Powered by Deep Web Technologies
Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Synthesis and magnetic characterization of magnetite obtained by monowavelength visible light irradiation  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Magnetite was synthesized under monowavelength LED irradiation at room temperature. Black-Right-Pointing-Pointer Different wavelength irradiations led to distinctive characteristics of magnetite. Black-Right-Pointing-Pointer Particle sizes of magnetite were controlled by different irradiation wavelengths. Black-Right-Pointing-Pointer Wavelength affects the magnetic characteristics of magnetite. -- Abstract: Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were controllably synthesized by aerial oxidation Fe{sup II}EDTA solution under different monowavelength light-emitting diode (LED) lamps irradiation at room temperature. The results of the X-ray diffraction (XRD) spectra show the formation of magnetite nanoparticle further confirmed by Fourier transform infrared spectroscope (FTIR) and the difference in crystallinity of as-prepared samples. Fe{sub 3}O{sub 4} particles are nearly spherical in shape based on transmission electron microscopy (TEM). Average crystallite sizes of magnetite can be controlled by different irradiation light wavelengths from XRD and TEM: 50.1, 41.2, and 20.3 nm for red, green, and blue light irradiation, respectively. The magnetic properties of Fe{sub 3}O{sub 4} samples were investigated. Saturation magnetization values of magnetic nanoparticles were 70.1 (sample M-625), 65.3 (sample M-525), and 58.2 (sample M-460) emu/g, respectively.

Lin, Yulong [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China) [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China); Wei, Yu, E-mail: weiyu@mail.hebtu.edu.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China)] [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China); Sun, Yuhan, E-mail: yhsun@sxicc.ac.cn [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China)] [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Wang, Jing [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)] [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)

2012-03-15T23:59:59.000Z

2

Properties of solar gravity mode signals in total irradiance observations  

SciTech Connect (OSTI)

Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

Kroll, R.J.; Chen, J.; Hill, H.A.

1988-01-01T23:59:59.000Z

3

Hydrogen generation by visible light irradiation of ruthenium complexes and colloidal platinum stabilized by viologen polymers in aqueous solutions  

SciTech Connect (OSTI)

The hydrogen generation from water on the irradiation of visible light has recently attracted the attention of many investigators, because it affords one of the most promising approaches to chemical conversion of solar energy and production of renewable energy resources. In an attempt to construct efficient systems for chemical conversion of light energy, the present authors have found that photoinduced redox reactions in various molecular assemblies are very well suited for the purpose. Along this line, water-soluble polymers with pendant viologen groups and colloidal platinum have been prepared to study the electron transport properties and hydrogen generation in the polymer system. An attempt has also been made to synthesize polysoap-type viologen polymers in order to concentrate photosensitizer, electron mediator, and multielectron redox catalyst so that the hydrogen-generating efficiency is increased by the cooperation of the relevant species on the same polymer. The results are described.

Nishijima, T.; Nagamura, T.; Matsuo, T.

1981-02-01T23:59:59.000Z

4

Surface effects and phase stability in metal oxides nanoparticles under visible irradiation  

SciTech Connect (OSTI)

The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to ??Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it; Carbonaro, C. M., E-mail: carlo.ricci@dsf.unica.it; Corpino, R., E-mail: carlo.ricci@dsf.unica.it; Chiriu, D., E-mail: carlo.ricci@dsf.unica.it; Stagi, L., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Universitá degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Canada) (Italy)

2014-10-21T23:59:59.000Z

5

Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote synaptogenesis through MAPK activation and subsequently protect cell death in the in vitro stroke model.

Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of)] [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of) [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

2012-06-01T23:59:59.000Z

6

Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation  

SciTech Connect (OSTI)

ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ?40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible-light irradiation.

Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

2014-03-15T23:59:59.000Z

7

20th century changes in surface solar irradiance in simulations and observations  

E-Print Network [OSTI]

20th century changes in surface solar irradiance in simulations and observations A. Romanou,1 B December 2006; accepted 5 February 2007; published 8 March 2007. [1] The amount of solar irradiance reaching the surface is a key parameter in the hydrological and energy cycles of the Earth's climate. We

8

P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS  

E-Print Network [OSTI]

P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS A. Hammer, D project SATELLIGHT an attempt is made to use satellite methods to derive daylight and solar irradiance). In daylighting applications, knowledge of the lumi- nance distribution of the sky is of primary concern. Thus

Heinemann, Detlev

9

COMET 22P/KOPFF: DUST ENVIRONMENT AND GRAIN EJECTION ANISOTROPY FROM VISIBLE AND INFRARED OBSERVATIONS  

SciTech Connect (OSTI)

We present optical observations and Monte Carlo models of the dust coma, tail, and trail structures of the comet 22P/Kopff during the 2002 and 2009 apparitions. Dust loss rates, ejection velocities, and power-law size distribution functions are derived as functions of the heliocentric distance using pre- and post-perihelion imaging observations during both apparitions. The 2009 post-perihelion images can be accurately fitted by an isotropic ejection model. On the other hand, strong dust ejection anisotropies are required to fit the near-coma regions at large heliocentric distances (both inbound at r{sub h} = 2.5 AU and outbound at r{sub h} = 2.6 AU) for the 2002 apparition. These asymmetries are compatible with a scenario where dust ejection is mostly seasonally driven, coming mainly from regions near subsolar latitudes at far heliocentric distances inbound and outbound. At intermediate to near-perihelion heliocentric distances, the outgassing would affect much more extended latitude regions, the emission becoming almost isotropic near perihelion. We derived a maximum dust production rate of 260 kg s{sup -1} at perihelion, and an averaged production rate over one orbit of 40 kg s{sup -1}. An enhanced emission rate, also accompanied by a large ejection velocity, is predicted at r{sub h} > 2.5 pre-perihelion. The model has also been extended to the thermal infrared in order to be applied to available trail observations of this comet taken with IRAS and Infrared Space Observatory spacecrafts. The modeled trail intensities are in good agreement with those observations, which is remarkable taking into account that those data are sensitive to dust ejection patterns corresponding to several orbits before the 2002 and 2009 apparitions.

Moreno, Fernando; Pozuelos, Francisco; Aceituno, Francisco; Casanova, Victor; Sota, Alfredo [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, 18008 Granada (Spain); Castellano, Julio; Reina, Esteban, E-mail: fernando@iaa.es [Amateur Association Cometas-Obs (Spain)

2012-06-20T23:59:59.000Z

10

TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST  

SciTech Connect (OSTI)

The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

2012-03-01T23:59:59.000Z

11

Observation of enhanced visible and infrared emissions in photonic crystal thin-film light-emitting diodes  

SciTech Connect (OSTI)

Photonic crystals, in the form of closed-packed nano-pillar arrays patterned by nanosphere lithography, have been formed on the n-faces of InGaN thin-film vertical light-emitting diodes (LEDs). Through laser lift-off of the sapphire substrate, the thin-film LEDs conduct vertically with reduced dynamic resistances, as well as reduced thermal resistances. The photonic crystal plays a role in enhancing light extraction, not only at visible wavelengths but also at infrared wavelengths boosting heat radiation at high currents, so that heat-induced effects on internal quantum efficiencies are minimized. The observations are consistent with predictions from finite-difference time-domain simulations.

Cheung, Y. F.; Li, K. H.; Hui, R. S. Y.; Choi, H. W., E-mail: hwchoi@hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

2014-08-18T23:59:59.000Z

12

Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics  

SciTech Connect (OSTI)

A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Yang, X. F. [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)] [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

2013-08-15T23:59:59.000Z

13

Photoelectrochemical reduction of aqueous protons with a CuO/CuBi2O4 heterojunction under visible light irradiation  

E-Print Network [OSTI]

to the H2 evolved at the former electrode. Note that the FTO|CuO|CuBi2O4|Pt electrode has a small electrode area and was largely covered by an insulating epoxy resin resulting in a small current in Figure S14. A H2 oxidation current was observed at the Pt...

Park, Hyun S.; Lee, Chong-Yong; Reisner, Erwin

2014-09-05T23:59:59.000Z

14

Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors  

E-Print Network [OSTI]

We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

M. Swartz; V. Chiochia; Y. Allkofer; D. Bortoletto; L. Cremaldi; S. Cucciarelli; A. Dorokhov; C. Hoermann; D. Kim; M. Konecki; D. Kotlinski; K. Prokofiev; C. Regenfus; T. Rohe; D. A. Sanders; S. Son; T. Speer

2006-01-05T23:59:59.000Z

15

1-Dodecane-sulfonic-acid-sodium-salt(LAS) assisted hydrothermal synthesis of Cd{sub x}Zn{sub 1-x}S solid solution as efficient photocatalysts under visible light irradiation  

SciTech Connect (OSTI)

With anionic surfactant LAS assisted, series of zinc cadmium sulfide semiconductor photocatalysts were synthesized by hydrothermal method. These products were characterized by X-ray diffraction (XRD), UV-Vis absorption spectra (UV-Vis) and scanning electron microscopy (FESEM). The photocatalytic activities of as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. The best synthesis parameters are: Composition 0.9:0.1 (Cd:Zn molar ratio), Temperature 160 deg. C, Hydrothermal Time 48 Hour, LAS Concentration 1.7 mmol/L, the maximum visible-light-catalytic hydrogen production rate is 161.25 {mu}mol/h (lambda>430 nm) which is higher than those of by coprecipitation method. The experiment results indicate that surfactant assisted hydrothermal method is an effective way to get highly active CdZnS solid solution photocatalyst.

Jia, B.; Guo, L. J. [State Key Laboratory of Multiphase Flow in power Engineering, Xi'an Jiaotong University (China)

2010-03-01T23:59:59.000Z

16

Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes  

E-Print Network [OSTI]

Molecular line observations that could resolve protoplanetary disks of ~100 AU both spatially and kinematically would be a useful tool to unambiguously identify these disks and to determine their kinematical and physical characteristics. In this work we model the expected line emission from a protoplanetary disk irradiated by an infalling envelope, addressing the question of its detectability with subarcsecond resolution. We adopt a previously determined disk model structure that gives a continuum spectral energy distribution and a mm intensity spatial distribution that are consistent with observational constraints of HL Tau. An analysis of the capability of presently working and projected interferometers at mm and submm wavelengths shows that molecular transitions of moderate opacity at these wavelengths (e.g., C17O lines) are good candidates for detecting disk lines at subarcsecond resolution in the near future. We suggest that, in general, disks of typical Class I sources will be detectable.

Jose F. Gomez; Paola D'Alessio

1999-12-02T23:59:59.000Z

17

Resolving Molecular Line Emission from Protoplanetary Disks Observational Prospects for Disks Irradiated by Infalling Envelopes  

E-Print Network [OSTI]

Molecular line observations that could resolve protoplanetary disks of ~100 AU both spatially and kinematically would be a useful tool to unambiguously identify these disks and to determine their kinematical and physical characteristics. In this work we model the expected line emission from a protoplanetary disk irradiated by an infalling envelope, addressing the question of its detectability with subarcsecond resolution. We adopt a previously determined disk model structure that gives a continuum spectral energy distribution and a mm intensity spatial distribution that are consistent with observational constraints of HL Tau. An analysis of the capability of presently working and projected interferometers at mm and submm wavelengths shows that molecular transitions of moderate opacity at these wavelengths (e.g., C17O lines) are good candidates for detecting disk lines at subarcsecond resolution in the near future. We suggest that, in general, disks of typical Class I sources will be detectable.

Gomes, J F; Gomez, Jose F.; Alessio, Paola D'

1999-01-01T23:59:59.000Z

18

region between x-rays and visible light, can be observed only by sensors above the Earth's  

E-Print Network [OSTI]

was started on concepts for shielding the Starprobe spacecraft from heating during the close flyby when solar and infrared wave- lengths, to have a silicated surface. A radio- metric model of this Earth-crossing asteroid· Voyager observations of hot spots on the Jupiter moon 10 led to reexamination of Earth-based infrared

Waliser, Duane E.

19

Indication of Te segregation in laser-irradiated ZnTe observed by in situ coherent-phonon spectroscopy  

SciTech Connect (OSTI)

We irradiate a ZnTe single crystal with 10-fs laser pulses at a repetition rate of 80?MHz and investigate its resulting gradual modification by means of coherent-phonon spectroscopy. We observe the emergence of a phonon mode at about 3.6?THz whose amplitude and lifetime grow monotonously with irradiation time. The speed of this process depends sensitively on the pump-pulse duration. Our observations strongly indicate that the emerging phonon mode arises from a Te phase induced by multiphoton absorption of incident laser pulses. A potential application of our findings is laser-machining of microstructures in the bulk of a ZnTe crystal, a highly relevant electrooptic material.

Shimada, Toru [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori 036-8152 (Japan); Kamaraju, N., E-mail: nkamaraju@lanl.gov [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Los Alamos, New Mexico 87545 (United States); Frischkorn, Christian [Department of Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin (Germany); Wolf, Martin; Kampfrath, Tobias [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

2014-09-15T23:59:59.000Z

20

Continuous wave laser irradiation of explosives  

SciTech Connect (OSTI)

Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

McGrane, Shawn D.; Moore, David S.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High swelling rates observed in neutron-irradiated V-Cr and V-Si binary alloys  

SciTech Connect (OSTI)

Additions of 5 to 14 wt% chromium to vanadium lead to very large swelling rates during neutron irradiation of the binary alloys, with swelling increasing strongly at higher irradiation temperatures. Addition of 2 wt% silicon to vanadium also leads to very large swelling rates but swelling decreases with increasing irradiation temperature. Addition of 1 wt% zirconium does not yield high swelling rates, however.

Garner, F.A.; Gelles, D.S. (Pacific Northwest Lab., Richland, WA (United States)); Takahashi, H.; Ohnuki, S.; Kinoshita, H. (Hokkaido Univ., Sapporo (Japan)); Loomis, B.A. (Argonne National Lab., IL (United States))

1991-11-01T23:59:59.000Z

22

Real-time observation of Escherichia coli cells under irradiation with a 2-MeV H{sup +} microbeam  

SciTech Connect (OSTI)

A high-energy H{sup +} microbeam generated by tapered glass capillary optics was applied to a single Escherichia coli cell, in order to evaluate the effects of irradiation on the activity of the flagellar motor and cell growth in real time. The flagellar motor of the tethered cells was stopped by irradiation with an average ion fluence of 2.0 x 10{sup 12} protons/cm{sup 2}. When a lower dose was applied to the cells attached to the substrate, an elongated cell, which seemed ready to divide, divided into two daughter cells; however, the daughter cells did not elongate, neither did further cell division occur.

Kato, Mikio [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 (Japan); Meissl, Walter; Ikeda, Tokihiro; Yamazaki, Yasunori [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Umezawa, Kenji [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai 599-8531 (Japan)

2012-05-07T23:59:59.000Z

23

The visibility complex made visibly simple an introduction to 2D structures of visibility  

E-Print Network [OSTI]

. Then a sweeping algorithm that can build the complex in O(mlog(n)) where n is the size of the visibility graph when a line becomes tangent to three objects. This is shown in the video. The complex is build usingThe visibility complex made visibly simple an introduction to 2D structures of visibility Fr

Durand, Frédo

24

ARM - Measurement - Visibility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontentcharacteristics ARMgovMeasurementsVisibility ARM

25

Visible light photocatalytic activity in nitrogen-doped TiO{sub 2} nanobelts  

SciTech Connect (OSTI)

We present a comprehensive experimental and theoretical study of the electronic properties and photocatalytic activity of nitrogen-doped anatase TiO{sub 2} nanobelts. UV-visible spectra show enhanced absorption in the visible light range for nitrogen-doped nanobelts compared to the pristine sample. The nitrogen-doped nanobelts exhibit improved photocatalytic activity compared to the pristine sample upon visible light irradiation. Furthermore, the incorporation of nitrogen introduces localized states in the band gap.

De Nyago Tafen; Lewis, James P. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Wang Jin; Wu Nianqiang [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 (United States)

2009-03-02T23:59:59.000Z

26

Correlation of Spectral Solar Irradiance with solar activity as measured by VIRGO  

E-Print Network [OSTI]

Context. The variability of Solar Spectral Irradiance over the rotational period and its trend over the solar activity cycle are important for understanding the Sun-Earth connection as well as for observational constraints for solar models. Recently the SIM experiment on SORCE has published an unexpected negative correlation with Total Solar Irradiance of the visible spectral range. It is compensated by a strong and positive variability of the near UV range. Aims. We aim to verify whether the anti-correlated SIM/SORCE-trend in the visible can be confirmed by independent observations of the VIRGO experiment on SOHO. The challenge of all space experiments measuring solar irradiance are sensitivity changes of their sensors due to exposure to intense UV radiation, which are difficult to assess in orbit. Methods. We analyze a 10-year time series of VIRGO sun photometer data between 2002 and 2012. The variability of Spectral Solar Irradiance is correlated with the variability of the Total Solar Irradiance, which is...

Wehrli, C; Shapiro, A I

2013-01-01T23:59:59.000Z

27

Observations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArmsSpeedingSpeedingUnder Well-ControlledObservation ofof Multiple

28

Sustained water cleavage by visible light  

SciTech Connect (OSTI)

Sustained cleavage of water by 4 quanta of visible light is achieved in aqueous solutions by using a bifunctional redox catalyst composed of Pt and RuO/sub 2/ cosupported by colloidal TiO/sub 2/ particles. A photochemical model system containing Ru(bpy)/sub 3//sup 2 +/ as a sensitizer and methyl viologen (MV/sup 2 +/) as an electron relay is used to test the effect of catalyst composition, sensitizer concentration, pH, and temperature on the efficiency of light-induced water decomposition. Electron relay free systems also exhibit high photoactivity. Direct band gap irradiation by uv light leads to efficient water cleavage in the absence of sensitizer and relay.

Borgarello, E.; Kiwi, J.; Pelizzetti, E.; Visca, M.; Graetzel, M.

1981-10-21T23:59:59.000Z

29

State visibility in Q-bit space  

E-Print Network [OSTI]

We study by comparison the structure of singlet type states in Q-bit space in the light of quantum and classical paradigms. It is shown that only the classical paradigm implies a variation in the visibility of correlation coefficients, that has been observed in fact in experiments. We conclude that Q-bit space in not a appropriate venue for an EPR test of quantum completeness.

A. F. Kracklauer

2007-03-04T23:59:59.000Z

30

Irradiation Creep in Graphite  

SciTech Connect (OSTI)

An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

Ubic, Rick; Butt, Darryl; Windes, William

2014-03-13T23:59:59.000Z

31

Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Mn vanadate nanosheets have been synthesized by simple hydrothermal process. • The formation of Mn vanadate nanosheets can be controlled by growth conditions. • Mn vanadate nanosheets exhibit good photocatalytic activities for methyl blue. - Abstract: Mn vanadate nanosheets have been synthesized via a facile hydrothermal route using ammonium metavanadate and Mn acetate as the raw materials, polyvinyl pyrrolidone (PVP) as the surfactant. X-ray diffraction (XRD) shows that the Mn vanadate nanosheets are composed of monoclinic MnV{sub 2}O{sub 6} phase. Scanning electron microscopy (SEM) observation indicates that the nanosheets have the average thickness of about 50 nm, length of 2–10 ?m and width of 800 nm to 2 ?m. The growth process of the Mn vanadate nanosheets has also been discussed based on the analysis of the roles of the growth conditions on the formation of the Mn vanadate nanosheets. The nanosheets show good photocatalytic activities for the degradation of methylene blue (MB) under visible light irradiation. About 72.96% MB can be degraded after visible light irradiation for 1 h over 10 mg Mn vanadate nanosheets in 10 mL MB solution with the concentration of 10 mg L{sup ?1}.

Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Xie, Y.K.; Pei, Y.Q.; Jiang, Y.X.; Yu, H.Y.; Cai, Z.Y.

2013-07-15T23:59:59.000Z

32

Visible Spectrum Incandescent Selective Emitter  

SciTech Connect (OSTI)

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Sonsight Inc.

2004-04-30T23:59:59.000Z

33

3D Visibility made visibly simple: an introduction to the Visibility Skeleton  

E-Print Network [OSTI]

.g. lighting sim­ ulation), the limits of umbra and penumbra, etc. Previ­ ous approaches have used coarse visible from a vertex of the scene and the limits of umbra and penumbra between two polygons. 1 are the limits of umbra and penumbra together with back­ projections which encode the topological aspect

Durand, Frédo

34

Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

Osuka, Hisao [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan) [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)] [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Nagao, Satoshi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)] [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Higuchi, Yoshiki, E-mail: hig@sci.u-hyogo.ac.jp [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan) [Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan); Hirota, Shun, E-mail: hirota@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan) [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

2013-01-04T23:59:59.000Z

35

Smoke and Visible Emissions (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes controls on smoke and visible emissions from certain sources.  This rule is not intended to preempt any more stringent controls on smoke and visible emissions provided in any...

36

Influence of electron irradiation and heating on secondary electron yields from non-evaporable getter films observed with in situ x-ray photoelectron spectroscopy  

SciTech Connect (OSTI)

Nonevaporable getter (NEG) film has been used for the beam ducts of particle accelerators as a pump having a large area. NEG film has been considered to have a low outgas rate induced by energetic particle irradiation and a low secondary electron yield (SEY). In this article, we focused on SEY measurements and in situ surface characterization of four NEG film samples using x-ray photoelectron spectroscopy (XPS). The NEG samples were TiZrV thin films deposited by magnetron sputtering at 100 or 300 deg. C on stainless steel. In addition, NEG samples saturated by CO gas exposure were prepared. SEY and XPS measurements of the surfaces of NEG samples were carried out under the conditions of as received, after electron beam irradiation, and after heating at 200 deg. C for 24 h. The maximum SEY values of the primary electron energy dependence, {delta}{sub max}, of all NEG samples decreased to around 1 by electron beam irradiation owing to a change in the carbon impurities, such as carbon oxide, carbon hydroxide, and hydrocarbon, to graphite state (graphitization) during the irradiation. After heating, {delta}{sub max} values of the NEG samples without CO gas exposure were also around 1 owing to the carbonization of Ti, Zr, and V. The {delta}{sub max}{approx_equal}1 was remarkably lower than that of copper baked under the same conditions. However, in saturated NEG samples, metal carbides were not produced to a significant extent by heating, and the {delta}{sub max} values did not decrease, showing values of 1.5-1.7.

Nishiwaki, Michiru; Kato, Shigeki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan) and Department of Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2007-07-15T23:59:59.000Z

37

Statistical criteria for characterizing irradiance time series.  

SciTech Connect (OSTI)

We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

38

IRRADIATION EXPERIMENTS &  

E-Print Network [OSTI]

IRRADIATION EXPERIMENTS & FACILITIES AT BNL: BLIP & NSLS II Peter Wanderer Superconducting Magnet). Current user: LBNE ­ materials for Project X. · Long Baseline Neutrino Experiment ­ Abandoned gold mine

McDonald, Kirk

39

Visibility with Multiple Reflections Boris Aronov 1  

E-Print Network [OSTI]

â?? 1. A lower bound of \\Omega\\Gamma/ n=k \\Gamma \\Theta(1)) 2k ) is also established which matches to geometric optics, so that not only the issue of direct (straight­line) visibility, but also of visibility with reflection naturally occur here. Indeed, there is a large literature on geometric optics (such as [24, 12, 5

Dey, Tamal Krishna

40

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

VISIBILITY ALGORITHMS 8.1. INTRODUCTION  

E-Print Network [OSTI]

from e if it would be entirely illuminated by a fluorescent light bulb whose extent matched e. Avis(x) is called the point visibility polygon for x; it may be imagined as the region illuminated by a light bulb

O'Rourke, Joseph

42

Emission of Visible Light by Hot Dense Metals  

E-Print Network [OSTI]

HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

More, R.M.

2010-01-01T23:59:59.000Z

43

Safer Food with Irradiation  

E-Print Network [OSTI]

This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

2003-01-21T23:59:59.000Z

44

Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation  

SciTech Connect (OSTI)

A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of nanoscale titanate and anatase titania phases. Black-Right-Pointing-Pointer The photocatalyst displays high activity in degrading phenol under visible light. Black-Right-Pointing-Pointer Mechanisms for the sensitization to visible light are considered.

Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Highfield, James, E-mail: James_Highfield@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore)] [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Pehkonen, Simo O. [Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates)] [Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates); Pichat, Pierre [Photocatalyse et Environnement, CNRS/Ecole Centrale de Lyon (STMS), 69134 Ecully Cedex (France)] [Photocatalyse et Environnement, CNRS/Ecole Centrale de Lyon (STMS), 69134 Ecully Cedex (France); Schreyer, Martin K. [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore)] [Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2012-12-15T23:59:59.000Z

45

Relating productivity to visibility and lighting  

SciTech Connect (OSTI)

The problem of determining the appropriate light levels for visual tasks is a cost-benefit problem. Existing light level recommendations seriously underweight the importance of economic factors. Furthermore, the relative importance of the visibility factors in determining the optimal light levels appears inconsistent with the importance of these factors in determining visibility and visual performance. It is shown that calculations based on acuities give a lower limit of 100 to 200 lux for cost-effective light levels for office tasks. Upper limits are calculated from correlations of task performance to visibility levels. Visibility levels become progressively insensitive to luminance as luminance increases. Average power densities above 100 watts/m/sup 2/ are cost-effective only when visibility is very low. However, there is a 3-to-10 times larger increase in benefits from improving contrast or contrast sensitivity than from using more than 10 watts/m/sup 2/. Contrast or contrast sensitivity can be improved by using forms with larger print, using xerographic copy instead of carbon or mimeo, making sure office workers have the right eyeglasses, or even by transferring workers with visual problems to less visually demanding tasks. Once these changes are made it is no longer cost-effective to use more than 10 watts/m/sup 2/. This conclusion raises serious questions about recommendations that lead to greater than about 10 watts/m/sup 2/ of installed lighting for general office work.

Clear, R.; Berman, S.

1982-01-01T23:59:59.000Z

46

Total solar irradiance during the Holocene F. Steinhilber,1  

E-Print Network [OSTI]

Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

Wehrli, Bernhard

47

EFFECTS OF ION IRRADIATION ON Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) BULK METALLIC GLASS  

SciTech Connect (OSTI)

Bulk metallic glasses are intriguing candidates for nuclear applications due to their inherent amorphous structure, but their radiation response is largely unknown due to the relatively recent nature of innovations in bulk metallic glass fabrication. Here, microstructural and mechanical property evaluations have been performed on a Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BAM-11) irradiated with 3 MeV Ni+ ions to 0.1 and 1.0 dpa at room temperature and 200 C. Nanoindentation hardness and Young s modulus both decreased by 6 to 20% in samples irradiated at room temperature, with the sample irradiated to 1.0 dpa experiencing the greatest change in mechanical properties. However, no significant changes in properties were observed in the samples irradiated at 200 C, and transmission electron microscopy showed no visible evidence of radiation damage or crystallization following ion irradiation at any of the tested conditions. These results suggest that BAM-11 bulk metallic glass may be useful for certain applications in nuclear environments.

