National Library of Energy BETA

Sample records for objective life-cycle funding

  1. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  2. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  3. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  4. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  5. Program Evaluation: Program Life Cycle

    Broader source: Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  6. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  7. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    The order addresses stewardship of physical assets as valuable national resources in a cost-effective manner to meet the DOE mission using industry standards, a graded approach, and performance objective.

  8. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory...

  9. Title: The Life-cycle

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author affiliation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also affiliated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, ejalm@lbl.gov, phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720

  10. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  11. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Life Cycle Modeling of Propulsion Materials Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle ...

  12. Life Cycle Inventory Database | Department of Energy

    Energy Savers [EERE]

    Past Projects » Life Cycle Inventory Database Life Cycle Inventory Database The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for information about the total energy and resource impacts of developing and using various commercial building materials, components, and assemblies. The database helps manufacturers, building designers, and developers select energy-efficient and environmentally friendly materials, products, and processes for their projects based on the

  13. Updating the LED Life Cycle Assessment

    Energy Savers [EERE]

    Part 2: LED Manufacturing and Performance 7 Goal of the New Study Review new literature on the life- cycle assessment of LED products. Determine if newer A-19 products...

  14. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  15. Life-Cycle Analysis of Geothermal Technologies

    Broader source: Energy.gov [DOE]

    The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects.

  16. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospective Life Cycle and Technology Analysis Advanced Manufacturing Office Peer Review May 28, 2015 Diane J. Graziano E. Masanet R. Huang M.E. Riddle This presentation does not contain any proprietary, confidential, or otherwise restricted information. DOE-AMO Analysis Summary - ANL/NU * Quantifying, from a life-cycle perspective, the enabling effects of advanced manufacturing in achieving AMO's mission for energy savings across the economy * Assessing net energy, emissions, and economic

  17. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity

  18. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle ... Analysis Activities at National Renewable Energy Laboratory Life Cycle Assessment of ...

  19. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM ...

  20. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products PDF icon ...

  1. Bioproduct Life Cycle Analysis with the GREET Model | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioeconomy Bioproduct Life Cycle Analysis with the GREETTM Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory PDF icon ...

  2. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Our Mission Maintaining the Stockpile Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are ...

  3. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  4. Background and Reflections on the Life Cycle Assessment Harmonization Project

    Broader source: Energy.gov [DOE]

    Despite the ever-growing body of life cycle assessment literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights.

  5. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  6. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Michael Wang, Amgad Elgowainy, Jeongwoo Han Argonne National Laboratory The 2014 DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting Washington, DC June 18, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: van002 Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete: 70% (for FY14)  Indicators and

  7. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part I: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED ...

  8. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, ...

  9. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle ...

  10. Bioproduct Life Cycle Analysis with the GREET Model

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  11. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Breakout Session 2D-Building Market ...

  12. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  13. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  14. Day4 Energy Certus Life Cycle JV | Open Energy Information

    Open Energy Info (EERE)

    Day4 Energy Certus Life Cycle JV Jump to: navigation, search Name: Day4 Energy & Certus Life Cycle JV Place: Italy Product: JV company will develop photovoltaic power projects in...

  15. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  16. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  17. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. PDF icon 27637.pdf More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone

  18. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States On May 29, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report).

  19. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm001_das_2010_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle Modeling of Propulsion Materials

  20. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Life Cycle Cost Programs Building Life Cycle Cost Programs The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Programs to provide computational support for the analysis of capital investments in buildings. They include BLCC5, the Energy Escalation Rate Calculator, Handbook 135, and the Annual Supplement to Handbook 135. BLCC5 Program Register and download. BLCC 5.3-15 (for Windows or Mac OS X). BLCC version 5.3-15 contains the

  1. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on

    Office of Environmental Management (EM)

    Exporting Liquefied Natural Gas from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States

  2. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Environmental Management (EM)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  3. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Part 2: LED Manufacturing and Performance Scholand, Michael; Dillon, Heather E. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE;...

  4. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  5. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model...

  6. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle...

  7. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  8. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting ...

  9. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental ...

  10. NREL: U.S. Life Cycle Inventory Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental impact. This database provides individual gate-to-gate, cradle-to-gate and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with

  11. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  12. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm001_das_2011_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Multi-Material Joining: Challenges and Opportunities

  13. Life cycle assessment and biomass carbon accounting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest ÎŁ = . Over time, if carbon stocks are returned to

  14. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Life Cycle GHG Perspective Report.pdf More Documents & Publications Cameron LNG LLC Final Order Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. ...

  15. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  16. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  17. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News,...

  18. Bioproduct Life Cycle Analysis with the GREETTM Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproduct Life Cycle Analysis with the GREET TM Model Jennifer B. Dunn Biofuel Life Cycle Analysis Team Lead Systems Assessment Group Argonne National Laboratory Biomass 2014 July 29 and 30, 2014 Selection of bioproducts based on a high-level market analysis 2 Algae Glycerol 1,3-Propanediol Propylene glycol Lipid extraction and hydrogenation Catalytic hydrogenolysis Fermentation Acrylic acid 1,4-Butanediol Clean sugars Isobutanol Polyethylene 3-Hydroxypropionic acid Succinic acid Sugars Corn

  19. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm001_das_2012_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview

  20. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 1 life cycle management solutions GENERATING SUCCESS --- FOR 100 YEARS Tritium Separation at Cernavoda Nuclear - Romania A. Antoniazzi TFG May 5-7, 2015 Copyright © 2015 Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 2 life cycle management solutions Background - Cernavoda Nuclear * SNN-CNE has 2 operating CANDU 6 Heavy Water reactors (706 MWe) * U1 operational 1996,

  1. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  2. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This ...

  3. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  4. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  5. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  6. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  7. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm034_das_2010_p.pdf More Documents & Publications Life Cycle Modeling of Propulsion Materials Materials for Advanced Turbocharger Designs CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components

  8. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results. PDF icon 45153.pdf More Documents & Publications Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Vehicle

  9. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  10. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria Hanrot, Francois Ablitzer, Denis

    2008-10-15

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  11. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind/Electrolysis: Milestone Completion Report | Department of Energy Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis. PDF icon 35404.pdf More Documents & Publications Analysis Activities at National Renewable Energy

  12. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  13. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual...

  14. Life Cycle Cost (LCC) Handbook Final Version 9-30-14

    Broader source: Energy.gov [DOE]

    This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform appropriate life-cycle cost analyses (LCCA) for capital projects. LCC Handbook – Final, September 2014

  15. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  16. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies...

  17. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  18. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaiñ€™i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  19. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  20. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  1. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  2. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  3. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies determine the life-cycle cost for investments required by Executive Order 13123. PDF icon lcc_guide_05.pdf More Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Life Cycle Cost (LCC) Handbook Final Version 9-30-14 High Impact Technology

  4. Going with the flow: Life cycle costing for industrial pumpingsystems

    SciTech Connect (OSTI)

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-07-08

    Industries worldwide depend upon pumping systems for theirdaily operation. These systems account for nearly 20 percent of theworld's industrial electrical energy demand and range from 25-50 percentof the energy usage in certain industrial plant operations. Purchasedecisions for a pump and its related system components are typicallybased upon a low bid, rather than the cost to operate the system over itslifetime. Additionally, plant facilities personnel are typically focussedon maintaining existing pumping system reliability rather than optimizingthe systems for best energy efficiency. To ensure the lowest energy andmaintenance costs, equipment life, and other benefits, the systemcomponents must be carefully matched to each other, and remain sothroughout their working lives. Life Cycle Cost (LCC) analysis is a toolthat can help companies minimize costs and maximize energy efficiency formany types of systems, including pumping systems. Increasing industryawareness of the total cost of pumping system ownership through lifecycle cost analysis is a goal of the US Department of Energy (DOE). Thispaper will discuss what DOE and its industry partners are doing to createthis awareness. A guide book, Pump Life Cycle Costs: A Guide to LCCAnalysis for Pumping Systems, developed by the Hydraulic Institute (HI)and Europump (two pump manufacturer trade associations) with DOEinvolvement, will be overviewed. This guide book is the result of thediligent efforts of many members of both associations, and has beenreviewed by a group of industrial end-users. The HI/Europump Guideprovides detailed guidance on the design and maintenance of pumpingsystems to minimize the cost of ownership, as well as LCC analysis. DOE,Hydraulic Institute, and other organizations' efforts to promote LCCanalysis, such as pump manufacturers adopting LCC analysis as a marketingstrategy, will be highlighted and a relevant case studyprovided.

  5. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and NBS Special Publication 709. PDF icon ashb15.pdf More Documents & Publications Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter

  6. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This brochure is a management tool that can help companies minimize waste and maximize energy efficiency for pumping systems. PDF icon Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary (January 2001) More Documents & Publications Variable Speed

  7. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle

  8. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Office presentation icon 16_life_revision_previsic_update.ppt More Documents & Publications 2014 Water Power Program

  9. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and

  10. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Energy Savers [EERE]

    Products | Department of Energy Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL alternatives. The reports for Parts 1 and 2 were published in February 2012 and June 2012, respectively,

  12. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions | Department of Energy GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions November 23, 2015 - 2:57pm Addthis GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model allows researchers and analysts to fully evaluate the energy and emission

  13. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon

  14. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  15. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department...

    Office of Environmental Management (EM)

    Final Version 9-30-14 This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform...

  16. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (2015) - Carbon efficiency 85% * Followed ISO 14040 and convened Critical Review Panel to ... following procedures established under ISO 14040 standards on Life Cycle Analyses * ...

  17. Budget & Funding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » PPPO Program Management » Budget & Funding Budget & Funding Budget & Funding PPPO integrates and coordinates planning and budget support for Environmental Management activities at both the Portsmouth and Paducah sites, reducing the life-cycle costs of projects and accelerating the cleanup of environmental legacies in a safe and compliant manner. BUDGET VS FUNDING: Budget is the projected cost of doing the work in a given fiscal year. Funding is the appropriated funds ($)

  18. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  19. The role of SEA in integrating and balancing high policy objectives in European cohesion funding programmes

    SciTech Connect (OSTI)

    Jiricka, Alexandra Proebstl, Ulrike

    2013-01-15

    Funding programmes for European cohesion policy are a crucial tool to support the sustainability goals of the European Union and national policies of its member states. All these funding programmes require a Strategic Environmental Assessment (SEA) to enhance sustainable development. This article compares five first SEA applications at cohesion policy level to discuss challenges, limitations and benefits of this instrument. In order to support the SEA-process a 'Handbook on SEA for Cohesion Policy 2007-13' (GRDP 2006) was developed. The paper examines the special requirements and challenges at the programme level given the special conditions for stakeholder involvement, integration of SEA in the programme development process and strategies to cope with uncertainties to ensure real compatibility with policy goals. Using action research and in-depth interviews with SEA planners and programme managers enabled us to analyse the suitability of the methodology proposed by the handbook. The results show that some recommendations of the handbook should be changed in order to increase the transparency and to enhance the standard and comparability of the SEA-documents. Overall the SEA proved to be a rather successful tool for the integration of sustainability goals at the EU and national policy levels. Its particular strengths emerged as the process makes uncertainties visible and leads to possible redefinitions while maintaining actual policy goals. - Highlights: Black-Right-Pointing-Pointer Comparing five case studies of first applications of SEA at cohesion policy level. Black-Right-Pointing-Pointer Overall the SEA proved to be a rather successful tool for the integration of sustainability goals. Black-Right-Pointing-Pointer The study makes uncertainties visible and shows how SEA could lead to possible redefinitions.

