National Library of Energy BETA

Sample records for observatory cxs applied

  1. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Applications for the 2016 summer school are now closed. Applications were due on February 5, 2016. PLEASE NOTE: After the 2016 session, the program will not be offered again until 2018. Before applying Check your

  2. HAWC ?-Ray Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the volcanoes Sierra Negra and Pico de Orizaba at the border between the states of Puebla and Veracruz. The observatory, which is still under construction, uses an array of...

  3. HAWC Observatory captures first image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers,

  4. HAWC Observatory captures first image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers,

  5. HAWC γ-Ray Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC γ-Ray Observatory HAWC γ-Ray Observatory Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HAWC γ-Ray Observatory On August 1, 2013, the High-Altitude Water Cherenkov (HAWC) Gamma Ray Observatory formally began operations. HAWC is designed to study the origin of very high-energy cosmic rays and observe the

  6. The Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Dolinski, M. J. [Stanford University Physics Department, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2009-12-17

    The Enriched Xenon Observatory (EXO) experiment will search for neutrinoless double beta decay of {sup 136}Xe. The EXO Collaboration is actively pursuing both liquid-phase and gas-phase Xe detector technologies with scalability to the ton-scale. The search for neutrinoless double beta decay of {sup 136}Xe is especially attractive because of the possibility of tagging the resulting Ba daughter ion, eliminating all sources of background other than the two neutrino decay mode. EXO-200, the first phase of the project, is a liquid Xe time projection chamber with 200 kg of Xe enriched to 80% in {sup 136}Xe. EXO-200, which does not include Ba-tagging, will begin taking data in 2009, with two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4x10{sup 25} years. This corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV.

  7. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  8. New observatory studies universe's most energetic phenomena

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New observatory Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit New observatory studies universe's most energetic phenomena Facility replaces Milagro Observatory near Los Alamos May 1, 2015 From its perch atop the highest accessible peak in Mexico, Milagro's replacement will have 15 percent of the sky within its sights at any given time. From its perch atop the highest accessible peak in Mexico,

  9. The Pierre Auger Cosmic Ray Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completionmore » in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  10. The Pierre Auger Cosmic Ray Observatory

    SciTech Connect (OSTI)

    2015-02-04

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  11. The Pierre Auger Cosmic Ray Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  12. The Princeton Tritium Observatory for Light, Early Universe,...

    Office of Environmental Management (EM)

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield...

  13. Operations of and Future Plans for the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  14. HAWC Observatory to study universe's most energetic phenomena

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory to study universe's most energetic phenomena HAWC Observatory to study universe's most energetic phenomena Inaugural ceremony to mark completion of powerful system to detect gamma rays and cosmic rays March 20, 2015 HAWC Observatory HAWC Observatory to study universe's most energetic phenomena Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email University of Maryland Matthew Wright (30) 405-9267 Email "HAWC will be more than 10

  15. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  16. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  17. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eaton Corporation STATE: WI PROJECT TITLE : Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0001201 DE-EE0007286 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Small-scale research and

  18. The Pierre Auger Observatory: Contributions to the 34th International

    Office of Scientific and Technical Information (OSTI)

    Cosmic Ray Conference (ICRC 2015) (Conference) | SciTech Connect The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015) Citation Details In-Document Search Title: The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015) Authors: Aab, Alexander ; et al. Publication Date: 2015-09-12 OSTI Identifier: 1223251 Report Number(s): FERMILAB-CONF-15-396-AD-AE-CD-TD arXiv eprint number arXiv:1509.03732 DOE

  19. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  20. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  1. New gamma-ray observatory begins operations at Sierra Negra volcano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico The High-Altitude Water Cherenkov Gamma Ray Observatory has begun formal...

  2. Sandia's Frontier Observatory for Research In Geothermal Energy (FORGE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase 1 Proposals Were Both Successful Frontier Observatory for Research In Geothermal Energy (FORGE) Phase 1 Proposals Were Both Successful - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear

  3. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  4. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.

    1996-02-01

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  5. James Cronin, CP Violation, and the Pierre Auger Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    James Cronin, CP Violation and the Pierre Auger Observatory Resources with Additional Information James Cronin Courtesy Brookhaven National Laboratory James Watson Cronin "received his B.S. degree from Southern Methodist University in 1951. He then attended the University of Chicago for graduate school, earning his M.S. in 1953 and his Ph.D. in 1955. He began his scientific career at Brookhaven National Laboratory, where he served as an assistant physicist from 1955 to 1958. Cronin joined

  6. Los Alamos observatory fingers cosmic ray 'hot spots'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic ray 'hot spots' Los Alamos observatory fingers cosmic ray 'hot spots' The research calls into question nearly a century of understanding about galactic magnetic fields near our solar system. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  7. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  8. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  9. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  10. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVII

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil

    2011-08-15

    The results of 3362 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1970 mean relative positions and range in separation from 0.''78 to 72.''17, with a mean separation of 14.''76. This is the 17th in this series of papers and covers the period 2010 January 6 through December 20. Also presented are 10 pairs that are resolved for the first time.

  11. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after havingmore » traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  12. DOE Announces Notice of Intent for EGS Observatory | Department of Energy

    Office of Environmental Management (EM)

    Notice of Intent for EGS Observatory DOE Announces Notice of Intent for EGS Observatory February 21, 2014 - 12:00am Addthis The Energy Department announced today its intent to issue a funding opportunity to establish a dedicated subsurface laboratory called the Frontier Observatory for Research in Geothermal Energy (FORGE). This first-of-its-kind effort will promote transformative and high-risk/high-reward science and engineering focused on addressing critical barriers to Enhanced Geothermal

  13. Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

    SciTech Connect (OSTI)

    Rowland,Joel; Gangodagamage,Chandana; Wilson,Cathy

    2013-12-08

    The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

  14. New gamma-ray observatory begins operations at Sierra Negra volcano in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state of Puebla, Mexico New gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit New gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico The High-Altitude Water Cherenkov Gamma-Ray Observatory has begun formal operations November 1, 2013 HAWC Observatory The

  15. Informational Webinar: Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled “Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement Informational Webinar," focusing on the...

  16. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  17. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  18. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVIII

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Friedman, Elizabeth A. E-mail: wih@usno.navy.mil

    2012-05-15

    The results of 2490 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1462 mean relative positions and range in separation from 0.''56 to 71.''80, with a mean separation of 14.''81. This is the 18th in this series of papers and covers the period 2011 January 3 through 2011 December 18. Also presented are four pairs which are resolved for the first time, thirteen other pairs which appear to be lost, and linear elements for four additional pairs.

  19. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XIX

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Hurowitz, Haley M. E-mail: wih@usno.navy.mil

    2013-09-15

    The results of 2916 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 1584 mean relative positions and range in separation from 0.''54 to 98.''09, with a median separation of 11.''73. This is the 19th in this series of papers and covers the period 2012 January 5 through 2012 December 18. Also presented are 10 pairs that are reported for the first time, 17 pairs that appear to be lost, linear elements for 18 pairs, and orbital elements for 2 additional pairs.

  20. Applied Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Energy Programs Applied Energy Programs Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact and by improving the efficiency and reliability of the energy infrastructure. CONTACT US Program Director Melissa Fox (505) 665-0896 Email Applied Energy Program Office serves as the hub connecting the Laboratory's scientific and technical resources to DOE sponsors, DoD programs, and to

  1. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  2. Applied Math & Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math & Software - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied Math & Software HomeTransportation ...

  3. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  4. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  5. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  6. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVI

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil

    2011-05-15

    The results of 1031 speckle-interferometric observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each speckle-interferometric observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 457 mean relative positions and range in separation from 0.''15 to 16.''94, with a median separation of 3.''03. The range in V-band magnitudes for the primary (secondary) of observed targets is 3.1-12.9 (3.2-13.3). This is the sixteenth in a series of papers presenting measurements obtained with this system and covers the period 2009 January 12 through 2009 December 17. Included in these data are 12 older measurements whose positions were previously deemed possibly aberrant, but are no longer classified this way following a confirming observation. Also, 10 pairs with a single observation are herein confirmed. This paper also includes the first data obtained using a new ICCD with fiber optic cables.

