Sample records for object-oriented energy climate

  1. Object-Oriented Energy, Climate, and Technology Systems (ObjECTS...

    Open Energy Info (EERE)

    description of the complete inputs see "Model Documentation for the MiniCAM" (Brenkert, Smith, Kim, and Pitcher, 2003). Case Studies Examples of how Object-Oriented Energy,...

  2. Object-Oriented Energy, Climate, and Technology Systems (ObjECTS) Global

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdale Electric Coop

  3. A simple object-oriented and open source model for scientific and policy analyses of the global climate system–Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-01-01T23:59:59.000Z

    Simple climate models play an integral role in policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global scale earth system processes. Hector has three main carbon pools: an atmosphere, land, and ocean. The model’s terrestrial carbon cycle includes respiration and primary production, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector’s actively solves the inorganic carbon system in the surface ocean, directly calculating air-sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2] and surface temperatures. The model simulates all four Representative Concentration Pathways with high correlations (R >0.7) with current observations, MAGICC (a well-known simple climate model), and the Coupled Model Intercomparison Project version 5. Hector is freely available under an open source license, and its modular design will facilitate a broad range of research in various areas.

  4. Distributed Reliable Object-Oriented Programming (DROOP)

    E-Print Network [OSTI]

    Guerraoui, Rachid

    Distributed Reliable Object-Oriented Programming (DROOP) P. Eugster November 3, 2003 Abstract with such failures, coining the term Distributed Reliable Object-Oriented Programming (DROOP). 1 SCOOP

  5. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2014-05-30T23:59:59.000Z

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  6. Object-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach for Energy Optimisation

    E-Print Network [OSTI]

    Como, Giacomo

    ­5]. On the other hand, power delivery, electricity consumption, and heat management studies for data centre) simulation is extensively used for simulate airflow and heating components in data centres. CFD modellingObject-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach

  7. The Reactor An ObjectOriented Framework

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    The Reactor An Object­Oriented Framework for Event Demultiplexing and Event Handler Dispatching Douglas C. Schmidt 1 Overview ffl The Reactor is an object­oriented frame­ work that encapsulates OS event demul­ tiplexing mechanisms -- e.g., the Reactor API runs transparently atop both Wait

  8. Object Oriented Artificial Neural Network Implementations

    E-Print Network [OSTI]

    Slatton, Clint

    1 Object Oriented Artificial Neural Network Implementations W. Curt Lefebvre Jose C. Principe Neuro artificial neural networks (ANNs). The conven- tion for ANN simulation has been a direct implementation to develop a graphical artificial neural network simulation environment motivated towards the pro- cessing

  9. Design Patterns: Abstraction and Reuse of Object-Oriented Design

    E-Print Network [OSTI]

    Griswold, William G.

    of responsibilities. Design patterns play many roles in the object-oriented development process: they provide a common

  10. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  11. applying object oriented: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed LabFlow-1, the first version of a benchmark that con- cisely captures the DBMS Bonner, Anthony 157 An Annotated Bibliography Object--Orientation and Deduction...

  12. AUTOMATIC PARALLELIZATION OF OBJECT ORIENTED MODELS ACROSS METHOD AND

    E-Print Network [OSTI]

    Zhao, Yuxiao

    was done on the system only. Keywords: Modelica, automatic parallelization. Presenting Author's biography and Modelica Modelica is a rather new language for equation-based object-oriented mathematical modeling which object- oriented modeling languages. Modelica is intended to become a de facto standard. It allows

  13. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ã?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  14. Object-Oriented Programming in Fortran 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientific andBusinessoso/about/jobs/SHAREObeying

  15. Climate Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Climate Change Climate Change September 16, 2014 C3E Spotlights Women Leaders in Clean Energy Careers Women clean energy leaders convene in Boston for the Women in Clean Energy...