  20. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  1. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  2. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  3. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  4. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  5. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead Scientist : Gannet Hallar For data sets, see below. Abstract Current estimates indicate that new particle formation globally account for a majority of Cloud

  6. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  7. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUMP LIFE CYCLE COSTS: PUMP LIFE CYCLE COSTS: A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS EXECUTIVE SUMMARY T O F E N E R G Y DE P A R T M EN U E N I T E D S T A T S O F A E R IC A M A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Hydraulic Institute Europump uropump Introduction Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems is the result of a collaboration between the Hydraulic

  8. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our

  9. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  10. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  11. DOE Brochure Highlights Ethanol Life-Cycle Results Obtained with GREET

    SciTech Connect (OSTI)

    2009-01-18

    The U.S. Department of Energy (DOE) recently published a brochure highlighting the efficacy of Argonne National Laboratory's GREET model in evaluating the complete energy life cycle for ethanol.

  12. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  13. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  14. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Broader source: Energy.gov (indexed) [DOE]

    Power Systems | Department of Energy A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon lifecycle_analysis_of_geothermal_systems_draft.pdf More Documents & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the

  15. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin PDF icon 2004_deer_abbott.pdf More Documents & Publications Shell Gas to Liquids in

  16. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two

  17. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  18. Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Life Cycle of Tribal Clean Energy Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy June 29, 2016 11:00AM to 12:30PM MDT According to DOE's National Renewable Energy Laboratory, most of the hundreds of lifecycle assessments published on electricity generation technologies over the last 30 years only assemble lifecycle inventories, quantifying the emissions to the environment or the use of resources rather than reporting effects on environmental

  19. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to

  20. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  1. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer used for Corn, Soybean, and Stover Production | Department of Energy Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a

  2. Estimation and Analysis of Life Cycle Costs of Baseline EGS

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  3. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect (OSTI)

    Rodriguez-Garcia, G.; Moreira, M.T.

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  4. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  5. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  6. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  7. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  8. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  9. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  10. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  11. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  12. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  13. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  14. Product Life-Cycle Management: The future of product and packaging design

    SciTech Connect (OSTI)

    Jung, L.B. )

    1993-01-01

    Product Life-Cycle Management (PLCM) is the control of environmental impacts associated with all the life phases of a product, from design through manufacture, packaging and disposal. PLCM dictates that products be manufactured using less harmful chemicals and fewer resources. Product packaging must be minimal and made of renewable and recyclable resources. Both the product and the package must contain recycled material. Packaging and products must also be collected for recycle at the end of their intended use, requiring infrastructure to collect, transport and process these materials. European legislation now requires the return and recycle of packaging materials by the end of 1993. Requirements are also being imposed on manufacturers of automobile related products; automotive batteries, tires and even automobiles themselves must now be accepted back and recycled. Increasing public concerns and awareness of environmental impacts plus the decreasing availability of natural resources will continue to push product life-cycle legislation forward.

  15. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  16. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang Systems Assessment Section Energy Systems Division Argonne National Laboratory Biomass 2014 Washington, D.C., July 30, 2014 2 The GREET TM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model  DOE has been sponsoring GREET development and applications since 1995 - Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO) - Fuel-Cell Technology Office (FCTO) - Energy Policy and

  17. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Michael Wang, Amgad Elgowainy, Jeongwoo Han, Hao Cai Argonne National Laboratory The 2013 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Arlington, VA May 16, 2013 Project ID: van002 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete:

  18. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  19. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  20. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  1. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  2. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  3. Using life-cycle cost management to cut costs and reduce waste

    SciTech Connect (OSTI)

    Gess, D.; Cohan, D.; McLearn, M.

    1995-12-01

    Increasing competition is forcing electric utility companies to reduce costs and improve efficiency. At the same time, increasing costs for waste disposal and emissions control and growing environmental regulatory pressure are providing powerful incentives for firms in virtually every industry to investigate opportunities to reduce or even eliminate the adverse environmental impacts associated with their operations. companies are also striving toward environmental stewardship to realize the potential benefits to the firms`s public image, employees, an shareholders. Motivated by these cost and environmental concerns, the Electric Power Research Institute (EPRI), Decision Focus Inc. (DFI), and a consortium of electric utility companies have developed techniques and tools to help electric utility companies to make purchase and operating decisions based on their full life-cycle costs, which explicitly include environmental, health, and safety costs. The process, called Life-Cycle Cost Management (LCCM), helps utilities to efficiently assemble the appropriate life-cycle information and bring it to bear on their business decisions. To date, several utilities have used LCCM to evaluate a range of product substitution and process improvement decisions and to implement cost-savings actions. This paper summarizes some of these applications.

  4. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  5. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  6. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  7. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  8. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  9. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    SciTech Connect (OSTI)

    Alderman, C.J.

    1997-06-27

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge.

  10. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  11. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  12. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems ANL/ESD/10-5 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Offce of Scientifc and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

  13. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-30 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Annual Supplement to NIST Handbook 135 Priya D. Lavappa Joshua D. Kneifel This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.85-3273-30 U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Prepared for United States Department of Energy Federal Energy Management Program April 2005 NISTIR 85-3273-30 Energy Price Indices

  14. Microsoft Word - HABAdv#223_Life Cycle&TPA Modifications.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: Life Cycle Cost & Schedule Report of the Proposed Consent Decree & TPA Modifications Adopted: November 6, 2009 Page 1 November 6, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Polly Zehm, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Michelle Pirzadeh,

  15. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis March 24, 2015 Conversion Ling Tao†, Jeongwoo Han* †National Renewable Energy Laboratory *Argonne National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of Waste-To-Energy (WTE) pathways to evaluate their economic viability and environmental sustainability - Strategic

  16. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  17. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  18. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  19. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  20. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  1. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  2. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  3. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  4. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  5. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  6. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  7. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  8. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-510-37500 May 2005 Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production Susan E. Powers Quantifying Cradle-to-Farm Gate Life Cycle Impacts

  9. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  10. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  11. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  12. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  13. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  14. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  15. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  16. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  17. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  18. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  19. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect (OSTI)

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  20. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; George, S.M.

    1993-07-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator`s success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning.

  1. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  2. What Can Meta-Analyses Tell Us About the Reliability of Life Cycle Assessment for Decision Support?

    Broader source: Energy.gov [DOE]

    The body of life cycle assessment (LCA) literature is vast and has grown over the last decade at a dauntingly rapid rate. Many LCAs have been published on the same or very similar technologies or products, in some cases leading to hundreds of publications. One result is the impression among decision makers that LCAs are inconclusive, owing to perceived and real variability in published estimates of life cycle impacts. Despite the extensive available literature and policy need for more conclusive assessments, only modest attempts have been made to synthesize previous research. A significant challenge to doing so are differences in characteristics of the considered technologies and inconsistencies in methodological choices (e.g., system boundaries, coproduct allocation, and impact assessment methods) among the studies that hamper easy comparisons and related decision support.

  3. A Framework for Evaluating R&D Impacts and Supply Chain Dynamics Early in a Product Life Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Evaluating R&D Impacts and Supply Chain Dynamics Early in a Product Life Cycle Looking inside the black box of innovation June 2014 Prepared by Gretchen Jordan, 360 Innovation LLC; Jonathan Mote, George Washington University; Rosalie Ruegg, TIA Consulting Inc.; Thomas Choi, Arizona State University; Angela Becker-Dippmann, Pacifc Northwest National Laboratory i Acknowledgements This report was prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable

  4. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  5. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  6. U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada.  The 2007 total system life...

  7. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect (OSTI)

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  8. Draft Final Phase II Report: Review of Life Cycle and Technology Applications of the Office of Environmental Managements Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A1-1 APPENDIX 1 Charge Summary Issue Suggested Activities Expected Output/ Work Product Notes Charge 1 Modeling for Life-Cycle Analysis This task entails reviewing the modeling approaches for determining tank waste remediation life-cycle costs at both SRS and Hanford. This includes evaluating assumptions in system plans for completing tank waste missions at Hanford and SRS, as well as the rigor of the models for identifying activities and costs through the end of each site's program.

  9. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect (OSTI)

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  10. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    SciTech Connect (OSTI)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  11. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  12. Life-cycle assessment of municipal solid waste management alternatives with consideration of uncertainty: SIWMS development and application

    SciTech Connect (OSTI)

    El Hanandeh, Ali; El-Zein, Abbas

    2010-05-15

    This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system.

  13. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  14. Implementation of 10 CFR 20.1406 Through Life Cycle Planning for Decommissioning

    SciTech Connect (OSTI)

    O'Donnell, E.; Ott, W.R.

    2008-07-01

    This paper summarizes a regulatory guide that the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, is currently developing for use in implementing Title 10, Section 20.1406, of the Code of Federal Regulations (10 CFR 20.1406), 'Minimization of Contamination'. The intent of the regulation is to diminish the occurrence and severity of 'legacy sites' by taking measures to reduce and control contamination and facilitate eventual decommissioning. The thrust of the regulatory guide is to encourage applicants to use technically sound engineering judgment and a practical risk-informed approach to achieve the objectives of 10 CFR 20.1406. In particular, such an approach should consider the materials and processes involved (e.g., solids, liquids, gases), and focus on (1) the relative significance of potential contamination, (2) areas that are most susceptible to leaks, and (3) the appropriate level of consideration that should be incorporated in facility design and operational procedures to prevent and control contamination. (authors)

  15. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    SciTech Connect (OSTI)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.; Lombardo, Nicholas J.; Bass, Robert B.; Smith, Jason E.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedback during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.

  16. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Connect activities through the Regional Development Corporation. "This is the third round of proposals for these Venture Acceleration Fund awards, which have already...

  17. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  18. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  19. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect (OSTI)

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  20. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  1. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  2. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  3. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  4. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    Cancels the following only after meeting implementation conditions: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B, DOE 4320.2A; DOE 4330.4B; DOE 4330.5, DOE 4540.1, DOE 4700.1, DOE 4700.3, DOE 4700.4, DOE 5700.2D, DOE 6430.1A. Canceled by DOE O 430.1A.

  5. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  6. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  7. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect (OSTI)

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  8. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  9. Enterprise Energy Fund Loans

    Broader source: Energy.gov [DOE]

    The New Hampshire Community Loan Fund and the New Hampshire Community Development Finance Authority (CDFA) offer the Enterprise Energy Fund. This revolving loan is funded through New Hampshire's...