  7. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    SciTech Connect (OSTI)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  8. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  9. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous

  10. Simulation of subsurface thermal regimes of polygonal tundra at Barrow Environmental Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Richard T. Mills; Jitendra Kumar; Vladimir Romanovsky; Peter E. Thornton; Gautam Bisht; Colleen M. Iversen; Nathan Collier

    2016-01-27

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  11. INSIGHTS INTO FILAMENT ERUPTION ONSET FROM SOLAR DYNAMICS OBSERVATORY OBSERVATIONS

    SciTech Connect (OSTI)

    Sterling, Alphonse C.; Moore, Ronald L.; Freeland, Samuel L. E-mail: ron.moore@nasa.gov

    2011-04-10

    We examine the buildup to and onset of an active region filament confined eruption of 2010 May 12, using EUV imaging data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight magnetic data from the SDO Helioseismic and Magnetic Imager. Over the hour preceding eruption the filament undergoes a slow rise averaging {approx}3 km s{sup -1}, with a step-like trajectory. Accompanying a final rise step {approx}20 minutes prior to eruption is a transient preflare brightening, occurring on loops rooted near the site where magnetic field had canceled over the previous 20 hr. Flow-type motions of the filament are relatively smooth with speeds {approx}50 km s{sup -1} prior to the preflare brightening and appear more helical, with speeds {approx}50-100 km s{sup -1}, after that brightening. After a final plateau in the filament's rise, its rapid eruption begins, and concurrently an outer shell 'cocoon' of the filament material increases in emission in hot EUV lines, consistent with heating in a newly formed magnetic flux rope. The main flare brightenings start {approx}5 minutes after eruption onset. The main flare arcade begins between the legs of an envelope-arcade loop that is nearly orthogonal to the filament, suggesting that the flare results from reconnection among the legs of that loop. This progress of events is broadly consistent with flux cancellation leading to formation of a helical flux rope that subsequently erupts due to onset of a magnetic instability and/or runaway tether cutting.

  12. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) » A Nobel for Neutrinos: Sudbury Neutrino Observatory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » 10.01.15 A Nobel for Neutrinos: Sudbury Neutrino Observatory

  13. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  14. Apply for Technical Assistance

    Office of Environmental Management (EM)

    Apply for Technical Assistance Use this online form to request technical assistance from the DOE Offce of Indian Energy for planning and implementing energy projects on tribal lands. To help us determine whether your request fts within the program's scope and can be addressed with available resources, please provide the information below and then click on "Submit Request." Only requests from federally recognized Indian Tribes, bands, nations, tribal energy resource develop- ment

  15. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC » CCS » CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These

  16. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) Larry Schultz Email Deputy Group Leader John George Email Group Office (505) 665-2545 QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  17. THE FOURTH US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC4)

    SciTech Connect (OSTI)

    Zacharias, N.; Finch, C. T.; Bartlett, J. L.; Girard, T. M.; Henden, A.; Monet, D. G.; Zacharias, M. I.

    2013-02-01

    The fourth United States Naval Observatory (USNO) CCD Astrograph Catalog, UCAC4, was released in 2012 August (double-sided DVD and CDS data center Vizier catalog I/322). It is the final release in this series and contains over 113 million objects; over 105 million of them with proper motions (PMs). UCAC4 is an updated version of UCAC3 with about the same number of stars also covering all-sky. Bugs were fixed, Schmidt plate survey data were avoided, and precise five-band photometry was added for about half the stars. Astrograph observations have been supplemented for bright stars by FK6, Hipparcos, and Tycho-2 data to compile a UCAC4 star catalog complete from the brightest stars to about magnitude R = 16. Epoch 1998-2004 positions are obtained from observations with the 20 cm aperture USNO Astrograph's 'red lens', equipped with a 4k by 4k CCD. Mean positions and PMs are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the southern hemisphere, the first epoch plates from the Southern Proper Motion program form the basis for PMs, while the Northern Proper Motion first epoch plates serve the same purpose for the rest of the sky. These data are supplemented by 2MASS near-IR photometry for about 110 million stars and five-band (B, V, g, r, i) APASS data for over 51 million stars. Thus the published UCAC4, as were UCAC3 and UCAC2, is a compiled catalog with the UCAC observational program being a major component. The positional accuracy of stars in UCAC4 at mean epoch is about 15-100 mas per coordinate, depending on magnitude, while the formal errors in PMs range from about 1 to 10 mas yr{sup -1} depending on magnitude and observing history. Systematic errors in PMs are estimated to be about 1-4 mas yr{sup -1}.

  18. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  19. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing

  20. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  1. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  2. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  3. GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky |

    Energy Savers [EERE]

    Department of Energy GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky August 26, 2008 - 3:20pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) and NASA announced today that the Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky image-which shows the glowing gas of the Milky Way, blinking pulsars and a

  4. Prospects for and Status of CUORE ? The Cryogenic Underground Observatory for Rare Events

    SciTech Connect (OSTI)

    Norman, E B

    2009-07-07

    CUORE (Cryogenic Underground Observatory for Rare Events) is a next generation experiment designed to search for the neutrinoless DBD of {sup 130}Te using a bolometric technique. The present status of the CUORE is presented along with the latest results from its prototype, CUORICINO.

  5. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  6. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  7. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  8. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab1-300x218 Complementary burner facilities with...

  9. The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) Prototype

    Office of Environmental Management (EM)

    Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) Tritium Focus Group Meeting Sept 24, 2014 C.A. Gentile and P.G. Efthimion on behalf of the PTOLEMY team Motivation * Big bang relic neutrinos are predicted to be amongst the oldest and smallest particles in the universe. Information on their mass and density would significantly enhance our understanding of elementary particles, the ways in which mass is distributed, and the formation of the universe. *

  10. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) A Nobel for Neutrinos: Sudbury Neutrino Observatory Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 10.01.15 A Nobel for Neutrinos: Sudbury Neutrino

  11. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  12. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  13. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Information Science, Computing, Applied Math /science-innovation/_assets/images/icon-science.jpg Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design»

  14. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema (OSTI)

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  15. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  16. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  17. Anisotropy studies around the Galactic Centre at EeV energies with the Auger Observatory

    SciTech Connect (OSTI)

    Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; Aramo, C.; ,

    2006-07-01

    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius A. Also the events detected simultaneously by the surface and fluorescence detectors (the ''hybrid'' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.

  18. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest conventional cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  19. The exposure of the hybrid detector of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The 'hybrid' detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.

  20. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  1. Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Aab, Alexander

    2015-08-19

    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy density is determined from the radio pulses at each observer position and is interpolated using a two dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge excess emission components. We found that the spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy corrected for geometrical effects is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. Finally we find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.

  2. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  3. Building America Expert Meeting: Recommendations for Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  4. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  5. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  6. Gravitational waves from individual supermassive black hole binaries in circular orbits: limits from the North American nanohertz observatory for gravitational waves

    SciTech Connect (OSTI)

    Arzoumanian, Z.; Brazier, A.; Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T.; Burke-Spolaor, S.; Chamberlin, S. J.; Ellis, J. A.; Demorest, P. B.; Deng, X.; Koop, M.; Ferdman, R. D.; Kaspi, V. M.; Garver-Daniels, N.; Lorimer, D. R.; Jenet, F.; Jones, G.; Lazio, T. J. W.; Lommen, A. N.; Collaboration: NANOGrav Collaboration; and others

    2014-10-20

    We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h {sub 0} ? 3.0 10{sup 14} at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that d{sub L} ? 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10{sup 10} M {sub ?}. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ?four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.