Perez-Bergquist, Alex G [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Leonard, Keith J [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL; Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

48

Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene  

E-Print Network [OSTI]

. In addition, the effect of electron irradiation on a PMMA (Poly Methyl Methacrylate)/Graphene bilayer was studied. We observed a deterioration of the electrical transport properties of a graphene FET. Prior to electron irradiation, we observed that the PMMA...

Woo, Sung Oh

2014-08-06T23:59:59.000Z

49

Human Contrast Threshold and Astronomical Visibility  

E-Print Network [OSTI]

The standard visibility model in light pollution studies is the formula of Hecht (1947), as used e.g. by Schaefer (1990). However it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g Blackwell (1946)), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson by Bowen (1947), enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang (2004), implying that light pollution grew more rapidly in subsequent decades than has been sup...

Crumey, Andrew

2014-01-01T23:59:59.000Z

50

Seeing solar on campus : a visible photovoltaic installation on campus  

E-Print Network [OSTI]

This paper presents a methodology for selecting a site on the MIT campus for a visible solar photovoltaic installation. Visibility, solar exposure, advertising potential, aesthetics, interactivity and direct or important ...

Guarda, Daniel Jair Alves

2006-01-01T23:59:59.000Z

51

Visible and near infrared reflectances measured from laboratory ice clouds  

E-Print Network [OSTI]

Visible and near infrared reflectances measured from laboratory ice clouds Brian Barkey* and K. N present laboratory results of the 0:68 m visible (VIS) and 1:617 m near infrared (NIR) reflectances for the remote sensing of thin cirrus clouds on the basis of visible (VIS) and near infrared (NIR) channels

Liou, K. N.

52

A Model of Visible QCD Axion  

E-Print Network [OSTI]

We pursue a class of visible axion models where the axion mass is enhanced by strong dynamics in a mirrored copy of the Standard Model in the line of the idea put forward by Rubakov. In particular, we examine the consistency of the models with laboratory, astrophysical, and cosmological constraints. As a result, viable parameter regions are found, where the mass of the axion is of $O(100)$ MeV or above while the Peccei-Quinn breaking scale is at around $10^{3\\mbox{-}5}$ GeV.

Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T

2015-01-01T23:59:59.000Z

53

Abstract--This study aimed to compare MR thermal mapping during Laser-induced Interstitial Thermal Therapy (LITT) to thermal lesions observed macroscopically, in order to estimate the 3D size of the coagulative necrosis. Laser irradiation was  

E-Print Network [OSTI]

fiber inside the metastasis. Laser energy is transmitted via this optical fiber resulting in a well for an accurate positioning of the optical fibers in the target area, for real-time monitoring of the thermal of the coagulative necrosis. Laser irradiation was performed ex-vivo with a 980 nm laser in pig liver in a open low

Paris-Sud XI, Université de

54

RERTR-6 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-6 was designed to evaluate several modified fuel designs that were proposed to address the possibility of breakaway swelling due to porosity within the (U. Mo) Al interaction product observed in the full-size plate tests performed in Russia and France1. The following report summarizes the life of the RERTR-6 experiment through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

55

Photometric Trends in the Visible Solar Continuum and Their Sensitivity to the Center-to-Limb Profile  

E-Print Network [OSTI]

Solar irradiance variations over solar rotational time-scales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle time scales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solar Photometric Telescope at the Mauna Loa Solar Observatory (PSPT/MLSO), we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuu...

Peck, Courtney

2015-01-01T23:59:59.000Z

56

INTERFEROMETRIC VISIBILITY OF A SCINTILLATING SOURCE: STATISTICS AT THE NYQUIST LIMIT  

SciTech Connect (OSTI)

We derive the distribution of interferometric visibility for a source exhibiting strong diffractive scintillation, with particular attention to spectral resolution at or near the Nyquist limit. We also account for arbitrary temporal averaging, intrinsic variability within the averaging time, and the possibility of spatially extended source emission. We demonstrate that the interplay between scintillation and self-noise induces several remarkable features, such as a broad ''skirt'' in the visibility distribution. Our results facilitate the interpretation of interferometric observations of pulsars at meter and decimeter wavelengths.

Johnson, M. D.; Gwinn, C. R., E-mail: michaeltdh@physics.ucsb.edu, E-mail: cgwinn@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2013-05-10T23:59:59.000Z

57

Nanoantennas for visible and infrared radiation  

E-Print Network [OSTI]

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of inves...

Biagioni, Paolo; Hecht, Bert

2011-01-01T23:59:59.000Z

58

Visible light surface emitting semiconductor laser  

DOE Patents [OSTI]

A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

1993-01-01T23:59:59.000Z

59

Resonant Visible Light Modulation with Graphene  

E-Print Network [OSTI]

Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explor...

Yu, Renwen; de Abajo, F Javier Garcia

2015-01-01T23:59:59.000Z

60

AMLR program: Ultraviolet and visible solar irradiance around Elephant Island, Antarctica, January to March 1993  

SciTech Connect (OSTI)

Since the discovery of the seasonal ozone hole over Antarctica, great efforts have been made in measuring incident ultraviolet radiation at high latitudes in the Southern Hemisphere, as well as the impact that enhanced UV-B radiation could have on terrestrial and aquatic environments. The measurements described in this article were conducted on board the NOAA ship Surveyor. 3 refs., 3 figs.

Helbling, E.W.; Holm-Hansen, O. (Univ. of California, San Diego, La Jolla, CA (United States)); Moran, P. (Universidad Nacional del Sur, Bahia Blanca (Argentina))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Visible and Near Infrared module of EChO  

E-Print Network [OSTI]

The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectromete...

Adriani, A; Gambicorti, L; Focardi, M; Oliva, E; Farina, M; Di Giorgio, A M; Santoli, F; Pace, E; Piccioni, G; Filacchione, G; Pancrazzi, M; Tozzi, A; Micela, G

2014-01-01T23:59:59.000Z

62

Photocytotoxicity of a New Rh2(II,II) Complex: Increase in Cytotoxicity upon Irradiation Similar to That of PDT Agent Hematoporphyrin  

E-Print Network [OSTI]

Photocytotoxicity of a New Rh2(II,II) Complex: Increase in Cytotoxicity upon Irradiation Similar, Texas 77842, and Food and Drug Administration, College Park, Maryland 20740 Received January 17, 2005- calating complex 1 towards Hs-27 human skin cells in the dark and upon irradiation with visible light

Turro, Claudia

63

Use Remote Sensing Data (selected visible and infrared spectrums...  

Broader source: Energy.gov (indexed) [DOE]

Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill...

64

Packet loss visibility and packet prioritization in digital videos  

E-Print Network [OSTI]

Performance comparison for videos with apparent compres-Prioritization in Digital Videos A Dissertation submitted inloss visibility,” Packet Video Workshop, Irvine, December

Kanumuri, Sandeep

2006-01-01T23:59:59.000Z

65

Comminuting irradiated ferritic steel  

DOE Patents [OSTI]

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

66

Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN  

E-Print Network [OSTI]

Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID spectrum. #12;Submitted for Publication to SOLAR ENERGY In its simplest description the model amounts wavelengths in the visible spectral range (0.55-0.75 µm) corresponding to the peak of the solar radiation

Perez, Richard R.

67

Visibility in Discrete Geometry: an application to discrete geodesic paths  

E-Print Network [OSTI]

Visibility in Discrete Geometry: an application to discrete geodesic paths David Coeurjolly that are visible from a source pixel. Based on these definitions, we define discrete geodesic paths in dis- crete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry

Paris-Sud XI, Université de

68

The Lightwave Model 142 CW Visible Ring Laser,  

E-Print Network [OSTI]

, operation temperature was controlled using a diode thermo-electric cooler. The laser specifications [4] were1 The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto Dr. Andres LaRosa Abstract A Lightwave Electronics Model 142 continuous wave visible (green) laser

La Rosa, Andres H.

69

Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India  

E-Print Network [OSTI]

Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India Punarjit representative micro data from India. I ...nd that a decrease in the level of visible inequality, ceteris paribus in one's social status due to parallel action of others. From a policy perspective, my ...ndings

Bandyopadhyay, Antar

70

Fringe Visibility Estimators for the Palomar Testbed Interferometer  

E-Print Network [OSTI]

Visibility estimators and their performance are presented for use with the Palomar Testbed Interferometer (PTI). One operational mode of PTI is single-baseline visibility measurement using pathlength modulation with synchronous readout by a NICMOS-3 infrared array. Visibility is estimated from the fringe quadratures, either incoherently, or using source phase referencing to provide a longer coherent integration time. The visibility estimators differ those used with photon-counting detectors in order to account for biases attributable to detector offsets and read noise. The performance of these estimators is affected not only by photon noise, but also by the detector read noise and errors in estimating the bias corrections, which affect the incoherent and coherent estimators differently. Corrections for visibility loss in the coherent estimators using the measured tracking jitter are also presented.

M. M. Colavita

1998-10-28T23:59:59.000Z

71

Irradiation effects on borosilicate waste glasses  

SciTech Connect (OSTI)

The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

Roberts, F.P.

1980-06-01T23:59:59.000Z

72

On the feasibility of determining slant-range visibility by using measurements of scattered light  

E-Print Network [OSTI]

and scattering was not objectionably unrealistic. Six model atmospheres were deter- mined with the parameters based on measurements of the absorption and scattering coefficients in the atmosphere. The aerosols in urban areas (industrial pollution) were found... of the continuous increase in the polluting material contained in the atmosphere. The degree of increase in pollution can be estimated somewhat by the continual annual decrease in visibility reported in visibil- ity observations (Neiburger, 1955). The procedures...

Newcomb, Fred Richard

1972-01-01T23:59:59.000Z

73

Secure Programming via Visibly Pushdown Safety Games William Harris  

E-Print Network [OSTI]

Safety Games William R. Harris1 , Somesh Jha1 , and Thomas Reps1,2 1 University of WisconsinComputer Sciences Department Secure Programming via Visibly Pushdown Safety Games William Harris

Reps, Thomas W.

74

Visible spectroscopic imaging on the Alcator C-Mod tokamak  

E-Print Network [OSTI]

This dissertation reports on the development of a diagnostic visible imaging system on the Alcator C-Mod tokamak and the results from that system. The dissertation asserts the value of this system as a qualitative and ...

Boswell, C. J. (Christopher James), 1974-

2003-01-01T23:59:59.000Z

75

Accumulation and Recovery of Disorder in Au2+-Irradiated Cd2Nb2O7...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the disorder has been observed below room temperature. Citation: Jiang W, WJ Weber, and LA Boatner.2005."Accumulation and Recovery of Disorder in Au2+-Irradiated...

76

Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO{sub 2} photocatalyst  

SciTech Connect (OSTI)

Graphical abstract: Schematic representation for the visible light photocatalytic process of N and F codoped TiO{sub 2}. Highlights: ? Visible light sensitive N-F-codoped TiO{sub 2}. ? Photocatalytic degradation of pentachlorophenol. ? Effect of oxidants on photocatalytic degradation of pentachlorophenol. ? PMS is a more efficient oxidant for the photodegradation of PCP. - Abstract: In this present study, N-F-codoped titanium dioxide nanocatalyst (NFTO) has been synthesized by simple sol–gel assisted solvothermal method for the effective utilization of visible light in photocatalytic reactions. Structural characterization of the photocatalyst is analyzed by XRD, UV–vis diffuse reflectance spectra (DRS), SEM and TEM. Moreover the chemical statuses of NFTO are gathered by X-ray photoelectron spectroscopy (XPS). The results show that a high surface area with photoactive anatase phase crystalline is obtained. In addition, nitrogen and fluorine atoms are doped into TiO{sub 2} crystal lattice to extend the visible light absorption and higher photocatalytic activity. The photocatalytic degradation of pentachlorophenol in aqueous solution is examined under visible light irradiation, the addition of oxidants such as PMS, PDS and H{sub 2}O{sub 2} is analyzed in detail. The rate of photocatalytic degradation of pentachlorophenol is obtained in the following order: PMS > PDS > H{sub 2}O{sub 2}.

Govindan, Kadarkarai, E-mail: govindanmu@gmail.com [Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Water Chemistry Lab, Water Institute, Karunya University, Coimbatore 641 114 (India); Murugesan, Sepperumal [Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Maruthamuthu, Pitchai [Department of Energy (Chemistry-Interdisciplinary), University of Madras, Guindy Campus, Chennai 600025 (India)

2013-05-15T23:59:59.000Z

77

Irradiation Stability of Carbon Nanotubes  

E-Print Network [OSTI]

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

Aitkaliyeva, Assel

2010-01-14T23:59:59.000Z

78

Controlled synthesis of T-shaped BiVO{sub 4} and enhanced visible light responsive photocatalytic activity  

SciTech Connect (OSTI)

A novel T-shaped BiVO{sub 4} microcrystal photocatalyst was successfully synthesized by the hydrothermal method with the aid of a structure-directing surfactant SDBS in the present study. Having received well characterization with the aid of various techniques and the results showed that the SDBS greatly changed the microstructure of BiVO{sub 4}, which had a unique T shape and belonged to the monoclinic family. The fast exchange dynamics between the surfactants bound to the Bi{sup 3+} seed surface and the free VO{sub 3}{sup ?} in the solution significantly increase the rate of heterogeneous nucleation. In addition, the photocatalytic activity of the prepared T-shaped BiVO{sub 4} was evaluated by the degradation of Methylene Blue solution under visible light irradiation, 17% and 47% higher decolorization rates than the commercial P25 and BiVO{sub 4} synthesized without SDBS, respectively. Meanwhile, it has been found that the degradation kinetics of MB fitted the pseudo-first-order kinetics and the T-shaped BiVO{sub 4} also displayed high photocatalytic performance for metronidazole degradation. -- Graphical abstract: H{sub 2}O{sub 2} molecules function as electron trapping reagent to react with e{sup ?} to enhance the photocatalytic degradation efficiency of MB in the BiVO{sub 4}/H{sub 2}O{sub 2} system under visible light irradiation. Highlights: • T-shaped BiVO{sub 4} was synthesized using SDBS as a structure-directing surfactant. • SDBS greatly changed the microstructure of BiVO{sub 4}. • The T-shaped BiVO{sub 4} had a better visible-light photocatalytic activity. • Degradation kinetics of MB by BiVO{sub 4} fitted the pseudo-first-order kinetics.

Dong, Shuying; Yu, Chongfei; Li, Yukun [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Li, Yihui [School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Geng, Xiaofei [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

2014-03-15T23:59:59.000Z

79

Retention of Hydrogen Isotopes in Neutron Irradiated Tungsten  

SciTech Connect (OSTI)

To investigate the effects of neutron irradiation on hydrogen isotope retention in tungsten, disk-type specimens of pure tungsten were irradiated in the High Flux Isotope Reactor in Oak Ridge National Laboratory followed by exposure to high flux deuterium (D) plasma in Idaho National Laboratory. The results obtained for low dose n-irradiated specimens (0.025 dpa for tungsten) are reviewed in this paper. Irradiation at coolant temperature of the reactor (around 50 degrees C) resulted in the formation of strong trapping sites for D atoms. The concentrations of D in n-irradiated specimens were ranging from 0.1 to 0.4 mol% after exposure to D plasma at 200 and 500 degrees C and significantly higher than those in non-irradiated specimens because of D-trapping by radiation defects. Deep penetration of D up to a depth of 50-100 µm was observed at 500 degrees C. Release of D in subsequent thermal desorption measurements continued up to 900 degrees C. These results were compared with the behaviour of D in ion-irradiated tungsten, and distinctive features of n-irradiation were discussed.

Yuji Hatano; Masashi Shimada; Yasuhisa Oya; Guoping Cao; Makoto Kobayashi; Masanori Hara; Brad J. Merrill; Kenji Okuno; Mikhail A. Sokolov; Yutai Katoh

2013-03-01T23:59:59.000Z

80

Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences  

SciTech Connect (OSTI)

The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

Koyanagi, Takaaki [ORNL; Shimoda, Kazuya [Kyoto University, Japan; Kondo, Sosuke [Kyoto University, Japan; Hinoki, Tatsuya [Kyoto University, Japan; Ozawa, Kazumi [ORNL; Katoh, Yutai [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel  

SciTech Connect (OSTI)

Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

2014-10-01T23:59:59.000Z

82

Algorithms for the Automatic Identification of MARFEs and UFOs in JET Database of Visible Camera Videos  

E-Print Network [OSTI]

Algorithms for the Automatic Identification of MARFEs and UFOs in JET Database of Visible Camera Videos

83

Effects of hadron irradiation on scintillating fibers  

SciTech Connect (OSTI)

Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

1993-08-01T23:59:59.000Z

84

GLAO IN THE VISIBLE: THE SAM EXPERIENCE Andrei Tokovinina  

E-Print Network [OSTI]

-common-path errors were avoided. SAM can feed corrected images to its internal CCD detector, SAMI (4K×4K CCDGLAO IN THE VISIBLE: THE SAM EXPERIENCE Andrei Tokovinina Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile Abstract. The SOAR adaptive module (SAM) is going through science

Tokovinin, Andrei A.

85

Resonator design for a visible wavelength free-electron laser (*)  

SciTech Connect (OSTI)

Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

1990-01-01T23:59:59.000Z

86

Visibility Preprocessing with Occluder Fusion for Urban Walkthroughs  

E-Print Network [OSTI]

in the umbra (shadow volume) with respect to a given area light source. In contrast to occlusion from a point: · The umbra with respect to a polygonal area light source is not only bounded by planes, but also by reguli, i. For visibility from a point, the joint umbra of many occluders is the union of the umbrae of the individual

87

The Lightwave Model 142 CW Visible Ring Laser,  

E-Print Network [OSTI]

, operation temperature was controlled using a diode thermo-electric cooler. The laser specifications [4] were1 The Lightwave Model 142 CW Visible Ring Laser, Beam Splitter, Model ATM- 80A1 Acousto Dr. Andres LaRosa March 11th , 2003 #12;2 Abstract A Lightwave Electronics Model 142 continuous wave

La Rosa, Andres H.

88

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino  

E-Print Network [OSTI]

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

Merlino, Robert L.

89

Interactive Visibility Culling in Complex Environments using Occlusion-Switches  

E-Print Network [OSTI]

Categories and Subject Descriptors: I.3.5 [Com- puter Graphics]: Computational Geometry and Object ModelingInteractive Visibility Culling in Complex Environments using Occlusion-Switches Naga K. Govindaraju culling in complex 3D environments. An occlusion- switch consists of two GPUs (graphics processing units

North Carolina at Chapel Hill, University of

90

A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul  

E-Print Network [OSTI]

We present wide-field, deep narrowband H$_2$, Br$\\gamma$, H$\\alpha$, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H$_2$ and Br$\\gamma$ emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H$_2$ and optical images gives a more complete view of the jets, which are sometimes only visible in H$_2$. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the...

Hartigan, P; Smith, N; Bally, J

2015-01-01T23:59:59.000Z

91

Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

2011-08-01T23:59:59.000Z

92

Irradiation response and stability of nanoporous materials  

SciTech Connect (OSTI)

Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

Fu, Engang [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory; Zepeda-Ruiz, L [Lawrence Livermore national Laboratory; Bringa, E. [CONICET, Universidad de Cuyo, Argentina; Nastasi, Mike [University of Nebraska, Lincoln, NE; Baldwin, Jon K. [Los Alamos National Laboratory

2012-08-28T23:59:59.000Z

93

Materials Modification Under Ion Irradiation: JANNUS Project  

SciTech Connect (OSTI)

JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM.

Serruys, Y.; Trocellier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.-O.; Henry, S.; Kaietasov, O. [CSNSM, Bat. 104, Orsay Campus (France); Trouslard, Ph. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

2004-12-01T23:59:59.000Z

94

Composition, Mineralogy, and Porosity of Multiple Asteroid Systems from Visible and Near-infrared Spectral Data  

E-Print Network [OSTI]

We provide a taxonomic and compositional characterization of Multiple Asteroid Systems (MASs) located in the main belt (MB) using visible and near-infrared (0.45-2.5 um) spectral data of 42 MB MASs. The mineralogical analysis is applied to determine meteorite analogs for the MASs, which, in turn, are applied to the MAS density measurements of Marchis et al. (2012) to estimate the system porosity. The macroporosities are used to evaluate the primary MAS formation hypotheses. The visible observing campaign includes 25 MASs obtained using the SOAR telescope with the Goodman High Throughput Spectrometer. The infrared observing campaign includes 34 MASs obtained using the NASA IRTF with the SpeX spectragraph. The MASs are classified using the Bus-DeMeo taxonomic system. We perform a NIR spectral band parameter analysis using a new analysis routine, the Spectral Analysis Routine for Asteroids (SARA). The SARA routine determines band centers, areas, and depths by utilizing the diagnostic absorption features near 1- ...

Lindsay, Sean S; Emery, Joshua P; Enriquez, J Emilio; Assafin, Marcelo

2014-01-01T23:59:59.000Z

95

AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look  

SciTech Connect (OSTI)

The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated diametrical shrinkage of 0.9 to 1. 4%, and length shrinkage of 0.2 to 1.1%. The shrinkage was somewhat dependent on compact location within each capsule and within the test train. Compacts exhibited a maximum diametrical shrinkage at a fast neutron fluence of approximately 3×1021 n/cm2. A multivariate statistical analysis indicates that fast neutron fluence as well as compact position in the test train influence compact shrinkage.

Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

2011-01-01T23:59:59.000Z

96

Reflection beamshifts of visible light due to graphene  

E-Print Network [OSTI]

I present theoretical calculations of reflection beamshifts, Goos-H\\"anchen and Imbert-Fedorov shifts, due to the presence of a monolayer graphene on a dielectric media when using a beam with wavelength in the visible range. Specifically, I look at beamshifts for different polarization states (p, s, $45^0$, $\\sigma^+$). The Goos-H\\"anchen shifts I calculated are in good agreement with results of a recent experiment. I will discuss other possible experimental routes to determine beamshifts in graphene.

Hermosa, N

2015-01-01T23:59:59.000Z

97

Visible light photon counters optimization for quantum information applications  

SciTech Connect (OSTI)

In this paper we describe the studies of the main parameters needed for optimal operation of Visible Light Photon Counters (VLPCs) when used in quantum information systems. The isolation of the single photon signal is analyzed through the definition of a contamination parameter. A compromise in the minimization of this parameter for temperature, bias voltage and dark count variation must be achieved and this depends on the experimental conditions.

Molina, J.; /Rio de Janeiro State U.; Estrada, J.; Bross, A.; /Fermilab; Ginther, G.; /Rochester U.; Buscher, V.; /Freiburg U.

2006-10-01T23:59:59.000Z

98

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents [OSTI]

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

99

Emission of Visible Light by Hot Dense Metals  

SciTech Connect (OSTI)

We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.

More, R.M.; Goto, M.; Graziani, F.; Ni, P.A.; Yoneda, H.

2009-12-01T23:59:59.000Z

100

Advancing Visibility of Grid Operations to Improve Reliability | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142Lora Toyof Energy Visibility

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect (OSTI)

This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.

Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J

2007-03-01T23:59:59.000Z

102

The Swift-UVOT ultraviolet and visible grism calibration  

E-Print Network [OSTI]

We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The...

Kuin, N P M; Breeveld, A A; Page, M J; James, C; Lamoureux, H; Mehdipour, M; Still, M; Yershov, V; Brown, P J; Carter, M; Mason, K O; Kennedy, T; Marshall, F; Roming, P W A; Siegel, M; Oates, S; Smith, P J; De Pasquale, M

2015-01-01T23:59:59.000Z

103

Direct Observation of Ion-irradiation-induced Chemical Mixing. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of Shewanella Oneidensisthe Size

104

Enhanced electrochemical etching of ion irradiated silicon by localized amorphization  

SciTech Connect (OSTI)

A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

2014-05-12T23:59:59.000Z

105

Visible Light-Driven Water Oxidation by Ir oxide Clusters Coupledto Single Cr Centers in Mesoporous Silica  

SciTech Connect (OSTI)

Visible light-induced water oxidation has been demonstrated at an Ir oxide nanocluster coupled to a single Cr{sup VI} site on the pore surface of MCM-41 mesoporous silica. The photocatalytic unit was assembled by the reaction of surface Cr=O groups with Ir(acac){sub 3} precursor followed by calcination at 300 C and bond formation monitored by FT-Raman and FT-IR spectroscopy. High-resolution Z-contrast electron micrographs of the calcined material combined with energy-dispersive X-ray spot analysis confirmed the occlusion of Ir oxide nanoparticles inside the mesopores. Oxygen evolution of an aqueous suspension of the Ir{sub x}O{sub y}-CrMCM-41 upon visible light irradiation of the Cr{sup VI}-O ligand-to-metal charge-transfer absorption was monitored mass-spectrometrically. Comparison of the product yields for samples with low Cr content (Cr/Si {le} 0.02) and high Cr content (Cr/Si = 0.05) indicates that only isolated Cr centers are capable of extracting electrons from Ir oxide clusters, while di- or polychromate species are not. Water oxidation at a multielectron-transfer catalyst coupled to a single metal center has not been demonstrated before. The ability to drive water oxidation with a single metal center as electron pump offers opportunities for coupling the oxygen-evolving photocatalytic unit to reducing sites in the nanoporous scaffold.

Nakamura, Ryuhei; Frei, Heinz

2006-07-10T23:59:59.000Z

106

Magnetic phase formation in irradiated austenitic alloys  

SciTech Connect (OSTI)

Austenitic alloys are often observed to develop magnetic properties during irradiation, possibly associated with radiation-induced acceleration of the ferrite phase. Some of the parametric sensitivities of this phenomenon have been addressed using a series of alloys irradiated in the BOR-60 reactor at 593K. The rate of development of magnetic phase appears to be sensitive to alloy composition. To the first order, the largest sensitivities to accelerate ferrite formation, as explored in this experiment, are associated with silicon, carbon and manganese and chromium. Si, C, and Mn are thought to influence diffusion rates of point defects while Cr plays a prominent role in defining the chromium equivalent and therefore the amount of ferrite at equilibrium. Pre-irradiation cold working was found to accelerate ferrite formation, but it can play many roles including an effect on diffusion, but on the basis of these results the dominant role or roles of cold-work cannot be identified. Based on the data available, ferrite formation is most probably associated with diffusion.