  10. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant. In a scenario with conventional tillage and a 30% stover removal rate, life-cycle GHG emissions for a combined gallon of corn grain and stover ethanol without cover crop adoption or manure application are 49 g CO2eq MJ-1, in comparison with 91 g CO2eq MJ-1 for petroleum gasoline. Adopting a cover crop or applying manure reduces the former ethanol life-cycle GHG emissions by 8% and 10%, respectively. We considered two different life cycle analysis approaches to develop estimates of life-cycle GHG emissions for corn stover ethanol, marginal analysis and energy allocation. In the same scenario, this fuel has GHG emissions of 12 – 20 g CO2eq MJ-1 (for manure and cover crop application, respectively) and 45 – 48 g CO2eq MJ-1 with the marginal approach and the energy allocation approach, respectively.

  11. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  12. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Funding Opportunities Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS There are no funding and solicitation opportunities at the moment. Please check back soon for upcoming announcements.

  13. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  14. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    Massachusetts's 1997 electric-utility restructuring legislation created separate public benefits funds to promote renewable energy and energy efficiency for all customer classes. Both funds were...

  15. Revolving Loan Funds (RLF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolving Loan Funds (RLF) Sam Booth National Renewable Energy laboratory 6 July 2009 Overview Under the American Recovery and Reinvestment Act (ARRA) funding totaling $3.1 B is available for State Energy Programs (SEP). One of the program areas that the ARRA legislation encourages is the creation of long term funding mechanisms such as revolving loan funds (RLF), in order to extend the impact of the ARRA funds. By creating a revolving loan fund, states are not subject to expiration of the funds

  16. Funding | Department of Energy

    Energy Savers [EERE]

    Funding Funding Federal agencies, including the U.S. Department of Energy Office of Indian Energy, provide grant, loan, and technical assistance programs to support tribal energy projects. Find information about past funding opportunities. Current Funding Opportunities Ongoing Opportunities Current Funding Opportunities Close Date Organization Opportunity 3/21/2016 U.S. Environmental Protection Agency APPA Proposed Rule to Treat Tribes as States Under CWA 303 (d) The U.S. Environmental

  17. LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation...

    Broader source: Energy.gov (indexed) [DOE]

    the comparison of alternatives within an LCCA. Variations in the utility requirements and consumption rates of various alternatives, as well as sources of those utilities (e.g.,...

  18. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  19. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    SciTech Connect (OSTI)

    Bjoerklund, Anna

    2012-01-15

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: Black-Right-Pointing-Pointer LCA was explored as analytical tool in an SEA process of municipal energy planning. Black-Right-Pointing-Pointer The process also integrated LCA with scenario planning and public participation. Black-Right-Pointing-Pointer Benefits of using LCA were a systematic framework and wider systems perspective. Black-Right-Pointing-Pointer Integration of tools required some methodological challenges to be solved. Black-Right-Pointing-Pointer This proved an innovative approach to define alternatives and scope of assessment.

  20. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  1. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  2. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund is funded by a surcharge of $0.003 per kilowatt-hour (3 mills per kWh) on Connecticut Light and Power (CL&P) and United Illuminating (UI) customers' electric bills....

  3. Delmarva- Green Energy Fund

    Broader source: Energy.gov [DOE]

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  4. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  5. Offshore Wind Funding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Funding Offshore Wind Funding View All Maps Addthis

  6. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  7. Renewable Funding | Open Energy Information

    Open Energy Info (EERE)

    Funding Jump to: navigation, search Name: Renewable Funding Place: Oakland, CA Website: www.renewfund.com References: Renewable Funding1 Information About Partnership with NREL...

  8. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Funding Opportunities RSS Solid-State Lighting Manufacturing Research and Development - Round 4 (DE-FOA-0000792) Closed Total DOE Funding: 11 million The...

  9. Alamos Employees' Scholarship Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amount pledged by Los Alamos National Laboratory employees to Los Alamos Employees' Scholarship Fund drive July 13, 2015 More than 1,000 scholarships awarded through since 1997 LOS ALAMOS, N.M., July 13, 2015-Los Alamos National Laboratory employees pledged a record $356,550 to the 2015 Los Alamos Employees' Scholarship Fund (LAESF) drive. The drive encourages Laboratory employees, retirees, and subcontract personnel to donate to a fund that awards college scholarships to Northern New Mexico

  10. Funding for CSES Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding for CSES Projects Funding for CSES Projects High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email CSES Student and Postdoctoral Fellow Program Funding intervals are based on the federal fiscal year spanning the year from October 1 through September 30 of the following year. For all projects

  11. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  12. Clean Energy Development Fund

    Broader source: Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  13. Contractor-Funded Incentives

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Workforce / Business Partners Peer Exchange Call Series: Contractor-Funded Incentives, Call Slides and Discussion Summary, November 21, 2013.

  14. WINDExchange: Funding School Wind Projects

    Wind Powering America (EERE)

    Funding School Wind Projects Funding school wind installations can be challenging, but many schools have successfully secured funding to install turbines and implement curricula. The following examples of methods used to fund Wind for Schools projects may be useful for anyone researching funding wind turbine installations at schools; also see the Wind for Schools Funding Spreadsheet for more examples of school turbine costs and mechanisms utilized to fund the projects. Photo of children in front

  15. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Funding Opportunities RSS Funding Opportunity: Emerging Technologies Submission Deadline for Concept Papers: January 29, 2016 Submission Deadline for Full Applications: April 18, 2016 The Building Technologies Office (BTO) Emerging Technologies Program has announced the availability of $8 million for Funding Opportunity Announcement (FOA) DE-FOA-0001383, "Building Energy Efficiency Frontiers & Innovations Technologies (BENEFIT) - 2016." Funding Opportunity:

  16. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  17. Recent Funding | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Funding The following table lists NREL's annual funding in millions of dollars per fiscal year. Fiscal Year Funding (in millions) FY02 215.8 FY03 229.8 FY04 211.9 FY05 201.9 FY06 209.6 FY07 378.4 FY08 328.3 FY09 521.1 FY10 536.5 FY11 388.6 FY12 352.0 FY13 371.6 FY14 360.3

  18. BER Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  19. HEP Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  20. BES Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  1. ASCR Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  2. FES Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  3. NP Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  4. Clean Energy Fund (CEF)

    Broader source: Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  5. Energy Efficiency Trust Fund

    Broader source: Energy.gov [DOE]

    Additional funds may be accumulated through non-compliance fees as part of the Energy Efficiency Portfolio Standard (EEPS). For both natural gas and electric utilities, failure to submit an energ...

  6. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aims to help entrepreneurs and businesses reach the next level of success and grow the economy in Northern New Mexico. About the Venture Acceleration Fund The VAF is a...

  7. DOE Funding Opportunity Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Indian Energy, in coordination with Western Area Power Administration, is hosting an informational webinar on the funding opportunity for the...

  8. Energy Revolving Loan Fund

    Broader source: Energy.gov [DOE]

    In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Michigan Energy Office (MEO), within the...

  9. Connecticut Clean Energy Fund

    Broader source: Energy.gov [DOE]

    Connecticut's 1998 electric restructuring legislation (Public Act 98-28) created separate funds to support energy efficiency and renewable energy.* This information summarizes the renewable energ...

  10. Energy Loan Fund

    Broader source: Energy.gov [DOE]

    The Energy Loan Fund provides low-cost financing for energy efficiency and renewable energy improvements to Ohio-based businesses with less than 500 employees, manufacturers enrolled in the Energ...

  11. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  12. Government Funding Opportunity Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Government Funding Opportunity Announcements Government Funding Opportunity Announcements World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. When LACED can Participate LACED is allowed to noncompetitively participate (respond directly, co-respond, provide content, etc.) in FOAs, so long as the FOA meets the following criteria: Each respondent submits its unique Statement of Work in response to the broad

  13. NREL Funding Reductions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Reductions to Further Impact Lab's Work Force For more information contact: Robert Noun 303-275-3062 Golden, Colo., December 22, 1995 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today that it will further reduce its work force as a result of continuing reductions of its fiscal year 1996 federal funding for renewable energy research and development. On November 2, the laboratory announced plans to reduce its 900 person regular work force

  14. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  15. Funding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Funding Photo courtesy of ©iStockphoto.com/Professor25 Photo courtesy of ©iStockphoto.com/Professor25 The Office of Energy Efficiency and Renewable Energy (EERE) works with business, industry, universities, and others to increase the use of renewable energy and energy efficiency technologies. One way EERE encourages the growth of these technologies is by offering financial assistance opportunities for their development and demonstration. Visit the EERE Financial Opportunities website

  16. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Funding Opportunities Various options are available to fund and finance tribal renewable energy projects, including federal, state, and non-profit grants. Visit the following websites for funding opportunities. DOE Office of Energy Efficiency and Renewable Energy Funding Opportunity Exchange Alaska Energy Authority Alaska Renewable Energy Grant Fund Database of State Incentives for Renewables & Efficiency Grants.gov U.S. Department of Agriculture Rural Development Grant

  17. Future Funding: Effective Models for Leveraging Public Funds | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Future Funding: Effective Models for Leveraging Public Funds Future Funding: Effective Models for Leveraging Public Funds This webinar covered national and state utility-sector energy efficiency funding levels, ARRA guidance on working with existing programs, working with utility sector programs, and next steps. Transcript PDF icon Presentation More Documents & Publications How to Design and Market Energy Efficiency Programs to Specific Neighborhoods Developing an Evaluation

  18. Scientific Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols - Effects on Clouds and Climate Scientific Objective Aerosols in the sky are essential to Earth's climate because they can reflect light into space, cooling the atmosphere, or they can combine with other particles to create clouds that have both warming and cooling effects. Biogenic aerosols are emitted by the biosphere directly, or are formed from biogenic volatile gases in gas-to-particle conversion. Examples include dead cells and pollen spores. Boreal forests are among the

  19. Program Objectives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances Program / Program Objectives Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high

  20. Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Funding Opportunities Various options are available to fund and finance tribal renewable energy projects, including federal, state, and non-profit grants. Visit the following websites for funding opportunities. DOE Office of Energy Efficiency and Renewable Energy Funding Opportunity Exchange Alaska Energy Authority Alaska Renewable Energy Grant Fund Database of State Incentives for Renewables & Efficiency Grants.gov U.S. Department of Agriculture Rural Development Grant

  1. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Broader source: Energy.gov [DOE]

    Project objectives: Gather and analyze independently the available technical, cost, financial incentive data on installed GSHP/HGSHP applications in residential, commercial and schools in hot and humid climate regions, and develop a calibrated baseline and performance period model of new construction and retrofitted buildings in conjunction with the energy simulation program.