  16. From Termination to Cost (in Object-Oriented Languages)

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    From Termination to Cost (in Object-Oriented Languages) Elvira Albert Complutense University of Madrid (Spain) 11th International Workshop on Termination Edinburgh, 14 July, 2010 Elvira Albert From Termination to Cost #12;Outline of the Talk 1 Simple Imperative Bytecode Programs Elvira Albert From

  17. The Object Orientation of Object Petri Nets Charles Lakos,

    E-Print Network [OSTI]

    Lakos, Charles

    The Object Orientation of Object Petri Nets Charles Lakos, Computer Science Department, University informally introduces Object Petri Nets (OPNs) with a number of examples and discusses how this kind of Petri Net addresses a number of issues pertinent to Concurrent Object­Oriented Programming Languages. OPNs

  18. ENERGY, CLIMATE AND SUSTAINABLE

    E-Print Network [OSTI]

    ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT NAMAs and the Carbon Market Nationally Appropriate Mitigation Actions of developing countries PersPectives series 2009 #12;NAMAs and the Carbon MarketPPrOPriate MitigatiON actiONs: china's experience and Perspective . . . . . . . . . . . 11 Fei

  19. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

  20. Climate-Energy Nexus

    SciTech Connect (OSTI)

    Gary Sayler; Randall Gentry; Jie Zhuang

    2010-07-01T23:59:59.000Z

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology for assessment of the sustainable production of biofuels (such as life-cycle analysis, sustainability metrics, and land-use policy). Establishment of two US-China scientific research networks in the area of bioenergy and environmental science is a significant result of the workshop.

  1. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of KeyCarbonSandiaClimate

  2. Editors Kirsten Halsns & Amit Garg ENERGY, CLIMATE

    E-Print Network [OSTI]

    Editors Kirsten Halsnæs & Amit Garg ENERGY, CLIMATE Sustainable Development, Energy and Climate Development, Energy and Climate Exploring Synergies and Tradeoffs Methodological Issues and Case Studies from Brazil, China, India, South Africa, Bangladesh and Senegal Editors Kirsten Halsnæs & Amit Garg ENERGY

  3. Rigorous Object-Oriented System Design Anthony J H Simons, University of Sheffield,

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    Rigorous Object-Oriented System Design Anthony J H Simons, University of Sheffield, Monique Snoeck-Oriented System Design Rigorous Object-Oriented System Design Anthony J H Simons, University of Sheffield, Monique is presented. 1. Introduction The vast majority of object-oriented analysis and design methods agree

  4. Table of Contents 9th Workshop for PhD Students in Object Oriented Systems : : : : : : : : : : : : 2

    E-Print Network [OSTI]

    Telea, Alexandru C.

    Table of Contents 9th Workshop for PhD Students in Object Oriented Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22 #12; 9th Workshop for PhD Students in Object Oriented Systems Awais Rashid 1 , David Parsons 2 of the presented papers. 1. Introduction The 9th workshop for PhD Students in Object Oriented Systems (PhDOOS '99

  5. Climate sensitivity of marine energy 

    E-Print Network [OSTI]

    Harrison, Gareth P; Wallace, Robin

    2005-01-01T23:59:59.000Z

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change...

  6. [11] Bjarne Stroustrup. What is ObjectOriented Programming? IEEE Software, pages 10--20, [12] Gregory L. Fenves. ObjectOriented Programming for Engineering Software Development.

    E-Print Network [OSTI]

    Salustri, Filippo A.

    , CA, 1991. [17] Gail M. Shaw and Stanley B. Zdonik. A Query Algebra for Object­Oriented Databases). References [1] Stanley B. Zdonik and David Maier. Fundamentals of Object­Oriented Databases, pages 1 Meyer. Introduction to the Theory of Programming Languages. Prentice Hall International Series

  7. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates of Second Key Atmospheric Component On May 1, 2013, in Analysis, Capabilities, Climate, CRF, Energy, Facilities, Global Climate & Energy, Modeling & Analysis, News, News &...