Gussev, Maxim N [ORNL] [ORNL; Busby, Jeremy T [ORNL] [ORNL; Tan, Lizhen [ORNL] [ORNL; Garner, Francis A. [Radiation Effects Consulting, Richland, WA] [Radiation Effects Consulting, Richland, WA

2014-01-01T23:59:59.000Z

107

Polarimetric Remote Sensing in the Visible to Near Infrared James R. Shell II  

E-Print Network [OSTI]

Polarimetric Remote Sensing in the Visible to Near Infrared by James R. Shell II B.S. Physics Title of Dissertation: Polarimetric Remote Sensing in the Visible to Near Infrared I, James R. Shell II Remote Sensing in the Visible to Near Infrared by James R. Shell II Submitted to the Chester F. Carlson

Salvaggio, Carl

108

Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra  

E-Print Network [OSTI]

Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared Diffuse reflectance spectroscopy Visible/near-infrared spectroscopy Multivariate calibration Pre-processing transformations In order to reduce costs and time in the analysis of soil properties, visible/near-infrared

Grunwald, Sabine

109

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared and  

E-Print Network [OSTI]

Author's personal copy Soil total carbon analysis in Hawaiian soils with visible, near-infrared reflectance spectroscopy Agriculture Hawaii Mid-infrared Soil carbon Visible near-infrared Accurate assessment of DRS for Ct prediction of Hawaiian ag- ricultural soils by creating visible, near-infrared (VNIR

Grunwald, Sabine

110

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation for  

E-Print Network [OSTI]

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation using spectral imaging. This has been accom- plished with both visible/near-infrared (Vis/NIR) sunlight-path laser absorption measurements [14]­[16], in-situ visible and near-infrared (Vis/NIR) spectral

Lawrence, Rick L.

111

Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D  

SciTech Connect (OSTI)

An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

Lasnier, C. J., E-mail: lasnier@LLNL.gov; Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Crabtree, K. [College of Optics, University of Arizona, Tucson, Arizona 85721 (United States); Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2014-11-15T23:59:59.000Z

112

A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared  

SciTech Connect (OSTI)

We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750?nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ?12?cm{sup ?1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627?cm{sup ?1} mode is increased by over 15 times.

Zhu, Liangdong [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Liu, Weimin [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States); Fang, Chong, E-mail: Chong.Fang@oregonstate.edu [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

2014-07-28T23:59:59.000Z

113

Optical assembly of a visible through thermal infrared multispectral imaging system  

SciTech Connect (OSTI)

The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

1998-06-01T23:59:59.000Z

114

Effect of {gamma}-irradiation on strength of concrete for nuclear-safety structures  

SciTech Connect (OSTI)

Concrete applied for construction of nuclear power plant (NPP) Temelin (Czech Republic) has been exposed to {gamma}-irradiation up to dose 6x10{sup 5} Gy. Depending on the level of irradiation, changes in strength, porous structure and phase composition of the concrete have been studied. It is found that irradiation lowers both the strength of concrete (about 10%) and volume (resp. surface) of porous space. On the other hand, {gamma}-irradiation increases the ratio of calcite, CaCO{sub 3}, in the concrete. Observed effects are discussed with respect to safety of NPPs.

Vodak, F. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Trtik, K. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Sopko, V. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Kapickova, O. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Demo, P. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic)]. E-mail: demo@fzu.cz

2005-07-01T23:59:59.000Z

115

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) ARM Data Discovery

116

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

SciTech Connect (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

117

Evolution of the nanostructure OF VVER-1000 RPV materials under neutron irradiation and post irradiation annealing  

SciTech Connect (OSTI)

A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10{sup 23} m{sup -2} (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10{sup 23} m{sup -2} (E > 0.5 MeV). High number densities of 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the {Delta}T{sub 41 J} ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiOffice of Science (US)C, but had dissolved into the matrix after 24 h at 450 C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

Miller, Michael K [ORNL; Chernobaeva, A. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Shtrombakh, Ya. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Erak, D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Zabusov, Oleg O. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Russell, Kaye F [ORNL; Nanstad, Randy K [ORNL

2009-01-01T23:59:59.000Z

118

Visible light emitting vertical cavity surface emitting lasers  

DOE Patents [OSTI]

A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

119

Visible light emitting vertical cavity surface emitting lasers  

DOE Patents [OSTI]

A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

1995-06-27T23:59:59.000Z

120

Exploring Visible-Light-Responsive Photocatalysts for Water Splitting Based on Novel Band-gap Engineering Strategies  

E-Print Network [OSTI]

Chapter 4 Boron Carbides as Efficient, Metal-Free, Visible-and transition metals, the boron carbide products werex Chapter Boron Carbides as Efficient, Metal-free, Visible-

Liu, Jikai

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Proton irradiation effect on SCDs  

E-Print Network [OSTI]

The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was $3\\times10^{8}\\mathrm{protons}/\\mathrm{cm}^{2}$ over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at $-60\\,^{\\circ}\\mathrm{C}$, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit.

Yan-Ji Yang; Jing-Bin Lu; Yu-Sa Wang; Yong Chen; Yu-Peng Xu; Wei-Wei Cui; Wei Li; Zheng-Wei Li; Mao-Shun Li; Xiao-Yan Liu; Juan Wang; Da-Wei Han; Tian-Xiang Chen; Cheng-Kui Li; Jia Huo; Wei Hu; Yi Zhang; Bo Lu; Yue Zhu; Ke-Yan Ma; Di Wu; Yan Liu; Zi-Liang Zhang; Guo-He Yin; Yu Wang

2014-04-19T23:59:59.000Z

122

Visible Photoluminescence from Cubic (3C) Silicon Carbide Microdisks Coupled to High Quality Whispering Gallery Modes  

E-Print Network [OSTI]

We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 ({\\lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.

Radulaski, Marina; Müller, Kai; Lagoudakis, Konstantinos G; Zhang, Jingyuan Linda; Buckley, Sonia; Kelaita, Yousif A; Alassaad, Kassem; Ferro, Gabriel; Vu?kovi?, Jelena

2014-01-01T23:59:59.000Z

123

Visible Photoluminescence from Cubic (3C) Silicon Carbide Microdisks Coupled to High Quality Whispering Gallery Modes  

E-Print Network [OSTI]

We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 ({\\lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.

Marina Radulaski; Thomas M. Babinec; Kai Müller; Konstantinos G. Lagoudakis; Jingyuan Linda Zhang; Sonia Buckley; Yousif A. Kelaita; Kassem Alassaad; Gabriel Ferro; Jelena Vu?kovi?

2014-12-08T23:59:59.000Z

124

Structural and luminescent properties of electron-irradiated silicon  

SciTech Connect (OSTI)

Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 ?m in the room-temperature electroluminescence spectrum.

Sobolev, N. A.; Loshachenko, A. S. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and Fok Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shtel'makh, K. F. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and St. Petersburg State Technical University, 195251 St. Petersburg (Russian Federation); Vdovin, V. I. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Xiang, Luelue; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou (China)

2014-02-21T23:59:59.000Z

125

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

SciTech Connect (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

126

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

Hansen, Brad

2008-01-01T23:59:59.000Z

127

Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa  

SciTech Connect (OSTI)

The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

Baek, Jong-Hyuk [KAERI] [KAERI; Byun, Thak Sang [ORNL] [ORNL; Maloy, S [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2014-01-01T23:59:59.000Z

128

Physiological Interaction of Heart and Lung in Thoracic Irradiation  

SciTech Connect (OSTI)

Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.

Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands)] [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

2012-12-01T23:59:59.000Z

129

Effects of storage on irradiated red blood cells: An in-vitro and in-vivo study. Master's thesis  

SciTech Connect (OSTI)

Irradiation of red blood cell units has recently become a topic of special concern as the result of increasing reports of graft versus host disease in immunocompetent blood transfusion recipients. This study was designed to evaluate the potassium elevations observed in stored irradiated red blood cells and to evaluate the in vivo survival of stored irradiated red blood cells using a dog model. In the in vitro study ten units of human CPDA-1 packed red blood cells were made into paired aliquots; one aliquot of each pair was irradiated with 3000 rads of gamma radiation and the potassium content measured at points throughout 35 days of storage. A significant increase in potassium levels in the irradiated aliquots was observed from the first day after irradiation and continued through the entire storage period.

Knoll, S.E.

1991-08-01T23:59:59.000Z

130

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

Flynn, Connor

131

ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

Flynn, Connor

132

Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan  

SciTech Connect (OSTI)

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During the study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 {mu}m, corresponding with the wavelength region of visible light, which accounted for {approximately} 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH{sub 4}){sup 2}SO{sub 4}, NH{sub 4}NO{sub 3}, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein. 35 refs., 10 figs., 4 tabs.

Chang-Gai Lee; Chung-Shin Yuan; Jui-Cheng Chang; Ching Yuan [National Sun Yat-Sen University (Taiwan)

2005-07-01T23:59:59.000Z

133

Neutron irradiation of beryllium pebbles  

SciTech Connect (OSTI)

Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

1998-03-01T23:59:59.000Z

134

The Health and Visibility Cost of Air Pollution: A Comparison of Estimation Methods  

E-Print Network [OSTI]

economics, air pollution, health effects, visibility,Cost of Health Effects of Motor Vehicle Air Pollution. UCD-of the health costs of air pollution (because individuals

Delucchi, Mark; Murphy, James; McCubbin, Donald

2002-01-01T23:59:59.000Z

135

Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation  

SciTech Connect (OSTI)

Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M. [Physics Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Moharram, A. H. [Physics Dept., College of Science and Arts, King Abdulaziz Univ., Rabigh 21911 (Saudi Arabia)

2013-12-16T23:59:59.000Z

136

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Carey, III, James Edward (Newton, MA); Mazur, Eric (Concord, MA)

2011-12-20T23:59:59.000Z

137

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Mazur, Eric (Concord, MA); Carey, III, James E. (Newton, MA)

2011-02-08T23:59:59.000Z

138

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.

Mazur, Eric (Concord, MA); Carey, III, James E. (Newton, MA)

2010-08-24T23:59:59.000Z

139

Silicon-based visible and near-infrared optoelectric devices  

DOE Patents [OSTI]

In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity great than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelenths, e.g., up to about 3.5 microns.

Mazur, Eric; Carey, James Edward

2013-12-10T23:59:59.000Z

140

Phase transformations in neutron-irradiated Zircaloys  

SciTech Connect (OSTI)

Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after approx.3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr/sub 3/O and cubic-ZrO/sub 2/ particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/)/sub 2/ and Zr/sub 2/(Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of approx.4 x 10/sup 21/ ncm/sup -2/ in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs.

Chung, H.M.

1986-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Low energy electron irradiation of an apple  

E-Print Network [OSTI]

The viability of pathogenic organisms on the surface of fresh fruits and vegetables can be significantly reduced by low energy electron beam irradiation. The most difficult technical challenge for surface irradiation of fruits and vegetable...

Brescia, Giovanni Batista

2002-01-01T23:59:59.000Z

142

Solar irradiance changes and photobiological effects at Earth's surface following astrophysical ionizing radiation events  

E-Print Network [OSTI]

Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the TUV radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radi...

Thomas, Brian C; Snyder, Brock R

2015-01-01T23:59:59.000Z

143

Irradiation effects on base metal and welds of 9Cr-1Mo (EM10) martensitic steel  

SciTech Connect (OSTI)

9Cr martensitic steels are being developed for core components (wrapper tubes) of fast breeder reactors as well as for fusion reactor structures. Here, the effects of fast neutron irradiation on the mechanical behavior of base metal and welds of 9Cr-1Mo (EM10) martensitic steel have been studied. Two types of weldments have been produced by TIG and electron beam techniques. Half of samples have been post-weld heat treated to produce a stress-relieved structure. The irradiation has been conducted in the Phenix reactor to doses of 63--65 dpa in the temperature range 450--459 C. The characterization of the welds, before and after irradiation, includes metallographic observations, hardness measurements, tensile and Charpy tests. It is shown that the mechanical properties of the welds after irradiation are in general similar to the characteristics obtained on the base metal, which is little affected by neutron irradiation.

Alamo, A.; Seran, J.L.; Rabouille, O.; Brachet, J.C.; Maillard, A.; Touron, H.; Royer, J. [CEA Saclay, Gif-sur-Yvette (France)

1996-12-31T23:59:59.000Z

144

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect (OSTI)

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

145

3, 895959, 2006 Irradiance and  

E-Print Network [OSTI]

and corals. However, the contribution of benthic communities to the primary production of the global coastal energy source fueling marine primary prBGD 3, 895­959, 2006 Irradiance and primary production in the coastal ocean J.-P. Gattuso et al

Paris-Sud XI, Université de

146

sterilization by irradiation Arne Miller  

E-Print Network [OSTI]

-1:2006 Equipment characterization (6) Product definition (7) Process definition (8) Installation Qualification (9.1) Operational Qualification (9.2) · Performance Qualification (9.3) - later #12;3 Equipment characterization samples shall be irradiated to defined and uniform doses. #12;9 9.1 Installation qualification (A.9

147

Low temperature irradiation tests on  

E-Print Network [OSTI]

Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

McDonald, Kirk

148

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

149

CHARACTERISTIC SIZE OF FLARE KERNELS IN THE VISIBLE AND NEAR-INFRARED CONTINUA  

SciTech Connect (OSTI)

In this Letter, we present a new approach to estimate the formation height of visible and near-infrared emission of an X10 flare. The sizes of flare emission cores in three wavelengths are accurately measured during the peak of the flare. The source size is the largest in the G band at 4308 A and shrinks toward longer wavelengths, namely the green continuum at 5200 A and NIR at 15600 A, where the emission is believed to originate from the deeper atmosphere. This size-wavelength variation is likely explained by the direct heating model as electrons need to move along converging field lines from the corona to the photosphere. Therefore, one can observe the smallest source, which in our case is 0.''65 {+-} 0.''02 in the bottom layer (represented by NIR), and observe relatively larger kernels in upper layers of 1.''03 {+-} 0.''14 and 1.''96 {+-} 0.''27, using the green continuum and G band, respectively. We then compare the source sizes with a simple magnetic geometry to derive the formation height of the white-light sources and magnetic pressure in different layers inside the flare loop.

Xu, Yan; Jing, Ju; Wang, Haimin [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States); Cao, Wenda, E-mail: yx2@njit.edu [Big Bear Solar Observatory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd, Newark, NJ 07102-1982 (United States)

2012-05-01T23:59:59.000Z

150

Transition from Irradiation-Induced Amorphization to Crystallization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Transition from Irradiation-Induced Amorphization to Crystallization in...

151

Occlusion-Aware Hessians for Error Control in Irradiance Caching /  

E-Print Network [OSTI]

Control for Irradiance Caching. ” In ACM Transactions on Graphics,Control for Irradiance Caching. ” In ACM Transactions on Graphics,

Schwarzhaupt, Jorge Andres

2013-01-01T23:59:59.000Z

152

Visibility-Based Strategies for Tracking and Searching Unpredictable Coherent Targets Among Known Obstacles  

E-Print Network [OSTI]

Visibility-Based Strategies for Tracking and Searching Unpredictable Coherent Targets Among Known Obstacles Christopher Vo Jyh-Ming Lien MASC group, Dept. of Computer Science, George Mason University http that incorporate informed search to regain visibility of targets when they escape the camera's view, with promising

Lien, Jyh-Ming

153

2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths  

E-Print Network [OSTI]

1 2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths D discrete geodesic paths in discrete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry. Keywords: discrete visibility, geodesic path, distance transform, discrete

Boyer, Edmond

154

To appear in Proceedings of ACRA 2004 1 Visible Spectrum Optical Communication and  

E-Print Network [OSTI]

To appear in Proceedings of ACRA 2004 1 Visible Spectrum Optical Communication and Distance Sensing an underwater communication system for a swarm of submersibles, we de- veloped an optical communication, emitting light in the green and blue part of the visible spectrum. This paper presents ex- perimental

Trumpf, Jochen

155

Increased Climate Variability Is More Visible Than Global Warming: A General  

E-Print Network [OSTI]

Increased Climate Variability Is More Visible Than Global Warming: A General System@utep.edu Abstract While global warming is a statistically confirmed long-term phenomenon, its most visible than the global warming itself. 1 Formulation of the Problem What is global warming. The term "global

Kreinovich, Vladik

156

A distributed Approach for Access and Visibility Task under Ergonomic Constraints with a Manikin  

E-Print Network [OSTI]

A distributed Approach for Access and Visibility Task under Ergonomic Constraints with a Manikin, to assess an efficient path planner for a manikin for access and visibility task under ergonomic constraints a way to explore areas such as maintenance or ergonomics of the product that were traditionally ignored

Paris-Sud XI, Université de

157

Effects of swift heavy ions irradiation parameters on optical properties of muscovite mica  

E-Print Network [OSTI]

Muscovite mica sheets with a thickness of 25 {\\mu}m were irradiated by various kinds of swift heavy ions (Sn, Xe and Bi) in HIRFL. The fluences ranged from 1$\\times$10^{10} ions/cm^2 to 8$\\times$10^{11} ions/cm^2. The electronic energy loss (dE/dx)_e was increased from 14.7 keV/nm to 31.2 keV/nm. The band gap and Urbach energy of pristine and irradiated mica were analyzed by ultraviolet- visible spectroscopy. Periodic fringes in long wave length of the absorption spectra caused by interference phenomenon, were disturbed as the (dE/dx)_e increased. It was suggested that the chemical bonds between Tetrahedral-Octohedral-Tetrahedral (TOT) layers of mica were destroyed. Thus the smooth surface was cleaved after irradiation. The band gap was narrowed down with the increasing (dE/dx)_e and fluences. The values of Urbach energy were increased as the (dE/dx)_e and fluences gradually increased. It was indicated that the amount of defects and the proportion of amorphous structure were increased in mica irradiated under...

Zhang, Sheng-Xia; Zeng, Jian; Song, Yin; Mo, Dan; Yao, Hui-Jun; Duan, Jing-Lai; Sun, You-Mei; Hou, Ming-Dong

2014-01-01T23:59:59.000Z

158

Microstructural examination of V-(4-5%) Cr-(4-5%)Ti irradiated in X530  

SciTech Connect (OSTI)

Microstructural examination results are reported for two heats of V-(4-5%)Cr-(4-5%)Ti irradiated in the X530 experiment to {approximately}400{degrees}C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment at 950-1125{degrees}C. There was no evidence for a significant density of large (diameter >10 nm) dislocation loops or network dislocations.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Chung, H.M. [Argonne Natinonal Lab., IL (United States)

1997-08-01T23:59:59.000Z

159

Atomic configuration of irradiation-induced planar defects in 3C-SiC  

SciTech Connect (OSTI)

The atomic configuration of irradiation-induced planar defects in single crystal 3C-SiC at high irradiation temperatures was shown in this research. A spherical aberration corrected scanning transmission electron microscope provided images of individual silicon and carbon atoms by the annular bright-field (ABF) method. Two types of irradiation-induced planar defects were observed in the ABF images including the extrinsic stacking fault loop with two offset Si-C bilayers and the intrinsic stacking fault loop with one offset Si-C bilayer. The results are in good agreement with images simulated under identical conditions.

Lin, Y. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Ho, C. Y. [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Hsieh, C. Y.; Chang, M. T.; Lo, S. C. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chen, F. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, J. J., E-mail: ceer0001@gmail.com [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

2014-03-24T23:59:59.000Z

160

Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalytic activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.

Shen, Yu, E-mail: shenyuqing0322@gmail.com [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Yanbo; Xu, Hongfeng; Fu, Jie [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Li, Xinyong; Zhao, Qidong; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

2013-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation  

SciTech Connect (OSTI)

Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

2010-07-01T23:59:59.000Z

162

Structural and magnetic properties of irradiated SiC  

SciTech Connect (OSTI)

We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance, and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC, which mutually influences the ferromagnetism in SiC.

Wang, Yutian; Helm, Manfred [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Chen, Xuliang; Yang, Zhaorong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Lin [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Department of Physics and Electronics, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Shalimov, Artem; Prucnal, Slawomir; Munnik, Frans; Skorupa, Wolfgang; Zhou, Shengqiang, E-mail: s.zhou@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Tong, Wei [High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

2014-05-07T23:59:59.000Z

163

GTL-1 Irradiation Summary Report  

SciTech Connect (OSTI)

The primary objective of the Gas Test Loop (GTL-1) miniplate experiment is to confirm acceptable performance of high-density (i.e., 4.8 g-U/cm3) U3Si2/Al dispersion fuel plates clad in Al-6061 and irradiated under the relatively aggressive Booster Fast Flux Loop (BFFL) booster fuel conditions, namely a peak plate surface heat flux of 450 W/cm2. As secondary objectives, several design and fabrication variations were included in the test matrix that may have the potential to improve the high-heat flux, high-temperature performance of the base fuel plate design.1, 2 The following report summarizes the life of the GTL-1 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

D. M. Perez; G. S. Chang; N. E. Woolstenhulme; D. M. Wachs

2012-01-01T23:59:59.000Z

164

RERTR-13 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

165

Nuclear plant irradiated steel handbook  

SciTech Connect (OSTI)

This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

1986-09-01T23:59:59.000Z

166

Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets  

E-Print Network [OSTI]

We consider the thermal structure and radii of strongly irradiated gas giant planets over a range in mass and irradiating flux. The cooling rate of the planet is sensitive to the surface boundary condition, which depends on the detailed manner in which starlight is absorbed and energy redistributed by fluid motion. We parametrize these effects by imposing an isothermal boundary condition $T \\equiv T_{\\rm deep}$ below the photosphere, and then constrain $T_{\\rm deep}$ from the observed masses and radii. We compute the dependence of luminosity and core temperature on mass, $T_{\\rm deep}$ and core entropy, finding that simple scalings apply over most of the relevant parameter space. These scalings yield analytic cooling models which exhibit power-law behavior in the observable age range $0.1-10 {\\rm Gyr}$, and are confirmed by time-dependent cooling calculations. We compare our model to the radii of observed transiting planets, and derive constraints on $T_{\\rm deep}$. Only HD 209458 has a sufficiently accurate radius measurement that $T_{\\rm deep}$ is tightly constrained; the lower error bar on the radii for other planets is consistent with no irradiation. More accurate radius and age measurements will allow for a determination of the correlation of $T_{\\rm deep}$ with the equilibrium temperature, informing us about both the greenhouse effect and day-night asymmetries.

Phil Arras; Lars Bildsten

2006-01-15T23:59:59.000Z

167

Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain  

SciTech Connect (OSTI)

Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

2012-04-01T23:59:59.000Z

168

Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions  

SciTech Connect (OSTI)

Titanium (IV) oxide, TiO2, has been the object of intense scrutiny for energy applications. TiO2 is inexpensive, non-toxic, and has excellent corrosion resistance when exposed to electrolytes. A major drawback preventing the widespread use TiO2 for photolysis is its relatively large band gap of ~3eV. Only light with wavelengths shorter than 400 nm, which is in the ultraviolet portion of the spectrum, has sufficient energy to be absorbed. Less than 14 percent of the solar irradiation reaching the earth s surface has energy exceeding this band gap. Adding dopants such as transition metals has long been used to reduce the gap and increase photocatalytic activity by accessing the visible part of the solar spectrum. The degree to which the band gap is reduced using transition metals depends in part on the overlap of the d-orbitals of the transition metals with the oxygen p-orbitals. Therefore, doping with anions such as nitrogen to modify the cation-anion orbital overlap is another approach to reduce the gap. Recent studies suggest that using a combination of transition metals and nitrogen as dopants is more effective at introducing intermediate states within the band gap, effectively narrowing it. Here we report the synthesis of mesoporous TiO2 spheres, co-doped with transition metals and nitrogen that exhibit a nearly flat absorbance response across the visible spectrum extending into the near infrared.

Mathis, John [Embry-Riddle Aeronautical University; Bi, Zhonghe [ORNL; Bridges, Craig A [ORNL; Kidder, Michelle [ORNL; Paranthaman, Mariappan Parans [ORNL

2013-01-01T23:59:59.000Z

169

The effects of gamma irradiation on the growth, development and nitrogen metabolism of rice  

E-Print Network [OSTI]

are reported to have deleterious effects on plant growth (51). But stimulatory effects have also been noted. Sax (51) observed no significant stimulatory effects on five species of crop plants when irradiated with low levels of X-rays but observed a signif...- t lt fl 4 gi Gldtl ft bib z-yd tth 4000 r, Shull and Mitchell (54) reported stimulatory effects on the growth of certain cereals following the irradiation of germinating seeds with low doses of X-rays. Haskins and Moore (25) observed early flowering...

Gunawardena, Irwin Elston

1963-01-01T23:59:59.000Z

170

Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa  

SciTech Connect (OSTI)

Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

1997-04-01T23:59:59.000Z

171

EPR Investigation of Irradiated Curry Powder  

SciTech Connect (OSTI)

Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

Duliu, O. G.; Ali, S. I. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Georgescu, R. [National Institute for Physics and Nuclear Engineering-Horia Hulubei, P.O. Box MG-6, 077125 Bucharest (Romania)

2007-04-23T23:59:59.000Z

172

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect (OSTI)

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

Scott A. Ploger; Paul A. Demkowicz; John D. Hunn; Jay S. Kehn

2014-05-01T23:59:59.000Z

173

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect (OSTI)

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3×105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

2012-10-01T23:59:59.000Z

174

Using the visibility complex for radiosity computation Rachel Orti Fredo Durand Stephane Rivi`ere Claude Puech  

E-Print Network [OSTI]

to be strictly recomputed. In computational geometry, a data structure called the visibility complex has recentlyUsing the visibility complex for radiosity computation Rachel Orti Fr´edo Durand St´ephane Rivi in those calculations. We propose the use of the visibility complex for radiosity calculations

Boyer, Edmond

175

The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection  

SciTech Connect (OSTI)

The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f{sub c}= 5.0 Multiplication-Sign 10{sup 12} ions/cm{sup 2}) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp{sup 2}-bonded phase ({pi}{sup *}-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei, Taiwan 251 (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2013-06-15T23:59:59.000Z

176

Background-subtraction using contour-based fusion of thermal and visible imagery  

E-Print Network [OSTI]

rights reserved. Keywords: Background-subtraction; Fusion; Thermal imagery; Infrared; FLIR; Contour of the electromagnetic spectrum, long-wave infrared (thermal) and visible light. Thermal (FLIR) and color video cameras

Davis, James W.