  2. Community Involvement Fund | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Overview The success of EM's legacy waste cleanup mission depends largely on the support of informed and engaged stakeholders. Cleanup activities have the potential to affect the health of the public, the environment, and the

  3. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  4. NSR&D Program Funded Projects | Department of Energy

    Office of Environmental Management (EM)

    NSR&D Program Funded Projects NSR&D Program Funded Projects NSRD-01, Develop and Manufacture an Ergonomically-Sound Glovebox-Glove Principle Investigator: Cindy Lawton, BCPE, PT (Los Alamos National Laboratory (LANL) with Cornell University), cindyl@lanl.gov Project Description and Technical Objective: The project objective is to design and develop a safer and more ergonomically-sound glovebox-glove. The team will partner with a manufacturer for large-scale production of the glove that

  5. The design of the AIE: An object-oriented application development system

    SciTech Connect (OSTI)

    Fuja, R.S.; Widing, M.A.

    1992-02-27

    Three years ago, in response to our challenging development context, the Advanced Modeling and Analysis Section designed and implemented an object-oriented environment -- the Application Interface Engine (AIE). Our prototyping requirements forced existing application development systems beyond their capabilities. Programmers at AMAS and its contractors have developed over twenty applications using AIE. Our initial experience has been very positive. AIE extends an object-oriented programming language with syntax and classes to support applications specification. This extended system improves all stages of the application engineering life cycle, from rapid prototyping to long term maintenance.

  6. State Facility Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    HB 198 of 2008 established a revolving loan program to fund efficiency improvements in state facilities. The fund was capitalized with a transfer of $3,650,000 from the Stripper Well-Petroleum...

  7. Energy Loan Fund for Schools

    Broader source: Energy.gov [DOE]

    Two categories of funding are available for schools to reduce energy consumption. Category I funding will pay for technical and energy audits, the development of Energy Management Plans, and any ...

  8. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  9. Project Funding Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Funding Catalog of Services The U.S. Department of Energy Federal Energy Management Program February 2015 Project Funding Catalog of Services Contacts Contacts Patrick Shipp FEMP 1000 Independence Ave SW Washington, DC 20585 E-mail: patrick.shipp@ee.doe.gov Project Funding Catalog of Services Table of Contents Contents Contents ........................................................................................................................................................ i

  10. Program Objectives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances / Program Objectives Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for

  11. Funding Opportunity Announcement Webinar

    Office of Environmental Management (EM)

    Funding Opportunity Announcement Webinar ESTABLISHMENT OF AN INTER-TRIBAL TECHNICAL ASSISTANCE ENERGY PROVIDERS NETWORK (DE-FOA-0001453) Lizana Pierce, Senior Engineer and Program Manager March 1, 2016 Send FOA Questions to tribal@ee.doe.gov 2 FOA Document, Forms & Frequently Asked Questions https://eere-exchange.energy.gov/#FoaId47df7cd5-5f75-4e14-954b-bce53b93cdca 3 FOA Document, Forms & Frequently Asked Questions https://eere-exchange.energy.gov 4 FOA Document, Forms & Frequently

  12. Recommendation 210: Continue funding commitment | Department...

    Office of Environmental Management (EM)

    0: Continue funding commitment Recommendation 210: Continue funding commitment The ORSSAB respectfully request that DOE continue the commitment made through adequate funding levels...

  13. Ethanol Capital Funding | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Funding Jump to: navigation, search Name: Ethanol Capital Funding Place: Atlanta, Georgia Zip: 30328 Product: Provides funding for ethanol and biodiesel plants....

  14. Massachusetts Green Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Logo: Massachusetts Green Energy Fund Name: Massachusetts Green Energy Fund Address: 320 Washington Street, 4th Floor Place: Brookline,...

  15. Solar Electric Light Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund AgencyCompany Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar...

  16. Funding Opportunity Announcement: Solar Training and Education...

    Office of Environmental Management (EM)

    Solar Training and Education for Professionals (STEP) Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP) Funding Number: DE-FOA-0001329 Funding ...

  17. Hillsboro Alternative Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Fund Jump to: navigation, search Name: Hillsboro Alternative Energy Fund Place: London, England, United Kingdom Zip: SW7 3SS Product: A hedge fund concentrating...

  18. The Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  19. Nationwide Solar Funding | Open Energy Information

    Open Energy Info (EERE)

    Solar Funding Jump to: navigation, search Name: Nationwide Solar Funding Place: Palm Desert, California Zip: 92211 Sector: Solar Product: Provides funding for small (residential...

  20. Funding Opportunity Announcement: Photovoltaic Research & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: 20,000,000 ...

  1. Five companies received funding through new venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New venture acceleration fund supports regional tribes Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit New venture acceleration fund supports regional tribes Five Native American businesses receive grants. March 1, 2013 Ribbon cutting for the venture accelation fund recipients Representatives from regional tribes received grants designed to help them create jobs, increase their revenue base and

  2. Revolving Loan Funds (RLF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds (RLF) Revolving Loan Funds (RLF) Provides general information on setting up a revolving loan fund, with focus on doing so with U.S. Department of Energy State Energy Program funds. Author: National Renewable Energy Laboratory PDF icon Revolving Loan Funds (RLF) More Documents & Publications Revolving Loan Funds: Basics and Best Practices State Energy Revolving Loan Funds Technical Assistance Project (TAP) Revolving Loan Funds: Basics and Best Practices

  3. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  4. Program Objectives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    High Energy Density Laboratory Plasmas / Program Objectives Program Objectives High Energy Density Laboratory Plasmas (HEDLP) Program Objectives Support the U.S. scientific community by funding research projects at universities in the areas of fundamental science and technology of relevance to the Stockpile Stewardship Program, with a focus on those areas not supported by other federal agencies, and for which there is a recruiting need within the National Laboratories; Provide advanced research

  5. Chapter 19 - Nuclear Waste Fund

    Energy Savers [EERE]

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  6. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds Motion recognition software business receives Venture Acceleration Funds LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. April 3, 2012 Jim Spadaccini, owner of Ideum a software development company in Corrales Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA, Market Intelligence. Ideum, his Corrales, New Mexico based business, creates

  7. Los Alamos Employees' Scholarship Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Employees' Scholarship Fund Los Alamos Employees' Scholarship Fund The LAESF campaign raises funds for scholarships that support students from Northern New Mexico who are pursuing four-year undergraduate degrees in fields that will serve the region. June 13, 2012 Scholarship winner and Lab Director Scholarship winner Micaela Lucero and Lab Director Charlie McMillan Contacts Giving Campaigns & Volunteering Debbi Wersonick Community Relations & Partnerships (505) 667-7870 Email

  8. Financial Assistance Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding Opportunity Announcement (FOA) for the initial Weatherization Innovation Pilot Program grant, issued in April 2010 and closed in June 2010.

  9. BENEFIT Funding Opportunity- Webinar 2

    Broader source: Energy.gov [DOE]

    This is webinar 2 for the Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement (FOA) Number: DE-FOA-0001166.

  10. BENEFIT Funding Opportunity- Webinar 1

    Broader source: Energy.gov [DOE]

    This is webinar 1 for the Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement (FOA) Number: DE-FOA-0001166.

  11. Section I - FUNDING OPPORTUNITY DESCRIPTION

    Broader source: Energy.gov (indexed) [DOE]

    RECOVERY ACT" FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of ... data strategy, and procurement or financial assistance instrument that best manages ...

  12. Previous MFRC-Funded Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Previous MFRC-Funded Projects 2011 MFRC-Funded Projects 2010 MFRC-Funded Projects 2009 MFRC-Funded Projects 2008 MFRC-Funded Projects 2007 MFRC-Funded Projects 2006 MFRC-Funded Projects 2005 MFRC-Funded Projects 2004 MFRC-Funded Projects 2003 MFRC-Funded Projects 2002 MFRC-Funded Projects

  13. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle lightweighting, wide band gap materials, additive manufacturing, natural gas to ... to be > 30% CAGR through 2020 * Aircraft industry case study - key early adopter ...

  14. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  15. Revolving Loan Fund Webinars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fund Webinars Revolving Loan Fund Webinars Provides a listing of past revolving loan fund webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy Revolving Loan Fund Webinars More Documents & Publications Financing Energy Upgrades for K-12 School Districts Loan Loss Reserve Funds Webinars Power Purchase Agreement Webinars

  16. Funding Opportunity Announcement: Concentrating Solar Power: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offering Low LCOE Opportunities | Department of Energy Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Number: DE-FOA-0001186 Funding Amount: $25,000,000 Description The Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks

  17. Open Funding Opportunity Announcements (FOAs)

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  18. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  19. Energy Efficiency Investment Fund Rebates

    Broader source: Energy.gov [DOE]

    Specific efficiency requirements for rebates are available at  the Energy Efficiency Investment Fund Website in applications for Lighting and Lighting Control Rebates, Natural Gas and Water Heati...

  20. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  1. BENEFIT 2015 Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    The Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) Funding Opportunity Announcement (FOA) DE-FOA-0001166 seeks to advance non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  2. Energy Efficiency Revolving Loan Fund

    Broader source: Energy.gov [DOE]

    To apply for funding, applicants must first commission a technical analysis by a Professional Engineer, a Certified Energy Manager, or an Accredited Commercial Energy Manager to identify the most...

  3. BENEFIT 2016 Funding Opportunity Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    These webinars provide an overview of the BENEFIT 2016 Funding Opportunity. The first introductory webinar was held on December 21, 2015 (text version).  A second webinar for full applications was...

  4. First Carbon Fund Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fund Ltd Jump to: navigation, search Name: First Carbon Fund Ltd Place: London, Greater London, United Kingdom Zip: EC1V 9EE Sector: Carbon Product: First Carbon Fund Ltd., acts as...

  5. Sun Fund 5 SL | Open Energy Information

    Open Energy Info (EERE)

    Fund 5 SL Jump to: navigation, search Name: Sun Fund 5 SL Place: Madrid, Spain Product: Spanish PV project developer. References: Sun Fund 5 SL1 This article is a stub. You can...

  6. Texas Emerging Technology Fund | Open Energy Information

    Open Energy Info (EERE)

    Emerging Technology Fund Jump to: navigation, search Name: Texas Emerging Technology Fund Place: Texas Product: String representation "The Texas Emerg ... hnology fields." is too...

  7. Energy Revolving Loan Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Revolving Loan Fund (ELF) which provides low interest loans for RI business for energy saving investments. This loan program is funded by reprogrammed stimulus money from the...

  8. Now Accepting Applications: BUILD Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity, the Energy Department will make $1 million available to fund efforts by U.S. based...

  9. City of Columbus- Green Columbus Fund

    Broader source: Energy.gov [DOE]

    The Green Columbus Fund incentivizes sustainable development and redevelopment in Columbus, Ohio. The Fund reimburses private and non-profit developers the application fee for the Green Building...

  10. DEMEC - Green Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PagesGEP%20DE... State Delaware Program Type Public Benefits Fund Summary Note: The Green Energy Fund regulations are currently under revision to improve program function and...

  11. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked ...