  8. Climate-development-energy policy related seminars

    E-Print Network [OSTI]

    Sussex, University of

    Paula Kivimaa (Finnish Environment Institute) From energy to climate policy in Finland Energy & climate Energy & Climate Tue 3rd Dec 18.00- 19.30 Large Jubilee Jeremy Leggett (SolarCentury) The EnergyClimate-development-energy policy related seminars Autumn term 2013 Date Time Location Speaker

  9. Climate Change Worksheet Energy Budget

    E-Print Network [OSTI]

    Allan, Richard P.

    of distance from the equator). The tropics are net absorbers of energy as the amount of absorbed solar energyClimate Change Worksheet «» Energy Budget For any balanced budget, what comes in must equal what goes out. In the case of planets orbiting the Sun, this means that the incoming solar radiation must

  10. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials Science, Modeling, Modeling & Analysis, Partnership, Research &...

  11. Renewable Energy and Climate Change

    SciTech Connect (OSTI)

    Chum, H. L.

    2012-01-01T23:59:59.000Z

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

  12. CSP 585: Object-Oriented Design Patterns Gamma, Helm, Ralph, and Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 585: Object-Oriented Design Patterns Texts Gamma, Helm, Ralph, and Vlissides, Design Patterns and Design Patterns 5 hours Total 43 hours Edited March 2006. (html, css checks) CSP 585: Object

  13. Campus Sustainability Goals Energy & Climate

    E-Print Network [OSTI]

    Jacobs, Lucia

    Campus Sustainability Goals Energy & Climate By 2014, reduce greenhouse gas emissions to 1990 use to 10% below 2008 levels by 2020. Built Environment Design future projects to minimize energy and water consumption and wastewater production; incorporate sustainable design principles into capital

  14. UNEP Rise Centre Energy, Climate and Sustainable

    E-Print Network [OSTI]

    UNEP Risøe Centre ­ Energy, Climate and Sustainable Development Organisational set;UNEP Risøe Centre ­ Energy, Climate and Sustainable Development International and Danish research team by an International Scientific Advisory Panel · Risø - Programme on Energy, Environment & Development Planning #12

  15. A modular object-oriented framework for hierarchical multi-resolution robot simulation

    E-Print Network [OSTI]

    Treuille, Adrien

    of a commercial industrial robot. KEYWORDS: Robot simulation; Object orientation; Hierarchical simulation. 1 available today are more concerned with robot task programming applications rather than design. WhileA modular object-oriented framework for hierarchical multi- resolution robot simulation Sanghoon

  16. Object-Oriented Real-Time Systems Analysis and Design Issues

    E-Print Network [OSTI]

    Fayad, Mohamed

    -time systems. The assumption was made that the analysis and design methodology was fully object-oriented (O) The fundamental issues in real-time systems (hard and soft) are the view of the processes (critical, eObject-Oriented Real-Time Systems Analysis and Design Issues Workshop Co-Chairs Mohamed E. Fayad

  17. Software Architecture for Object-Oriented Simulation Modeling and Simulation Environments

    E-Print Network [OSTI]

    the realm of (i) model building & simulation execution in conjunction with (ii) software architectureSoftware Architecture for Object-Oriented Simulation Modeling and Simulation Environments: Case been a steady migration towards object-oriented modeling and simulation environments. There exist many

  18. Review: Integrating Climate, Energy and Air Pollution

    E-Print Network [OSTI]

    Toohey, David E.

    2013-01-01T23:59:59.000Z

    Climate, Energy and Air Pollution By Gary Bryner with RobertEnergy, and Air Pollution. Cambridge, Massachusetts, The MITClimate, Energy, and Air Pollution provides a well-

  19. Climate Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham, England, United

  20. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of KeyCarbonSandia Co-Hosts

  1. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of KeyCarbonSandia Co-Hosts

  2. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of KeyCarbonSandia

  3. Sandia Energy » Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author has notExpansion ofNew

  4. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    , environmental management, and the nuclear energy industry, this element serves as an inextricable component (above) and a simulation of a train striking a spent fuel cask (upper right) Transportation National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly

  5. Climate Advisers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTracker JumpClimate

  6. Climate Change | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials |PhysicsClimate Change

  7. Climate Consultant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -ProjectClimate

  8. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture

  9. Design Patterns as Litmus Paper to Test the Strength of Object-Oriented Methods

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    , Monique Snoeck2 and Kitty S Y Hung1 1 Department of Computer Science, University of Sheffield, Sheffield Introduction The vast majority of object-oriented analysis and design methods are in agreement