177

Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays  

SciTech Connect (OSTI)

We report a strategy to investigate O vacancy (V{sub O}) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y{sub 2}O{sub 3}:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of V{sub O}(0/+). In the following cross relaxation, energy transfer from V{sub O} to the excitation energy level of Tb{sup 3+} in ZnO:Tb core area. While in Y{sub 2}O{sub 3}:Eu shell area, energy transfer to the excitation energy level of Eu{sup 3+}. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu{sup 3+} or Tb{sup 3+} in the range of 0.01–0.05, chromaticity coordinates of ZnO:Tb/Y{sub 2}O{sub 3}:Eu nanocable stably stays at yellow region in color space except ZnO:Tb{sub 0.01}/Y{sub 2}O{sub 3}:Eu{sub 0.01}. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

Yang, Lei, E-mail: nanoyang@qq.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Dong, Jiazhang; Jiang, Zhongcheng [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Pan, Anlian; Zhuang, Xiujuan [Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China)

2014-06-14T23:59:59.000Z

178

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate optical depths can lead to temperature inversions in the planetary atmosphere, which may be of some relevance to recent observational findings.

Brad Hansen

2008-01-18T23:59:59.000Z

179

The effects of air pollution on visibility at Edwards AFB, California  

E-Print Network [OSTI]

THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... May 1987 Major Subject: Meteorology THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Approved as to style and content by: Walter K. Henry (Chairman of Committee) Kenneth C. Brundidge...

Tongue, Jeffrey Scott

2012-06-07T23:59:59.000Z

180

Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats  

E-Print Network [OSTI]

SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Submitted to the Graduate College of the Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject: Zoology SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Approved as to style and content by: (Chairman of Committee) (Head...

Shepherd, David Preston

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO3 Photoanodes and a GaInP2 Photocathode  

SciTech Connect (OSTI)

A p-GaInP{sub 2} photocathode was paired with nanostructured hematite and tungsten trioxide photoanodes to investigate the utility of these systems for direct water splitting under visible light illumination. For the hematite system, under illumination at open-circuit conditions, the potential of hematite shifts cathodically and that of the GaInP{sub 2} shifts anodically. Under short-circuit condition and visible light illumination, the combination of the two photoelectrodes can split water, though with a very low rate of a few {micro}A/cm{sup 2} even at an intensity of 1 W/cm{sup 2}. It was determined that the very low photocurrent from the hematite nanorod photoelectrode limits the short-circuit current of the two-photoelectrode combination. Similar potential shifts were observed with the nanostructured WO{sub 3}/GaInP{sub 2} combination. However, at light intensities below 0.2 W/cm{sup 2}, the short-circuited combination would not split water due to an insufficient potential difference. Above 0.2 W/cm{sup 2}, the combination can split water under visible light, with {approx}20 {micro}A/cm{sup 2} obtained at 1 W/cm{sup 2}. A linear photocurrent-light intensity relationship was observed and was attributed to efficient charge transfer and a low recombination of the charge carriers. The bandgap and the associated absorption limit of WO{sub 3} remain a challenge for a higher efficiency system.

Wang, H.; Deutsch, T.; Turner, J. A.

2008-01-01T23:59:59.000Z

182

Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere  

SciTech Connect (OSTI)

Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

2014-03-07T23:59:59.000Z

183

Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts  

SciTech Connect (OSTI)

The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

2012-09-01T23:59:59.000Z

184

Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts  

SciTech Connect (OSTI)

The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

Paul Demkowicz; Scott Ploger; John Hunn

2012-05-01T23:59:59.000Z

185

Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels  

SciTech Connect (OSTI)

Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab.

Klueh, R.L.; Alexander, D.J.

1997-06-01T23:59:59.000Z

186

Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy  

SciTech Connect (OSTI)

Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation, and in regions of the interaction layer that have relatively high Si concentrations the fission gas bubbles remain small and contained within the layer but in areas with lower Si concentrations the bubbles grow in size. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels, is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper discusses the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than was the sample taken from the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization.

J. Gan; D. D. Keiser, Jr.; B. D. Miller; A. B. Robinson; P. Medvedev

2010-03-01T23:59:59.000Z

187

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

188

AGC-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

R. L. Bratton

2006-05-01T23:59:59.000Z

189

Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis  

SciTech Connect (OSTI)

CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO{sub 4} as cadmium source and Na{sub 2}S{sub 2}O{sub 3} as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H{sub 2}O{sub 2}. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres. -- Graphical abstract: Taking polystyrene spheres dispersed in a precursor solution as templates, CdS hollow microspheres composed of nanoparticles were successfully prepared via a new photochemical route at room temperature. Display Omitted Research highlights: {yields} Photochemical method was first employed to prepare hollow microspheres. {yields} CdS hollow spheres were first prepared at room temperature using latex spheres. {yields} The polystyrene spheres used as templates were not modified with special groups. {yields}The CdS hollow microspheres showed high visible-light photocatalytic activities.

Huang Yuying [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Sun Fengqiang, E-mail: fengqiangsun@yahoo.c [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in GuangDong Universities, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Wu Tianxing; Wu Qingsong; Huang Zhong; Su Heng; Zhang Zihe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

2011-03-15T23:59:59.000Z

190

Irradiation-induced defect clustering and amorphization in silicon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

191

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

192

Magnetization measurements and XMCD studies on ion irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements and XMCD studies on ion irradiated iron oxide and core-shell ironiron-oxide nanomaterials. Magnetization measurements and XMCD studies on ion irradiated iron oxide...

193

RERTR-7 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

194

Ion irradiation induced effects in polyamidoimide  

SciTech Connect (OSTI)

The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d'Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

1991-09-01T23:59:59.000Z

195

Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.  

SciTech Connect (OSTI)

Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

2010-02-16T23:59:59.000Z

196

RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS  

SciTech Connect (OSTI)

The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.

J. Gan; B.D. Miller; D.D. Keiser Jr.; A.B. Robinson; J.W. Madden; P.G. Medvedev; D.M. Wachs

2011-10-01T23:59:59.000Z

197

Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions  

SciTech Connect (OSTI)

Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up to ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.

J. Gan; D. Keiser; D. Wachs; B. Miller; T. Allen; M. Kirk; J. Rest

2009-11-01T23:59:59.000Z

198

Negative compressibility observed in graphene containing resonant impurities  

SciTech Connect (OSTI)

We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of {+-}0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N. [Department of Physics and The William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)] [Department of Physics and The William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

2013-05-20T23:59:59.000Z

199

AGC-1 Post Irradiation Examination Status  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

David Swank

2011-09-01T23:59:59.000Z

200

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Disordering and dissolution of [gamma][prime] precipitates under ion irradiation  

SciTech Connect (OSTI)

The stability of the [gamma][prime] phase of the nickel-base alloy Nimonic PE16 under irradiation with Ni[sup +] ions of 300-keV energy is studied by means of transmission electron microscopy. The disordering of the [gamma][prime] phase could be followed as a function of fluence. The main finding is the observation of weak but measurable superlattice reflections between 0.1 and 1 dpa after irradiation at room temperature. The superlattice reflections disappear in two steps. Their intensities decrease considerably within a fluence of 0.1 dpa, while weak intensities are observed up to a fluence of 1 dpa. These reflections disappear completely after a fluence of 2 dpa. The results are discussed within a model which considers both disordering and dissolution of precipitates under cascade producing irradiation.

Bourdeau, F.; Camus, E.; Abromeit, C.; Wollenberger, H. (Hahn-Meitner-Institut Berlin GmbH, Glienicker Stragese 100, D-14109 Berlin (Germany))

1994-12-01T23:59:59.000Z

202

Characterization of polymeric films subjected to lithium ion beam irradiation  

SciTech Connect (OSTI)

Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by hydrocarbon ion series, and no difference was observed between unirradiated and irradiated samples. The studies demonstrate that for the PEG-based polymers, direct evidence for radiolytic scission can be observed using ESI-MS, and suggests that both radiolytic pathways and efficiencies as a function of dose should be measurable by calibrating instrument response to the small oligomeric degradation products.

Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

2013-02-01T23:59:59.000Z

203

RERTR-12 Insertion 2 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

204

Measuring Degradation Rates Without Irradiance Data  

SciTech Connect (OSTI)

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

2011-02-01T23:59:59.000Z

205

The Intersection of Gay Street and Straight Street: Shopping, Social Class, and the New Gay Visibility  

E-Print Network [OSTI]

, some of whom turned out to be—gasp!— straight. They went on little, romantic dates, and told each other how nice and attractive they were; they frolicked in the pool in their ranch-style house in Palm Springs; James’ best girlfriend Andra grilled.... Making Sense of the New Gay Tele-Visibility Something important and strange is going on when people who just a few years ago reviled you decide instead they want to be you, or at least dress like you. What is going on here? What kind of visibility...

Gamson, Joshua

2005-04-01T23:59:59.000Z

206

Visible line intensities of the triatomic hydrogen ion from experiment and theory  

E-Print Network [OSTI]

The visible spectrum of H3+ is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H3+ up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein $B$ coefficients. {\\it Ab initio} predictions for the Einstein $B$ coefficients are obtained from a highly precise dipole moment surface of H3+ and found to be in excellent agreement, even in the region where states have been classified as chaotic.

Petrignani, Annemieke; Grussie, Florian; Wolf, Andreas; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Zobov, Nikolai F; Pavanello, Michele; Adamowicz, Ludwik

2015-01-01T23:59:59.000Z

207

Atomic Entanglement vs Photonic Visibility for Quantum Criticality of Hybrid System  

E-Print Network [OSTI]

To characterize the novel quantum phase transition for a hybrid system consisting of an array of coupled cavities and two-level atoms doped in each cavity, we study the atomic entanglement and photonic visibility in comparison with the quantum fluctuation of total excitations. Analytical and numerical simulation results show the happen of quantum critical phenomenon similar to the Mott insulator to superfluid transition. Here, the contour lines respectively representing the atomic entanglement, photonic visibility and excitation variance in the phase diagram are consistent in the vicinity of the non-analytic locus of atomic concurrences.

M. X. Huo; Ying Li; Z. Song; C. P. Sun

2007-02-12T23:59:59.000Z

208

Effect of electron irradiation on superconductivity in single crystals of Ba(Fe1-xRux)2As2 (x=0.24)  

SciTech Connect (OSTI)

A single crystal of isovalently substituted Ba(Fe1?xRux)2As2 (x=0.24) is sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×1019 e?/cm2. The electrical resistivity is measured in situ at T=22??K during the irradiation and ex situ as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature Tc decreases and the residual resistivity ?0 increases. We find that electron irradiation leads to the fastest suppression of Tc compared to other types of artificially introduced disorder, probably due to the strong short-range potential of the pointlike irradiation defects. A more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed Tc versus ?0 is fully compatible with s± pairing, in contrast to earlier claims that this model leads to a too rapid suppression of Tc with scattering.

Prozorov, Ruslan [Ames Laboratory; Konczykowski, M [Laboratoire des Solides Irradies; Tanatar, Makariy A. [Ames Laboratory; Thaler, Alexander [Ames Laboratory; Budko, Serguei L [Ames Laboratory; Canfield, Paul C [Ames Laboratory; Mishra, V [Argonne National Laboratory; Hirschfeld, P J [University of Florida

2014-11-01T23:59:59.000Z

209

Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment  

SciTech Connect (OSTI)

Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

1998-09-01T23:59:59.000Z

210

Microstructure and Mechanical Property Studies on Neutron-Irradiated Ferritic Fe-Cr Model Alloys  

SciTech Connect (OSTI)

Model Fe, Fe-10Cr and Fe-14Cr alloys were irradiated in Advanced Test Reactor at 300°C and 450°C to target doses of 0.01, 0.1 and 1 dpa. The microstructure and the mechanical property of irradiated specimens were investigated using TEM, APT and hardness measurements. The irradiation-induced hardening was consistent with the observed microstructures. For lower doses of 0.01 and 0.1 dpa, the formation of dislocation loops was the primarily contributor to the hardening; no a’ precipitates of resolvable sizes were observed. By 1 dpa, additional increase in hardening were attributed to the formation of a high density of 1-2 nm a' precipitates. In Fe, the hardness increased less as a function of irradiation dose compared to Fe-Cr alloys because of the lack of a' precipitation and differences in loop structures. Three single-parameter effects have been studied: the Cr content, the irradiation temperature and the grain size. The addition of Cr reduced the mobility of both ½<111> and <100> dislocation loops, leading to a smaller loop size and higher loop density. Also, the Cr contents were positively correlated to the density of a' precipitates, but were less relevant to the precipitate size. Higher irradiation temperature of 450°C resulted in a preferential production of the immobile <100> loops over the mobile ½<111> loops (ex. a ratio of 8:1 in Fe-10Cr irradiated 450°C to 0.01 dpa). At lower temperature of 300°C, heterogeneous formation of dislocation loops at the vicinity of line dislocations frequently. In Fe, the development of dislocation loops was suppressed (compared to Fe-Cr alloys) due to a combination of smaller grain size, high initial dislocation density and high defect mobility.

Jian Gan; Maria Okuniewski; Wei-Ying Chen; Yinbin Miao; Carolyn A. Tomchik; James F. Stubbins; Y. Q. Wu; Stu A. Maloy

2014-06-01T23:59:59.000Z

211

Controlled Assembly of Heterobinuclear Sites on Mesoporous Silica: Visible Light Charge-Transfer Units with Selectable Redox Properties  

SciTech Connect (OSTI)

Mild synthetic methods are demonstrated for the selective assembly of oxo-bridged heterobinuclear units of the type TiOCrIII, TiOCoII, and TiOCeIII on mesoporous silica support MCM-41. One method takes advantage of the higher acidity and, hence, higher reactivity of titanol compared to silanol OH groups towards CeIII or CoII precursor. The procedure avoids the customary use of strong base. The controlled assembly of the TiOCr system exploits the selective redox reactivity of one metal towards another (TiIII precursor reacting with anchored CrVI centers). The observed selectivity for linking a metal precursor to an already anchored partner versus formation of isolated centers ranges from a factor of six (TiOCe) to complete (TiOCr, TiOCo). Evidence for oxo bridges and determination of the coordination environment of each metal centers is based on K-edge EXAFS (TiOCr), L-edge absorption spectroscopy (Ce), and XANES measurements (Co, Cr). EPR, optical, FT-Raman and FT-IR spectroscopy furnish additional details on oxidation state and coordination environment of donor and acceptor metal centers. In the case of TiOCr, the integrity of the anchored group upon calcination (350 oC) and cycling of the Cr oxidation state is demonstrated. The binuclear units possess metal-to-metal charge-transfer transitions that absorb deep in the visible region. The flexible synthetic method for assembling the units opens up the use of visible light charge transfer pumps featuring donor or acceptor metals with selectable redox potential.

Frei, Heinz; Han, Hongxian; Frei, Heinz

2008-06-04T23:59:59.000Z

212

Introduction The bay scallop, Argopecten irradi-  

E-Print Network [OSTI]

71(3) 17 Introduction The bay scallop, Argopecten irradi- ans amplicostatus, has been present (Garcia-Cubas, 1968). Historical Uses Mollusks were used by the pre-Co- lumbian cultures in Mexico as food

213

Selective irradiation of the vascular endothelium  

E-Print Network [OSTI]

We developed a unique methodology to selectively irradiate the vascular endothelium in vivo to better understand the role of vascular damage in causing normal tissue radiation side-effects.The relationship between vascular ...

Schuller, Bradley W

2007-01-01T23:59:59.000Z

214

Processing Irradiated Beryllium For Disposal  

SciTech Connect (OSTI)

The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

2005-11-01T23:59:59.000Z

215

On He bubbles in neutron irradiated SYLRAMIC type SiC fibers  

SciTech Connect (OSTI)

SylramicTM type SiC fibers, which contain at least 2.3 wt% B, were examined by TEM following neutron irradiation to dose levels of ~7 dpa in HFIR at 800°C and to ~1 dpa in ATR at 1090°C. At these radiation damage dose levels, transmutation of the boron-10 component effectively “dopes” the Sylramic? type fibers with up to 10,000 appm helium. Following irradiation at 800°C, bubble development was too fine to resolve even by high resolution TEM. However, following irradiation at 1090°C helium bubble development was resolvable, but complex. A fine dispersion of 1-nm bubbles was observed within the SiC grains and a coarse, non-uniform distribution of irregular 25-nm bubbles was observed on grain boundaries. In addition, some unusual arrays of planar 2.5-nm thick bubbles were observed in the SiC grains and equiaxed bubbles were observed in the boride precipitate particles contained within the fiber microstructure. Not unexpectedly, helium retention and bubble formation in ?-SiC depends on details of the polycrystalline microstructure as well as the irradiation conditions.

Gelles, David S.; Youngblood, Gerald E.

2006-03-01T23:59:59.000Z

216

Laser amplification at 18. 2 nm in recombining plasma from a laser-irradiated carbon fiber  

SciTech Connect (OSTI)

Extreme ultraviolet laser amplification has been observed for the C VI Balmer-..cap alpha.. transition at 18.2 nm, with use of a novel optical system to irradiate up to 1 cm length of carbon fiber target. The measurements were time resolved and indicated peak single-transit amplification of about 30 times.

Chenais-Popovics, C.; Corbett, R.; Hooker, C.J.; Key, M.H.; Kiehn, G.P.; Lewis, C.L.S.; Pert, G.J.; Regan, C.; Rose, S.J.; Sadaat, S.

1987-11-09T23:59:59.000Z

217

Bow shocks formed by plasma collisions in laser irradiated semi-cylindrical cavities  

E-Print Network [OSTI]

the axis to form a dense bright plasma focus. Later in time a long lasting bow shock is observed to develop a location near the cavity axis, where it collides forming a bright high density plasma focusBow shocks formed by plasma collisions in laser irradiated semi-cylindrical cavities Jorge Filevich

Rocca, Jorge J.

218

Neutron Irradiation Measurement for Superconducting Magnet  

E-Print Network [OSTI]

close to reactor core · Sample cool down by He gas loop: 10K ­ 20K · Fast neutron flux (En>0.1MeV): 1.4x. Materials, 49, p161 (1973&74) Reactor n on Al Reactor n on Cu fluence up to 2*1022 n/m2 (En>0.1MeV) RRR Irradiation at KUR · Kyoto Univ. Research Reactor Institute · MW max. thermal power · Irradiation cryostat

McDonald, Kirk

219

Electron spectroscopy study of single and double multiphoton ionization of strontium by visible picosecond laser light  

E-Print Network [OSTI]

795 Electron spectroscopy study of single and double multiphoton ionization of strontium by visible'ionisation multiphotonique simple et double du strontium par des impulsions picosecondes de 1011 à quelque 1012 W cm-2 initial un état excité de l'ion. Abstract. 2014 Multiphoton single and double ionization of strontium

Paris-Sud XI, Université de

220

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances  

E-Print Network [OSTI]

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances Petr microwave methods. The method should be useful for long-term monitoring of the melt area of the Greenland of MODIS retrievals of the western portion of the Greenland ice sheet over the period 2000 to 2006

Dozier, Jeff

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optical properties of metallic (III, Mn)V ferromagnetic semiconductors in the infrared to visible range  

E-Print Network [OSTI]

We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III, Mn)V semiconductors in the infrared to visible spectrum at zero temperature. Our analysis is based on the successful kinetic exchange model...

Hankiewicz, EM; Jungwirth, T.; Dietl, T.; Timm, C.; Sinova, Jairo.

2004-01-01T23:59:59.000Z

222

Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images  

E-Print Network [OSTI]

- 1 - Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral-Philippe.Combe@chimie.univ-nantes.fr Abstract This study presents an innovative approach to map microphytobenthos biomass and fractional cover to microscale intimate mixtures. This prevents the use of classical linear unmixing models to retrieve biomass

Combe, Jean-Philippe

223

Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible Light Communication  

E-Print Network [OSTI]

Engineering for Environmental Sustainability http://engineering.tufts.edu/ Energy-efficient Visible of a new era of energy-efficient lighting bringing revolutionary advances in the use of light technology is key to realizing energy-efficient "smart lighting systems". To extend the bandwidth

Tufts University

224

VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN  

E-Print Network [OSTI]

. At the same time novel work is being conducted using rare earth elements as sources of light emission. Results. III-V semiconductors doped with rare-earth elements have also been used10VISIBLE AND INFRARED RARE-EARTH ACTIVATED ELECTROLUMINESCENCE FROM ERBIUM DOPED GaN M. Garter*, R

Steckl, Andrew J.

225

The Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale  

E-Print Network [OSTI]

of Energy (DOE) estimates that 73% of the electricity usage and 39% of the CO2 emissions in the US come from, Experimentation, Measurement, Human Factors Keywords Energy, Power, Buildings 1 Introduction The US DepartmentThe Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale Yuvraj

Gupta, Rajesh

226

Automatic Skin Enhancement with Visible and Near-Infrared Image Fusion  

E-Print Network [OSTI]

Automatic Skin Enhancement with Visible and Near-Infrared Image Fusion Sabine Süsstrunk School and hemo- globin, the key components of skin color, have little absorp- tion in the near-infrared (NIR to the incident light's wavelength, we show that near-infrared images provide information that can be used

Salvaggio, Carl

227

Distributed Pursuit-Evasion with Limited-Visibility Sensors Via Frontier-based Exploration  

E-Print Network [OSTI]

Distributed Pursuit-Evasion with Limited-Visibility Sensors Via Frontier-based Exploration Joseph W guaranteeing complete coverage of the frontier between cleared and contaminated areas while expanding the cleared area. Our frontier-based algorithm can guarantee detection of evaders in unknown, multiply

Bullo, Francesco

228

Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends  

E-Print Network [OSTI]

Thermal decomposition and flammability of fire-resistant, UV/visible- sensitive polyarylates temperature, low notch sensitivity, and good electrical properties. Most of all, these materials show a high resistance to ignition and flame spreading without additives [6]. A high-temperature wholly aromatic poly

229

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery  

E-Print Network [OSTI]

A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery; published 30 January 2004. [1] Solar radiation assessment by satellite is constrained by physical Composition and Structure: Transmission and scattering of radiation; KEYWORDS: solar radiation, satellite

230

Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations  

E-Print Network [OSTI]

We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. Chi-squared values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and chi-squared calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple chi-squared values. Only modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is ea...

Perkins, Simon; Zwart, Jonathan; Natarajan, Iniyan; Smirnov, Oleg

2015-01-01T23:59:59.000Z

231

Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten  

SciTech Connect (OSTI)

The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

2011-12-01T23:59:59.000Z

232

Shear Punch Properties of Low Activation Ferritic Steels Following Irradiation in ORR  

SciTech Connect (OSTI)

Shear punch post-irradiation test results are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees centigrade to {approx}10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5% and W to 1.0%. Comparison of results with tensile test results showed good correlations with previously observed trends except where disks were improperly manufactured because they were too thin or because engraving was faulty.

Ermi, Ruby M.; Hamilton, Margaret L.; Gelles, David S.; Ermi, August M.

2001-10-01T23:59:59.000Z

233

Visible structures  

E-Print Network [OSTI]

All architecture is the interplay between structure, surface and ornament. Traditionally, ornament adorned structure thereby giving it its meaning. A society with its intellectual foundations resting in faith or the abstract ...

Conway, Helene Marie

1991-01-01T23:59:59.000Z

234

Post-Irradiation Fracture Toughness of Unalloyed Molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244C to 507C  

SciTech Connect (OSTI)

Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were neutron irradiated at temperatures of nominally 244 C, 407 C, and 509 C to neutron fluences between 1.0 to 4.6x1025 n/m2 (E>0.1 MeV). Post-irradiation fracture toughness testing was performed. All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 4 MPa-m1/2. The highest post-irradiated fracture toughness values (26-107 MPa-m1/2) and lowest DBTT (100-150 C) was observed for ODS molybdenum in the L-T orientation. The finer grain size for ODS molybdenum results in fine laminates that improve the ductile laminate toughening. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa-m1/2) and higher DBTT (450-600 C) in the T-L orientation. The results for T-L ODS molybdenum are consistent or slightly better than those for LCAC molybdenum (21-71 MPa-m1/2 and 450-800 C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa-m1/2. Lower non-irradiated fracture toughness values were measured for TZM molybdenum that are attributed to the large carbide precipitates serving as preferential fracture initiation sites. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated by comparing the results for LCAC molybdenum and ODS molybdenum.

Cockeram, Brian V [Bechtel-Bettis, Inc.; Byun, Thak Sang [ORNL; Leonard, Keith J [ORNL; Snead, Lance Lewis [ORNL

2013-01-01T23:59:59.000Z

235

Impact of electron irradiation on electron holographic potentiometry  

SciTech Connect (OSTI)

While electron holography in the transmission electron microscope offers the possibility to measure maps of the electrostatic potential of semiconductors down to nanometer dimensions, these measurements are known to underestimate the absolute value of the potential, especially in GaN. We have varied the dose rates of electron irradiation over several orders of magnitude and observed strong variations of the holographically detected voltages. Overall, the results indicate that the electron beam generates electrical currents within the specimens primarily by the photovoltaic effect and due to secondary electron emission. These currents have to be considered for a quantitative interpretation of electron holographic measurements, as their negligence contributes to large parts in the observed discrepancy between the measured and expected potential values in GaN.

Park, J. B.; Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Berger, D. [Technische Universität Berlin, Zentraleinrichtung für Elektronenmikroskopie, Strae des 17. Juni 135, 10623 Berlin (Germany); Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Koslow, I.; Kneissl, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

2014-09-01T23:59:59.000Z

236

Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy  

E-Print Network [OSTI]

. With the advent of visible/near-infrared-diffuse reflectance spectroscopy (VNIR-DRS) to infer on soil C fractionsComparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy D.V. Sarkhot a,1,2 , S. Grunwald a, , Y. Ge b,3 , C.L.S. Morgan c,4

Grunwald, Sabine

237

Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation of  

E-Print Network [OSTI]

Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation that an alizarin red S ~ARS! dye coating on TiO2 nanoparticles enables visible light activation of reactive oxygen species. Successful coating of nanoparti- cles with dye is demonstrated through

Brown, Eric

238

Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing  

E-Print Network [OSTI]

Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote 2013. [1] Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd. Lewis, R. Arnone, and R. Brewin (2013), Penetration of UV-visible solar radiation in the global oceans

239

Electron Cloud observation in the LHC  

E-Print Network [OSTI]

Operation of LHC with bunch trains at different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with models will be presented. The efficiency of scrubbing to improve the machine running performance will be briefly discussed.

Rumolo, G; Baglin, V; Bartosik, H; Biancacci, N; Baudrenghien, P; Bregliozzi, G; Chiggiato, P; Claudet, S; De Maria, R; Esteban-Muller, J; Favier, M; Hansen, C; Höfle, W; Jimenez, J M; Kain, V; Lanza, G; Li, K S B; Maury Cuna, G H I; Métral, E; Papotti, G; Pieloni, T; Roncarolo, F; Salvant, B; Shaposhnikova, E N; Steinhagen, R J; Tavian, L J; Valuch, D; Venturini Delsolaro, W; Zimmermann, F; Iriso, U; Dominguez, O; Koukovini-Platia, E; Mounet, N; Zannini, C; Bhat, C M

2011-01-01T23:59:59.000Z

240

Microstructural examination of irradiated V-(4-5%)Cr-(4-5%)Ti.  