  12. Pivotal Investments Fund | Open Energy Information

    Open Energy Info (EERE)

    Pivotal Investments Fund Jump to: navigation, search Name: Pivotal Investments Fund Address: 433 NW 4th Avenue Place: Portland, Oregon Zip: 97209 Region: Pacific Northwest Area...

  13. Chinese CDM Fund | Open Energy Information

    Open Energy Info (EERE)

    CDM Fund Jump to: navigation, search Name: Chinese CDM Fund Place: China Product: Chinese public body charged with implementing the country's CDM policy and allocating the central...

  14. Efficiency Maine Trust - Renewable Resource Fund | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Maine Program Type Public Benefits Fund Summary Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring...

  15. Connecticut Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  16. Environmental Technologies Fund | Open Energy Information

    Open Energy Info (EERE)

    Technologies Fund Jump to: navigation, search Name: Environmental Technologies Fund Place: London, Greater London, United Kingdom Zip: W1J 6EQ Sector: Services Product: ETF Manager...

  17. FUNDING OPPORTUNITY ANNOUNCEMENT: SOLAR ENERGY EVOLUTION AND...

    Energy Savers [EERE]

    FUNDING OPPORTUNITY ANNOUNCEMENT: SOLAR ENERGY EVOLUTION AND DIFFUSION STUDIES II - STATE ENERGY STRATEGIES (SEEDSII-SES) FUNDING OPPORTUNITY ANNOUNCEMENT: SOLAR ENERGY EVOLUTION ...

  18. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex...

  19. Sevin Rosen Funds (California) | Open Energy Information

    Open Energy Info (EERE)

    Sevin Rosen Funds (California) Address: 421 Kipling Street Place: Palo Alto, California Zip: 94301 Region: Bay Area Product: Venture fund Year Founded: 1981 Phone Number: (650)...

  20. Macquarie Funds Management USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Macquarie Funds Management USA Inc Jump to: navigation, search Name: Macquarie Funds Management (USA) Inc. Place: Carlsbad, California Zip: 92008 Product: Fund of funds arm of...

  1. Object locating system

    DOE Patents [OSTI]

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  2. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. WFO has the following objectives. Cancels DOE O 481.1.

  3. Vehicle Technologies Program Funding Opportunities

    SciTech Connect (OSTI)

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  4. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

  5. Technology Commercialization Fund | Department of Energy

    Energy Savers [EERE]

    Technology Commercialization Fund Technology Commercialization Fund A core responsibility of the Office of Technology Transitions, and the Technology Transfer Coordinator, is to oversee the expenditure of DOE technology transfer funds. The office is responsible for implementing the Technology Commercialization Fund (TCF) authorized in section 1001 of the Energy Policy Act of 2005. It states, as amended: "The Secretary shall establish an Energy Technology Commercialization Fund, using 0.9%

  6. Funding Opportunity Announcement: Photovoltaic Research & Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PVRD) | Department of Energy Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: $20,000,000 The Photovoltaic Research & Development (PVRD) funding opportunity will fund approximately 30 to 35 projects that will advance the limits of photovoltaic cell and module performance toward and beyond the 2020 SunShot goals. Successful applicants will demonstrate a convincing

  7. BENEFIT Funding Opportunity Webinar Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Feb 7, 2014 Pat Phelan Manager, Emerging Technologies Program Building Technologies Office 2 None of the information presented here is legally binding. The content included in this presentation is intended only to summarize the contents of funding opportunity DE-FOA-0001027. Any content within this presentation that appears inconsistent from the FOA language is superseded by the FOA language. All Applicants are strongly encouraged to carefully read the FOA guidelines and adhere to them.

  8. State Agency Recovery Act Funding

    Energy Savers [EERE]

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  9. City of Chicago- Small Business Improvement Fund

    Broader source: Energy.gov [DOE]

    SomerCor 504 Inc. administers the Small Business Improvement Fund for the City of Chicago. The fund utilizes revenue from Tax Increment Financing (TIF) and supports commercial and industrial...

  10. Property:FundingAgency | Open Energy Information

    Open Energy Info (EERE)

    FundingAgency Jump to: navigation, search This is a property of type Page. Pages using the property "FundingAgency" Showing 23 pages using this property. A Antelope Valley Neset +...

  11. Funding Opportunity Coming Soon: Buildings Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & Innovation Technologies (BENEFIT) 2016 Funding Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & ...

  12. Previously Funded Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Previously Funded Projects Analyzing Environmental Contaminants Improvements in Inductively Coupled Plasma - Mass Spectrometry Augmenting an already effective analytical technique,...

  13. Past Funding Opportunities | Department of Energy

    Energy Savers [EERE]

    Past Funding Opportunities Past Funding Opportunities This page provides a list of past U.S. Department of Energy funding opportunities for Indian tribes and Alaska Native villages. These solicitations have closed, and no applications are being accepted. View current and ongoing funding opportunities. Deployment of Clean Energy and Energy Efficiency on Indian Lands (DE-FOA-0001021) FOA document Projects awarded Community-Scale Clean Energy Projects in Indian Country (DE-FOA-0000852) FOA document

  14. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE...

  15. Public Benefit Funds Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Benefit Funds Resources Public Benefit Funds Resources State and/or local financial incentives and programs help building owners execute energy efficiency projects by lowering cost burdens through public benefits funds, grants, loans, or property-assessed clean energy financing; personal, corporate, property, and sales tax incentives; or assistance with permitting fee reduction or elimination. Find public benefit funds resources below. Environmental Protection Agency: State Clean Energy

  16. Recommendation 220: Recommendation Regarding Maintaining Funding for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleanup | Department of Energy 0: Recommendation Regarding Maintaining Funding for Cleanup Recommendation 220: Recommendation Regarding Maintaining Funding for Cleanup The Environmental Management Site-Specific Advisory Board recommends that DOE make every effort possible, including addressing Congress, to ensure EM funding for all sites across the DOE complex should be maintained as a top priority as it relates in across the board cut-backs in funding. PDF icon Recommendation 220 PDF icon

  17. Financial Assistance Funding Opportunity Announcement | Department of

    Office of Environmental Management (EM)

    Energy Assistance Funding Opportunity Announcement Financial Assistance Funding Opportunity Announcement AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 Projects under this FOA will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). The Recovery Act's purposes are to stimulate the economy and to create and retain jobs. The Act gives preference to activities that can be started and completed

  18. Funding Opportunities Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Funding Opportunities Calendar Funding Opportunities Calendar Find upcoming funding and technical assistance opportunities below. Learn more about these and other funding and technical assistance opportunities that are available to Tribes by visiting the Federal Energy Development Assistance Tool. Solar Technical Assistance for Tribal Utilities January 8, 2016 5:00PM EST DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI January 13, 2016

  19. New Hampshire Weatherization Gets a Funding Boost

    Broader source: Energy.gov [DOE]

    Nonprofit weatherization program makes rapid changes to utilize Recovery Act funds and help residents lower energy costs.

  20. AUDIT\tREPORT Funds\tControl\tManagement\tof\tSavannah River\tNuclear...

    Broader source: Energy.gov (indexed) [DOE]

    of site cleanup activities and reduce cleanup program life-cycle costs. While the language in the Recovery Act included a single amount for Defense Environmental Cleanup, the...

  1. Generic Exercise Objectives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume provides additional detail on preparation of exercise objectives. Canceled by DOE G 151.1-3.

  2. State Energy Revolving Loan Funds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Revolving Loan Funds State Energy Revolving Loan Funds Overview of state energy revolving loan funds. Author: National Association of State Energy Officials PDF icon State Energy Revolving Loan Funds More Documents & Publications Technical Assistance Project (TAP) Revolving Loan Funds: Basics and Best Practices Revolving Loan Funds: Basics and Best Practices Revolving Loan Funds: An Introduction

  3. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds April 3, 2012 Ideum accelerates international software launch as a result of VAF award and business coaching Jim Spadaccini was first drawn to New Mexico by the beauty of Chaco Canyon. "I was working on a project with NASA and the National Park Service at the time, and I just kept coming back," he says. "I didn't know then that New Mexico would also be a great place to start a business." Fast-forward six years, and Spadaccini's

  4. Category:Geothermal ARRA Funded Projects Properties | Open Energy...

    Open Energy Info (EERE)

    Geothermal ARRA Funded Projects Properties Jump to: navigation, search Properties used in the Geothermal ARRA Funded template. Pages in category "Geothermal ARRA Funded Projects...

  5. TEC Working Group Topic Groups Archives Mechanics of Funding...

    Office of Environmental Management (EM)

    Mechanics of Funding and Techical Assistance TEC Working Group Topic Groups Archives Mechanics of Funding and Techical Assistance Mechanics of Funding and Techical Assistance Items...

  6. Fiscal Year 2015 Vehicle Technologies Office Incubator Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Incubator Funding Opportunity Announcement Fiscal Year 2015 Vehicle Technologies Office Incubator Funding Opportunity Announcement The list of eight awardees given funds to...

  7. TRF's Sustainable Development Fund (SDF) | Open Energy Information

    Open Energy Info (EERE)

    TRF's Sustainable Development Fund (SDF) Jump to: navigation, search Logo: TRF's Sustainable Development Fund (SDF) Name: TRF's Sustainable Development Fund (SDF) Address: 718 Arch...

  8. IFCI Venture Capital Funds Ltd | Open Energy Information

    Open Energy Info (EERE)

    IFCI Venture Capital Funds Ltd Jump to: navigation, search Name: IFCI Venture Capital Funds Ltd Place: New Delhi, Delhi (NCT), India Zip: 110019 Product: Manager of several funds...

  9. Goals & Objectives - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0013.JPG Goals & Objectives Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  10. CalCEF Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Fund Jump to: navigation, search Name: CalCEF Clean Energy Fund Place: San Francisco, California Zip: 94103 Product: US-based fund manager to CalCEF clean energy funds...

  11. contributed funds in | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contributed Funds in Agreement Contributed Funds-in agreements, like CRADAs, are agreements between the Federal government and private sector participants to work together on a mutually beneficial project. However, in a CFA, the private sector participant provides funds to NETL for a specific scope of work to be completed. At the end of the project, NETL reports research findings back to the participant. Sample CFA Model

  12. Funding available for New Mexico businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding available for New Mexico businesses Funding available for New Mexico businesses The Venture Acceleration Fund of Los Alamos National Security, LLC is accepting applications for the 2013 calendar year. February 6, 2013 Los Alamos water tower after snow fall. Los Alamos water tower after snow fall. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email The quality of applications has increased greatly over the years, so we expect the process will be competitive for 2013. Los

  13. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration fund Lab seeks ideas for Venture Acceleration Fund The fund will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  14. Los Alamos Venture Acceleration Fund accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding available for New Mexico businesses February 6, 2013 Los Alamos Venture Acceleration Fund accepting 2013 applications LOS ALAMOS, NEW MEXICO, February 6, 2013-The Venture Acceleration Fund (VAF) of Los Alamos National Security, LLC (LANS), the company that manages and operates Los Alamos National Laboratory for the National Nuclear Security Administration, is accepting applications for the 2013 calendar year. Companies selected will receive awards that can range from $10,000 to $100,000

  15. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  16. Funding Opportunity: Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Funding Opportunity: Emerging Technologies December 16, 2015 - 11:00am Addthis The Building Technologies Office (BTO) Emerging Technologies Program has announced the availability of $8 million for Funding Opportunity Announcement (FOA) DE-FOA-0001383, "Building Energy Efficiency Frontiers & Innovations Technologies (BENEFIT) - 2016." BTO seeks to fund three Innovations topics and two Frontiers topics to support our efforts to reduce the energy use of

  17. International Monetary Fund | Open Energy Information

    Open Energy Info (EERE)

    works with developing nations to help them achieve macroeconomic stability and reduce poverty." References "International Monetary Fund" Retrieved from "http:en.openei.org...