  7. The search for TeV-scale dark matter with the HAWC observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harding, J. Patrick

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to 100 GeV - 100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra mountain in Mexico, HAWC observes extensive air showers from gamma and cosmic rays with an array of water tanks which produce Cherenkov light in the presence of air showers. With a field-of-view capable of observing 2/3 of the sky each day, and a sensitivity of 1 Crab/day, HAWC will be able to map out the sky in gamma and cosmic rays in detail. In thismore » paper, we discuss the capabilities of HAWC to map out the directions and spectra of TeV gamma rays and cosmic rays coming from sources of dark matter annihilation. We discuss the HAWC sensitivity to multiple extended sources of dark matter annihilation and the possibility of HAWC observations of annihilations in nearby dark matter subhalos.« less

  8. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  9. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30km s{sup 1} after their appearance, and subsequently their intensities at 131 decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130km s{sup 1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4?. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

  10. THREE-DIMENSIONAL RECONSTRUCTION OF AN ERUPTING FILAMENT WITH SOLAR DYNAMICS OBSERVATORY AND STEREO OBSERVATIONS

    SciTech Connect (OSTI)

    Li Ting; Zhang Jun; Zhang Yuzong; Yang Shuhong E-mail: zjun@nao.cas.cn

    2011-09-20

    On 2010 August 1, a global solar event was launched involving almost the entire Earth-facing side of the Sun. This event mainly consisted of a C3.2 flare, a polar crown filament eruption, and two Earth-directed coronal mass ejections. The observations from the Solar Dynamics Observatory (SDO) and STEREO showed that all the activities were coupled together, suggesting a global character of the magnetic eruption. We reconstruct the three-dimensional geometry of the polar crown filament using observations from three different viewpoints (STEREO A, STEREO B, and SDO) for the first time. The filament undergoes two eruption processes. First, the main body of the filament rises up, while it also moves toward the low-latitude region with a change in inclination by {approx}48{sup 0} and expands only in the altitudinal and latitudinal direction in the field of view of the Atmospheric Imaging Assembly. We investigate the true velocities and accelerations of different locations along the filament and find that the highest location always has the largest acceleration during this eruption process. During the late phase of the first eruption, part of the filament material separates from the eastern leg. This material displays a projectile motion and moves toward the west at a constant velocity of 141.8 km s{sup -1}. This may imply that the polar crown filament consists of at least two groups of magnetic systems.

  11. The next generation of axion helioscopes: The international axion observatory (IAXO)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; Betz, M.; Brax, P.; Brun, P.; Cantatore, G.; Carmona, J. M.; Carosi, G. P.; Caspers, F.; et al

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ~ 20more » in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.« less

  12. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  13. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  14. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  15. How to Apply for the ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  16. EMERGING DIMMINGS OF ACTIVE REGIONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Zhang Jun; Yang Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu Yang; Sun Xudong, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yliu@sun.stanford.edu, E-mail: xudong@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2012-12-01

    Using the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the emerging dimmings (EDs) of 24 isolated active regions (IARs) from 2010 June to 2011 May. All the IARs show EDs in lower-temperature lines (e.g., 171 A) at their early emerging stages. Meanwhile, in higher temperature lines (e.g., 211 A), the ED regions brighten continuously. There are two types of EDs: fan-shaped and halo-shaped. There are 19 fan-shaped EDs and 5 halo-shaped ones. The EDs appear to be delayed by several to more than ten hours relative to the first emergence of the IARs. The shortest delay is 3.6 hr and the longest is 19.0 hr. The EDs last from 3.3 hr to 14.2 hr, with a mean duration of 8.3 hr. Before the appearance of the EDs, the emergence rate of the magnetic flux of the IARs is between 1.2 Multiplication-Sign 10{sup 19} Mx hr{sup -1} to 1.4 Multiplication-Sign 10{sup 20} Mx hr{sup -1}. The larger the emergence rate is, the shorter the delay time is. While the dimmings appear, the magnetic flux of the IARs ranges from 8.8 Multiplication-Sign 10{sup 19} Mx to 1.3 Multiplication-Sign 10{sup 21} Mx. These observations imply that the reconfiguration of the coronal magnetic fields due to reconnection between the newly emerging flux and the surrounding existing fields results in a new thermal distribution which leads to a dimming for the cooler channel (171 A) and brightening in the warmer channels.

  17. URBAN ATMOSPHERIC OBSERVATORY (UAO) FIRST PLANNING WORKSHOP, JANUARY 27-28-2003. WORKSHOP SUMMARY.

    SciTech Connect (OSTI)

    REYNOLDS,R.M.; LEE,H.N.

    2003-03-27

    The Urban Atmospheric Observatory (UAO) First Planning Workshop was held on 27-28 January 2003 at the Environmental Measurements Laboratory (EML) in downtown Manhattan, New York City. The meeting was well attended by local, state, and national administrators, as well as scientists and engineers from the national laboratories and academia. The real-time intensive UAO is a necessary step toward the development and validation of new technologies in support of the New York City emergency management and anti-terrorism effort. The real-time intensive UAO will be a dense array of meteorological instrumentation, remote sensing and satellite products and model output, as well as radiation detection, gamma spectrometer and aerosol measurements focused onto a small area in the heart of Manhattan. Such a test-bed, developed in a somewhat homogeneous urban area, and with a well-developed communication and data collection backbone, will be of immense utility for understanding how models of all scales can be improved and how they can best be integrated into the city's emergency program. The goal of the First Planning Workshop was to bring together a small group of experts in the fields of urban meteorology, modeling from mesoscale to fine-mesh computational fluid dynamics, instrumentation, communications and visualization, in order to (1) establish the importance of the observational program, (2) define the most efficient and cost-effective design for the program, (3) define needed intensive observational efforts and establish a schedule, and (4) define the importance of the UAO in emergency operations. The workshop achieved its goals with the enthusiastic participation of over forty persons. There was a synthesis of ideas towards a world-class facility that would benefit both immediate emergency management activities and, over an extended time, the entire field of urban meteorology and contaminant dispersion modeling.

  18. Applied geodesy (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Applied geodesy Citation Details In-Document Search Title: Applied geodesy This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are

  19. Apply for Your First NERSC Allocation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Your First Allocation Apply for Your First NERSC Allocation Initial Steps Needed to Apply for Your First NERSC Allocation All work done at NERSC must be within the DOE Office of Science mission. See the Mission descriptions for each office at Allocations Overview and Eligibility. Prospective Principal Investigators without a NERSC login need to fill out two forms: The online ERCAP Access Request Form. If you wish to designate another person to fill out the request form you may

  20. Applied Field Research Initiative Attenuation Based Remedies

    Office of Environmental Management (EM)

    Laboratory (SRNL), the initiative is a collaborative effort that leverages DOE invest- ments in applied research and basic science and the work of the site contractors to...

  1. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  2. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  3. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  4. Observations of comet ISON (C/2012 S1) from Lowell observatory

    SciTech Connect (OSTI)

    Knight, Matthew M.; Schleicher, David G.

    2015-01-01

    We observed the dynamically new sungrazing comet ISON (C/2012 S1) extensively at Lowell Observatory throughout 2013 in order to characterize its behavior prior to perihelion. ISON had typical abundances for an Oort Cloud comet. Its dust production, as measured by Af?, remained nearly constant during the apparition but its CN gas production increased by ?50 . The minimum active area necessary to support observed water production rates exceeded the likely surface area of the nucleus and suggests a population of icy grains in the coma. Together with the flattening of the dust radial profile over time, this is consistant with ejection of a large quantity of slow moving dust and icy grains in the coma at large heliocentric distance. The dust morphology was dominated by the tail, but a faint sunward dust fan was detected in March, April, May, and September. We imaged multiple gas species in September, October, and November. All gas species were more extended than the dust coma, although only CN had sufficient signal-to-noise for detailed morphological study. Excess CN signal was observed in the sunward hemisphere in September and early October. In November the excess CN signal was in the tailward hemisphere and two faint CN features appeared approximately orthogonal to the tail with position angles varying by about 20 from night to night. Using numerical modeling, we best reproduced the orientation and shape of these features as well as the bulk brightness with a pole oriented approximately toward the Sun and a single source located within ?35 of the equator. Variations in position angle and relative brightness of the CN features from night to night suggest a rotation period shorter than 24 hr. The production rates and coma morphology suggest a nucleus that was active over nearly its entire sunward facing hemisphere in September and October but which underwent a significant mass loss event, potentially including fragmentation, shortly before November 1. Significant subsequent mass loss likely continued at the same site over subsequent days/weeks and may have catastrophically weakened the nucleus prior to perihelion.

  5. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  6. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  7. Measurement of the Proton-Air Cross Section at ?s=57 TeV with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almeda, A.; Alvarez Castillo, J.; Alvarez-Muiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Buml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belltoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blmer, H.; Boh?ov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Ro, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Daz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; DOlivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; DUrso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Frhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garca, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gmez Berisso, M.; Gonalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hrandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsk, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krmer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Lopez Agera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martnez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostaf, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mller, G.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Noka, L.; Nyklicek, M.; Oehlschlger, J.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.

    2012-08-10

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [50522(stat)+28-36(syst)] mb is found.

  8. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share...

  9. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced physicschemistry course. To apply for the REU Program, complete the 3 steps below: Fill out the on-line 2016 Cyclotron Institute REU Application Note: You will be...