  10. Storage Management for Object-Oriented Database Management Systems: A Comparative Survey

    E-Print Network [OSTI]

    Waterloo, University of

    Storage Management for Object-Oriented Database Management Systems: A Comparative Survey David Dueck, Yiwen Jiang, and Archana Sawhney Contents 1 Introduction * * 71 2 The O2 Object Manager 71 2.1 Object

  11. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project An Integrated Assessment of China's Wind Energy to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

  12. An object-oriented construction kit architecture for designing man/machine interfaces 

    E-Print Network [OSTI]

    DeSoi, John Francis

    1988-01-01T23:59:59.000Z

    AN OBJECT-ORIENTED CONSTRUCTION KIT ARCHITECTURE FOR DESIGNING MAN/MACHINE INTERFACES A Thesis by JOHN FRANCIS DESOI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1988 Major Subject: Computer Science AN OBJECT-ORIENTED CONSTRUCTION KIT ARCHITECTURE FOR DESIGNING MAN/MACHINE INTERFACES A Thesis by JOHN FRANCIS DESOI Approved as to style and content by: William Lively j (Chair...

  13. Climate impact metrics for energy technology evaluation

    E-Print Network [OSTI]

    Edwards, Morgan Rae

    2013-01-01T23:59:59.000Z

    The climate change mitigation potential of energy technologies depends on how their lifecycle greenhouse gas emissions compare to global climate stabilization goals. Current methods for comparing technologies, which assess ...

  14. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

  15. EPA Climate Leadership Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Environmental Protection Agency (EPA), in collaboration with the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the...

  16. Sandia Energy - Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal Climate Models Home

  17. Benchmarking ObjectOriented DBMSs for Workflow Management \\Lambda

    E-Print Network [OSTI]

    Bonner, Anthony

    @db.toronto.edu Adel Shrufi 1 shrufi@db.toronto.edu Steve Rozen 2 steve@genome.wi.mit.edu 1 University of Toronto for keeping track of workflow activity. This DBMS maintains an audit trail, or event history, that records, and from the U.S. Department of Energy under contract DE­FG02­95ER62101. 1 #12; these two systems

  18. TSINGHUA -MIT China Energy & Climate Project

    E-Print Network [OSTI]

    TSINGHUA - MIT China Energy & Climate Project Will economic restructuring in China reduce trade to: discover new interactions among natural and human climate system components; objectively assess future; and improve methods to model, monitor and verify greenhouse gas emissions and climatic impacts

  19. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  20. President Obama on Climate Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    President Obama on Climate Change President Obama on Climate Change Addthis Speakers President Barack Obama Duration 2:46 Topic Energy Sector Jobs Renewables Solar Climate Change...

  1. Climate Change: Energy and Community Impacts

    Broader source: Energy.gov (indexed) [DOE]

    Industry Day - Energy Performance Contracting 24 February 2015 Key Points Up Front * Climate change is real and will have significant impacts * The emissions that drive the...

  2. Climate & Environmental Sciences | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy-Water Resource Systems Human Health Risk and...

  3. An object oriented design for high performance linear algebra on distributed memory architectures

    SciTech Connect (OSTI)

    Dongarra, J.J. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science; Walker, D.W. [Oak Ridge National Lab., TN (United States); Pozo, R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science

    1993-12-31T23:59:59.000Z

    We describe the design of ScaLAPACK++, an object oriented C++ library for implementing linear algebra computations on distributed memory multicomputers. This package, when complete, will support distributed dense, banded, sparse matrix operations for symmetric, positive-definite, and non-symmetric cases. In ScaLAPACK++ we have employed object oriented design methods to enchance scalability, portability, flexibility, and ease-of-use. We illustrate some of these points by describing the implementation of a right-looking LU factorization for dense systems in ScaLAPACK++.

  4. ACEEE Behavior, Energy, and Climate Change Conference

    Broader source: Energy.gov [DOE]

    Hosted by the American Council for an Energy-Efficient Economy (ACEEE), the Behavior, Energy, and Climate Change Conference is a three-day event focused on understanding individual and...