SciTech Connect (OSTI)

Microstructural examination results are reported for two heats of V-(4-5%) Cr-(4-5%)Ti irradiated in the EBR-II X530 experiment to 4.5 dpa at {approximately}400 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment at 950-1125 C. There was no evidence for a significant density of large (diameter >10 nm) dislocation loops or network dislocations. Analytical investigations successfully demonstrated that the precipitates were enriched in titanium, depleted in vanadium and contained no nitrogen. These results are discussed in terms of future alloy development options.

Gelles, D. S.

1998-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microstructural examination of irradiated V-(4-5%)Cr-(4-5%)Ti  

SciTech Connect (OSTI)

Microstructural examination results are reported for two heats of V-(4-5%)Cr-(4-5%)Ti irradiated in the EBR-II X530 experiment to {approximately}4 dpa at {approximately}400 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to b affected by preirradiation heat treatment at 950--1125 C. There was no evidence for a significant density of large (diameter >10 nm) dislocation loops or network dislocations. Analytical investigators successfully demonstrated that the precipitates were enriched in titanium, depleted in vanadium and contained no nitrogen.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Rice, P.M.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Chung, H.M. [Argonne National Lab., IL (United States)

1998-03-01T23:59:59.000Z

242

Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature  

SciTech Connect (OSTI)

Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (?440?nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

Wu, Yan; Ji, Lingfei, E-mail: ncltji@bjut.edu.cn; Lin, Zhenyuan; Jiang, Yijian [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Zhai, Tianrui [College of Applied Science, Beijing University of Technology, Beijing 100124 (China)

2014-01-27T23:59:59.000Z

243

Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control  

SciTech Connect (OSTI)

Ultraviolet–visible spectroscopy (UV–Visible) and time-resolved laser fluorescence spectroscopy (TRLFS) optical techniques can permit on-line analysis of actinide elements in a solvent extraction process in real time. These techniques have been used for measuring actinide speciation and concentration under laboratory conditions and are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques, researchers must determine the fundamental speciation of target actinides and the resulting influence on spectroscopic properties. Detection limits, process conditions, and speciation of key actinide components can be established and utilized in a range of areas, particularly those related to materials accountability and process control. Through this project, researchers will develop tools and spectroscopic techniques to evaluate solution extraction conditions and concentrations of U, Pu, and Cm in extraction processes, addressing areas of process control and materials accountability. The team will evaluate UV– Visible and TRLFS for use in solvent extraction-based separations. Ongoing research is examining efficacy of UV-Visible spectroscopy to evaluate uranium and plutonium speciation under conditions found in the UREX process and using TRLFS to evaluate Cm speciation and concentration in the TALSPEAK process. A uranyl and plutonium nitrate UV–Visible spectroscopy study met with success, which supports the utility and continued exploration of spectroscopic methods for evaluation of actinide concentrations and solution conditions for other aspects of the UREX+ solvent extraction scheme. This project will ex examine U and Pu absorbance in TRUEX and TALSPEAK, perform detailed examination of Cm in TRUEX and TALSPEAK, study U laser fluorescence, and apply project data to contactors. The team will also determine peak ratios as a function of solution concentrations for the UV-Visible spectroscopy studies. The use of TRLFS to examine Cm and U will provide data to evaluate lifetime, peak location, and peak ratios (mainly for U). The bases for the spectroscopic techniques have been investigated, providing fundamental evidence for the application’s utility.

Czerwinski, Kenneth

2013-09-13T23:59:59.000Z

244

Analytical description of true stress-true strain curves for neutron-irradiated stainless austenitic steels  

SciTech Connect (OSTI)

This paper summarizes the results of an investigation for the deformation hardening behaviors of neutron-irradiated stainless steels in terms of true stress( ) true strain( ) curves. It is commonly accepted that the - curves are more informative for describing plastic flow, but there are few papers devoted to using the true curves for describing constitutive behaviors of materials. This study uses the true curves obtained from stainless steel samples irradiated to doses in the range of 0 55 dpa by various means: finite element calculation, optic extensomentry, and recalculation of engineering curves. It is shown that for the strain range 0 0.6 the true curves can be well described by the Swift equation: =k ( - 0)0.5. The influence of irradiation on the parameters of the Swift equation is investigated in detail. It is found that in most cases the k-parameter of this equation is not changed significantly by irradiation. Since large data scattering was observed for the 0-parameter, a modified Swift equation =k*( - 0 2/k2)0.5 was proposed and evaluated. This equation is based on the concept of zero stress, which is, in general, close to yield stress. The relationships among k, 0, and damage dose are discussed in detail, so as to more accurately describe the true curves for irradiated stainless steels.

Gussev, Maxim N [ORNL; Byun, Thak Sang [ORNL; Busby, Jeremy T [ORNL

2012-01-01T23:59:59.000Z

245

E-Print Network 3.0 - additive irradiation procedures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation procedures Search Powered by Explorit Topic List Advanced Search Sample search results for: additive irradiation procedures Page: << < 1 2 3 4 5 > >> 1 IRRADIANCE MAPS...

246

Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms  

SciTech Connect (OSTI)

Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

2011-04-01T23:59:59.000Z

247

Ocean Observing Ocean Observing Systems (OOS)  

E-Print Network [OSTI]

, national, and global scales. · Ocean Observing Systems serve: Fishing industry National security Coastal properties, such as salinity, temperature, and waves Satellite maps of sea surface temperature NATIONAL Integrated Ocean Observing System (IOOS) 11 REGIONAL Systems, including: MANY LOCAL Systems

Schladow, S. Geoffrey

248

Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation  

SciTech Connect (OSTI)

The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

2014-11-01T23:59:59.000Z

249

X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film  

SciTech Connect (OSTI)

The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm{sup 2}, it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm{sup 2}, we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix.

Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M. [Laboratoire de Chimie Physique-Matiere et Rayonnement, Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique Unite Mixte de Recherche (CNRS UMR) 7614, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Commissariat a l'Energie Atomique/Centre d'Etudes Scientifiques et Techniques d'Aquitaine (CEA/CESTA), BP 2, F-33114, Le Barp (France); Centre Agregat Laboratoire de Spectrometrie Ionique et Moleculaire (LASIM) et Laboratoire de Physique de la Matiere Condensee et Nanostructures (LPMCN), Universite Claude Bernard Lyon I, F-69622 Villeurbanne (France)

2005-03-15T23:59:59.000Z

250

UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS  

SciTech Connect (OSTI)

Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2013-11-10T23:59:59.000Z

251

Horizontal modular dry irradiated fuel storage system  

DOE Patents [OSTI]

A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

1988-01-01T23:59:59.000Z

252

Laboratory for Characterization of Irradiated Graphite  

SciTech Connect (OSTI)

The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment — a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

Karen A. Moore

2010-03-01T23:59:59.000Z

253

Irradiation creep of vanadium-base alloys.  

SciTech Connect (OSTI)

A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the US. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200-300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 x 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

Tsai, H.; Matsui, H.; Billone, M. C.; Strain, R. V.; Smith, D. L.

1998-05-18T23:59:59.000Z

254

Heavy ion irradiation of crystalline water ice  

E-Print Network [OSTI]

Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

2015-01-01T23:59:59.000Z

255

Volume-scalable high-brightness three-dimensional visible light source  

DOE Patents [OSTI]

A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

2014-02-18T23:59:59.000Z

256

Visibility of cold atomic gases in optical lattices for finite temperatures  

SciTech Connect (OSTI)

In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.

Hoffmann, Alexander [Arnold Sommerfeld Center, Ludwig Maximilian Universitaet, Theresienstrasse 37, 80333 Muenchen (Germany); Pelster, Axel [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany); Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany)

2009-05-15T23:59:59.000Z

257

Modified Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect (OSTI)

This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

Lasnier, C; Seppala, L; Morris, K

2008-04-24T23:59:59.000Z

258

Pre- and postirradiation evaluation of TRISO ThO/sub 2/ particles irradiated in capsule HT-34  

SciTech Connect (OSTI)

Capsule HT-34 was irradiated jointly by General Atomic Company (GA) and Oak Ridge National Laboratory (ORNL). This report presents the pre- and postirradiation evaluation conducted by GA. The purpose of the test was to characterize the mechanical and chemical performance and fission product release of TRISO ThO/sub 2/ particles. Sixteen TRISO ThO/sub 2/ samples, which had been fabricated in the production-line (240-mm-ID) coater, were irradiated at approximately 1200 and 1450/sup 0/C to neutron fluences of 5.1 to 10.2 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/, and burnups of 5.1 to 12.7% FIMA. Following are the results of the postirradiation examination: the OPyC coating failure of the 800-..mu..m-diameter particles irradiated at 1200/sup 0/C was less than or equal to 1.8%; the pressure-vessel model overpredicted failure up to seven times the observed failure for the samples irradiated at 1200/sup 0/C; palladium attack and internal corrosion of the SiC coating was observed in the samples irradiated at 1200/sup 0/C; internal corrosion of the SiC coating caused SiC failure up to 100% in the samples irradiated at 1450/sup 0/C; and an average of 16 and 90% of the Cs was released from failed particles irradiated at 1200 and 1450/sup 0/C, respectively, after 2686 h of irradiation.

Young, C.A.; Jones, C.S.

1980-10-01T23:59:59.000Z

259

Heavy-Section Steel Irradiation Program  

SciTech Connect (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

Rosseel, T.M.

2000-04-01T23:59:59.000Z

260

Gamma irradiation of the prenatal mouse dentition  

E-Print Network [OSTI]

as the dental lamina to the stage of the deposition of enamel and dentin. The purpose of this study was to determine the effect of a continuous stress of gamma irradiation on the structure of the odontogenic cells, the relative size and rate of development... development. In 1927, Leist (9) made a study of the effect of X-rays on teeth, which was brought about by the following rase. A worker in a Roentgen tube factory was exposed daily to a considerable dose of X-irradiation. Sometime later he began to show...

Kerley, Michael Auston

1969-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments  

SciTech Connect (OSTI)

As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

2012-10-01T23:59:59.000Z

262

Effects of neutron flux and irradiation temperature on irradiation embrittlement of A533B steels  

SciTech Connect (OSTI)

Irradiation embrittlement of A533B steels with low copper contents were investigated from the point of dose rate and irradiation temperature effects. Change of neutron flux in the range from {minus}10{sup 12} to {minus}10{sup 13} n/cm{sup 2}/s (E > 1 MeV) did not have a significant effect on the embrittlement. Irradiation temperature change of 1 C resulted in the transition temperature shift ({Delta}T{sub 41J}) of about 1 C and yield stress change ({Delta}{sigma}{sub y}) of about 0.8 MPa. Factors that might affect the embrittlement of low copper steels are also discussed.

Suzuki, Masahide; Onizawa, Kunio; Kizaki, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

263

Fructolysis in the semen of continuously irradiated and non-irradiated goats  

E-Print Network [OSTI]

Abbott showed that the androgenic activity of the testis is far more resistant to x- ray irradiation than is the germinal epi- 1 thelium. When Abbott administered 5, 000 and 10, OOOR to rats, he found no decrease in the sex accessory organ weights nor.... Another point which supports the data that the damaged spermatogonia give rise to subnormal sperm is 23 the studies done with in vitro sperm that have been irradiated. Man 15 stated that irradiation of whole, fresh semen has little or no effect...

Ziller, Henry Hubert

1966-01-01T23:59:59.000Z

264

Understanding the Irradiation Behavior of Zirconium Carbide  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

2013-10-11T23:59:59.000Z

265

ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES  

SciTech Connect (OSTI)

Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

2012-12-10T23:59:59.000Z

266

In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation  

SciTech Connect (OSTI)

The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation was studied by in situ optical observation. The average periods of the structures are much less than the sizes of the laser spots. The polarization reversal occurs through covering of the whole irradiated area by the nets of the spatially separated nanodomain chains and microdomain rays--''hatching effect.'' The main stages of the anisotropic nanodomain kinetics: nucleation, growth, and branching, have been singled out. The observed abnormal domain kinetics was attributed to the action of the pyroelectric field arising during cooling after laser heating.

Shur, V. Ya.; Kuznetsov, D. K.; Mingaliev, E. A.; Yakunina, E. M.; Lobov, A. I.; Ievlev, A. V. [Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083 (Russian Federation)

2011-08-22T23:59:59.000Z

267

Guiding in the visible with "colorful" solid-core Bragg fibers  

E-Print Network [OSTI]

modes. Potential applications of such fibers are discussed. © 2007 Optical Society of America OCIS codes: 060.2280, 060.2270. Microstructured plastic optical fibers have been re- cently applied to various bandgap were irradiated in the first 1­3 cm along the fiber length. Subsequently, only a particular color

Skorobogatiy, Maksim

268

Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides  

SciTech Connect (OSTI)

Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likely consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.

Young Yang; Wei-Yang Lo; Clayton Dickerson; Todd R. Allen

2014-11-01T23:59:59.000Z

269

Response of Strontium Titanate to Ion and Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strontium Titanate to Ion and Electron Irradiation. Response of Strontium Titanate to Ion and Electron Irradiation. Abstract: Response of strontium titanate (SrTiO3) to ion and...

270

Irradiation Stability of Carbon Nanotubes and Related Materials  

E-Print Network [OSTI]

defect annealing at elevated irradiation temperatures, which delays the formation of amorphous regions. Investigation of nanotube stability after various processing techniques and irradiation indicated that radiation response of CNTs in a composite...

Aitkaliyeva, Assel 1985-

2012-09-28T23:59:59.000Z

271

E-Print Network 3.0 - accelerated hyperfractionated irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Collection: Physics 79 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: of 260 Mrad was used to irradiate Nd-Fe-B sample magnets with...

272

Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

Not Listed

2013-04-01T23:59:59.000Z

273

Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C  

E-Print Network [OSTI]

Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS Elsevier B.V. All rights reserved. 1. Introduction Visible and near-infrared (VisNIR) diffuse reflectance

Lawrence, Rick L.

274

SIPS: Solar Irradiance Prediction System Stefan Achleitner  

E-Print Network [OSTI]

-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in powerSIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering Liu and Alberto E. Cerpa Electrical Engineering and Computer Science University of California, Merced

Cerpa, Alberto E.

275

The Sun and Climate Solar Irradiance  

E-Print Network [OSTI]

The Sun and Climate #12;Solar Irradiance The Solar Constant f = 1.4 x 106 erg/cm2/s. Over is higher when the Sun is more magnetically active. ·The Sun was magnetically active, and the climate the Sun Drive Climate? #12;The Temperature's Rising #12;Sunspots and CO2 What is Cause and What is Effect

Walter, Frederick M.

276

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

277

Irradiation Embritlement in Alloy HT-­9  

SciTech Connect (OSTI)

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

278

Response of neutron-irradiated RPV steels to thermal annealing  

SciTech Connect (OSTI)

One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

1997-03-01T23:59:59.000Z

279

THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION  

SciTech Connect (OSTI)

Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux that governs their radiative and dynamical properties. We compute a suite of three-dimensional circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures, both with and without temperature inversions. We find that, for irradiation temperatures T{sub irr} {approx}< 2000 K, heat redistribution is very efficient, producing comparable dayside and nightside fluxes. For T{sub irr} Almost-Equal-To 2200-2400 K, the redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations indicate that the efficiency of redistribution is primarily governed by the ratio of advective to radiative timescales. Models with temperature inversions display a higher day-night contrast due to the deposition of starlight at higher altitudes, but we find this opacity-driven effect to be secondary compared to the effects of irradiation. The hotspot offset from the substellar point is large when insolation is weak and redistribution is efficient, and decreases as redistribution breaks down. The atmospheric flow can be potentially subjected to the Kelvin-Helmholtz instability (as indicated by the Richardson number) only in the uppermost layers, with a depth that penetrates down to pressures of a few millibars at most. Shocks penetrate deeper, down to several bars in the hottest model. Ohmic dissipation generally occurs down to deeper levels than shock dissipation (to tens of bars), but the penetration depth varies with the atmospheric opacity. The total dissipated Ohmic power increases steeply with the strength of the irradiating flux and the dissipation depth recedes into the atmosphere, favoring radius inflation in the most irradiated objects. A survey of the existing data, as well as the inferences made from them, reveals that our results are broadly consistent with the observational trends.

Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Pont, Frederic [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

2012-05-20T23:59:59.000Z

280

Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels  

SciTech Connect (OSTI)

The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Direct comparison of EUV and visible-light interferometries Kenneth A. Goldberg*a, Patrick Naulleaua, SangHun Leea,b, Chang Changa,b, Cynthia Bresloffc,  

E-Print Network [OSTI]

Direct comparison of EUV and visible-light interferometries Kenneth A. Goldberg*a, PatrickÃ? EUV imaging systems provide the first direct comparisons of visible-light and at-wavelength EUV-coated Schwarzschild objectives are discussed. Favorable agreement has been achieved between EUV and visible-light

282

PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex  

SciTech Connect (OSTI)

Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful for more metal-poor stars.

Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai'i, 1680 East-West Road, Honolulu, HI 96822 (United States); Lepine, Sebastien [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

2013-02-01T23:59:59.000Z

283

Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography  

SciTech Connect (OSTI)

14YWT oxide dispersion strengthened (ODS) ferritic steel was irradiated with of 5 MeV Ni2+ ions, at 300 C, 450 C, and 600 C to a damage level of 100 dpa. The stability of Ti–Y–O nanoclusters was investigated by applying atom probe tomography (APT) in voltage mode, of the samples before and after irradiations. The average size and number density of the nanoclusters was determined using the maximum separation method. These techniques allowed for the imaging of nanoclusters to sizes well below the resolution limit of conventional transmission electron microscopy techniques. The most significant changes were observed for samples irradiated at 300 C where the size (average Guinier radius) and number density of nanoclusters were observed to decrease from 1.1 nm to 0.8 nm and 12 1023 to 3.6 1023, respectively. In this study, the nanoclusters are more stable at higher temperature.

Jianchao He; Farong Wan; Kumar Sridharan; Todd R. Allen; A. Certain; V. Shutthanandan; Y.Q. Wu

2014-12-01T23:59:59.000Z

284

Stability Of Nanoclusters In 14YWT Oxide Dispersion Strengthened Steel Under Heavy Ion-irradiation By Atom Probe Tomography  

SciTech Connect (OSTI)

14YWT oxide dispersion strengthened (ODS) ferritic steel was irradiated with of 5 MeV Ni2+ ions, at 300 °C, 450 °C, and 600 °C to a damage level of 100 dpa. The stability of Ti–Y–O nanoclusters was investigated by applying atom probe tomography (APT) in voltage mode, of the samples before and after irradiations. The average size and number density of the nanoclusters was determined using the maximum separation method. These techniques allowed for the imaging of nanoclusters to sizes well below the resolution limit of conventional transmission electron microscopy techniques. The most significant changes were observed for samples irradiated at 300 °C where the size (average Guinier radius) and number density of nanoclusters were observed to decrease from 1.1 nm to 0.8 nm and 12 × 1023 to 3.6 × 1023, respectively. In this study, the nanoclusters are more stable at higher temperature.

He, Jianchao; Wan, F.; Sridharan, Kumar; Allen, Todd R.; Certain, Alicia G.; Shutthanandan, V.; Wu, Yaqiao

2014-12-01T23:59:59.000Z

285

Defect Structure and Evolution in Silicon Carbide Irradiated to 1 dpa-SiC at 1100 C  

SciTech Connect (OSTI)

Transmission electron microscopy (TEM), swelling measurements, isochronal annealing, and thermal diffusivity testing were used to characterize the effects of radiation damage in SiC. Together, these techniques provided a comprehensive set of tools for observing and characterizing the structure and evolution of radiation-induced defects in SiC as a function of irradiation temperature and dose. In this study, two types of dense, crystalline, monolithic SiC were subjected to irradiation doses up to 1 dpa-SiC at a temperature of 1100 C, as well as post-irradiation annealing up to 1500 C. The microscopic defect structures observed by TEM were correlated to changes in the macroscopic dimensions, thermal diffusivity and thermal conductivity. The results demonstrated the value of using ultrapure {beta}SiC as an effective reference material to characterize the nature of expected radiation damage in other, more complex, SiC-based materials such as SiC/SiC composites.

D.J. Senor; G.E. Youngblood; L.R. Greenwood; D.V. Archer; D.L. Alexander; M.C. Chen; G.A. Newsome

2002-05-13T23:59:59.000Z

286

Effects of stress on microstructural evolution during irradiation  

SciTech Connect (OSTI)

Many theories have been postulated to describe irradiation creep but few have been supported with microstructural evidence. The purpose of this paper is to review microstructural studies of the effects of stress during irradiation in order to assess the validity of the available irradiation creep theories. Microstructural studies based on high voltage electron, ion, proton and neutron irradiation will be described, with major emphasis placed on interpreting behavior demonstrated in austenitic steels. Special attention will be given to work on fast neutron irradiated Nimonic PE16, a precipitation strengthened superalloy.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

287

Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium  

E-Print Network [OSTI]

We propose a method that enables efficient conversion of quantum information frequency between different regions of spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [1]. We show that an input qubit at telecom wavelength is transformed into another at visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

A. Gogyan

2009-12-08T23:59:59.000Z

288

A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst  

SciTech Connect (OSTI)

A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

Kim, Young-ho [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Irie, Hiroshi [Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2008-05-05T23:59:59.000Z

289

Concept development for the ITER equatorial port visible/infrared wide angle viewing system  

SciTech Connect (OSTI)

The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); and others

2012-10-15T23:59:59.000Z

290

Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system  

SciTech Connect (OSTI)

The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

2014-11-15T23:59:59.000Z

291

Visible Light Induced Photodesorption of NO from the α-Cr2O3(0001)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible Light Induced

292

Zero-resistance states in Hall bars at low microwave frequency irradiation  

SciTech Connect (OSTI)

We report on theoretical studies of recently discovered radiation-induced resistance oscillations and zero resistance states in Hall bars when the irradiation frequency is very low. In this situation the photon energy is much smaller than the spacing between the Landau levels and therefore interlevel transitions are excluded. We apply the radiation-driven electron orbit model concluding that the resistance suppression is a manifestation of “long-wavelength” resistance oscillations where only one complete oscillation is observed.

Iñarrea, J. [Escuela Politécnica Superior, Universidad Carlos III, Leganes, Madrid, 28911, Spain and Instituto de Ciencia de Materiales, CSIC, Cantoblanco, Madrid, 28049 (Spain)

2013-12-04T23:59:59.000Z

293

Irradiation models for ULXs and fits to optical data  

E-Print Network [OSTI]

We have constructed a model which describes the optical emission from ultraluminous X-ray sources (ULXs), and have used it to constrain the parameters of seven ULX systems. Our model assumes a binary nature for ULXs, and accounts for optical emission from an X-ray irradiated companion star and accretion disk. We apply our model to six different ULX optical counterparts observed with HST, and one observed with the ESO VLT, and determine the mass, radius and age of the donor stars in these systems. In addition, we obtained constraints for the black hole (BH) mass in some cases. We use the mass accretion rate implied by the X-ray luminosity of these sources as an additional constraint on the donor star, by assuming the mass transfer is driven by the stellar nuclear evolution. We find that in general the donors are older and less massive than previously thought, and are consistent with being of spectral type B. We discuss how these results affect our understanding of the evolution and history of ULXs. Where we can constrain the BH masses, we find them to be consistent with stellar mass BHs or intermediate mass BHs of order 100 solar masses. We make predictions for future observations of optical/infrared ULX counterparts, calculating binary periods for different BH masses in each of the seven sources.

C. M. Copperwheat; M. Cropper; R. Soria; K. Wu

2007-01-26T23:59:59.000Z

294

Neutron irradiation of beryllium: Recent Russian results  

SciTech Connect (OSTI)

Results on postirradiation tensile and compression testing, swelling and bubble growth during annealing for various grades of beryllium are presented. It is shown that swelling at temperatures above 550{degrees}C is sensitive to material condition and response is correlated with oxygen content. Swelling on the order of 15% can be expected at 700{degrees}C for doses on the order of 10{sup 22} n/cm{sup 2}. Bubble growth response depends on irradiation fluence.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

295

ARM - Measurement - Shortwave broadband total net irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDoppler ARMdiffusedirectnet irradiance

296

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM Data

297

ARM - Measurement - Shortwave narrowband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM

298

Deuterium trapping at defects created with neutron and ion irradiations in tungsten  

SciTech Connect (OSTI)

The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473 K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (˜1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.

Y. Hatano; M. Shimada; T. Otsuka; Y. Oya; V.Kh. Alimov; M. Hara; J. Shi; M. Kobayashi; T. Oda; G. Cao; K. Okuno; T. Tanaka; K. Sugiyama; J. Roth; B. Tyburska-Püschel; J. Dorner; N. Yoshida; N. Futagami; H. Watanabe; M. Hatakeyama; H. Kurishita; M. Sokolov; Y. Katoh

2013-07-01T23:59:59.000Z

299

Atomistic simulation of Er irradiation induced defects in GaN nanowires  

SciTech Connect (OSTI)

Classical molecular dynamics simulation was used to irradiate a GaN nanowire with rear-earth erbium (Er). Ten cumulative irradiations were done using an ion energy of 37.5?keV on a 10?×?10?nm{sup 2} surface area which corresponds to a fluence of 1?×?10{sup 13?}cm{sup ?2}. We studied the location and types of defects produced in the irradiation. Er implantation leads to a net positive (expansion) strain in the nanowire and especially at the top region a clear expansion has been observed in the lateral and axial directions. The lattice expansion is due to the hydrostatic strain imposed by a large number of radiation induced defects at the top of the NW. Due to the large surface-to-volume ratio, most of the defects were concentrated at the surface region, which suggests that the experimentally observed yellow luminescence (YL) in ion implanted GaN NWs arises from surface defects. We observed big clusters of point defects and vacancy clusters which are correlated with stable lattice strain and the YL band, respectively.

Ullah, M. W., E-mail: mohammad.ullah@helsinki.fi; Kuronen, A.; Djurabekova, F.; Nordlund, K. [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 (Finland); Stukowski, A. [Technische Universität Darmstadt, 64287 Darmstadt (Germany)

2014-09-28T23:59:59.000Z

300

Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)  

SciTech Connect (OSTI)

Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on materials considered for high-power targets and other beam intercepting elements, such as collimators, from past studies and preliminary observations of the ongoing LBNE study are presented in this paper.