  10. Applying computationally efficient schemes for biogeochemical cycles

    Office of Scientific and Technical Information (OSTI)

    (ACES4BGC) (Technical Report) | SciTech Connect Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) Citation Details In-Document Search Title: Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) NCAR contributed to the ACES4BGC project through software engineering work on aerosol model implementation, build system and script changes, coupler enhancements for biogeochemical tracers, improvements to the Community Land Model (CLM) code and

  11. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience Application deadline: March 27, 2016, 5:00 pm MDT Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Application process for SAGE 2016 is now open. U.S.

  12. LANSCE | Lujan Center | Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime LANSCE User Resources Tips for a Successful Proposal Step 1: Apply for Beam Time 1. Select an Instrument and a Local Contact 2. Submit Your Proposal Step 2: Before You Arrive 1. Complete the LANSCE User Facility Agreement Questionnaire 2. Arrange for Site Access 3. Prepare for Your Experiment: Contact Lujan Experiment Coordinator to arrange shipping of your samples. Talk to the beamline scientist about any electrical equipment you might bring. 4. Complete your training Step 3:

  13. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postdoctoral Research Awards » How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/853 Application deadline May 7, 2015. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to

  14. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. As amore » result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less

  15. Infrared Spectroscopic Data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), SDSS-III Data Release 10

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan Digital Sky Survey (SDSS) Data Release 10 is the first spectroscopic release from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), including spectra and derived stellar parameters for more than 50,000 stars. APOGEE is an ongoing survey of ~100,000 stars accessing all parts of the Milky Way. By operating in the infrared (H-band) portion of the electromagnetic spectrum, APOGEE is better able to detect light from stars lying in dusty regions of the Milky Way than surveys conducted in the optical, making this survey particularly well-suited for exploring the Galactic disk and bulge. APOGEE's high resolution spectra provide detailed information about the stellar atmospheres; DR10 provides derived effective temperatures, surface gravities, overall metallicities, and information on the abundances of several chemical elements. [copied from http://www.sdss3.org/dr10/irspec/

  16. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with $E \\ge 6 \\times 10^{19}$ eV by analyzing cosmic rays with energies above $E \\ge 5 \\times 10^{18}$ eV arriving within an angular separation of approximately 15$^{\\circ }$ . We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns aremorefound with this analysis. As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.less

  17. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ''multiplets'') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.

  18. Ocean pC02 Data from the Lamont-Doherty Earth Observatory of Columbia University, 1994 - 2009

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Takahashi, T.

    The Earth Institute of Columbia University has, as an overarching goal, to help achieve sustainable development primarily by expanding the world's understanding of Earth as one integrated system. The Earth Institute encompasses centers of excellence with an established reputation for groundbreaking research, including the renowned Lamont-Doherty Earth Observatory (LDEO), home to more than 200 researchers who study Earth and its systems. The Carbon Dioxide Research Group, led by Dr. Taro Takahashi, studies pCO2 in seawater, carbon sequestration models related to deep aquifers, and air-sea CO2 flux. Datasets from ocean cruises in the years 1994 to the present are made available from this website, along with a list of publications, and cruise maps.

  19. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  20. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  1. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  2. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Ott 505-663-5537 Program Administrator Jutta Kayser 505-663-5649 Program Manager Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National Laboratory programs funded by the Department of Energy's Offices of Energy Efficiency/Renewable Energy, Electricity Delivery and Energy Reliability, and Fossil Energy. With energy use increasing across the nation and the world, Los

  3. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  4. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  5. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; et al

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv, ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv ≈ 0.15) and a Colorado boreal forest (κv ≈ 0.16). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv, p. The obtained κv, p values overestimate the experimental FDHA-KIM-derived κv, ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be partly explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (>300 nm) and supermicron aerosol particles possess core-shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second time scales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.« less

  6. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect (OSTI)

    Mikhailov, E. F.; Mironov, G. N.; Phlker, C.; Chi, X.; Krger, M. L.; Shiraiwa, M.; Frster, J. -D.; Pschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61 N; 89 E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 599.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 599.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, ?v, was calculated. The ?v, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained ?v, ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (?v ≈ 0.15) and a Colorado boreal forest (?v ≈ 0.16).

    We used the ZdanovskiiStokesRobinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, ?v, p. The obtained ?v, p values overestimate the experimental FDHA-KIM-derived ?v, ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be partly explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (>300 nm) and supermicron aerosol particles possess core-shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10?12 cm2 s?1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second time scales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer

  7. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associatedmore » systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE < 1.74 x 10-7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV < E < 1 x 1020 eV.« less

  8. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  9. Measurement of the Proton-Air Cross Section at √s=57 TeV with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almeda, A.; Alvarez Castillo, J.; et al

    2012-08-10

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)+28-36(syst)] mb is found.

  10. Measurement of the proton-air cross-section at $\\sqrt{s}=57$ TeV with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collaboration, Auger

    2012-08-01

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 {+-} 22(stat){sub -36}{sup +28}(syst)] mb is found.

  11. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  12. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  13. Tritium research activities in Safety and Tritium Applied Research...

    Office of Environmental Management (EM)

    research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Tritium research activities in Safety and Tritium Applied Research (STAR)...

  14. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  15. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  16. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  17. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review PDF icon 2008meritreview2.pdf...

  18. Advanced Multivariate Analysis Tools Applied to Surface Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Multivariate Analysis Tools Applied to Surface Analysis. Citation Details In-Document Search Title: Advanced Multivariate Analysis Tools Applied to Surface Analysis. No...

  19. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science...

  20. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...

  1. Magnetic relaxometry as applied to sensitive cancer detection...

    Office of Scientific and Technical Information (OSTI)

    relaxometry as applied to sensitive cancer detection and localization Title: Magnetic relaxometry as applied to sensitive cancer detection and localization Here we describe ...

  2. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE ...

  3. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  4. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  5. CX-009420: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  6. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  7. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).« less

  8. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    SciTech Connect (OSTI)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.; Tremonti, Christy; Diamond-Stanic, Aleksandar M.; Law, David R.; Cherinka, Brian; Yan, Renbin; Snchez-Gallego, Jos R.; Drory, Niv; MacDonald, Nicholas; Weijmans, Anne-Marie; Thomas, Daniel; Masters, Karen; Coccato, Lodovico; Aragn-Salamanca, Alfonso; Avila-Reese, Vladimir; Badenes, Carles; Falcn-Barroso, Jsus; Belfiore, Francesco; and others

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 at R ? 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 ({sup 1} per 2'' fiber) at 23 AB mag arcsec{sup 2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ? 10{sup 9} M {sub ?} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6yr.

  9. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Buml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blmer, H.; Boh?ov, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceio, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Domenico, M. De; Jong, S. J. de; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dembinski, H.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Daz; Diogo, F.; Dobrigkeit, C.; Docters, W.; DOlivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filip?i?, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Frhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garca, B.; Gamez, D. Garcia-; Pinto, D. Garcia-; Garilli, G.; Bravo, A. Gascon; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Berisso, M. Gmez; Vitale, P. F. Gmez; Gonalves, P.; Gonzalez, J. G.; Gonzlez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hrandel, J. R.; Horvath, P.; Hrabovsk, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kp, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kgl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krmer, O.; Hansen, D. Kruppke-; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Leo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lpez, R.; Louedec, K.; Bahilo, J. Lozano; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mari?, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Bravo, O. Martnez; Martraire, D.; Meza, J. J. Masas; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Tanco, G. Medina-; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mi?anovi?, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Bueno, L. Molina-; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostaf, M.; Moura, C. A.; Muller, M. A.; Mller, G.; Mller, S.; Mnchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Noka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Dei, D. Pakk Selmi-; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.

    2015-04-24

    In this study, we analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80, thus covering from $-90{}^\\circ $ to $+45{}^\\circ $ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Vron-Cetty and Vron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg/s (18 radius), and around the direction of Centaurus A (15 radius).

  10. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    SciTech Connect (OSTI)

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3? level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  11. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2015-04-24

    In this study, we analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80, thus covering from $-90{}^\\circ $ to $+45{}^\\circ $ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Vron-Cetty and Vron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localizedmoreexcess fluxes, self-clustering of event directions at angular scales up to 30, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg/s (18 radius), and around the direction of Centaurus A (15 radius).less

  12. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; Adushkin, Vitaly V.; Sokolova, Inna N.; Aleschenko, Iraida B.; Mikhailova, Natalya N.; Kim, Won -Young; Richards, Paul G.; Patton, Howard J.; et al

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more thanmore » twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure.« less

  13. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    SciTech Connect (OSTI)

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; Adushkin, Vitaly V.; Sokolova, Inna N.; Aleschenko, Iraida B.; Mikhailova, Natalya N.; Kim, Won -Young; Richards, Paul G.; Patton, Howard J.; Scott Phillips, W.; Randall, George; Baker, Diane

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 19661996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more than twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earths interior structure.