  18. Sustainable Development Fund Financing Program (PECO Territory)

    Broader source: Energy.gov [DOE]

    The SDF provides financial assistance to eligible projects in the form of commercial loans, subordinated debt, royalty financing, and equity financing. The Sustainable Development Fund provides...

  19. New funding will stimulate alternative energy research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recently received notice that it has received ARRA funding to participate in four geothermal projects with Pueblo of Jemez, New Mexico Tech, and the University of Utah. November...

  20. Edison Innovation Green Growth Fund Loans

    Broader source: Energy.gov [DOE]

    In order to be considered for funding, applicants must submit an Eligibility Intake Form. For additional details please see the program website, which contains the program solicitation, applicati...

  1. Environmental Defense Fund | Open Energy Information

    Open Energy Info (EERE)

    Defense is dedicated to protecting the environmental rights of all people, including future generations. References: Environmental Defense Fund1 This article is a stub. You can...

  2. Industrial Technologies Funding Profile by Subprogram

    Broader source: Energy.gov [DOE]

    This document summarizes ITP's funding for fiscal year (FY) 2008, and appropriations for FY2009, and FY2010 requests and breaks it down into each subprogram. 

  3. Community Renewable Energy Feasibility Fund Program

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy (ODOE) provides grants for feasibility studies for renewable energy, heat, and fuel projects under the Community Renewable Energy Feasibility Fund (CREFF). This...

  4. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    Repower America References The Climate Protetion Action Fund - Contact Us Learn More About Repower America Retrieved from "http:en.openei.orgw...

  5. Delaware Municipal Electric Corporation- Green Energy Fund

    Broader source: Energy.gov [DOE]

    The Delaware Green Energy Fund was created in 1999 as the part of the deregulation of Delaware's electric utilities. Under the 2005 Delaware renewable portfolio standard (RPS) legislation,...

  6. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    Repower America Retrieved from "http:en.openei.orgwindex.php?titleClimateProtectionActionFund&oldid767417" Categories: Organizations Political Action Committees Policy...

  7. IACT-funded Master and Doctoral Theses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Presentations Jobs at IACT Energy Frontier Research Centers at Argonne Strategic Alliances Research Facilities & Tools IACT-funded Master and Doctoral Theses 2013 2013...

  8. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    Partners, LP Place: San Juan Capistrano, California Zip: 92675 Product: Boutique investment banking and investment advisory firm with clean energy focus References: Access Fund...

  9. Big Tree Climate Fund | Open Energy Information

    Open Energy Info (EERE)

    Big Tree Climate Fund Place: Boulder, Colorado Zip: 80307 Sector: Carbon Product: Finances clean energy and carbon reduction projects through customers who buy RECs and VERs...

  10. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The...

  11. Chapter 02 - Administrative Control of Funds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy to prescribe and carry out a system for administratively controlling funds. ... If deemed appropriate, an office may use local systems to complement and enhance the ...

  12. Recommendation 220: Recommendation Regarding Maintaining Funding...

    Energy Savers [EERE]

    Regarding Maintaining Funding for Cleanup The Environmental Management Site-Specific Advisory Board recommends that DOE make every effort possible, including addressing...

  13. Pacific Power- Blue Sky Community Project Funds

    Broader source: Energy.gov [DOE]

    Note: Pacific Power is currently accepting applications for 2016 Funding Awards. The deadline for submittal is May 31, 2016 5 PM PT. 

  14. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) Funding Opportunity Announcement: CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS)...

  15. Strategic Climate Fund (SCF) | Open Energy Information

    Open Energy Info (EERE)

    There are three funds under the SCF framework: the Pilot Program for Climate Resilience (PPCR), the Forest Investment Program (FIP) and the Program for Scaling Up Renewable...

  16. Climate Investment Funds | Open Energy Information

    Open Energy Info (EERE)

    Climate Fund (SCF), Forest Investment Program (FIP) Pilot Program for Climate Resilience (PPCR) Program for Scaling Up Renewable Energy in Low Income Countries (SREP)...

  17. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  18. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  19. Past Funding Opportunities FOAs and Awardees

    Broader source: Energy.gov [DOE]

    This page provides a list of past funding opportunities through the Tribal Energy Program. These solicitations have closed, and no applications are being accepted.

  20. Global Environment Fund GEF | Open Energy Information

    Open Energy Info (EERE)

    Invests in companies that make positive contributions to environmental quality, human health and sustainable management of resources. References: Global Environment Fund...

  1. Funding Federal Energy and Water Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL ENERGY MANAGEMENT PROGRAM Funding Federal Energy and Water Projects The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps Federal agencies ...

  2. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am...

  3. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  4. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial ... Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's ...

  5. Revolving Loan Funds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolving Loan Funds Revolving Loan Funds Revolving loan funds (RLFs) are pools of capital from which loans can be made for clean energy projects-as loans are repaid, the capital is then reloaned for another project. Assuming that defaults remain low, RLFs can be "evergreen" sources of capital that are recycled over and over again to fund projects well into the future. State and local governments can establish RLFs to support both their own energy upgrades (i.e., internal), and those

  6. Writing Performance Objectives

    Broader source: Energy.gov [DOE]

    Couse Description: This course provides the opportunity for supervisors and managers to write performance objectives or performance standards based on the department’s performance management system.

  7. BENEFIT 2014 Funding Opportunity Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Funding Opportunity Webinar BENEFIT 2014 Funding Opportunity Webinar View the BENEFIT Funding Opportunity Webinar #2 or see the presentation slides below. View the BENEFIT Funding Opportunity Webinar #1 or see the presentation slides below. These webinars provides an overview of the recently announced BENEFIT Funding Opportunity. Final applications for this Funding Opportunity are due on April 21, 2014. The Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) Funding

  8. Draft Michigan Saves Loan Loss Reserve Fund Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Draft Michigan Saves Loan Loss Reserve Fund Agreement Draft Michigan Saves Loan Loss Reserve Fund Agreement Sample loan loss reserve fund agreement from Michigan Saves. Author: Michigan SAVES PDF icon Michigan Saves Loan Loss Reserve Fund Agreement More Documents & Publications Draft "Michigan Saves" Loan Loss Reserve Fund Agreement Draft 'Michigan Saves' Loan Loss Reserve Fund Agreement Draft Michigan SAVES Loan Loss Reserve Fund Agreement

  9. Loan Loss Reserve Funds Webinars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds Webinars Loan Loss Reserve Funds Webinars Provides a listing of past L loan loss reserve fund webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy Loan Loss Reserve Fund Webinars More Documents & Publications Revolving Loan Fund Webinars Financing Energy Upgrades for K-12 School Districts Power Purchase Agreement Webinars

  10. Revolving Loan Funds: An Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Introduction Revolving Loan Funds: An Introduction Provides information on the Revolving Loand Funds Webinar Transcript PDF icon Presentation More Documents & Publications Revolving Loan Funds: Basics and Best Practices Revolving Loan Funds (RLF) Technical Assistance Project (TAP) Revolving Loan Funds: Basics and Best Practices

  11. Advanced Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a multi-stakeholder panel that assists the ODSA in administering the Fund, and the Universal Service Board. The ODSA collaborates with the Public Utilities Commission of Ohio to...

  12. Virgin Green Fund | Open Energy Information

    Open Energy Info (EERE)

    Place: London, Greater London, United Kingdom Zip: WC2B 4AS Sector: Efficiency, Renewable Energy Product: The Virgin Green Fund has been established to invest in companies in the...

  13. Green Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (0.356 millskWh) by S.B. 35 of 2007. This money is collected and distributed through the Green Energy Fund, which supports the following programs: Delmarva Power - Green Energy...

  14. Stimulus Funding Will Accelerate Cleanup In Idaho

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLEANUP PROJECT ARRA FACT SHEET 1119 Kb Energy Secretary Chu Announces 6 Billion in Recovery Act Funding for Environmental Cleanup 88 Kb Editorial Date March 31, 2008 By Bradley...

  15. Funding Opportunities Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Innovation Fund 2016 Pay for Success Grant Competition January 13, 2016 5:00PM EST ... 12, 2016 5:00PM EST EPA Environmental Justice Collaborative Problem-Solving Cooperative ...

  16. Venture Acceleration Fund wins entrepreneurship award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aims to help entrepreneurs and businesses reach the next level of success and grow the economy in Northern New Mexico. About the Venture Acceleration Fund The VAF is a...

  17. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band ...

  18. Funding Opportunity Announcement: Weatherization Innovation Pilot Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program Funding Opportunity Announcement DE-FOA-00000309 dealing with the Weatherization Innovation Pilot Program.

  19. Agri Energy Funding Solutions | Open Energy Information

    Open Energy Info (EERE)

    Place: Omaha, Nebraska Zip: 68137-2495 Sector: Biomass, Wind energy Product: AGRI-ENERGY FUNDING SOLUTIONS is a market consultant for BioDiesel, Ethanol as well as Biomass...

  20. Building Requirements for State-Funded Buildings

    Broader source: Energy.gov [DOE]

    New Hampshire enacted legislation (S.B. 409) in July 2010 stipulating that major construction and maintenance projects that receive state funding must meet a high-performance energy and design...

  1. Grant Acquisition and Other Funding Opportunities Webinar

    Broader source: Energy.gov [DOE]

    Kerretv Online is hosting a free webinar on grant acquisition and other funding opportunities. The training will cover developing relationships with funders, finding the right funder, writing the proposal, and understanding how to report back to the funder.

  2. Xcel Energy- Renewable Development Fund Grants

    Broader source: Energy.gov [DOE]

    The Xcel Energy Renewable Development Fund (RDF) was created in 1999 as an outcome of 1994 Minnesota legislation concerning spent nuclear fuel at Xcel Energy’s Prairie Island Nuclear Plant. The...

  3. Tribal DERA Grant Funding Opportunity Review Webinar

    Broader source: Energy.gov [DOE]

    Prosper Sustainably is hosting a free webinar on July 16, 2014 at 1pm PST that reviews the EPA’s Tribal Diesel Emissions Reduction Act (DERA) funding opportunity. During the webinar Josh Simmons,...