  5. Double-Blind Scores of an Object-Oriented Modeling Survey

    E-Print Network [OSTI]

    Waterloo, University of

    Double-Blind Scores of an Object-Oriented Modeling Survey by Raymond Sze Chun Yiu An essay declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize

  6. DoubleBlind Scores of an ObjectOriented Modeling Survey

    E-Print Network [OSTI]

    Waterloo, University of

    Double­Blind Scores of an Object­Oriented Modeling Survey by Raymond Sze Chun Yiu An essay declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize

  7. The Interaction of Access Control and Object Orientation in Extensible Systems

    E-Print Network [OSTI]

    Hsieh, Wilson

    The Interaction of Access Control and Object Orientation in Extensible Systems Wilson C. Hsieh in extensible systems, based on our experience in building the SPIN extensible operating system. Several modern, access control, type safety. 1: Introduction Java-enabled Web browsers 13 and the SPIN operating system 3

  8. A HYGROTHERMAL BUILDING MODEL BASED ON THE OBJECT-ORIENTED MODELING LANGUAGE MODELICA

    E-Print Network [OSTI]

    A HYGROTHERMAL BUILDING MODEL BASED ON THE OBJECT-ORIENTED MODELING LANGUAGE MODELICA Christoph modeling language Modelica. As a starting point for the development of the new building model (thermal building simulation). The first results of this research are Modelica-implementations of a thermal

  9. Object-oriented Dynamics Modeling for Legged Robot Trajectory Optimization and Control

    E-Print Network [OSTI]

    Stryk, Oskar von

    Object-oriented Dynamics Modeling for Legged Robot Trajectory Optimization and Control Robert. To facilitate the investigation of new concepts of nonlinear model-based optimization and control methods also-level specification of multibody dynamics models using component libraries serves as a basis for generation

  10. Exception Handling in a Cooperative Object-Oriented Approach Rogrio de Lemos, Alexander Romanovsky

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    between objects at different phases of the software development. In this paper, the original definition of a cooperative object-oriented approach for software development is extended in order to include the description-related, design-related, and implementation-related exceptions during the software lifecycle. The feasibility

  11. A GIS and object oriented classification application to the problem of scaling ecological patterns and processes

    E-Print Network [OSTI]

    Lira-Noriega, André s

    2010-11-18T23:59:59.000Z

    and NIR at gg 1 m ground pixel resolution) – NDVI and SAVI in ERDAS Imagine 9.2 – Object oriented classification (eCognition 3) to extract exact location of host trees – Model the probability of presence using a metapopulation fkframework Road Trip...

  12. Fault-Tolerant Distributed Garbage Collection in a Client-Server Object-Oriented Database

    E-Print Network [OSTI]

    Fault-Tolerant Distributed Garbage Collection in a Client-Server Object-Oriented Database Umesh a scalable garbage collection scheme for sys- tems that store objects at multiple servers while clients run for such a sys- tem: Servers recover from failures and retrieve information needed for safe garbage collection

  13. FaultTolerant Distributed Garbage Collection in a ClientServer ObjectOriented Database

    E-Print Network [OSTI]

    Fault­Tolerant Distributed Garbage Collection in a Client­Server Object­Oriented Database Umesh a scalable garbage collection scheme for sys­ tems that store objects at multiple servers while clients run for such a sys­ tem: Servers recover from failures and retrieve information needed for safe garbage collection

  14. The problem of teaching object-oriented programming Part II: Environments1

    E-Print Network [OSTI]

    Kent, University of

    1 The problem of teaching object-oriented programming Part II: Environments1 Michael Kölling School aspect: the importance of the environment. In short: a suitable programming environment is crucial-orientation, problems with the environment used were the most frequent and the most severe. Because of this importance

  15. VGDS: An Object-Oriented Framework for Distributed Scienti c Computing

    E-Print Network [OSTI]

    bottlenecks in the production pipeline for High Performance Com- puting software result from a shortage of adequate design tools and design theory. We propose one technology that can help eliminate the HPC soft- ware bottleneck: object-oriented construction of vir- tual global data structures (VGDS). In this paper

