Pool fires were conducted by Fire Science and Technology Department. The focus of the Well-Characterized Open Pool fire series was to provide environmental information for open pool fires on a physics first principal basis. The experiments measured the burning rate of liquid fuel in an open pool and the resultant heat flux to a weapon-sized object and the surrounding environment with well-characterized boundary and initial conditions. Results presented in this report include a general description of test observation (pre- and post-test), wind measurements, fire plume topology, average fuel recession and heat release rates, and incident heat flux to the pool and to the calorimeters. As expected, results of the experiments show a strong correlation between wind conditions, fuel vaporization (mass loss) rate, and incident heat flux to the fuel and ground surface and calorimeters. Numerical fire simulations using both temporally- and spatially-dependant wind boundary conditions were performed using the Vulcan fire code. Comparisons of data to simulation predictions showed similar trends; however, simulation-predicted incident heat fluxes were lower than measured.

Sundberg, David W.; Brown, Alexander L.; Blanchat, Thomas K.

2006-12-01T23:59:59.000Z

426

Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Pool and Spa Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

427

Stroppel Hotel Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Stroppel Hotel Pool & Spa Low Temperature Geothermal Facility Stroppel Hotel Pool & Spa Low Temperature Geothermal Facility Facility Stroppel Hotel Sector Geothermal energy Type Pool and Spa Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

428

Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Facility Circle Hot Springs Sector Geothermal energy Type Pool and Spa Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

429

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Pool and Spa Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

430

Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Crystal Crane Hot Springs Sector Geothermal energy Type Pool and Spa Location Burns, Oregon Coordinates 43.5862606°, -119.0541032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

431

Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Saline Valley Hot Springs Sector Geothermal energy Type Pool and Spa Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

432

Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Valley View Hot Springs Sector Geothermal energy Type Pool and Spa Location Villa Grove, Colorado Coordinates 38.248999°, -105.948608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

433

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369°, -112.9422641° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

434

Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Pool and Spa Location Pray, Montana Coordinates 45.3802143°, -110.6815999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Pool and Spa Location Hot Sulphur Springs, Colorado Coordinates 40.0730411°, -106.1027991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

436

Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Pool and Spa Location Bozeman, Montana Coordinates 45.68346°, -111.050499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

437

Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bald Mountain Hot Springs Sector Geothermal energy Type Pool and Spa Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

438

Fountain of Youth Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

of Youth Pool & Spa Low Temperature Geothermal Facility of Youth Pool & Spa Low Temperature Geothermal Facility Facility Fountain of Youth Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

439

Fountain of Youth Spa Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Fountain of Youth Spa Pool & Spa Low Temperature Geothermal Facility Fountain of Youth Spa Pool & Spa Low Temperature Geothermal Facility Facility Fountain of Youth Spa Sector Geothermal energy Type Pool and Spa Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

440

Soap Lake Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Soap Lake Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Soap Lake Pool & Spa Low Temperature Geothermal Facility Facility Soap Lake Sector Geothermal energy Type Pool and Spa Location Soap Lake, Washington Coordinates 47.389307°, -119.490591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "obsidian pool yellowstone" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot Springs Sector Geothermal energy Type Pool and Spa Location Carson City, Nevada Coordinates 39.192232°, -119.7344478° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

442

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Granite Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location Teton County, Wyoming Coordinates 43.853632°, -110.6314491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

443

Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility Mount Princeton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mount Princeton Hot Springs Sector Geothermal energy Type Pool and Spa Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

444

Bell Island Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Bell Island Pool & Spa Low Temperature Geothermal Facility Bell Island Pool & Spa Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Pool and Spa Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

445

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort Sector Geothermal energy Type Pool and Spa Location Idaho City, Idaho Coordinates 43.8285046°, -115.8345537° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}