  14. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; ,

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  15. Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013

    SciTech Connect (OSTI)

    Ortega, John; Turnipseed, A.; Guenther, Alex B.; Karl, Thomas G.; Day, D. A.; Gochis, David; Huffman, J. A.; Prenni, Anthony J.; Levin, E. J.; Kreidenweis, Sonia M.; DeMott, Paul J.; Tobo, Y.; Patton, E. G.; Hodzic, Alma; Cui, Y. Y.; Harley, P.; Hornbrook, R. S.; Apel, E. C.; Monson, Russell K.; Eller, A. S.; Greenberg, J. P.; Barth, Mary; Campuzano-Jost, Pedro; Palm, B. B.; Jiminez, J. L.; Aiken, A. C.; Dubey, Manvendra K.; Geron, Chris; Offenberg, J.; Ryan, M. G.; Fornwalt, Paula J.; Pryor, S. C.; Keutsch, Frank N.; DiGangi, J. P.; Chan, A. W.; Goldstein, Allen H.; Wolfe, G. M.; Kim, S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Cantrell, Chris; Mauldin, R. L.; Smith, James N.

    2014-01-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was established in 2008 by the National Center for Atmospheric Research to address many of the BEACHON research objectives, and it now provides a fixed field site with significant infrastructure. MEFO is a mountainous, semi-arid ponderosa pine-dominated forest site that is normally dominated by clean continental air but is periodically influenced by anthropogenic sources from Colorado Front Range cities. This article summarizes the past and ongoing research activities at the site, and highlights some of the significant findings that have resulted from these measurements. These activities include soil property measurements; hydrological studies; measurements of high-frequency turbulence parameters; eddy covariance flux measurements of water, energy, aerosols and carbon dioxide through the canopy; determination of biogenic and anthropogenic volatile organic compound emissions and their influence on regional atmospheric chemistry; aerosol number and mass distributions; chemical speciation of aerosol particles; characterization of ice and cloud condensation nuclei; trace gas measurements; and model simulations using coupled chemistry and meteorology. In addition to various long-term continuous measurements, three focused measurement campaigns with state-of-the-art instrumentation have taken place since the site was established, and two of these studies are the subjects of this special issue: BEACHON-ROCS (Rocky Mountain Organic Carbon Study, 2010) and BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study, 2011).

  16. X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You X-Ray Photoelectron Spectroscopy (XPS) Applied to Soot & What It Can Do for You Presentation given at DEER...

  17. DOE - Office of Legacy Management -- Case School of Applied Science...

    Office of Legacy Management (LM)

    Case School of Applied Science Ohio State University - OH 0-01 FUSRAP Considered Sites Site: Case School of Applied Science, Ohio State University (OH.0-01 ) Eliminated from...

  18. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Info (EERE)

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  19. Aachen University of Applied Sciences | Open Energy Information

    Open Energy Info (EERE)

    Aachen University of Applied Sciences Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Aachen...

  20. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  1. Applying for PMCDP/FPD Certification (initial) | Department of Energy

    Energy Savers [EERE]

    Services » Career Development (PMCDP) » Applying for PMCDP/FPD Certification (initial) Applying for PMCDP/FPD Certification (initial) Certification applicants are nominated by their respective Program Secretarial Office (PSO) to apply for FPD certification - candidates may not apply without program sponsorship. Each participating program has a dedicated point of contact (POC) whose role is to support the FPD applicant in preparing their certification package. First time applicants, as well as

  2. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Energy Savers [EERE]

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  3. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  4. HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Lutken, Carol

    2013-07-31

    A permanent observatory has been installed on the seafloor at Federal Lease Block, Mississippi Canyon 118 (MC118), northern Gulf of Mexico. Researched and designed by the Gulf of Mexico Hydrates Research Consortium (GOM-HRC) with the geological, geophysical, geochemical and biological characterization of in situ gas hydrates systems as the research goal, the site has been designated by the Bureau of Ocean Energy Management as a permanent Research Reserve where studies of hydrates and related ocean systems may take place continuously and cooperatively into the foreseeable future. The predominant seafloor feature at MC118 is a carbonate-hydrate complex, officially named Woolsey Mound for the founder of both the GOM-HRC and the concept of the permanent seafloor hydrates research facility, the late James Robert Bob Woolsey. As primary investigator of the overall project until his death in mid-2008, Woolsey provided key scientific input and served as chief administrator for the Monitoring Station/ Seafloor Observatory (MS-SFO). This final technical report presents highlights of research and accomplishments to date. Although not all projects reached the status originally envisioned, they are all either complete or positioned for completion at the earliest opportunity. All Department of Energy funds have been exhausted in this effort but, in addition, leveraged to great advantage with additional federal input to the project and matched efforts and resources. This report contains final reports on all subcontracts issued by the University of Mississippi, Administrators of the project, Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico, as well as status reports on the major components of the project. All subcontractors have fulfilled their primary obligations. Without continued funds designated for further project development, the Monitoring Station/Seafloor Observatory is in danger of lapsing into disuse. However, for the present, interest in the site on the continental slope is healthy and The Center for Marine Resources and Environmental Technology continues to coordinate all activity at the MS/SFO as arranged through the BOEM in 2005. Field and laboratory research projects and findings are reviewed, new technologies and tests described. Many new sensors, systems and two custom ROVs have been developed specifically for this project. Characteristics of marine gas hydrates are dramatically more refined than when the project was initiated and include appear in sections entitled Accomplishments, Products and Publications.

  5. An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; ,

    2006-06-01

    An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10{sup 19} eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favored.

  6. Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to

    Office of Environmental Management (EM)

    the Thomas Jefferson National Accelerator Facility (TJNAF) | Department of Energy Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By:

  7. Overview of Applied Battery Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es014_henriksen_2010_o.pdf More Documents & Publications Overview of Applied Battery Research Overview and Progress of the Applied Battery Research (ABR) Activity Overview and Progress of the Applied Battery Research (ABR) Activity

  8. Applied Mathematics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of

  9. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORYAN ENSEMBLE STUDY

    SciTech Connect (OSTI)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-10-10

    This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

  10. Tritium Permeation Activity at Safety and Tritium Applied Research (STAR)

    Office of Environmental Management (EM)

    Facility | Department of Energy Permeation Activity at Safety and Tritium Applied Research (STAR) Facility Tritium Permeation Activity at Safety and Tritium Applied Research (STAR) Facility Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Tritium Permeation Activity at Safety and Tritium Applied Research (STAR) Facility More Documents & Publications Tritium Behavior in Lead Lithium Eutectic (LLE) at Low Tritium Partial

  11. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel Computing » How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate

  12. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-1 2. Applied Battery Research Introduction Applied battery research focuses on addressing the cross-cutting barriers facing the lithium-ion systems that are closest to meeting all of the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, the applied battery research activity concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and

  13. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace007_oefelein_2012_o.pdf More Documents & Publications Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research

  14. El Paso County Geothermal Project: Innovative Research Technologies Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Geothermal Reosurce Potential at Fort Bliss | Department of Energy El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss presentation at the April 2013 peer

  15. Opportunities to Apply Phase Change Materials to Building Enclosures

    Energy Savers [EERE]

    Webinar | Department of Energy Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building America webinar on November 11, 2011. PDF icon webinar_pcm_enclosures_20111111.pdf More Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures 2011 Residential Energy Efficiency Technical Update Meeting Summary

  16. Building America Expert Meeting: Recommendations for Applying Water Heaters

    Energy Savers [EERE]

    in Combination Space and Domestic Water Heating Systems | Department of Energy Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems This expert meeting was conducted by Building Science Corporation on July 31, 2011 in Westford, Massachusetts ; the topic of this meeting was 'Recommendations For Applying Water Heaters

  17. Energy Department Extends Deadline to Apply for START Tribal Renewable

    Office of Environmental Management (EM)

    Energy Project Development Assistance to May 22, 2015 | Department of Energy Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 April 30, 2015 - 4:05pm Addthis Energy Department Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 WASHINGTON, DC - The U.S.