  4. Sustainable Building Design Revolving Loan Fund | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas Program Type Loan Program Summary The ABA Revolving Loan Fund is an interest free loan program adopted by the Arkansas General Assembly through Act 1372 of 2009. The...

  5. Venture Acceleration Fund now accepting 2012 applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund now accepting 2012 applications Venture Acceleration Fund now accepting 2012 applications The three companies selected will receive up to $100,000 each to commercialize technology and take it to market faster. January 23, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  6. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces Venture Acceleration Fund recipients Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. selected as recipients of awards. August 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  7. Lab seeks ideas for Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund ideas Lab seeks ideas for Venture Acceleration Fund Projects selected will support LANL's core missions and provide a significant opportunity for new company formation or growth in New Mexico. April 20, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  8. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  9. Funding & Financing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding & Financing Funding & Financing Second Edition of Clean Energy Finance Guide Released Second Edition of Clean Energy Finance Guide Released Our updated guide helps state, local and tribal leaders and private sector partners find capital for energy efficiency and renewable energy projects. Read more Energy Finance Roundtable Energy Finance Roundtable Learn about the latest in a series of energy finance roundtables that are helping the Energy Department break down common barriers

  10. CalCEF Clean Energy Angel Fund | Open Energy Information

    Open Energy Info (EERE)

    Angel Fund Jump to: navigation, search Logo: CalCEF Clean Energy Angel Fund Name: CalCEF Clean Energy Angel Fund Address: 5 Third Street, Suite 1125 Place: San Francisco,...

  11. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential partnerships and funding from a variety of sources Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Potential partnerships and funding from a variety of sources Find a funding opportunity from current opportunities. September 1, 2015 Potential partnerships and funding from a variety of sources Find a funding opportunity from current opportunities. Contact Linda Anderman Email An evolving list of funding

  12. Find Funding | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find Funding Funding Opportunities Funding Opportunities Home Grants & Contracts Support Award Search / Public Abstracts Find Funding Early Career Research Program Statement on Digital Data Management Acknowledgements of Federal Support Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Find Funding Print Text Size: A A A FeedbackShare Page Additional information on funding opportunities, including program

  13. NOTICE OF INTENT: NGEM II Funding Opportunity | Department of Energy

    Energy Savers [EERE]

    INTENT: NGEM II Funding Opportunity NOTICE OF INTENT: NGEM II Funding Opportunity February 18, 2016 - 4:54pm Addthis NOTICE OF INTENT TO ISSUE A FUNDING OPPORTUNITY FOR NEXT GENERATION OF ELECTRIC MACHINES Funding Number: DE-FOA-0001525 Funding Amount: $25,000,000 The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Advanced Manufacturing Office (AMO), a Funding Opportunity Announcement (FOA) entitled "Next Generation of Electric Machines: Enabling

  14. BENEFIT 2014 Funding Opportunity Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFIT 2014 Funding Opportunity Webinar BENEFIT 2014 Funding Opportunity Webinar View the BENEFIT Funding Opportunity Webinar #2 or see the presentation slides below. View the BENEFIT Funding Opportunity Webinar #1 or see the presentation slides below. These webinars provides an overview of the recently announced BENEFIT Funding Opportunity. Final applications for this Funding Opportunity are due on April 21, 2014. The Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT)

  15. Broad area search for regions and objects of interest

    SciTech Connect (OSTI)

    Skurikhin, Alexei N; Pope, Paul A

    2011-01-12

    A quad chart provides an overview on the on-going project 'Broad Area Search for Regions and Objects of Interest' funded by the DOE Office of Nonproliferation and Verification Research and Development. Specifically, the quad chart shows: (1) Project title 'Broad Area Search for Regions and Objects of Interest'; (2) PI and Co-investigators; (3) Concept Panel outlining the project's approach built upon front-end scale-space image analysis; (4) Technical Challenges posed by the project, such as robustness, non-conformities, disparate spatial configuration and weak correlation between presence of objects of interest and low-level description of the surrounding geospatial background; and (5) Planned Accomplishment.

  16. Part B - Requirements & Funding Information PART B - Requirements and Funding Information

    Energy Savers [EERE]

    a. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency agreement. Attachment 3.a. Part B 2 PART B - Requirements & Funding Information B.1. Purpose This is for an assisted acquisition. An assisted acquisition is a type of interagency acquisition where the servicing agency and requesting agency enter into a written interagency agreement pursuant to which the

  17. Part B - Requirements & Funding Information PART B - Requirements and Funding Information

    Energy Savers [EERE]

    b. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency agreement. Attachment 3.b. Part B 2 PART B - Requirements & Funding Information B.1. Purpose This is an interagency transaction. An interagency transaction is an intra-governmental transaction when the servicing agency uses internal resources to support the requesting agency requirement and is a reimbursable

  18. Transitioning to a Utility Funded Program Environment: What Do...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Program Sustainability ...

  19. Funding for Energy Efficiency Programs for Unregulated Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Weatherization Assistance Program and utility Demand-Side Management (DSM) funding. ... Many states directly supplement LIHEAP with their own funds. In FY 2007, 25 states ...

  20. Guidance on the Required Period for Grantees to Obligate Funds...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the Required Period for Grantees to Obligate Funds and the Procedures for Reporting of Obligated Funds for the Energy Efficiency Conservation Block Grant (EECBG) Program...

  1. DOE Shares Funding Opportunities and Honors Small Business Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Shares Funding Opportunities and Honors Small Business Award Recipients DOE Shares Funding Opportunities and Honors Small Business Award Recipients July 22, 2011 - 4:19pm ...

  2. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  3. Amendment to Funding Opportunity Announcement, DE-FOA-0000522...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Amendment to Funding Opportunity...

  4. DOE Issues Funding Opportunity for Innovations to Increase Cybersecuri...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity for Innovations to Increase Cybersecurity for Energy Delivery Systems DOE Issues Funding Opportunity for Innovations to Increase Cybersecurity for Energy...

  5. Advance Funding and Development Agreement: Plains & Eastern Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean ...

  6. DOE Signing Paves the Way for Funding, Construction of Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signing Paves the Way for Funding, Construction of Innovative Clean Coal Plant in Florida DOE Signing Paves the Way for Funding, Construction of Innovative Clean Coal Plant in ...

  7. Industrial SEP Ratepayer-funded Accelerator Factsheet | Department...

    Office of Environmental Management (EM)

    SEP Ratepayer-funded Accelerator Factsheet Industrial SEP Ratepayer-funded Accelerator Factsheet PDF icon Factsheet.pdf More Documents & Publications SEP Overview Slides Superior...

  8. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles ...

  9. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February...

  10. Progress on ARRA-funded Facility & Capability Upgrades for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory Progress on ARRA-funded Facility & Capability Upgrades for the Battery AbuseSafety Laboratory...

  11. Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity Announcement Selections The list of 24 awardees given funds to develop and deploy cutting-edge vehicle ...

  12. Guyana REDD+ Investment Fund (GRIF) | Open Energy Information

    Open Energy Info (EERE)

    Guyana REDD+ Investment Fund (GRIF) Jump to: navigation, search Name Guyana REDD+ Investment Fund (GRIF) AgencyCompany Organization Government of Norway, Government of Guyana...

  13. The Climate Investment Funds-Business Guide | Open Energy Information

    Open Energy Info (EERE)

    Investment Funds-Business Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Climate Investment Funds-Business Guide AgencyCompany Organization: World Business...

  14. Venture Acceleration Fund awards spur investment in Northern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VAF awards spur investment in Northern New Mexico Venture Acceleration Fund awards spur investment in Northern New Mexico Proposals are being accepted for Venture Acceleration Fund...

  15. EnviroTech Investment Fund LLP | Open Energy Information

    Open Energy Info (EERE)

    Investment Fund LLP Jump to: navigation, search Name: EnviroTech Investment Fund LLP Place: Washington, Washington, DC Sector: Renewable Energy Product: Manager of Envirotech...

  16. Climate Investment Funds Webinar Series | Open Energy Information

    Open Energy Info (EERE)

    Investment Funds Webinar Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Investment Funds Webinar Series AgencyCompany Organization: Asian Development...

  17. Investment Fund for Environment and Renewable Energy (FIDEME...

    Open Energy Info (EERE)

    Fund for Environment and Renewable Energy (FIDEME) Jump to: navigation, search Name Investment Fund for Environment and Renewable Energy (FIDEME) AgencyCompany Organization...

  18. Moore Foundation Funds ALS Researchers for Promising New Technique...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moore Foundation Funds ALS Researchers for Promising New Technique for Studying Materials Moore Foundation Funds ALS Researchers for Promising New Technique for Studying Materials...

  19. SAMRUK KAZYNA National Welfare Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Name: SAMRUK-KAZYNA National Welfare Fund Place: Kazakhstan Sector: Hydro, Solar, Wind energy Product: Kazakhstan-based project developer in...

  20. 24 Universities Receiving Funding to Train Next Generation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts 24 Universities Receiving Funding to Train Next Generation of Energy Efficiency Experts...

  1. Energy Efficiency Public Benefits Funds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    restructuring legislation created separate public benefits funds that support renewable energy and residential energy efficiency. The efficiency fund is known as the Energy...

  2. Turkey-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    Clean Technology Fund (CTF) Jump to: navigation, search Name Turkey-Climate Technology Fund (CTF) AgencyCompany Organization African Development Bank, Asian Development Bank,...

  3. Sustainable Energy Fund of Central Eastern Pennsylvania | Open...

    Open Energy Info (EERE)

    of Central Eastern Pennsylvania Jump to: navigation, search Logo: Sustainable Energy Fund of Central Eastern Pennsylvania Name: Sustainable Energy Fund of Central Eastern...

  4. Vehicle Technologies Office: Past Funding Opportunities and Selections...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy's (DOE) Vehicle Technologies Office periodically issues competitive Funding Opportunity Announcements (FOA), where stakeholders can apply for funding...

  5. CVC REEF-Renewable Energy Equity Fund | Open Energy Information

    Open Energy Info (EERE)

    CVC REEF-Renewable Energy Equity Fund Jump to: navigation, search Name CVC REEF-Renewable Energy Equity Fund AgencyCompany Organization Australian Greenhouse Office Sector Energy...

  6. Energy Department Announces Funding to Develop Aggregate Purchasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition, this funding will allow an entity to set up an aggregated purchasing system; ... in transportation - this funding will complement the work that Clean Cities coalitions ...

  7. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to...

  8. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This funding opportunity is supporting the advancement of wave and tidal energy technologies while developing a globally competitive MHK workforce. This funding will support one ...

  9. DOE Hosts Conference Call for Open Funding Opportunity Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hosts Conference Call for Open Funding Opportunity Announcement DOE Hosts Conference Call for Open Funding Opportunity Announcement July 18, 2008 - 3:35pm Addthis The Department of...