Simos, N.; Kirk, H.; Ludewig, H.; /Brookhaven; Mokhov, N.; Hurh, P.; Misek, J.; /Fermilab

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Band-engineered SrTiO{sub 3} nanowires for visible light photocatalysis  

SciTech Connect (OSTI)

We have theoretically investigated the structural, electronic, and optical properties of perovskite SrTiO{sub 3} nanowires for use in visible light photocatalytic applications using pseudopotential density-functional theory calculations. The electronic structure calculations show that the band gap is modified in the SrTiO{sub 3} nanowires compared with that of the bulk. For TiO{sub 2}-terminated nanowires, the mid-band states induced by the combination of oxygen and strontium atoms on the surface lead to a shift in the valence band toward the conduction band without interference from the edge of the conduction band, which reduces the band gap. On the contrary, the electronic states induced by the combination of oxygen and strontium atoms on the surface of SrO-terminated nanowires lead to a shift in the conduction band toward the valence band. The calculated optical results indicate that the absorption edge of the nanowires shift towards the red-light region. These theoretical results suggest that perovskite SrTiO{sub 3} nanowires are promising candidates for use in visible light photocatalytic processes such as solar-assisted water splitting reactions.

Fu, Q.; He, T.; Li, J. L.; Yang, G. W. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Nanotechnology Research Center, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)

2012-11-15T23:59:59.000Z

302

Fabric filter versus ESP designs to meet no visible emissions for Brandon shores  

SciTech Connect (OSTI)

This paper investigates the designs of particulate collection equipment to achieve no visible emissions criteria, or a visually clear stack, at the Brandon Shores Station of the Baltimore Gas and Electric Co. The transmissometer opacity corresponding to the ''no visible emissions'' (NVE) criteria for a visually clear plume was established. A stack exit concentration was established to achieve the design instrument opacity. The proposed fabric filter and cold-side electrostatic precipitator (ESP) equipment were evaluated on a technical and economic basis for achieving the design stack exit concentration. The technical evaluation included a comprehensive review of fabric filter and cold-side ESP operating installations and the use of a computer model to predict site-specific ESP performance and expected operating margins. A review of operating installations and use of state-of-the-art computer models demonstrates that conservatively designed fabric filters or cold-side ESP equipment should be capable of achieving an outlet or stack exit concentration of 0.004 gr/acf.

Becker, D.F.; Klopp, A.C.; Kusterer, J.N.; Link, S.A.

1983-01-01T23:59:59.000Z

303

Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings  

SciTech Connect (OSTI)

The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 {mu}m using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

Kim, Jongyul [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ahn, Chi Won [Nano Fusion Technology Division, National Nanofab Center, Daejeon 305-701 (Korea, Republic of); Cho, Gyuseong [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Seung Wook [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

2013-06-15T23:59:59.000Z

304

Intrinsic nature of visible-light absorption in amorphous semiconducting oxides  

SciTech Connect (OSTI)

To enlighten microscopic origin of visible-light absorption in transparent amorphous semiconducting oxides, the intrinsic optical property of amorphous InGaZnO{sub 4} is investigated by considering dipole transitions within the quasiparticle band structure. In comparison with the crystalline InGaZnO{sub 4} with the optical gap of 3.6 eV, the amorphous InGaZnO{sub 4} has two distinct features developed in the band structure that contribute to significant visible-light absorption. First, the conduction bands are down-shifted by 0.55 eV mainly due to the undercoordinated In atoms, reducing the optical gap between extended states to 2.8 eV. Second, tail states formed by localized oxygen p orbitals are distributed over ?0.5 eV near the valence edge, which give rise to substantial subgap absorption. The fundamental understanding on the optical property of amorphous semiconducting oxides based on underlying electronic structure will pave the way for resolving instability issues in recent display devices incorporating the semiconducting oxides.

Kang, Youngho; Song, Hochul; Han, Seungwu, E-mail: hansw@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-755 (Korea, Republic of); Nahm, Ho-Hyun [Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-747 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Jeon, Sang Ho; Cho, Youngmi [CAE Team, Samsung Display Co., Ltd, 95 Samsung 2-ro, Giheung-gu, Youngin-City, Gyeonggi-Do 446-711 (Korea, Republic of)

2014-03-01T23:59:59.000Z

305

THE EFFECTS OF ELECTRON BEAM IRRADIATION AND SANITIZERS IN THE REDUCTION OF PATHOGENS AND ATTACHMENT PREVENTION ON SPINACH  

E-Print Network [OSTI]

The effects of electron beam (e-beam) irradiation and sanitizers in the reduction of Escherichia coli O157:H7 and Salmonella counts and attachment prevention on spinach was studied. Survival of these pathogens in spinach was observed at multiple...

Neal, Jack A.

2010-07-14T23:59:59.000Z

306

Upgrade to the Birmingham Irradiation Facility  

E-Print Network [OSTI]

The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 ?A and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

2015-01-01T23:59:59.000Z

307

ON THE SOLAR CHROMOSPHERE OBSERVED AT THE LIMB WITH HINODE  

SciTech Connect (OSTI)

Broadband images in the Ca II H line, from the Broadband Filter Imager (BFI) instrument on the Hinode spacecraft, show emission from spicules emerging from and visible right down to the observed limb. Surprisingly, little absorption of spicule light is seen along their lengths. We present formal solutions to the transfer equation for given (ad hoc) source functions, including a stratified chromosphere from which spicules emanate. The model parameters are broadly compatible with earlier studies of spicules. The visibility of Ca II spicules down to the limb in Hinode data seems to require that spicule emission be Doppler shifted relative to the stratified atmosphere, either by supersonic turbulent or organized spicular motion. The non-spicule component of the chromosphere is almost invisible in the broadband BFI data, but we predict that it will be clearly visible in high spectral resolution data. Broadband Ca II H limb images give the false impression that the chromosphere is dominated by spicules. Our analysis serves as a reminder that the absence of a signature can be as significant as its presence.

Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Carlsson, Mats [Institute of Theoretical Astrophysics, P.O. Box 1029, Blindern, N-0315 Oslo (Norway)

2010-08-10T23:59:59.000Z

308

THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS  

SciTech Connect (OSTI)

We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Pont, Frederic; Sing, David K. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Desert, Jean-Michel; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibson, Neale [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Lecavelier des Etangs, Alain, E-mail: tom.evans@astro.ox.ac.uk [Institut d'Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

2013-08-01T23:59:59.000Z

309

The spectral irradiance traceability chain at PTB  

SciTech Connect (OSTI)

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

310

Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites  

SciTech Connect (OSTI)

The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

2007-03-26T23:59:59.000Z

311

Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution  

E-Print Network [OSTI]

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of the dust grains in the disks. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient, while the UV radiation fields become stronger due to the decrease of grain opacity. This makes the H2 level populations change from local thermodynamic equilibrium (LTE) to non-LTE distributions, which results in changes to the line ratios of H2 emission. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

H. Nomura; Y. Aikawa; M. Tsujimoto; Y. Nakagawa; T. J. Millar

2007-02-01T23:59:59.000Z

312

Observables of Macdonald processes  

E-Print Network [OSTI]

We present a framework for computing averages of various observables of Macdonald processes. This leads to new contour--integral formulas for averages of a large class of multilevel observables, as well as Fredholm determinants for averages of two different single level observables.

Alexei Borodin; Ivan Corwin; Vadim Gorin; Shamil Shakirov

2013-06-04T23:59:59.000Z

313

Methoden Wetenschappelijk and Observational  

E-Print Network [OSTI]

Methoden Wetenschappelijk Onderzoek Fact-free and Observational Science #12;Data · Part of modern science is based on observation ­How do we do this? ­And what are the pitfalls? · Knowing how to observe is an important step in experimental design #12;Three kinds of science · There are (in my view) three ways

Steels, Luc

314

Coexistence of Two- and Three-dimensional Shubnikov-de Haas Oscillations in Ar^+ -irradiated KTaO_3  

SciTech Connect (OSTI)

We report the electron doping in the surface vicinity of KTaO{sub 3} by inducing oxygen-vacancies via Ar{sup +}-irradiation. The doped electrons have high mobility (> 10{sup 4} cm{sup 2}/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar{sup +}-irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides.

Harashima, S.; Bell, C.; Kim, M.; Yajima, T.; Hikita, Y.; Hwang, H.Y.

2012-05-16T23:59:59.000Z

315

Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? (II) ----Ozone layer depth reconstruction via HEWV effect  

E-Print Network [OSTI]

It is suggested by Chen {\\it et al.} that the Earth's surface Ultraviolet irradiance ($280-400$ nm) could influence the Earth's surface temperature variation by "Highly Excited Water Vapor" (HEWV) effect. In this manuscript, we reconstruct the developing history of the ozone layer depth variation from 1860 to 2011 based on the HEWV effect. It is shown that the reconstructed ozone layer depth variation correlates with the observational variation from 1958 to 2005 very well ($R=0.8422$, $P>99.9\\%$). From this reconstruction, we may limit the spectra band of the surface Ultraviolet irradiance referred in HEWV effect to Ultraviolet B ($280-320$ nm).

Chen, Jilong; Zheng, Yujun

2014-01-01T23:59:59.000Z

316

Ionic conductivity and dielectric relaxation in {gamma}-irradiated TlGaTe{sub 2} crystals  

SciTech Connect (OSTI)

The switching effect, field and temperature dependences of the permittivity and conductivity of TlGaTe{sub 2} crystals subjected to various {gamma}-irradiation doses are studied. Under rather low electric fields, the phenomenon of threshold switching with an S-shaped current-voltage characteristic containing a portion with negative differential resistance is observed in the crystals. In the region of critical voltages, current and voltage oscillations and imposed modulation are observed. Possible mechanisms of switching, ionic conductivity, disorder, and electrical instability in TlGaTe{sub 2} crystals are discussed.

Sardarli, R. M., E-mail: sardarli@yahoo.com; Samedov, O. A.; Abdullayev, A. P. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan); Huseynov, E. K. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Salmanov, F. T.; Alieva, N. A.; Agaeva, R. Sh. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan)

2013-05-15T23:59:59.000Z

317

Assay using embryo aggregation chimeras for the detection of nonlethal changes in X-irradiated mouse preimplantation embryos  

SciTech Connect (OSTI)

We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos.

Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Miller, L.; Samuels, S.J.; Chang, R.J.; Overstreet, J.W.

1988-02-01T23:59:59.000Z

318

Enhancement of the visibility of objects located below the surface of a scattering medium  

DOE Patents [OSTI]

Techniques are provided for enhancing the visibility of objects located below the surface of a scattering medium such as tissue, water and smoke. Examples of such an object include a vein located below the skin, a mine located below the surface of the sea and a human in a location covered by smoke. The enhancement of the image contrast of a subsurface structure is based on the utilization of structured illumination. In the specific application of this invention to image the veins in the arm or other part of the body, the issue of how to control the intensity of the image of a metal object (such as a needle) that must be inserted into the vein is also addressed.

Demos, Stavros

2013-11-19T23:59:59.000Z

319

Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters  

SciTech Connect (OSTI)

We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm?×?2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L., E-mail: guo@umich.edu [Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-06-09T23:59:59.000Z

320

Response of a SiC Photodiode to Extreme Ultraviolet through Visible Radiation  

SciTech Connect (OSTI)

The responsivity of a type 6H-SiC photodiode in the 1.5-400 nm wavelength range was measured using synchrotron radiation. The responsivity was 0.20 A/W at 270 nm and was less than 0.10 A/W in the extreme ultraviolet (EUV) region. The responsivity was calculated using a proven optical model that accounted for the reflection and absorption of the incident radiation and the variation of the charge collection efficiency (CCE) with depth into the device. The CCE was determined from the responsivity measured in the 200-400 nm wavelength range. By use of this CCE and the effective pair creation energy (7.2 eV) determined from x-ray absorption measurements, the EUV responsivity was accurately modeled with no free parameters. The measured visible-light sensitivity, although low compared with that of a silicon photodiode, was surprisingly high for this wide bandgap semiconductor.

Seely,J.; Kjornrattanawanich, B.; Holland, G.; Korde, R.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bright and fast voltage reporters across the visible spectrum via electrochromic FRET (eFRET)  

E-Print Network [OSTI]

We present a palette of brightly fluorescent genetically encoded voltage indicators (GEVIs) with excitation and emission peaks spanning the visible spectrum, sensitivities from 6 - 10% Delta F/F per 100 mV, and half-maximal response times from 1 - 7 ms. A fluorescent protein is fused to an Archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identified linkers and fluorescent protein combinations which reported neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 6.6 to 11.6 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colors facilitates multicolor voltage imaging, as well as combination with other optical reporters and optogenetic actuators.

Zou, Peng; Douglass, Adam D; Hochbaum, Daniel R; Brinks, Daan; Werley, Christopher A; Harrison, D Jed; Campbell, Robert E; Cohen, Adam E

2014-01-01T23:59:59.000Z

322

A holographic bound on the total number of computations in the visible Universe  

E-Print Network [OSTI]

Information and encoding are central to holographic imaging of matter and fields within a two-surface. We consider the probability of detection of particles inside star-like holographic screens defined by their propagators. Imaging a point particle of mass m hereby requires I = 2 pi mr in log2 bits on a spherical screen or radius r. Encoding the three hairs of mass, charge, angular momentum and radiation requires a minimum of four bits. This formulation leads directly to Reissner-Nordstrom black holes and extremal Kerr black holes for minimal screens, that envelope event horizons. Applied to the cosmological event horizon, the total number of computations in the visible Universe is found to be bounded by 10e121.

Maurice H. P. M. van Putten

2014-08-12T23:59:59.000Z

323

Solvothermal synthesis of designed nonstoichiometric strontium titanate for efficient visible-light photocatalysis  

SciTech Connect (OSTI)

SrTiO{sub 3} powders with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reactions of SrCl{sub 2} and Ti(OC{sub 3}H{sub 7}){sub 4} in KOH aqueous solutions. The nanoparticles of perovskite type SrTiO{sub 3} structure with the particle size of 30-40 nm were synthesized. The photocatalytic activity was determined by deNO{sub x} ability using light emitting diode lamps of various wavelengths such as 627 nm (red), 530 nm (green), 445 nm (blue), and 390 nm (UV). The photocatalytic activity significantly changed depending on the Sr/Ti atomic ratio, i.e., the strontium rich sample (Sr/Ti atomic ratio>1) showed excellent visible light responsive photocatalytic activity for the oxidative destruction of NO.

Sulaeman, Uyi; Yin, Shu; Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

2010-09-06T23:59:59.000Z

324

Broadband visible light source based on AllnGaN light emitting diodes  

DOE Patents [OSTI]

A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

Crawford, Mary H.; Nelson, Jeffrey S.

2003-12-16T23:59:59.000Z

325

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation  

E-Print Network [OSTI]

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

Booij, Wilfred Edwin

326

MWCNT/WO{sub 3} nanocomposite photoanode for visible light induced water splitting  

SciTech Connect (OSTI)

The Multi-walled carbon nanotube (MWCNT)/WO{sub 3} nanocomposite thin films with different MWCNT’s weight percentages were prepared by sol–gel method as visible light induced photoanode in water splitting reaction. Weight percentage of MWCNT in the all nanocomposite thin films was confirmed by TGA/DSC analysis. According to XPS analysis, oxygenated groups at the surface of the MWCNT and stoichiometric formation of WO{sub 3} thin films were determined, while the crystalline structure of the nanocomposite samples was studied by XRD indicating (0 0 2) peak of MWCNT in the monoclinic phase of WO{sub 3}. The influence of different weight percentage (wt%) of MWCNT on WO{sub 3} photoactivity showed that the electron conductivity, charge transfer and electron life time had improved as compared with the pure WO{sub 3}. Based on linear sweep voltammetry and chronoamperometry measurements, the (1 wt%) MWCNT/WO{sub 3} nanocomposite thin films photoanode has a maximum photocurrent density of ?4.5 A/m{sup 2} and electron life time of about 57 s. - Graphical abstract: Photocurrent density versus time at constant potential (0.7 V) for the WO{sub 3} films containing different MWCNT weight percentages annealed at 400 °C under 1000 Wm{sup ?2} visible photo-illumination. Display Omitted - Highlights: • MWCNT/ WO{sub 3} nanocomposite thin films were synthesized using sol–gel derived method. • TGA/DSC confirmed the weight percentage of MWCNT in the all nanocomposite thin films. • XPS analysis revealed that WO{sub 3} was attached on the oxygenated group of MWCNT surface. • The Highest Photoelectrochemical activity is achieved for (1 wt%)MWCNT/WO{sub 3} thin film.

Yousefzadeh, Samira [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Reyhani, Ali [Physics Department, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin (Iran, Islamic Republic of); Naseri, Naimeh [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Moshfegh, Alireza Z., E-mail: moshfegh@sharif.edu [Physics Department, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

2013-08-15T23:59:59.000Z

327

A new list of thorium and argon spectral lines in the visible  

E-Print Network [OSTI]

Aims. We present a new list of thorium and argon emission lines in the visible obtained by analyzing high-resolution (R=110,000) spectra of a ThAr hollow cathode lamp. The aim of this new line list is to allow significant improvements in the quality of wavelength calibration for medium- to high-resolution astronomical spectrographs. Methods. We use a series of ThAr lamp exposures obtained with the HARPS instrument (High Accuracy Radial-velocity Planet Searcher) to detect previously unknown lines, perform a systematic search for blended lines and correct individual wavelengths by determining the systematic offset of each line relative to the average wavelength solution. Results. We give updated wavelengths for more than 8400 lines over the spectral range 3785-6915 A. The typical internal uncertainty on the line positions is estimated to be ~10 m/s (3.3 parts in 10^8 or 0.18 mA), which is a factor of 2-10 better than the widely used Los Alamos Atlas of the Thorium Spectrum (Palmer & Engleman 1983). The absolute accuracy of the global wavelength scale is the same as in the Los Alamos Atlas. Using this new line list on HARPS ThAr spectra, we are able to obtain a global wavelength calibration which is precise at the 20 cm/s level (6.7 parts in 10^10 or 0.0037 mA). Conclusions. Several research fields in astronomy requiring high-precision wavelength calibration in the visible (e.g. radial velocity planet searches, variability of fundamental constants) should benefit from using the new line list.

C. Lovis; F. Pepe

2007-03-15T23:59:59.000Z

328

Low-temperature formation of epitaxial graphene on 6H-SiC induced by continuous electron beam irradiation  

SciTech Connect (OSTI)

It is observed that epitaxial graphene forms on the surface of a 6H-SiC substrate by irradiating electron beam directly on the sample surface in high vacuum at relatively low temperature ({approx}670 Degree-Sign C). The symmetric shape and full width at half maximum of 2D peak in the Raman spectra indicate that the formed epitaxial graphene is turbostratic. The gradual change of the Raman spectra with electron beam irradiation time increasing suggests that randomly distributed small grains of epitaxial graphene form first and grow laterally to cover the entire irradiated area. The sheet resistance of epitaxial graphene film is measured to be {approx}6.7 k{Omega}/sq.

Go, Heungseok; Jeon, Youngeun; Park, Kibog [School of Electrical and Computer Engineering, KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Kwak, Jinsung; Yoo, Jung-Woo; Youb Kim, Sung; Kwon, Soon-Yong [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Kim, Sung-Dae; Kim, Young-Woon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Cheol Lee, Byung; Suk Kang, Hyun [Quantum Optics Laboratory, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ko, Jae-Hyeon [Department of Physics, Hallym University, Chuncheon Gangwondo 200-702 (Korea, Republic of); Kim, Nam [Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Kim, Bum-Kyu [Department of Physics, Chonbuk National University, Jeonju Chonbuk 561-756 (Korea, Republic of)

2012-08-27T23:59:59.000Z

329

Temperature-dependent void formation and growth at ion-irradiated nanocrystalline CeO2 Si interfaces  

SciTech Connect (OSTI)

Ceria is a thermally stable ceramic that has numerous applications in the nuclear industry, including use in nuclear fuels and waste forms. Recently, interest has surged in nanostructured ceria due to its increased mechanical properties and electronic conductivity in comparison with bulk ceria and its ability to self-heal in response to energetic ion bombardment. Here, nanocrystalline ceria thin films grown over a silicon substrate are irradiated to fluences of up to 4 1016 ions/cm2 under different irradiation conditions: with differing ion species (Si+ and Ni+), different ion energies (1.0 1.5 MeV), and at varying temperatures (160 600 K). While the nanocrystalline ceria is found to exhibit exceptional radiation resistance under all tested conditions, severe ion irradiation-induced mixing, void formation, and void growth are observed at the ceria/silicon interface, with the degree of damage proving to be temperature dependent.

Perez-Bergquist, Alex G [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL; Varga, Tamas [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Moll, Sandra [TN International / AREVA, 1, rue des Hérons, 78182 Montigny Le Bretonneux, France] [TN International / AREVA, 1, rue des Hérons, 78182 Montigny Le Bretonneux, France; Namavar, Fereydoon [University of Nebraska Medical Center] [University of Nebraska Medical Center; Weber, William J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

330

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

Palmer, Alma Joseph; Laflin, S. T.

1999-09-01T23:59:59.000Z

331

Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation  

SciTech Connect (OSTI)

The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

2013-11-01T23:59:59.000Z

332

Behavior of nitrogen in Si crystal during irradiation and post-annealing  

SciTech Connect (OSTI)

Radiation induced complexes in nitrogen (N) -doped silicon crystal was investigated by highly sensitive infrared absorption spectroscopy. The absorption by N{sub 2} pair was reduced by the electron irradiation in FZ crystals. The absorptions appeared on both sides of N{sub 2} line at 766 cm{sup ?1}, at about 725 and 778 cm{sup ?1}. By the annealing, N{sub 2} lines recovered a little at 600 °C and mostly at 800 °C. The above new absorption lines reduced by the annealing at lower temperatures and other absorption appeared. In CZ silicon, N{sub 2} lines did not change by the irradiation. Dominant absorption in low carbon FZ silicon was that of C-rich type complexes, VO and I{sub n}C{sub i}O{sub im}(n=0–3, m=0,1). Dominant absorption in the irradiated low carbon CZ silicon was that of C-lean type complexes I{sub n}O{sub 2+mi}(n=1, 2, m=0, 1), and the decrease of C-lean type O{sub 2i} and TDD was observed. By the annealing of CZ Si, VO{sub n} (n=2–4) formation and annihilation was observed.

Inoue, Naohisa [Tokyo Univ. Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan and Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 (Japan); Oyama, Hidenori [Kumamoto National College of Technology, 2659-2, Koshi, Kumamoto, 861-1102 (Japan); Watanabe, Kaori [Systems Eng. Inc., 2-29-24, Honkomagome, Bunkyo-ku, Tokyo, 113-0021 (Japan); Seki, Hirofumi [Toray Research Center Inc., 3-3-7, Sonoyama, Otsu, Shiga, 520-8567 (Japan); Kawamura, Yuichi [Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 (Japan)

2014-02-21T23:59:59.000Z

333

Emulation of reactor irradiation damage using ion beams  

SciTech Connect (OSTI)

The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

2014-10-01T23:59:59.000Z

334

apres irradiation globale: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

necessary for the evaluation of global irradiance on inclined surface which is needed for photovoltaic Boyer, Edmond 7 Caractristiques lectriques de diodes Au-Si(N) ralises aprs...

335

Microsoft Word - Analysis of Deformation Mode Changes in Irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steels); however, in many cases they may have a negative impact on material performance (hydrogen embrittlement of bcc-phase, etc.). Irradiation leads to defects accumulation,...

336

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

337

alpha particle irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

338

alpha particles irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

339

alpha particle irradiated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

340

apres irradiation alpha: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edmond 8 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modification of Defect Structures in Graphene by Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

342

Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

343

Development and Quantification of UV-Visible and Laser Spectroscopic Techniques for Materials Accountability and Process Control  

SciTech Connect (OSTI)

Ultraviolet-Visible Spectroscopy (UV-Visible) and Time Resolved Laser Fluorescence Spectroscopy (TRLFS) optical techniques can permit on-line, real-time analysis of the actinide elements in a solvent extraction process. UV-Visible and TRLFS techniques have been used for measuring the speciation and concentration of the actinides under laboratory conditions. These methods are easily adaptable to multiple sampling geometries, such as dip probes, fiber-optic sample cells, and flow-through cell geometries. To fully exploit these techniques for GNEP applications, the fundamental speciation of the target actinides and the resulting influence on 3 spectroscopic properties must be determined. Through this effort detection limits, process conditions, and speciation of key actinide components can be establish and utilized in a range of areas of interest to GNEP, especially in areas related to materials accountability and process control.

Ken Czerwinski; Phil Weck; Frederic Poineau

2010-12-29T23:59:59.000Z

344

Microstructural examination of irradiated vanadium alloys  

SciTech Connect (OSTI)

Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Chung, H.M. [Argonne National Lab., IL (United States)

1997-04-01T23:59:59.000Z

345

Mitigation of irradiation embrittlement by annealing  

SciTech Connect (OSTI)

The main results of a complex investigation carried out in Russia of post irradiation annealing and reembrittlement of WWER-440 reactor pressure vessel materials are presented. The dependence of the Charpy transition temperature recovery on annealing temperature and fluence was established. Charpy specimens were reirradiated after annealing at 340, 380, 420, and 460 C. Experimental values of the Charpy transition temperature after reirradiation are compared to that predicted by three methods. At annealing temperatures equal to or above 420 C, results of the analysis indicate that, of the methods investigated, the lateral shift method gives the best result for estimating the transition temperature shift due to reirradiation.

Amayev, A.D.; Kryukov, A.M.; Levit, V.I.; Platonov, P.A.; Sokolov, M.A. [Kurchatov Inst., Moscow (Russian Federation)

1996-12-31T23:59:59.000Z

346

Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

Y. Huang; B.R. Maier; T.R. Allen

2014-10-01T23:59:59.000Z

347

Summary of Post Irradiation Examination Results of the AFIP-6 Failure  

SciTech Connect (OSTI)

The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contain a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, flow restriction resulted in low heat transfer coefficients and the failure of the fuel plates. The results from the post irradiation examinations and some observations of the failure mechanisms are outlined herein.

Adam Robinson; Daniel M. Wachs; Francine Rice; Danielle Perez

2011-10-01T23:59:59.000Z

348

Initial increase, ''peaking effect'', in the internal friction of copper following pulsed neutron and electron irradiation  

SciTech Connect (OSTI)

Under certain experimental conditions the internal friction in metals can first increase and following prolonged irradiation decrease. Many models have been proposed to account for this ''peaking effect''; however, in many of the cases, no effort is made to distinguish between the influence of interstitials and/or vacancies. To determine the nature of the point defect responsible for the peaking effect in high purity copper, we have performed a series of pulsed irradiations using neutrons and electrons. In all of the experiments an initial very rapid rise in the internal friction and Young's modulus was observed. These data show that a fast diffusing defect is responsible for the peaking effect: i.e. the interstitial.