  18. APPLIED TECHNOLOGY R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » APPLIED TECHNOLOGY R&D APPLIED TECHNOLOGY R&D rdplan-thumb.jpg Applied technology R&D projects monitor SSL technology advances and provide laboratory and field evaluations of emerging products. Impartial, trusted analysis from DOE identifies and characterizes technology problems early on, alerting manufacturers to needed improvements, and helping to put detailed information into the hands of buyers, which when used in discussions with manufacturers can

  19. Where to Apply for Weatherization Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Weatherization Assistance Program » Where to Apply for Weatherization Assistance Where to Apply for Weatherization Assistance To apply for weatherization assistance you need to contact your state weatherization agency. The U.S. Department of Energy (DOE) does not provide weatherization services or services of any kind to individuals. DOE also does not process applications-this process is handled by each state. How to Determine if You Are Eligible for Weatherization

  20. Overview and Progress of the Applied Battery Research (ABR) Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricate PHEV Cells for Testing & Diagnostics Overview and Progress of the Applied Battery Research (ABR) Activity Current Research Activities in Electrode and Cell Prototyping...

  1. WEBINAR: UNDERSTANDING AND APPLYING TM-30-15 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provided examples of how they can be applied by various users, and demonstrated the Excel tools that are distributed with the document. View the presentation slides View the ...

  2. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings ...

  3. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  4. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  5. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) February 4, 2014 - ...

  6. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  7. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America...

  8. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager.

  9. The generalized finite element method applied to the dynamic...

    Office of Scientific and Technical Information (OSTI)

    Title: The generalized finite element method applied to the dynamic response of heterogeneous media. Authors: Robbins, Joshua ; Voth, Thomas E. Publication Date: 2013-02-01 OSTI ...

  10. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  11. Applied Materials Switzerland SA Formerly HCT Shaping Systems...

    Open Energy Info (EERE)

    Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name: Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place: Chezeaux, Switzerland...

  12. Building America Webinar: Opportunities to Apply Phase Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy ...

  13. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is ...

  14. Applied Solar LLC formerly Open Energy Corp and Barnabus Energy...

    Open Energy Info (EERE)

    Open Energy Corp and Barnabus Energy Inc Jump to: navigation, search Name: Applied Solar LLC (formerly Open Energy Corp and Barnabus Energy Inc) Place: San Diego, California...

  15. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2804: Applying for FLPMA GrantsPermittingRegulatory...

  16. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the ...

  17. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...

    Open Energy Info (EERE)

    Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...

  18. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  19. Remote Gas Well Monitoring Technology Applied to Marcellus Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for Improved Enhanced Oil Recovery Technique Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site New Breathalyzer Offers Hope of Pain-Free Diabetes Monitoring

  20. CX-008179: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 09-056 Demolition CX(s) Applied: B1.23 Date: 04/24/2012 Location(s): Texas Offices(s): Pantex Site Office

  1. CX-007550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  2. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  3. CX-012310: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  4. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  5. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  6. CX-011628: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enclosure Modification Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  7. CX-011630: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  8. CX-009753: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  9. CX-012799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Malin-Hilltop Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  10. CX-012805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brasada-Harney #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41908 Location(s): OregonOffices(s): Bonneville Power Administration

  11. CX-012813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  12. CX-010479: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Load Control System Reliability CX(s) Applied: A9 Date: 05/29/2013 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

  13. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2011 CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011 Location(s): Albany, Oregon...

  14. CX-012619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography and Analytical Sensor Measurements CX(s) Applied: B3.6Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  15. CX-007587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Chromatography CX(s) Applied: B3.6 Date: 12/29/2011 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  16. CX-009202: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Port Angeles Substation Equipment Additions CX(s) Applied: B4.6 Date: 09/14/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-012791: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grizzly Captain Jack Transmission Line Access Road Acquisition CX(s) Applied: B1.24Date: 41935 Location(s): OregonOffices(s): Bonneville Power Administration

  18. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  19. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  20. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  1. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  2. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  3. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation of Cathode Electrocatalytic Activity using Surfaced Engineered Thin Film Samples CX(s) Applied: B3.6 Date: 09082011 Location(s): Pittsburgh,...

  4. CX-009543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sopogy Subcontract CX(s) Applied: A9, B5.15 Date: 11/28/2012 Location(s): Hawaii Offices(s): Golden Field Office

  5. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-012469: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Analysis Services CX(s) Applied: B3.6Date: 41876 Location(s): OregonOffices(s): National Energy Technology Laboratory

  7. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  8. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  9. CX-012666: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carib Energy (USA) LLC CX(s) Applied: B5.7Date: 05/30//2014 Location(s): FloridaOffices(s): Fossil Energy

  10. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  11. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-010727: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dayton Tap Line Retirement CX(s) Applied: B4.10 Date: 08/13/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-011173: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Yaak Substation Transformer Replacement CX(s) Applied: B4.6 Date: 09/18/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  14. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  15. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  16. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  17. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  18. CX-009132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

  19. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  20. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  1. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  2. CX-010339: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flight's End Property Funding CX(s) Applied: B1.25 Date: 05/20/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-012311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office

  4. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  5. CX-012570: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Install Elevated Fire Water Storage Tank CX(s) Applied: B2.5Date: 41862 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  6. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-009850: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Nanomaterials Preparation Lab CX(s) Applied: B3.6 Date: 01/29/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  8. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  9. CX-012656: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Bend Communication Site Engine Generator Replacement CX(s) Applied: B1.3Date: 41848 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. CX-010195: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Polymer Synthesis Lab - Modification CX(s) Applied: B3.6 Date: 04/15/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  11. CX-007779: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Routine Maintenance CX(s) Applied: B1.3 Date: 01/13/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  12. CX-009159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Montana Formaul State Energy Program CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Montana Offices(s): Golden Field Office

  13. CX-007522: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Crane Removal Project CX(s) Applied: B1.23 Date: 12/15/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  14. CX-012645: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wenatchee District 2014 Transmission Line Maintenance - Multiple Lines CX(s) Applied: B1.3Date: 41862 Location(s): WashingtonOffices(s): Bonneville Power Administration

  15. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  16. CX-007650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Control Room Consolidation CX(s) Applied: B2.2 Date: 12/29/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-012653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holcomb-Naselle #1 Access Road Improvements CX(s) Applied: B1.3Date: 41855 Location(s): WashingtonOffices(s): Bonneville Power Administration

  18. CX-012643: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis-Covington #1 Access Roads CX(s) Applied: B1.13Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-012641: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mossy Rock-Chehalis #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. CX-010514: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Nanoscale Energy CX(s) Applied: B3.6 Date: 06/24/2013 Location(s): North Dakota Offices(s): Golden Field Office

  1. CX-007778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 01/13/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  2. CX-010091: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  3. CX-010398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-009312: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  5. CX-100159 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed Rulemaking for Energy Conservation Standards for Commercial and Industrial Pumps RIN: 1904-AC54 CX(s) Applied: B5.1

  6. CX-011065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 08/29/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  7. CX-011788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    I-75 Green Corridor Project CX(s) Applied: A1 Date: 02/10/2014 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

  8. CX-007497: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A1 Date: 12/06/2011 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  9. CX-011712: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 01/08/2014 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  10. CX-010938: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 09/17/2013 Location(s): Kansas, Kansas Offices(s): National Energy Technology Laboratory

  11. CX-011271: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1 Date: 09/30/2013 Location(s): Idaho Offices(s): National Energy Technology Laboratory

  12. CX-012722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Reactor Area (TRA)-653 Conference Room Modifications CX(s) Applied: B1.15Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy

  13. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  14. CX-010797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  15. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  16. CX-009203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ross Maintenance Headquarters Project CX(s) Applied: B1.15 Date: 09/19/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-012788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bio-Aviation Fuel LCA with GREET CX(s) Applied: B5.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  18. CX-011069: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  19. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  20. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-007795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Easement Acquisition, Carroll County, Arkansas CX(s) Applied: B1.24 Date: 02/07/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  2. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-012472: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  4. CX-007613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  5. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  6. CX-012495: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 6 Stack Replacement CX(s) Applied: B1.3Date: 41855 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  7. CX-007428: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ralls Independent School District CX(s) Applied: B5.18 Date: 12/20/2011 Location(s): Texas Offices(s): Golden Field Office

  8. CX-007423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Highland Independent School District CX(s) Applied: B5.18 Date: 12/13/2011 Location(s): Texas Offices(s): Golden Field Office

  9. CX-007426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sharyland Independent School District CX(s) Applied: B5.16 Date: 12/13/2011 Location(s): Texas Offices(s): Golden Field Office