  10. Peer Exchange Call on Financing and Revenue: Bond Funding | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call on Financing and Revenue: Bond Funding Peer Exchange Call on Financing and Revenue: Bond Funding Better Buildings Neighborhood Program Peer Exchange Call on...

  11. Revolving Loan Fund for Energy Efficiency Projects in School...

    Broader source: Energy.gov (indexed) [DOE]

    State Administrator State Energy Program Website http:www.energy.utah.govenergyefficiencyinschools.htm Funding Source Revolving Loan fund State Utah Program Type Loan...

  12. Part B - Requirements & Funding Information PART B - Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Non-severable service) - insert Fund citation (line of accounting) - insert ... account symbol) - insert Fund citation (line of accounting) - insert Fiscal ...

  13. Articles about Wind Program Funding | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    funding featured by the U.S. Department of Energy (DOE) Wind Program. October 1, 2015 Articles about Wind Program Funding Energy Department Helps Manufacturers of Small and...

  14. Microsoft Word - EM SSAB Chairs Authorizing Funds for Movement...

    Office of Environmental Management (EM)

    to external entities. However, there is no EM policy and funding mechanism in place for items that have culturalhistoric value to outside organizations unable to fund the physical...

  15. Technical Assistance Project (TAP) Revolving Loan Funds: Basics...

    Broader source: Energy.gov (indexed) [DOE]

    pwebinar20090826sifuentes.pdf More Documents & Publications Revolving Loan Funds: Basics and Best Practices LoanSTAR Revolving Loan Program Revolving Loan Funds: An Introduction...

  16. Projects Funded by the American Recovery and Reinvestment Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funded by the American Recovery and Reinvestment Act of 2009 and Administered by the Office of Energy Efficiency and Renewable Energy (EERE) Notice Projects Funded by the...

  17. Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This webinar covered utility customer-funded and Recovery Act-funded energy efficiency programs, results of analysis in 12 case study states, and case study examples.

  18. DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System

    Broader source: Energy.gov [DOE]

    The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements.

  19. WPN 93-6- Fifth Quarter Option for Weatherization Funding

    Broader source: Energy.gov [DOE]

    To establish procedures for optional fifth quarter application and funding for states in Program Year 1993.

  20. raising_investment_funds_for_clean_energy_programs.doc | Department...

    Broader source: Energy.gov (indexed) [DOE]

    raisinginvestmentfundsforcleanenergyprograms.doc raisinginvestmentfundsforcleanenergyprograms.doc More Documents & Publications Raising Investment Funds for Clean...

  1. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Energy Savers [EERE]

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  2. ARRA Home Improvement Funds Application for Canton, Michigan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Home Improvement Funds Application for Canton, Michigan ARRA Home Improvement Funds Application for Canton, Michigan Federal Energy Regulatory Commission Loan Program Limited Stimulus Funding Application PDF icon ARRA Home Improvement Funds Application for Canton, Michigan More Documents & Publications American Reinvestment Recovery Act CX-002410: Categorical Exclusion Determination CX-002820: Categorical Exclusion Determination

  3. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding PDF icon Subject: Calculation of Job Creating Through Recovery Act Funding More Documents & Publications Calculation of Job Creation Through DOE Recovery Act Funding EECBG Program Notice 10-07A EECBG PROGRAM NOTICE 10-07B

  4. City of Pittsburgh Implementation Model: Green Initiatives Trust Fund

    Broader source: Energy.gov [DOE]

    City of Pittsburgh implementation model, Green initiatives trust fund. Author: U. S. Department of Energy

  5. Applying for and using CMAQ funds: Putting the pieces together. A Clean Cities guide

    SciTech Connect (OSTI)

    1997-05-01

    This guide provides the basic concepts to aid in an alternative fuel vehicle market development program developing an application for Congestion Mitigation and Air Quality Improvement Program funding. The US Department of Energy`s Clean Cities Program is an aggressive, forward-thinking alternative fuel vehicle (AFV) market development program. The stakeholders in any Clean Cities Program subscribe to the common philosophy that, through participation in a team-oriented coalition, steady progress can be made toward achieving the critical mass necessary to propel the AFV market into the next century. An important component in the successful implementation of Clean Cities Program objectives is obtaining and directing funding to the capital-intensive AFV market development outside of the resources currently offered by the Department of Energy. Several state and local funding sources have been used over the past decade, including Petroleum Violation Escrow funds, vehicle registration fees, and state bond programs. However, federal funding is available and can be tapped to implement AFV market development programs across the nation. Historically, opportunities to use federal funding for AFV projects have been limited; however, the one remaining federal program that must be tapped into by Clean Cities Programs is the Congestion Mitigation and Air Quality (CMAQ) Improvement Program. CMAQ is a 6-year, $6 billion federal program formed by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  6. Exploratory Research and Development Fund, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  7. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    ... - Heater integral part of the ITC design - Reason: Easier heat transfer for T 2 ... and subsequent trapping of water on molecular sieves - Reason: experience at TLK - ...

  8. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Disassembled and chemically tested product samples to determine whether potentially toxic elements are present in concentrations that exceed regulatory thresholds for hazardous...

  9. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG Federal Register Notice on Proposed Procedures for LNG Export Decisions Cameron LNG LLC Final Order

  10. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    performing similar work in-house. Following is a discussion of known uncertainties stemming from procedural design or implementation. Mercury in CFLs 5.3.1 Consistent with the...

  11. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  12. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for ...

  13. Life cycle inventory of biodiesel and petroleum diesel for use...

    Office of Scientific and Technical Information (OSTI)

    Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial ...

  14. Life Cycle Analysis and Energy Conservation Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In January 2007, Ohio enacted HB 251 and Governor Ted Strickland issued Executive Order 2007-02S. Both initiatives amend state policy pertaining to energy efficiency in state buildings. H.B. 251...

  15. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use...

    Office of Scientific and Technical Information (OSTI)

    ...162 Figure 73: Ranking of Electricity Requirements for Our Process Design Model and for Current Comparable Technology...

  16. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    of carbon dioxide, they are not insignificant. According to the Intergovernmental Panel on Climate Change (IPCC), the global warming potential (GWP) of methane and nitrous...

  17. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ratio, adjusted internal rate of return, and years to payback. BLCC is programmed in Java with an XML file format. The user's guide is part of the BLCC Help system. If you are...

  18. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reductions in GHG, criteria pollutants and acidification gases and * Development of LCA framework based on ISO standards and LCA technical reports such as 14040, 14044, and...

  19. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J. LED; light-emitting diode; CFL; incandescent; halogen; lamp; bulb; TCLP; STLC; TTLC; WET; hazardous waste; electronic...

  20. Building Life Cycle Cost Programs File Saving Troubleshooting

    Broader source: Energy.gov [DOE]

    Some users have experienced difficulties saving BLCC projects. The primary issue causing the issue is that the user is not an “Administrator,” and lacks the “permission” to save to that location....

  1. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Identification of component-wise cost reduction targets for parity with coal and natural gas - Assessment of market economics for potential new entrants - Forecasts of technology...

  2. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon...

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... such data can be considered qualitative to semi-quantitative in part because of likely ... This factor was noted previously by Bryan (1974). Inter- study variation in MPR ...

  4. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  5. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  6. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Laboratory Electricity Generation Forecast: 25% Growth in Next 20 Years EIA, AEO 2015: Reference Case 37% Coal ... a clearinghouse of information on technologies, ...

  7. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    assessment (LCA) process and methodology, provided a literature review of more ... DOE Contract Number: AC05-76RL01830 Resource Type: Technical Report Research Org: Pacific ...

  8. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    case. It was found that the transportation distance has a significant effect on the oil consumption, a few of the systems emissions, and the energy consumption, whereas the...

  9. Building Life Cycle Cost Programs Software Installation Troubleshootin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system to load the software. If you are unable to run the installer, make sure that java 1.7 or greater is installed. The installer will not run with older versions of java....

  10. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NRELFS-5600-48437 * Revised December 2010 Hydrogen electrical energy storage and dispatch scenario Electricity Hydrogen Storage Electrolyzer Fuel Cell Electricity Hydrogen Storage ...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    category of hazardous waste to landfill, which is driven by the upstream energy and environment impacts from the manufacturing of the aluminum from raw materials. Although...

  12. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential partnerships and funding from a variety of sources Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Potential partnerships and funding from a variety of sources Find a funding opportunity from our current opportunities. June 20, 2014 Potential partnerships Find a funding opportunity from our current opportunities. Contact Linda Anderman Email An evolving list of funding opportunities. See attachments and

  13. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential partnerships and funding from a variety of sources Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Potential partnerships and funding from a variety of sources Find a funding opportunity from current opportunities. November 1, 2014 Potential partnerships Find a funding opportunity from current opportunities. Contact Linda Anderman Email An evolving list of funding opportunities. See attachments and links

  14. Updated Funding Opportunity: Emerging Technologies | Department of Energy

    Office of Environmental Management (EM)

    Updated Funding Opportunity: Emerging Technologies Updated Funding Opportunity: Emerging Technologies December 16, 2015 - 11:00am Addthis The Building Technologies Office (BTO) Emerging Technologies Program has made significant updates to Funding Opportunity Announcement (FOA) DE-FOA-0001383, "Building Energy Efficiency Frontiers & Innovations Technologies (BENEFIT) - 2016," including an increase in available funding from $8 million to $20 million. The updated funding opportunity

  15. Technology Incubator for Wind Energy Innovations Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement | Department of Energy Technology Incubator for Wind Energy Innovations Funding Opportunity Announcement Technology Incubator for Wind Energy Innovations Funding Opportunity Announcement April 2, 2014 - 2:42pm Addthis On April 2, 2014 EERE's Wind Program announced a funding opportunity entitled "Technology Incubator for Wind Energy Innovations." This funding opportunity will fund R&D investments in technology approaches and solutions that are not currently

  16. Funding Opportunity Announcement: CSP: Concentrating Optics for Lower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Levelized Energy Costs (COLLECTS) | Department of Energy CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) Funding Opportunity Announcement: CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) Funding Number: DE-FOA-0001268 Funding Amount: $15,000,000 Description Building upon the successful outcomes of the 2012 SunShot CSP Research and Development funding program, the CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) funding program

  17. Vehicle Technologies Office: Past Funding Opportunities and Selections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Past Funding Opportunities and Selections Vehicle Technologies Office: Past Funding Opportunities and Selections The U.S. Department of Energy's (DOE) Vehicle Technologies Office periodically issues competitive Funding Opportunity Announcements (FOA), where stakeholders can apply for funding for research, development and deployment projects. FOAs that are currently open are posted on the Financial Opportunities page; this page lists past funding opportunities for

  18. Alternative Fuels Data Center: State Fees as Transportation Funding

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternatives Fees as Transportation Funding Alternatives to someone by E-mail Share Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Facebook Tweet about Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Twitter Bookmark Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Google Bookmark Alternative Fuels Data Center: State Fees as Transportation Funding Alternatives on Delicious Rank

  19. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  20. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.