Simpson, H.M.; Parkin, D.M.; Goldstone, J.A.; Hemsky, J.W.

1985-01-01T23:59:59.000Z

349

High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood  

E-Print Network [OSTI]

Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

Salz, M; Czesla, S; Schmitt, J H M M

2015-01-01T23:59:59.000Z

350

Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions  

SciTech Connect (OSTI)

An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

Khachatrian, Ani; Dagdigian, Paul J.

2010-05-01T23:59:59.000Z

351

Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra  

SciTech Connect (OSTI)

We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

Duran, I. [Institute of Plasma Physics AS CR, v. v. i., Association EURATOM/IPP.CR, 182 00 Prague 8 (Czech Republic); Bolshakova, I.; Holyaka, R. [Magnetic Sensor Laboratory, Lviv Polytechnic National University, 790 31 Lviv (Ukraine); Viererbl, L.; Lahodova, Z. [Nuclear Research Institute plc., 250 68 Husinec-Rez (Czech Republic); Sentkerestiova, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague 1 (Czech Republic); Bem, P. [Nuclear Physics Institute AS CR, v. v. i., 250 68 Husinec-Rez (Czech Republic)

2010-10-15T23:59:59.000Z

352

Observational learning in horses  

E-Print Network [OSTI]

OBSERVATIONAL LEARNING IN HORSES A Thesis by KATHERINE LOUISE BAER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major Subject: Animal... Science OBSERVATIONAL LEARNING IN HORSES A Thesis by KATHERINE LOUISE BAER Approved as to style and content by: L7 . 5+~ (Chairma of . C mmittee) ) c r (Mem ) YiNicc CJ ~- (Membeh) (Head of Department May 1979 ABSTRACT Observational...

Baer, Katherine Louise

1979-01-01T23:59:59.000Z

353

Hot Pot Field Observations  

SciTech Connect (OSTI)

Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

Lane, Michael

2013-06-28T23:59:59.000Z

354

Hot Pot Field Observations  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

Lane, Michael

355

VERITAS Observations of the Galactic Center Ridge  

E-Print Network [OSTI]

Due to its extraordinarily high concentration of known relativistic particle accelerators such as pulsar wind nebula, supernova remnants, dense molecular cloud regions, and the supermassive black hole (Sgr A*); the center of the Milky Way galaxy has long been an ideal target for high energy (HE, 0.1-100 GeV) and very high energy ( VHE, 50 GeV-50 TeV) gamma-ray emission. Indeed, detections of Sgr A* and other nearby regions of gamma-ray emission have been reported by EGRET and Fermi-LAT in the HE band, as well as CANGAROO, Whipple, HESS, VERITAS, and MAGIC in the VHE band. Here we report on the results of extended observations of the region with VERITAS between 2010-2014. Due to the visibility of the source for VERITAS in the Northern Hemisphere, these observations provide the most sensitive probe of gamma-ray emission above 2 TeV in one of the most complicated and interesting regions of our home galaxy.

,

2015-01-01T23:59:59.000Z

356

Dissolution of ordered precipitates under ion irradiation  

SciTech Connect (OSTI)

The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany)

1995-09-01T23:59:59.000Z

357

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

A. J. Palmer; S. T. Laflin

1999-08-01T23:59:59.000Z

358

Optimisation of buildings' solar irradiation availability  

SciTech Connect (OSTI)

In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

359

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

360

Analysis of tritium transport in irradiated beryllium  

SciTech Connect (OSTI)

Analysis of the beryllium tritium release results with simple analytical models indicated that tritium behavior in Be is not dominated by one simple mechanism, but by a combination of several mechanisms including surface processes and helium bubbles. A model was developed and the initial version of the model included tritium diffusion in the beryllium and the beryllium oxide, second order desorption at the solid/gas interface and diffusion through interconnected porosity. Fundamental data, tritium diffusion and desorption coefficients for Be and BeO, were derived from experimental data using the model. Beryllium is a metal to which one can generally apply the concepts of diffusion, solubility, surface processes and traps. Tritium transport in the irradiated beryllium is affected by processes occurring in the bulk, He bubbles, the bulk/surface and surface/gas interfaces. There are two types of solid/gas surfaces in the irradiated Be. One is the surface at the pure Be/He bubble interface where no oxide layer exists and the other is the surface at the BeO layer/purge gas interface. Although the material characteristics of the Be and BeO layer are different and have different activation barriers, the surface processes can be applied to both interfaces.

Cho, S.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Postharvest irradiation treatment effect on grapefruit functional components and their role in prevention of colon cancer  

E-Print Network [OSTI]

and irradiation significantly (P ? 0.05) affected the bioactive compounds in grapefruit, however, the effect of storage was prominent. The third study examined the influence of irradiation and freeze drying on bioactive compounds of grapefruit. Irradiation...

Vanamala, Jairam Krishna Prasad

2005-11-01T23:59:59.000Z

362

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic  

E-Print Network [OSTI]

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic channels M implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel

Brenner, David Jonathan

363

Irradiation effects in high-density polyethylene Jussi Polvia  

E-Print Network [OSTI]

Irradiation effects in high-density polyethylene Jussi Polvia , Kai Nordlunda a simulations, we have studied the irradiation effects in high density polyethylene. We determined the threshold energy for creating defects in the polyethylene lattice as a function of the incident angle. We found

Nordlund, Kai

364

Asymmetric Orientational Writing in glass with femtosecond laser irradiation  

E-Print Network [OSTI]

Asymmetric Orientational Writing in glass with femtosecond laser irradiation B. Poumellec,1 M in the dielectric inducing an asymmetric stress field is proposed. ©2013 Optical Society of America OCIS codes: (160. Prade, and A. Mysyrowicz, "Femtosecond laser irradiation stress induced in pure silica," Opt. Express 11

Boyer, Edmond

365

Physica B 308310 (2001) 612615 Irradiation effects in semiconducting diamonds  

E-Print Network [OSTI]

Physica B 308­310 (2001) 612­615 Irradiation effects in semiconducting diamonds N. Kristianpoller irradiation on semiconducting diamonds (type IIb) were studied and compared with those induced at the same conditions in natural (type Ia) and in synthetic diamonds. Methods of optical absorption, of X-ray and light

Chen, Reuven

366

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE  

E-Print Network [OSTI]

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE Wei Wu1 , Yangang Liu1 of the spectral solar irradiance (SSI) at the top of the Earth's atmosphere by the Solar Radiation and Climate's entropy flux from the TOA incident solar radiation. Two extreme cases are examined by using Planck

367

Radiometric characterization of a high temperature blackbody in the visible and near infrared  

SciTech Connect (OSTI)

At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 °C to 3000 °C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 °C to 3000 °C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

Taubert, R. D.; Hollandt, J. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)

2013-09-11T23:59:59.000Z

368

CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light  

E-Print Network [OSTI]

and for the conversion of carbon dioxides into methanol and hydrocarbons. Metal chalcogenides1­9 are promisingCdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible driven pathway to hydrogen. Hydrogen is not only an environmentally benign fuel for the generation

Osterloh, Frank

369

Summary Leaf reflectance at visible and near-infrared wavelengths (4001000 nm) is related primarily to pigmenta-  

E-Print Network [OSTI]

Summary Leaf reflectance at visible and near-infrared wavelengths (400­1000 nm) is related physiology and relationships between plants and their growth environment. We studied reflectance of two co collected from 24 sites and white spruce from 30 sites. Overall, reflectance spectra of the two species were

Richardson, Andrew D.

370

Bringing Visibility to Rural Users in Cote d'Ivoire Mariya Zheleva, Paul Schmitt, Morgan Vigil and Elizabeth Belding  

E-Print Network [OSTI]

from Cote d'Ivoire with an emphasis on understanding how population density impacts the use of cellularBringing Visibility to Rural Users in Cote d'Ivoire Mariya Zheleva, Paul Schmitt, Morgan Vigil a cellular traffic dataset provided by Orange in Cote d'Ivoire with the goal of identifying distinctions

Belding-Royer, Elizabeth M.

371

A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor  

E-Print Network [OSTI]

A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic cores with a red-shifted cis-to-trans isomerization have been previously described, they have not yet ligand (PTL) approach. We report the synthesis and characterization of a red-shifted PTL, L-MAG0460

Trauner, Dirk

372

Visible-light active TiO2 for microwave assisted photocatalytic reactions using mercury electrodeless discharge lamps  

E-Print Network [OSTI]

activity was evaluated by the degradation of mono-chloroacetic acid in a microwave field using mercury with pure titania, the UV-Vis spectra of Ag+, Zr4+ and VO2+ doped titanium dioxide show significant absorption in visible region. The degradation efficiency of MCAA in a microwave field on these TiO2 layers

Cirkva, Vladimir

373

PPPL3301, Preprint: May 1998, UC426 Design Study of a Visible/Infrared Periscope for Intense Radiation  

E-Print Network [OSTI]

PPPL­3301, Preprint: May 1998, UC­426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

374

PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense Radiation  

E-Print Network [OSTI]

PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

375

Combining visible and near-infrared images for realistic skin Clement Fredembach, Nathalie Barbuscia and Sabine Susstrunk  

E-Print Network [OSTI]

Combining visible and near-infrared images for realistic skin smoothing Cl´ement Fredembach components of skin colour, have little absorption in the near-infrared part of the spectrum propose that near-infrared images provide information that can be used to automatically smooth skin tones

Salvaggio, Carl

376

Standard Guide for Packaging Materials for Foods to Be Irradiated  

E-Print Network [OSTI]

1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

377

Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells  

SciTech Connect (OSTI)

Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a phenomenon that could not be observed with carbon ion irradiation. Thus, in this model system evaluating angiogenesis, carbon ion irradiation may have a therapeutic advantage. This observation should be confirmed in orthotopic lung tumor models.

Kamlah, Florentine, E-mail: Kamlah@staff.uni-marburg.de [Department of Radiotherapy and Radiooncology, Philipps-University, Marburg (Germany); Haenze, Joerg [Department of Urology and Pediatric Urology, Philipps-University, Marburg (Germany); Arenz, Andrea [Department of Radiotherapy and Radiooncology, Philipps-University, Marburg (Germany); Seay, Ulrike; Hasan, Diya [Department of Internal Medicine II/V, Justus-Liebig-University, Giessen (Germany); Juricko, Janko; Bischoff, Birgit [Department of Radiotherapy and Radiooncology, Philipps-University, Marburg (Germany); Gottschald, Oana R. [Department of Internal Medicine II/V, Justus-Liebig-University, Giessen (Germany); Fournier, Claudia; Taucher-Scholz, Gisela; Scholz, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Seeger, Werner [Department of Internal Medicine II/V, Justus-Liebig-University, Giessen (Germany); Engenhart-Cabillic, Rita [Department of Radiotherapy and Radiooncology, Philipps-University, Marburg (Germany); Department of Radiotherapy, Justus-Liebig-University, Giessen (Germany); Rose, Frank [Department of Radiotherapy and Radiooncology, Philipps-University, Marburg (Germany)

2011-08-01T23:59:59.000Z

378

E-Print Network 3.0 - accelerated partial-breast irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiated for one hour... 1 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet ... Source: Kemner, Ken - Biosciences Division, Argonne National Laboratory...

379

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

380

Irradiation behavior of metallic fast reactor fuels  

SciTech Connect (OSTI)

Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optimization parameter design for proton irradiation accelerator  

E-Print Network [OSTI]

The proton irradiation accelerator is widely founded for industry application, and should be designed as compact, reliable, and easy operate. A 10 MeV proton beam is designed to be injected into the slow circulation ring with the repetition rate of 0.5 Hz for accumulation and acceleration, and then the beam with the energy of 300MeV will be slowly extracted by third order resonance method. For getting a higher intensity and more uniform beam, the height of the injection bump is carefully optimised during the injection period. Besides, in order to make the extracted beam with a more uniform distribution, a RF Knock-out method is adopted, and the RF kicker's amplitude is well optimised.

Yu-Wen An; Hong-Fei Ji; Sheng Wang; Shou-Yan Xu

2014-11-20T23:59:59.000Z

382

Recovery of niobium from irradiated targets  

DOE Patents [OSTI]

A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

383

Soot scattering measurements in the visible and near-infrared spectrum  

SciTech Connect (OSTI)

Scattering to extinction cross-section ratios, {rho}{sub se} were measured using the NIST Large Agglomerate Optics Facility for soot produced from ethene and acetylene laminar diffusion flames. Measurements were performed using light sources at 543.5 nm, 632.8 nm and 856 nm. The average scattering to extinction cross-section ratios for these wavelengths are equal to 0.246, 0.196, and 0.196 for ethene and 0.316, 0.230, and 0.239 for acetylene. The 856 nm measurements represent the longest wavelength for which accurate scattering measurements have been performed for soot. The size distribution and fractal properties of the two soots were determined to assess the effects of limited acceptance angle range, finite size of the sensor, and departure from cosine response on the uncertainty in the measurement of {rho}{sub se} The expanded relative uncertainty (95% confidence level) was found to be {+-}6% at the two visible wavelengths and {+-}8% at 856 nm. Both the magnitude and wavelength dependence of {rho}{sub se} for the present experiments are significantly different from those reported by Krishnan et al. for overfire soot produced using a turbulent flame. The results are compared with the predictions of fractal optics.

ZHU,JINYU; CHOI,MUN YOUNG; MULHOLLAND,GEORGE W.; GRITZO,LOUIS A.

2000-02-08T23:59:59.000Z

384

AGC-3 Irradiation Data Qualification Final Report  

SciTech Connect (OSTI)

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

Laurence Hull

2014-08-01T23:59:59.000Z

385

Influence of thermomechanical treatment on irradiation microstructure in an ODS ferritic steel  

SciTech Connect (OSTI)

The effects of thermomechanical treatment on microstructural changes and void swelling in a DT2203YO5-grade 13%Cr oxide-dispersion-strengthened (ODS) ferritic alloy have been studied following ion irradiations to a damage level of 50 dpa at 475 C with 600 appm helium gas implantation. Swelling in a solution treated and aged (STA) condition ranges from 0.07 to 0.24% due to cast-to-cast variations, while in a solution treated, cold-worked and aged (STCWA) condition the swelling decreases to 0.025%. Cavities are in general irregularly shaped, non-uniformly distributed and frequently attached to small yttria dispersoid particles. The results confirm that this ODS ferritic steel exhibits low irradiation-induced swelling in the presence of high gas concentrations as required for advanced fast and fusion reactor applications. The observed sensitivity of irradiation-induced swelling to compositional or processing variables implies that ODS ferritic alloys can be further optimized for high radiation resistance.

Little, E.A. [University College, Swansea (United Kingdom). Dept. of Materials Engineering

1996-12-31T23:59:59.000Z

386

Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte  

SciTech Connect (OSTI)

Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10{sup ?2} – 10{sup ?4} S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O{sup +1} with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs.

Manjunatha, H., E-mail: gnk-swamy@blr.amrita.edu; Kumaraswamy, G. N., E-mail: gnk-swamy@blr.amrita.edu [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560056 (India)

2014-04-24T23:59:59.000Z

387

Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution  

E-Print Network [OSTI]

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of...

Nomura, H; Tsujimoto, M; Nakagawa, Y; Millar, T J

2007-01-01T23:59:59.000Z

388

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice  

E-Print Network [OSTI]

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

Weijun Zheng; David Jewitt; Ralf I. Kaiser

2005-11-18T23:59:59.000Z

389

Heavy-Section Steel Irradiation Program. Volume 2, No. 1: Semiannual progress report, October 1990--March 1991  

SciTech Connect (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure-vessel steels as they relate to light-water reactor pressure-vessel integrity. The HSSI Program is arranged into nine tasks: (1) program management, (2) K{sub ic} curve shift in high-copper welds, (3) K{sub ia} curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K{sub ic} and K{sub ia} curve shifts in low upper-shelf (LUS) weld, (6) irradiation effects in a commercial LUS weld, (7) microstructural analysis of irradiation, (8) in-service aged material evaluations, and (9) correlation monitor materials. During this period, additional analyses on the effects of precleavage stable ductile tearing on the toughness of high-copper welds 72W and 73W demonstrated that the size effects observed in the transition region are not due to substantial differences in ductile tearing behavior. Possible modifications to irradiated duplex crack-arrest specimens were examined to increase the likelihood of their successful testing. Characterization of a second batch of 72W and 73W welds was begun and results of the Charpy V-notch testing is provided. A review of literature on the annealing response of reactor pressure vessel steels was initiated.

Corwin, W.R. [Oak Ridge National Lab., TN (United States)

1994-07-01T23:59:59.000Z

390

REPRODUCING VISIBLE AND NEAR-INFRARED REFLECTANCE SPECTRA OF LUNAR ROCKS DIRECTLY FROM THEIR END-MEMBER SPECTRA: IMPORTANCE OF ILMENITE IN  

E-Print Network [OSTI]

REPRODUCING VISIBLE AND NEAR-INFRARED REFLECTANCE SPECTRA OF LUNAR ROCKS DIRECTLY FROM THEIR END as a solid foundation for lunar science and explo- ration. The visible and near-infrared spectroscopy, 15555, 70017, and 70035 have been prepared for analysis. Bidirectional reflectance spectra (0.28- 2.6 µm

Hiroi, Takahiro

391

Respiratory Organ Motion and Dosimetric Impact on Breast and Nodal Irradiation  

SciTech Connect (OSTI)

Purpose: To examine the respiratory motion for target and normal structures during whole breast and nodal irradiation and the resulting dosimetric impact. Methods and Materials: Four-dimensional CT data sets of 18 patients with early-stage breast cancer were analyzed retrospectively. A three-dimensional conformal dosimetric plan designed to irradiate the breast was generated on the basis of CT images at 20% respiratory phase (reference phase). The reference plans were copied to other respiratory phases at 0% (end of inspiration) and 50% (end of expiration) to simulate the effects of breathing motion on whole breast irradiation. Dose-volume histograms, equivalent uniform dose, and normal tissue complication probability were evaluated and compared. Results: Organ motion of up to 8.8 mm was observed during free breathing. A large lung centroid movement was typically associated with a large shift of other organs. The variation of planning target volume coverage during a free breathing cycle is generally within 1%-5% (17 of 18 patients) compared with the reference plan. However, up to 28% of V{sub 45} variation for the internal mammary nodes was observed. Interphase mean dose variations of 2.2%, 1.2%, and 1.4% were observed for planning target volume, ipsilateral lung, and heart, respectively. Dose variations for the axillary nodes and brachial plexus were minimal. Conclusions: The doses delivered to the target and normal structures are different from the planned dose based on the reference phase. During normal breathing, the dosimetric impact of respiratory motion is clinically insignificant with the exception of internal mammary nodes. However, noticeable degradation in dosimetric plan quality may be expected for the patients with large respiratory motion.

Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.ed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); White, Julia [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Merrell, Kenneth; Sood, Amit; Bauer, Anderson; Wilson, J. Frank [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Miften, Moyed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

2010-10-01T23:59:59.000Z

392

Observing Massive Galaxy Formation  

E-Print Network [OSTI]

A major goal of contemporary astrophysics is understanding the origin of the most massive galaxies in the universe, particularly nearby ellipticals and spirals. Theoretical models of galaxy formation have existed for many decades, although low and high redshift observations are only beginning to put constraints on different ideas. We briefly describe these observations and how they are revealing the methods by which galaxies form by contrasting and comparing fiducial rapid collapse and hierarchical formation model predictions. The available data show that cluster ellipticals must have rapidly formed at z > 2, and that up to 50% of all massive galaxies at z ~ 2.5 are involved in major mergers. While the former is consistent with the monolithic collapse picture, we argue that hierarchal formation is the only model that can reproduce all the available observations.

Christopher J. Conselice

2002-12-20T23:59:59.000Z

393

Air Observe System  

E-Print Network [OSTI]

This manuscript contains a description and basic principles for observing inaccessible areas using low cost, easily deployed equipment. The basic premise is to suspend a tiny video camera at an altitude of 10 - 200 meters over the area to be surveyed. The TV camera supports at altitude by wind or balloon. The technical challenges regard the means by which the camera is suspended. Such a system may be used by military or police forces or by civil authorities for rescue missions or assessment of natural disasters. The method may be further developed for military applications by integrating the surveillance task with deployment of munitions. Key words: air observer, air suspended system, low altitude video observer.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

394

CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS  

SciTech Connect (OSTI)

We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Imada, S. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)], E-mail: dmd@nju.edu.cn, E-mail: shinsuke.imada@nao.ac.jp

2009-09-01T23:59:59.000Z

395

Effect of low energy ion irradiation on CdTe crystals: Luminescence enhancement  

SciTech Connect (OSTI)

In this work we show that low energy ion sputtering is a very efficient technique as a cleaning process for CdTe substrates. We demonstrate, by using several techniques like grazing-angle x-ray diffraction, cathodoluminescence, microluminescence, and micro-Raman spectroscopy that the luminescent properties of CdTe substrates can be very much increased when CdTe surfaces are irradiated with low energy Argon ions. We postulate that this enhancement is mainly due to the removal of surface damage induced by the cutting and polishing processes. The formation of a low density of nonluminescent aggregates after the sputtering process has also been observed.

Olvera, J.; Plaza, J. L.; Dios, S. de; Dieguez, E. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O.; Avella, M. [Departamento Fisica Materia Condensada, GdS-Optronlab Group, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain)

2010-12-15T23:59:59.000Z

396

Stress-induced patterns in ion-irradiated Silicon: a model based on anisotropic plastic flow  

E-Print Network [OSTI]

We present a model for the effect of stress on thin amorphous films that develop atop ion-irradiated silicon, based on the mechanism of ion-induced anisotropic plastic flow. Using only parameters directly measured or known to high accuracy, the model exhibits remarkably good agreement with the wavelengths of experimentally-observed patterns, and agrees qualitatively with limited data on ripple propagation speed. The predictions of the model are discussed in the context of other mechanisms recently theorized to explain the wavelengths, including extensive comparison with an alternate model of stress.

Scott A. Norris

2012-07-24T23:59:59.000Z

397

Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si  

SciTech Connect (OSTI)

Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-09-30T23:59:59.000Z

398

Defects at nitrogen site in electron-irradiated AlN  

SciTech Connect (OSTI)

In high resistance AlN irradiated with 2 MeV electrons, an electron paramagnetic resonance (EPR) spectrum, labeled EI-1, with an electron spin S=1/2 and a clear hyperfine (hf) structure was observed. The hf structure was shown to be due the interaction between the electron spin and the nuclear spins of four {sup 27}A nuclei with the hf splitting varying between {approx}6.0 and {approx}7.2 mT. Comparing the hf data obtained from EPR and ab initio supercell calculations we suggest the EI-1 defect to be the best candidate for the neutral nitrogen vacancy in AlN.

Son, N. T.; Janzen, E. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Gali, A. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, H-1111 Budapest (Hungary); Szabo, A. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, H-1111 Budapest (Hungary); Bickermann, M. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstrasse 7, D-91058 Erlangen (Germany); Ohshima, T. [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Isoya, J. [Graduate School of Library, Information and Media Studies, University of Tsukuba, Tsukuba, Ibaraki 305-8550 (Japan)

2011-06-13T23:59:59.000Z

399

Laboratory investigations of irradiated acetonitrile-containing ices on an interstellar dust analog  

SciTech Connect (OSTI)

Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10{sup -17} cm{sup 2}. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water-ice interface, similar to that previously observed for the benzene-water system.

Abdulgalil, Ali G. M.; Marchione, Demian; Rosu-Finsen, Alexander; Collings, Mark P.; McCoustra, Martin R. S. [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS (United Kingdom)

2012-07-15T23:59:59.000Z

400

Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement  

SciTech Connect (OSTI)

This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gamma irradiation effects on the biodegradation of lignin  

E-Print Network [OSTI]

parts: biological utilization of irradiated Calcium Lignosulphonate (CLS) and irradiation effects on the composition of CLS. The CLS used in this study was a commercially available lignin compound which is produced by flash evaporation of spent... 4/ X / 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 Wavelength in microns 8. 0 9. 0 28 CHAPTER VI RESULTS AND CONCLUSIONS A commercia I CLS was irradiated in a dry state to various total dose levels of Co-60 gamma rays. The effects on the structure...

Krysinski, Thomas Leon

1966-01-01T23:59:59.000Z

402

Electron Beam Irradiation for Improving Safety of Fruits and Vegetables  

E-Print Network [OSTI]

. An alternative may be irradiation which is emerging as a promising tool to enhance safety and extend shelf life of fresh and fresh cut produce. Gamma rays have been the most extensively studied form of irradiation and have been successfully applied to spices..., tubers, grains and meat products for the space program. However, consumer reluctance has limited its application over a broad range of food stuffs. As a result, alternate irradiation technologies such as e-beam and X-rays are attracting attention...

Adavi, Megha Sarthak

2012-07-16T23:59:59.000Z

403

Electron microscopic evaluation and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment: A preliminary Study  

SciTech Connect (OSTI)

ABSTRACT Post-irradiation examination of coated particle fuel from the AGR-1 experiment is in progress at Idaho National Laboratory and Oak Ridge National Laboratory. In this presentation a brief summary of results from characterization of microstructures in the coating layers of selected irradiated fuel particles with burnup of 11.3% and 19.3% FIMA will be given. The main objective of the characterization were to study irradiation effects, fuel kernel porosity, layer debonding, layer degradation or corrosion, fission-product precipitation, grain sizes, and transport of fission products from the kernels across the TRISO layers. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and wavelength dispersive spectroscopy were used. A new approach to microscopic quantification of fission-product precipitates is also briefly demonstrated. The characterization emphasized fission-product precipitates in the SiC-IPyC interface, SiC layer and the fuel-buffer interlayer, and provided significant new insights into mechanisms of fission-product transport. Although Pd-rich precipitates were identified at the SiC-IPyC interlayer, no significant SiC-layer thinning was observed for the particles investigated. Characterization of these precipitates highlighted the difficulty of measuring low concentration Ag in precipitates with significantly higher concentrations of contain Pd and U. Different approaches to resolving this problem are discussed. Possible microstructural differences between particles with high and low releases of Ag particles are also briefly discussed, and an initial hypothesis is provided to explain fission-product precipitate compositions and locations. No SiC phase transformations or debonding of the SiC-IPyC interlayer as a result of irradiation were observed. Lessons learned from the post-irradiation examination are described and future actions are recommended.