  10. CX-010150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Fiber System CX(s) Applied: B4.7 Date: 04/15/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-009587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office

  12. CX-012228: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deer Park Substation Connection Modifications CX(s) Applied: B4.11 Date: 06/17/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  14. CX-006646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration South of 54-TPX-10CX(s) Applied: B6.1Date: 02/09/2010Location(s): Casper, WyomingOffice(s): RMOTC

  15. CX-003164: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...

  16. CX-012796: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy-Redmond #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41919 Location(s): OregonOffices(s): Bonneville Power Administration

  17. CX-008471: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tree Planting Initiative - Rebuild Western Mass CX(s) Applied: A1 Date: 06/08/2012 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  18. CX-012803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacajawea Substation Expansion and Upgrade CX(s) Applied: B4.6Date: 41912 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-012665: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheniere Marketing, LLC CX(s) Applied: B5.7Date: 06/04/2014 Location(s): Multiple LocationsOffices(s): Fossil Energy

  20. CX-011707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laser Nanoparticle Lab CX(s) Applied: B3.6 Date: 01/15/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  1. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  2. CX-011177: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-006491: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

  4. CX-007873: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  5. CX-007867: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  6. CX-012640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Longview #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  7. CX-011189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naselle Ridge Emergency Generator Replacement CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  8. CX-011237: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  9. CX-010756: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Utility Network Deployment Acceleration CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Virginia Offices(s): Golden Field Office

  10. CX-011102: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    American Solar Transformation Initiative CX(s) Applied: A11 Date: 08/09/2013 Location(s): California Offices(s): Golden Field Office

  11. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  12. CX-010426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vista View Fields Land Acquisition CX(s) Applied: B1.25 Date: 06/19/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-008250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy

  14. CX-010699: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Boulevard Annex Lease Termination CX(s) Applied: B1.24 Date: 07/11/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-008251: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    International Way Office Building Lease Termination CX(s) Applied: B1.24 Date: 03/21/2012 Location(s): Idaho Offices(s): Nuclear Energy

  16. CX-007793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jonesboro Maintenance Facility Additions CX(s) Applied: B1.15 Date: 05/10/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  17. CX-007794: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grandview, Arkansas Interconnection CX(s) Applied: B4.12 Date: 04/08/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

  18. CX-007798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Springfield Maintenance Garage CX(s) Applied: B1.15 Date: 12/08/2010 Location(s): Missouri Offices(s): Southwestern Power Administration

  19. CX-009704: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pasco Land Acquisition CX(s) Applied: B1.24 Date: 12/17/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  2. CX-012728: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BHP-3 Offsite Bump Repair CX(s) Applied: B1.3Date: 41885 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  3. CX-009786: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beck Road Substation Meter Installation CX(s) Applied: B1.7 Date: 01/07/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  4. CX-010742: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated Simulation Development and Decision Support CX(s) Applied: A9 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  5. CX-012730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Radio Tower CX(s) Applied: B1.19Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  6. CX-012531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  7. CX-012539: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): TexasOffices(s): National Energy Technology Laboratory

  8. CX-010019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Iodine Speciation CX(s) Applied: B3.6 Date: 01/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-009295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Regional Innovation Cluster CX(s) Applied: B3.6 Date: 09/05/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  10. CX-001856: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Rural Cooperative Geothermal Development Electric and Agriculture CX(s) Applied: B3.1 Date: 04282010 Location(s): Paisley, Oregon Office(s): Energy...

  11. CX-010763: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...

  12. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  13. CX-012482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  14. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  18. CX-012222: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harney Substation Digital Communications Upgrade CX(s) Applied: B1.7 Date: 06/30/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  20. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  1. CX-012054: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-011538: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-011536: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-011537: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  7. CX-010591: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    South Yamhill Floodplain Property Funding CX(s) Applied: B1.25 Date: 06/26/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-012654: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Red Hills Property Acquisition Funding CX(s) Applied: B1.25Date: 41850 Location(s): OregonOffices(s): Bonneville Power Administration

  9. CX-012224: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coyote Creek Property Acquisition Funding CX(s) Applied: B1.25 Date: 06/25/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. CX-012223: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Turtle Flats Property Acquisition Funding CX(s) Applied: B1.25 Date: 06/25/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-010028: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flame Forming Proppants CX(s) Applied: B3.6 Date: 01/17/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-003703: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Florida Hydrogen Initiative - Florida Institute of Technology (Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program) CX(s) Applied: A9 Date: 09...

  13. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  14. CX-012561: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Department of Energy Office Trailers CX(s) Applied: B1.15Date: 41871 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  15. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-012795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bonneville Substation 23- Kilovolt Line Retermination CX(s) Applied: B4.11Date: 41926 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  18. CX-012822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Santiam-Toledo Structure 39/7 Replacement CX(s) Applied: B1.3Date: 41876 Location(s): OregonOffices(s): Bonneville Power Administration

  19. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  20. CX-012283: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    USC Autoclave CX(s) Applied: B3.6 Date: 06/14/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  1. CX-010587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mariah Wind CX(s) Applied: B1.7 Date: 07/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  2. CX-012583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biofuels Production Experiment CX(s) Applied: B3.6Date: 41841 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. CX-007792: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gore Substation Safety Lighting CX(s) Applied: B2.3 Date: 09/01/2011 Location(s): Oklahoma Offices(s): Southwestern Power Administration

  4. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  5. CX-009630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ICP Routine Maintenance CX(s) Applied: B1.3 Date: 11/06/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  6. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  7. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  8. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  9. CX-011667: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generating Alginate Sorbents CX(s) Applied: B3.6 Date: 12/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  11. CX-012254: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office

  12. CX-012253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office

  13. CX-012118: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  14. CX-008724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rexburg Bus Lot Lease Termination CX(s) Applied: B1.24 Date: 07/05/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-009515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tide Creek Property Funding CX(s) Applied: B1.25 Date: 11/08/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  17. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  18. CX-010342: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Luckiamute Meadows Property Funding CX(s) Applied: B1.25 Date: 05/15/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-010532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

  20. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  1. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  2. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 CX-006298: Categorical Exclusion Determination Interconnection of the Letcher to Mitchell 115 Kilovolt Transmission Line to Western's Letcher Substation CX(s) Applied: B4.11...

  3. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  4. CX-010341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chandler Tap Line Reconductoring CX(s) Applied: B4.6 Date: 05/17/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-012498: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Light Extraction Structure for OLED Lighting CX(s) Applied: B3.6Date: 41852 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  6. CX-007407: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Floating Turbine CX(s) Applied: A9 Date: 12/07/2011 Location(s): Ohio Offices(s): Golden Field Office

  7. CX-010241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Pathway Analyses CX(s) Applied: A9 Date: 02/28/2013 Location(s): Virginia Offices(s): Golden Field Office

  8. CX-008701: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Basin Wilderness Land Exchange CX(s) Applied: B1.25 Date: 06/05/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  9. CX-012807: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Action Substation Equipment Sale CX(s) Applied: B1.24Date: 41906 Location(s): OregonOffices(s): Bonneville Power Administration

  10. CX-009325: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbiology Laboratory CX(s) Applied: B3.6 Date: 10/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  11. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  12. CX-011250: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied: B3.6, B5.15 Date: 10172013 Location(s): Oregon...

  13. CX-008695: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Munro Control Center Expansion CX(s) Applied: B1.15 Date: 06/21/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  14. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  15. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  16. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  17. CX-100160 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed Rulemaking for Energy Conservation Standards for Residential Dehumidifiers RIN: 1904-AC81 CX(s) Applied: B5.1

  18. CX-012812: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemawa-Salem #1 & #2 Access Road Maintenance CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  19. CX-012636: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Woodward Meadows Property Acquisition Funding CX(s) Applied: B1.25Date: 41876 Location(s): MontanaOffices(s): Bonneville Power Administration

  20. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX(s) Applied: DOEEA-1914 National Renewable Energy Laboratory (NREL) Date: 072815 Location(s): CO Office(s): Golden Field Office July 21, 2015 CX-100313...

  1. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  2. CX-008973: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Petrography Laboratory CX(s) Applied: B3.6 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  3. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  4. CX-008926: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Texas Alternative Fuel Vehicle Pilot Program CX(s) Applied: A1 Date: 08/24/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  5. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  6. CX-008884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rattlesnake Butte Property Funding CX(s) Applied: B1.25 Date: 08/13/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  7. CX-011187: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minto Island Property Funding CX(s) Applied: B1.25 Date: 08/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-009206: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chahalpam Property Funding CX(s) Applied: B1.25 Date: 09/12/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  9. CX-010589: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nine Canyon Communication Tower Addition CX(s) Applied: B4.6 Date: 07/01/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  11. CX-009617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Mass Spectrometry CX(s) Applied: B3.6 Date: 11/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-010124: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography / Mass Spectrometry CX(s) Applied: B3.6 Date: 03/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  14. CX-012097: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-007939: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 02/16/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  16. CX-008729: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reverse Osmosis System Removal CX(s) Applied: B1.26 Date: 06/25/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  17. CX-001016: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16: Categorical Exclusion Determination CX-001016: Categorical Exclusion Determination Sustainable Biomass Production Systems-GO88073 Renewal CX(s) Applied: A9 Date: 03012010...

  18. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  19. CX-012585: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grit Blasting CX(s) Applied: B3.6Date: 41835 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  20. CX-012606: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Preparing of Environmental Samples for Analysis CX(s) Applied: B3.6Date: 41810 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-012581: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Demolition of Outfall Sampling Station CX(s) Applied: B1.23Date: 41844 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  2. CX-012572: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    H-Area Vehicle Barrier Installation CX(s) Applied: B1.15Date: 41862 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. CX-012566: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Z-Area Fire Tank Painting CX(s) Applied: B1.3Date: 41865 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  4. CX-012560: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    "Repaint Fire Tank 915-K CX(s) Applied: B1.3 Date: 41871 Location(s): South CarolinaOffices(s): Savannah River Operations Office"

  5. CX-012628: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Deactivation and Decommissioning of 711-L CX(s) Applied: B1.23Date: 41793 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  6. CX-012559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Seal Access Plugs at 105-C CX(s) Applied: B1.3Date: 41872 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  7. CX-012587: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    HB-Line Security Upgrades CX(s) Applied: B1.3Date: 41835 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  8. CX-012725: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Materials and Fuel Complex (MFC)-782 Fire Sprinkler Installation CX(s) Applied: B2.2Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy

  9. CX-012705: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Materials and Fuels Complex (MFC)-703 Fire Alarm Replacement CX(s) Applied: B2.2Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  10. CX-012729: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Sulfide Scavenger BOA (Multiple) CX(s) Applied: B5.2Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  11. CX-012789: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 440 CNM Clean Room Expansion CX(s) Applied: B3.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  12. CX-012563: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof repairs at 735-A CX(s) Applied: B1.3Date: 41870 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  13. CX-011679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-012658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chief Joseph and Custer Substations Security Fence Replacement CX(s) Applied: B1.11Date: 41843 Location(s): WashingtonOffices(s): Bonneville Power Administration

  15. CX-012371: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hawkins-Alvey Line Impairment CX(s) Applied: B1.3 Date: 05/08/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-006681: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Drilling Location in Section 29CX(s) Applied: B3.1Date: 12/23/2009Location(s): Casper, WyomingOffice(s): RMOTC

  17. CX-012437: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Energy Density Lithium Battery CX(s) Applied: B3.6Date: 41878 Location(s): New YorkOffices(s): National Energy Technology Laboratory

  18. CX-008547: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.16 Date: 05/31/2012 Location(s): Florida Offices(s): Golden Field Office

  19. CX-007841: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 01/30/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy

  20. CX-007837: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Kentucky Offices(s): Energy Efficiency and Renewable Energy

  1. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  2. CX-009711: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tucannon River Substation Expansion Project CX(s) Applied: B4.6 Date: 11/01/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-002355: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-002355: Categorical Exclusion Determination Kansas City Power and Light (KCP&L) Green Impact Zone Smart Grid Demonstration CX(s) Applied:...

  4. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  6. CX-009707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcoa Power Sales Contract CX(s) Applied: B4.1 Date: 12/04/2012 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  7. CX-012793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    15-Minute Transmission Scheduling CX(s) Applied: B4.4, B4.5Date: 41933 Location(s): WashingtonOffices(s): Bonneville Power Administration

  8. CX-012519: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  9. CX-100245 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-100245 Categorical Exclusion Determination Hydrogen Adsorbents with High Volumetric Density: New Materials and System Projections Award Number: DE-EE0007046 CX(s) Applied: A9,...

  10. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  11. CX-008556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

  12. CX-008543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office

  13. CX-010658: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    CX-010658: Categorical Exclusion Determination Analytical Development Laser Maintenance CX(s) Applied: B3.6 Date: 06172013 Location(s): South Carolina Offices(s):...

  14. CX-012708: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Test Reactor (ATR) Complex Training Trailer CX(s) Applied: B1.15Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  15. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  16. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  17. CX-007957: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geothermal Incentive Program CX(s) Applied: B5.1 Date: 01/30/2012 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  18. CX-011110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office

  19. FE Categorical Exclusions | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE Categorical Exclusions FE Categorical Exclusions RSS June 4, 2014 CX-011993: Categorical Exclusion Determination Cheniere Marketing, LLC CX(s) Applied: B5.7 Date: 06042014...

  20. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  1. CX-012620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grout Preparation CX(s) Applied: B3.6Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  2. CX-009552: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Central Vermont Recovered Biomass Facility CX(s) Applied: B5.20 Date: 11/28/2012 Location(s): Vermont Offices(s): Golden Field Office

  3. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  4. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  5. CX-010734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Covington District Culvert Replacements CX(s) Applied: B1.3 Date: 07/22/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-009018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Tennessee CX(s) Applied: A9, A11 Date: 08/23/2012 Location(s): Tennessee Offices(s): Golden Field Office

  7. CX-008999: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Program Year 2012 Formula Grants CX(s) Applied: A9, A11 Date: 08/22/2012 Location(s): Missouri Offices(s): Golden Field Office

  8. CX-009027: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Town of Franklin Weatherization Retrofits CX(s) Applied: B5.1 Date: 08/20/2012 Location(s): Vermont Offices(s): Golden Field Office

  9. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  10. CX-007880: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evergreen State Solar Partnership CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Washington Offices(s): Golden Field Office

  11. CX-007853: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Arizona Rooftop Challenge (ARC) CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Arizona Offices(s): Golden Field Office

  12. CX-007893: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 02/10/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  13. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  14. CX-007859: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Developing Solar Friendly Communities CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Colorado Offices(s): Golden Field Office

  15. CX-007882: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wisconsin Solar Market Transformation CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Wisconsin Offices(s): Golden Field Office

  16. CX-007869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready KC CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Missouri Offices(s): Golden Field Office

  17. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  18. CX-007833: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 11/29/2011 Location(s): Colorado Offices(s): Energy Efficiency and Renewable Energy

  19. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  20. CX-010767: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy

  1. CX-011625: Categorical Exclusion Determinationc

    Broader source: Energy.gov [DOE]

    9103 Second Floor Refurbishment CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  2. CX-011184: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Salmon Creek Pond Property Funding CX(s) Applied: B1.25 Date: 08/29/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-008546: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Open-ocean Energy Laboratory CX(s) Applied: A9 Date: 06/20/2012 Location(s): Florida Offices(s): Golden Field Office

  4. CX-010869: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  5. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-008797: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  7. CX-004247: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004247: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 10142010 Location(s): Indian Trail,...

  8. CX-010113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-012028: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    High Temperature Laboratory CX(s) Applied: B3.6 Date: 04/21/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  10. CX-011408: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wyandotte Integrated Renewable Energy Strategy 2 CX(s) Applied: A9 Date: 11/20/2013 Location(s): Michigan Offices(s): Golden Field Office

  11. CX-012436: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    System Reliability Model for SSL Luminaires CX(s) Applied: B3.6Date: 41878 Location(s): AlabamaOffices(s): National Energy Technology Laboratory

  12. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  13. CX-008984: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/29/2012 Location(s): Florida Offices(s): Golden Field Office

  14. CX-007864: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Broward County SOLAR Project CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Florida Offices(s): Golden Field Office

  15. CX-006211: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

  16. CX-011822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Light Willow Demonstration CX(s) Applied: B3.6 Date: 01/09/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination U.S. Department of Energy Collegiate Entrepreneurship Prize Award Number: TBD FOA CX(s) Applied: A9 Date: 12222014 Location(s): CO...

  18. CX-010515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Public Service Campaign CX(s) Applied: A9 Date: 06/14/2013 Location(s): New York Offices(s): Golden Field Office

  19. CX-012122: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  20. CX-009635: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office