I J van Rooyen; D E Janney; B D Miller; J L Riesterer; P A Demkowicz

2012-10-01T23:59:59.000Z

404

Academic Writing Observation Papers  

E-Print Network [OSTI]

a particular action and did not notice something about the people involved. Note what you did not notice observations. People: If the setting is crowded, choose a particular group (or groups) or focus on random paper around a research question: For example, you may be interested in power relations, interactions

405

Academic Writing Observation Papers  

E-Print Network [OSTI]

a particular action and did not notice something about the people involved. Note what you did not notice observations. People: If the setting is crowded, choose a particular group (or groups) or focus on random in power relations, interactions between interpersonal communication processes and other media, or other

406

Global Warming Observations  

E-Print Network [OSTI]

Global Warming Observations: 1. Global temperature has been gradually rising in recent years #15 in range 8000 12000 nm { CFC's, methane and N 2 O important for global warming even though concentra- tions in concentration of \\greenhouse gases" like CO 2 What determines global temperature? Energy budget of earth: 1

Schofield, Jeremy

407

EBONEEUROPEAN BIODIVERSITY OBSERVATION NETWORK  

E-Print Network [OSTI]

EBONEEUROPEAN BIODIVERSITY OBSERVATION NETWORK Geert De Blust, Guy Laurijssens, Hans Van Calster of biodiversity monitoring through close collaboration of users and data providers #12;#12;Design of a monitoring-effectiveness Optimization of biodiversity monitoring through close collaboration of users and data providers Geert De Blust1

408

Pyrolytic carbon free-radical evolution and irradiation damage of polyimide under low-energy proton irradiation  

SciTech Connect (OSTI)

Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

Sun Chengyue; Wu Yiyong; Xiao Jingdong; Li Ruifeng; Yang Dezhuang; He Shiyu [National Key Lab in Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin 150001 (China)

2011-12-15T23:59:59.000Z

409

AGC-2 Irradiation Data Qualification Final Report  

SciTech Connect (OSTI)

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

Laurence C. Hull

2012-07-01T23:59:59.000Z

410

Century-Long Monitoring of Solar Irradiance and Earth's Albedo Using a Stable Scattering Target in Space  

E-Print Network [OSTI]

An inert sphere of a few meters diameter, placed in a special stable geosynchronous orbit in perpetuo, can be used for a variety of scientific experiments. Ground-based observations of such a sphere, "GeoSphere", can resolve very difficult problems in measuring the long-term solar irradiance. GeoSphere measurements will also help us understand the evolution of Earth's albedo and climate over at least the next century.

Judge, Philip G

2015-01-01T23:59:59.000Z

411

Density changes in amorphous Pd{sub 80}Si{sub 20} during low temperature ion irradiation  

SciTech Connect (OSTI)

Density changes in amorphous Pd{sub 80}Si{sub 20} during ion irradiation below 100K were detected by in situ HVEM measurements of the changes in specimen length as a function of ion fluence. A decrease in mass density as a function of the ion fluence was observed. The saturation value of the change in mass density was determined to be approximately -1.2%.

Schumacher, G.; Birtcher, R.C.; Rehn, L.E.

1994-11-01T23:59:59.000Z

412

The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds  

SciTech Connect (OSTI)

Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

1996-12-31T23:59:59.000Z

413

Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.  

SciTech Connect (OSTI)

The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

2009-09-01T23:59:59.000Z

414

Narrow-bandwidth Tunable Picosecond Pulses in the Visible Produced by Noncollinear optical parametric Amplification with a Chirped Blue Pump  

SciTech Connect (OSTI)

Narrow-bandwidth ( ?27?cm{sup ?1} ) tunable picosecond pulses from 480?nm–780?nm were generated from the output of a 1?kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femto second NOPA, this system utilizes a broadband pump beam, the chirped 400?nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

Co, Dick T.; Lockard, Jenny V.; McCamant, David W.; Wasielewski, Michael R

2010-01-01T23:59:59.000Z

415

Direct Water Splitting under Visible Light with a Nanostructured Photoanode and GaInP2 Photocathode  

SciTech Connect (OSTI)

Thin films of hematite nanorod and GaInP2 were used for direct water splitting under visible light. In open circuit conditions, the potential of hematite shifted cathodically and that of GaInP2 anodically, which generated an open circuit voltage between the two electrodes. In short circuit condition, the combination of the two photoelectrodes can split water under visible light illumination, though with a very low current of {micro}A/cm2 level even at 1 W/cm2 light. By means of chopped light, we found that hematite nanorod has a low photocurrent, which is responsible for the low short circuit current of the 2-electrode combination. The low photoresponse of hematite nanorods is due to the recombination of photo- generated charges, low holes mobility, and short diffusion length.

Wang, H.; Deutsch, T.; Turner, J.

2008-01-01T23:59:59.000Z

416

Comparison of M46 broad-band visible data with ELF data from the Sprites `96 campaign  

SciTech Connect (OSTI)

Lightning data, recorded with satellite optical sensors, are compared with extremely low frequency (ELF) and Schumann resonance (SR) data from the Sprites `96 Campaign. The satellite data are broad-band visible events recorded by the M46 satellite payload. Full width at half maximum and optical tail durations from the satellite data are compared with ELF slow tail features and Schumann resonance spectral color. In addition, continuing current estimates were computed for several positive cloud-to-ground (PCG) strokes. These estimates were derived using relative optical intensities from the satellite data and a peak current measurement from National Lightning Detection Network (NLDN) data. This assessment of M46 lightning data supports correlations between visible and ELF signatures. More data must be studied for compelling proof.

Mitchell, E.A.

1997-10-01T23:59:59.000Z

417

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

418

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on  

E-Print Network [OSTI]

Power vs Dosage all VCSELs still produce optical power at SLHC dosage should irradiate at lower Workshop 14 Post-Irradiation Analysis all arrays except ULM 5 G still produce optical power post-irradiationK.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on Small Cables

Gan, K. K.

419

agr-1 irradiation experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E. Schwartz Department Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time Schwartz, Stephen E. 13 An Experiment at HiRadMat:...

420

Review of Dynamic Recovery Effects on Ion Irradiation Damage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6H–SiC, ionization processes are less dominant. Citation: Weber WJ, Y Zhang, and LM Wang.2012."Review of Dynamic Recovery Effects on Ion Irradiation Damage in...

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials for cold neutron sources: Cryogenic and irradiation effects  

SciTech Connect (OSTI)

Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab.

Alexander, D.J.

1990-01-01T23:59:59.000Z

422

Irradiation facilities at the Los Alamos Meson Physics Facility  

SciTech Connect (OSTI)

The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

Sandberg, V.

1990-01-01T23:59:59.000Z

423

Sandis irradiator for dried sewage solids. Final safety analysis report  

SciTech Connect (OSTI)

Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

Morris, M.

1980-07-01T23:59:59.000Z

424

Microstructural and Mechanical Property Changes in Ion Irradiated Tunsgten  

E-Print Network [OSTI]

on the sustainability of tungsten as a plasma facing material (PFM). During operation, PFM must withstand harsh conditions with combined effects from high temperature, mechanical stress, irradiation, transmutation, and the production of hydrogen (H) and helium (He...

General, Michael

2013-04-08T23:59:59.000Z

425

Analysis of the empirical relations between visible solar radiation, the solar altitude and the transparency of the atmosphere  

E-Print Network [OSTI]

ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISUAL SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti Submitted to the Graduate College of the Texas ARM Untverstty in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1965 Major Subject: Oceanography ANALYSIS OF THE EMPIRICAL RELATIONS BETWEEN VISIBLE SOLAR RADIATION, THE SOLAR ALTITUDE AND THE TRANSPARENCY OF THE ATMOSPHERE A Thesis A. Garcia Occhipinti...

Garcia Occhipinti, Antonio

1965-01-01T23:59:59.000Z

426

Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules  

SciTech Connect (OSTI)

The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

J M Harp; P D Demkowicz; S A Ploger

2012-10-01T23:59:59.000Z

427

Irradiation Assisted Grain Boundary Segregation in Steels  

SciTech Connect (OSTI)

The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

2008-07-01T23:59:59.000Z

428

Recovery of germanium-68 from irradiated targets  

DOE Patents [OSTI]

A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

429

Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances  

SciTech Connect (OSTI)

Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (?>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup ?} and h{sup +}, especially ·O{sub 2}{sup ?}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.

Cao, Jing, E-mail: caojing@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhao, Yijie; Lin, Haili; Xu, Benyan [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

2013-10-15T23:59:59.000Z

430

Use of laser extensometer for mechanical test on irradiated materials  

SciTech Connect (OSTI)

Techniques have been developed by EDF`s hot laboratory in Chinon for performing mechanical tests on irradiated materials. Some of these techniques aim to facilitate strain measurements, which are particularly difficult to perform on irradiated specimens at high temperatures or on subsize specimens. Recent progress has been driven by laser technology combined with software development. The use of this technique, which allows strain measurements without contact on the specimen, is described for tensile (especially on subsize specimens), fatigue and creep tests.

Brillaud, C.; Meylogan, T.; Salathe, P. [Electricite de France, Avoine (France)

1996-12-31T23:59:59.000Z

431

USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING  

SciTech Connect (OSTI)

In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

2012-07-01T23:59:59.000Z

432

Clinical Results of Image-Guided Deep Inspiration Breath Hold Breast Irradiation  

SciTech Connect (OSTI)

Purpose: To evaluate the feasibility, cardiac dose reduction, and the influence of the setup error on the delivered dose for fluoroscopy-guided deep inspiration breath hold (DIBH) irradiation using a cone-beam CT for irradiation of left-sided breast cancer patients. Methods and Materials: Nineteen patients treated according to the DIBH protocol were evaluated regarding dose to the ipsilateral breast (or thoracic wall), heart, (left ventricle [LV]and left anterior descending artery [LAD]), and lung. The DIBH treatment plan was compared to the free-breathing (FB) treatment planning and to the dose data in which setup error was taken into account (i.e., actual delivered dose). Results: The largest setup variability was observed in the direction perpendicular to the RT field ({mu} = -0.8 mm, {Sigma} = 2.9 mm, {sigma} = 2.0 mm). The mean (D{sub mean}) and maximum (D{sub max}) doses of the DIBH treatment plan was significantly lower compared with the FB treatment plan for the heart (34% and 25%, p < 0.001), LV (71% and 28%, p < 0.001), and LAD (52% and 39.8%, p < 0.001). For some patients, large differences were observed between the heart D{sub max} according to the DIBH treatment plan and the actual delivered dose (up to 71%), although D{sub max} was always smaller than the planned FB dose (mean group reduction = 29%, p < 0.001). Conclusion: The image-guided DIBH treatment protocol is a feasible irradiation method with small setup variability that significantly reduces the dose to the heart, LV, and LAD.

Borst, Gerben R.; Sonke, Jan-Jakob; Hollander, Suzanne den; Betgen, Anja; Remeijer, Peter; Giersbergen, Aline van; Russell, Nicola S.; Elkhuizen, Paula H.M.; Bartelink, Harry [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Vliet-Vroegindeweij, Corine van, E-mail: C.v.vliet@nki.n [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

2010-12-01T23:59:59.000Z

433

Microstructural Analysis of Irradiated U-Mo Fuel Plates: Recent Results  

SciTech Connect (OSTI)

Microstructural characterization of irradiated dispersion and monolithic RERTR fuel plates using scanning electron microscopy (SEM) is being performed in the Electron Microscopy Laboratory at the Idaho National Laboratory. The SEM analysis of samples from U-Mo dispersion fuel plates focuses primarily on the behavior of the Si that has been added to the Al matrix to improve the irradiation performance of the fuel plate and on the overall behavior of fission gases (e.g., Xe and Kr) that develop as bubbles in the fuel microstructure. For monolithic fuel plates, microstructural features of interest, include those found in the U-Mo foil and at the U-Mo/Zr and Zr/6061 Al cladding interfaces. For both dispersion and monolithic fuel plates, samples have been produced using an SEM equipped with a Focused Ion Beam (FIB). These samples are of very high quality and can be used to uncover some very unique microstructural features that are typically not observed when characterizing samples produced using more conventional techniques. Overall, for the dispersion fuel plates with matrices that contained Si, narrower fuel/matrix interaction layers are typically observed compared to the fuel plates with pure Al matrix, and for the monolithic fuel plates microstructural features have been observed in the U-10Mo foil that are similar to what have been observed in the fuel particles found in U-Mo dispersion fuels. Most recently, more prototypic monolithic fuel samples have been characterized and this paper describes the microstructures that have been observed in these samples.

D. D. Keiser, Jr.; J. Jue; B. D. Miller; J. Gan; A. B. Robinson; P. V. Medvedev

2012-03-01T23:59:59.000Z

434

Observations of Edge Turbulence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArmsSpeedingSpeedingUnder Well-ControlledObservation ofofEdge Turbulence

435

Comparison of /sup 32/P therapy and sequential hemibody irradiation (HBI) for bony metastases as methods of whole body irradiation  

SciTech Connect (OSTI)

We report a retrospective study of 15 patients with prostate carcinoma and diffuse bone metastases treated with sodium /sup 32/P for palliation of pain at Downstate Medical Center and Kings County Hospital from 1973 to 1978. The response rates, duration of response, and toxicities are compared with those of other series of patients treated with /sup 32/P and with sequential hemibody irradiation. The response rates and duration of response are similar with both modalities ranging from 58 to 95% with a duration of 3.3 to 6 months with /sup 32/P and from 75 to 86% with a median duration of 5.5 months with hemibody irradiation. There are significant differences in the patterns of response and in the toxicities of the two treatment methods. Both methods cause significant bone marrow depression. Acute radiation syndrome, radiation pneumonitis, and alopecia are seen with sequential hemibody irradiation and not with /sup 32/P, but their incidence can be reduced by careful treatment planning. Hemibody irradiation can provide pain relief within 24 to 48 h, while /sup 32/P may produce an initial exacerbation of pain. Lower hemibody irradiation alone is less toxic than either upper hemibody irradiation or /sup 32/P treatment.

Aziz, H.; Choi, K.; Sohn, C.; Yaes, R.; Rotman, M.

1986-06-01T23:59:59.000Z

436

STABILITY OF DOW CORNING Q2-3183A ANTIFOAM IN IRRADIATED HYDROXIDE SOLUTION  

SciTech Connect (OSTI)

Researchers at the Savannah River National Laboratory (SRNL) examined the stability of Dow Corning Q2-3183A antifoam to radiation and aqueous hydroxide solutions. Initial foam control studies with Hanford tank waste showed the antifoam reduced foaming. The antifoam was further tested using simulated Hanford tank waste spiked with antifoam that was heated and irradiated (2.1 x 10{sup 4} rad/h) at conditions (90 C, 3 M NaOH, 8 h) expected in the processing of radioactive waste through the Waste Treatment and Immobilization Plant (WTP) at Hanford. After irradiation, the concentration of the major polymer components polydimethylsiloxane (PDMS) and polypropylene glycol (PPG) in the antifoam was determined by gel permeation chromatography (GPC). No loss of the major polymer components was observed after 24 h and only 15 wt% loss of PDMS was reported after 48 h. The presence of degradation products were not observed by gas chromatography (GC), gas chromatography mass spectrometry (GCMS) or high performance liquid chromatography mass spectrometry (HPLC-MS). G values were calculated from the GPC analysis and tabulated. The findings indicate the antifoam is stable for 24 h after exposure to gamma radiation, heat, and alkaline simulated waste.

White, T; Crawford, C; Burket, P; Calloway, B

2009-10-19T23:59:59.000Z

437

Observing the Inflationary Reheating  

E-Print Network [OSTI]

Reheating is the the epoch which connects inflation to the subsequent hot Big-Bang phase. Conceptually very important, this era is however observationally poorly known. We show that the current Planck satellite measurements of the Cosmic Microwave Background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models taken in Encyclopaedia Inflationaris. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires to incorporate information about its reheating history.

Jerome Martin; Christophe Ringeval; Vincent Vennin

2014-10-29T23:59:59.000Z

438

The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulses  

SciTech Connect (OSTI)

We have observed thin film removal from glass substrates after the irradiation of Ni films with femtosecond laser pulses in air. It was found that the material removal threshold and laser-induced morphology are dependent on film thickness. With decreasing thickness, material removal transitions from intra-film separation to removal at the Ni-glass interface. The Gaussian energy distribution of the laser pulse allows for intra-film separation in the annular region of the crater and interface separation in the center. We propose a model to explain these data as well as the observed increased surface roughness in the interfacial removal regions.

Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-05-06T23:59:59.000Z

439

Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets  

SciTech Connect (OSTI)

We report on an experiment irradiating individual argon droplets of 20 {mu}m diameter with laser pulses of several Joule energy at intensities of 10{sup 19} W/cm{sup 2}. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.

Neumayer, P.; Gumberidze, A.; Hochhaus, D. C. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Aurand, B.; Stoehlker, T. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Costa Fraga, R. A.; Kalinin, A. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Ecker, B. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe University Frankfurt, 60438 Frankfurt am Main (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Kaluza, M. C. [Helmholtz Institute Jena, 07743 Jena (Germany); IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Kuehl, T. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany); Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [IOQ Institute of Optics and Quantum Electronics, University of Jena (Germany); Reuschl, R. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Winters, D.; Winters, N.; Yin, Z. [Helmholtzzentrum fuer Schwerionenforschung GSI, 64291 Darmstadt (Germany)

2012-12-15T23:59:59.000Z

440

Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam  

SciTech Connect (OSTI)

The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

2014-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "observed visible irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optical Lightcurves of the Black Hole Binaries GRS 1124-68 and A0620-00 in Outburst: the Importance of Irradiation  

E-Print Network [OSTI]

We test whether the model proposed by Esin et al. to explain X-ray observations of the black hole soft X-ray transient GRS 1124-68 in outburst can also explain the optical lightcurves of a similar object A0620-00. We show that to reproduce the observed X-ray to optical flux ratio in A0620-00, we need to assume X-ray irradiation of the outer disk that is significantly in excess of what is expected for a standard planar disk. With enhanced irradiation, the Esin et al. model can reproduce the optical evolution of A0620-00 in outburst very well. Though we find that optical observations of GRS 1124-68 also imply enhanced X-ray heating of the outer disk, the irradiation appears to be a factor of roughly 3 weaker in this system than in A0620-00. This is surprising, since GRS 1124-68 has a larger disk. We speculate that enhanced irradiation may be due to disk warping, and that the degree of warping differs between the two binaries.

Ann A. Esin; Erik Kuulkers; Jeffrey E. McClintock; Ramesh Narayan

1999-11-11T23:59:59.000Z

442

First elevated-temperature performance testing of coated particle fuel compacts from the AGR-1 irradiation experiment  

SciTech Connect (OSTI)

In the AGR-1 irradiation experiment, 72 coated-particle fuel compacts were taken to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures. This paper discusses the first post-irradiation test of these mixed uranium oxide/uranium carbide fuel compacts at elevated temperature to examine the fuel performance under a simulated depressurized conduction cooldown event. A compact was heated for 400 h at 1600 degrees C. Release of 85Kr was monitored throughout the furnace test as an indicator of coating failure, while other fission product releases from the compact were periodically measured by capturing them on exchangeable, water-cooled deposition cups. No coating failure was detected during the furnace test, and this result was verified by subsequent electrolytic deconsolidation and acid leaching of the compact, which showed that all SiC layers were still intact. However, the deposition cups recovered significant quantities of silver, europium, and strontium. Based on comparison of calculated compact inventories at the end of irradiation versus analysis of these fission products released to the deposition cups and furnace internals, the minimum estimated fractional losses from the compact during the furnace test were 1.9 x 10-2 for silver, 1.4 x 10-3 for europium, and 1.1 x 10-5 for strontium. Other post-irradiation examination of AGR-1 compacts indicates that similar fractions of europium and silver may have already been released by the intact coated particles during irradiation, and it is therefore likely that the detected fission products released from the compact in this 1600 degrees C furnace test were from residual fission products in the matrix. Gamma analysis of coated particles deconsolidated from the compact after the heating test revealed that silver content within each particle varied considerably; a result that is probably not related to the furnace test, because it has also been observed in other as-irradiated AGR-1 compacts. X-ray imaging of selected particles was performed to examine the internal microstructure. This examination revealed variable irradiation performance of the coating layers, but sufficient statistical sampling is not yet available to identify any possible correlation to variation in individual particle fission product retention.

Charles A. Baldwin; John D. Hunn; Robert N. Morris; Fred C. Montgomery; Chinthaka M. Silva; Paul A. Demkowicz

2014-05-01T23:59:59.000Z

443

Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose  

SciTech Connect (OSTI)

In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

2014-09-03T23:59:59.000Z

444

AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT  

SciTech Connect (OSTI)

This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47´1025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53´1025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2´10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Blaise, Collin

2014-07-01T23:59:59.000Z

445

Synthesis of nanosize BPO{sub 4} under microwave irradiation  

SciTech Connect (OSTI)

Highlights: ? Nanosize BPO{sub 4} are prepared under microwave-irradiation conditions. ? This reaction is only performed at less than 640 W power for 2.5–5 min. ? The particles of sample irradiated at 400 W are 40–90 nm in size and well dispersed. ? A simple, fast and green procedure for synthesis of nanosize BPO{sub 4} is developed. -- Abstract: Nanosize BPO{sub 4} was synthesized using H{sub 3}BO{sub 3} and H{sub 3}PO{sub 4} (85%) as raw materials under microwave irradiation. This reaction was performed at powers lower than 640 W and irradiation time ranging from 2.5 min to 5 min, which were only a fraction of the time required for conventional synthetic procedures. The structure of the as-prepared BPO{sub 4} is analogous to that of a high cristobalite. The particle sizes of the samples irradiated at 640 and 400 W range from 40 nm to 90 nm and 30 nm to 60 nm, respectively. The effects of different conditions on the experimental outcome are also discussed.

Wang, Rui, E-mail: wr_wrwr@163.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China) [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116023 (China); Jiang, Heng; Gong, Hong; Zhang, Jun [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)] [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

2012-08-15T23:59:59.000Z

446

Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions  

SciTech Connect (OSTI)

Ion irradiation has been widely used to simulate neutron-induced radiation damage. There are a number of features of ion-induced damage that differ from neutron-induced damage, however, and these differences require investigation before ion data can be confidently used to predict behavior arising from neutron bombardment. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. It was observed that the depth dependence of void swelling does not follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then moves to progressively deeper and higher-damage depths during continued irradiation. This indicates a strong initial suppression of void nucleation in the peak damage region that is eventually overcome with continued irradiation. Using the Boltzmann transport equation method, this phenomenon is shown to be due to depth-dependent defect imbalances created under ion irradiation. These findings demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extraction and interpretation of ion-induced swelling data. 2014 El

Lin Shao; C.-C. Wei; J. Gigax; A. Aitkaliyeva; D. Chen; B.H. Sencer; F.A. Garner

2014-10-01T23:59:59.000Z

447

Control of domain wall pinning by localised focused Ga?{sup +} ion irradiation on Au capped NiFe nanowires  

SciTech Connect (OSTI)

Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D. [Department of Physics, Durham University, Durham (United Kingdom)

2014-10-28T23:59:59.000Z

448

Influence of X-ray Irradiation on the Properties of the Hamamatsu Silicon Photomultiplier S10362-11-050C  

E-Print Network [OSTI]

We have investigated the effects of X-ray irradiation to doses of 0, 200 Gy, 20 kGy, 2 MGy, and 20 MGy on the Hamamatsu silicon-photomultiplier (SiPM) S10362-11-050C. The SiPMs were irradiated without applied bias voltage. From current-voltage, capacitance/conductance-voltage, -frequency, pulse-shape, and pulse-area measurements, the SiPM characteristics below and above breakdown voltage were determined. Significant changes of some SiPM parameters are observed. Up to a dose of 20 kGy the performance of the SiPMs is hardly affected by X-ray radiation damage. For doses of 2 and 20 MGy the SiPMs operate with hardly any change in gain, but with a significant increase in dark-count rate and cross-talk probability.

Chen Xu; Robert Klanner; Erika Garutti; Wolf-Lukas Hellweg

2014-06-11T23:59:59.000Z

449

Observing alternatives to inflation  

E-Print Network [OSTI]

We discuss the possibility that the inflationary paradigm, undoubtfully today's best framework to understand all the present cosmological data, may still have some viable challengers. The underlying idea for such discussions is that although inflation already passed quite a large number of tests, indeed enough to make it part of the so-called ``standard model'' of cosmology, it has always been through indirect measurements: there is not a chance that we may ever directly check its validity, and therefore, in order to assert its factuality with increasing level of confidence, it is required that we compare its predictions not only to observations, but also to as many contenders as possible. Among other categories of possible models, we wish to put the emphasis in particular on bouncing cosmologies that, however not as complete as the inflation paradigm might be, could still represent a reasonnable way of explaining the current data. Hopefully, future data will be able to discriminate between these various sets of theories.

P. Peter

2009-12-07T23:59:59.000Z

450

A distributed Approach for Access and Visibility Task under Ergonomic Constraints with a Manikin in a Virtual Reality Environment  

E-Print Network [OSTI]

This paper presents a new method, based on a multi-agent system and on digital mock-up technology, to assess an efficient path planner for a manikin for access and visibility task under ergonomic constraints. In order to solve this problem, the human operator is integrated in the process optimization to contribute to a global perception of the environment. This operator cooperates, in real-time, with several automatic local elementary agents. The result of this work validates solutions brought by digital mock-up and that can be applied to simulate maintenance task.

Bidault, Florence; Chedmail, Patrick; Pino, Laurent

2007-01-01T23:59:59.000Z

451

Visible-light photoconductivity of Zn1-xCoxO and its dependence on Co2+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSL Visible Light

452

Nambu's Nobel Prize, the $?$ meson and the mass of visible matter  

E-Print Network [OSTI]

The electroweak Higgs boson has been discovered in ongoing experiments at the LHC, leading to a mass of this particle of 126 GeV. This Higgs boson mediates the generation of mass for elementary particles, including the mass of elementary (current) quarks. These current-quark masses leave 98% of the mass of the atom unexplained. This large fraction is mediated by strong interaction, where instead of the Higgs boson the $\\sigma$ meson is the mediating particle. Though already discovered in 1957 by Schwinger, the $\\sigma$ meson has been integrated out in many theories of hadron properties because it had not been observed and was doubted to exist. With the observation of the $\\sigma$ meson in recent experiments on Compton scattering by the nucleon at MAMI (Mainz) it has become timely to review the status of experimental and theoretical researches on this topic.

Martin Schumacher

2014-11-05T23:59:59.000Z