  16. Extending G-Nets to Support Inheritance Modeling in Concurrent Object-Oriented Design

    E-Print Network [OSTI]

    Xu, Haiping

    Extending G-Nets to Support Inheritance Modeling in Concurrent Object-Oriented Design Haiping Xu and Sol M. Shatz The University of Illinois at Chicago Chicago, IL, 60607 Abstract G-Nets are a type of Petri net defined to support modeling of system as a set of independent and loosely-coupled modules

  17. Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution

    E-Print Network [OSTI]

    Weimer, Westley

    Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution Tao Xie1 write tests for every aspect of the classes they develop. However, manual test generation is time [12] to generate covering method sequences. But AsmLT requires the user to carefully choose

  18. Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution

    E-Print Network [OSTI]

    Xie, Tao

    Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution Tao Xie1 testers) who write tests for every aspect of the classes they develop. However, manual test generation] to generate covering method sequences. But AsmLT requires the user to carefully choose sufficiently large

  19. v-Promela: A Visual, Object-Oriented Language for SPIN Stefan Leue

    E-Print Network [OSTI]

    Leue, Stefan

    v-Promela: A Visual, Object-Oriented Language for SPIN Stefan Leue Electrical and Computer-RT, ROOM, and Statecharts, but is presented here in a framework that allows us to combine the benefits- signed to be transparent to the SPIN model checker itself, by allowing all central constructs

  20. The Reactor An Object-Oriented Wrapper for Event-Driven

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    The Reactor An Object-Oriented Wrapper for Event-Driven Port Monitoring and Service Demultiplexing OO framework called the Reactor was developed to overcome these limitations. The Reactor provides-driven distributed applications. The Reactor also shields developers from many error-prone details in the ex- isting

  1. OBJECT ORIENTED PROGRAMMING TECHNIQUES AND FAC METHOD IN NUMERICAL RESERVOIR SIMULATION \\Lambda

    E-Print Network [OSTI]

    OBJECT ORIENTED PROGRAMMING TECHNIQUES AND FAC METHOD IN NUMERICAL RESERVOIR SIMULATION \\Lambda in numerical simulation of flow through hydrocarbon reservoirs within limitations in computing time and memory. These consist of solution of the conservation equations whichs govern the motion of fluid through the reservoir

  2. A production order-driven AGV control model with object-oriented

    E-Print Network [OSTI]

    Nagi, Rakesh

    A production order-driven AGV control model with object-oriented implementation Manish Shah, Li Lin is required in the dynamic decision-making, integrated control is needed to consider the overall production of systems integration with a production planning module such as MRI? Static and dynamic informational

  3. An Object-Oriented Method for ASCET Max Fuchs and Dieter Nazareth

    E-Print Network [OSTI]

    98MF19 BMW-ROOM An Object-Oriented Method for ASCET Max Fuchs and Dieter Nazareth BMW AG, 80788 Munich Maximilian.Fuchs,Dieter.Nazareth@bmw.de Dirk Daniel and Bernhard Rumpe Department of Computer kitchen without a cooking book. Plans to employ the tool for BMW vehicle software sparked off demand

  4. Energy Secretary Ernest Moniz's Remarks on Climate Change and...

    Office of Environmental Management (EM)

    Energy Secretary Ernest Moniz's Remarks on Climate Change and Resiliency at Columbia University, New York City - As Delivered Energy Secretary Ernest Moniz's Remarks on Climate...

  5. Additions to a Design Tool for Visualizing the Energy Implications of California’s Climates

    E-Print Network [OSTI]

    Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

    2009-01-01T23:59:59.000Z

    Labs, Climatic Building Design, Energy Efficient BuildingLabs, Climatic Building Design, Energy Efficient Building

  6. "Renewable Energy Transition and International Climate Cooperation

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Renewable Energy Transition and International Climate Cooperation: The German Experience" Jürgen and sustainability science; complex systems analysis, mathematical modeling and computer simulation; technology assessment, arms control and international security. For more information: eucenter

  7. NetSim: An Object-Oriented Architectural Simulator Suite David A. Zier, Jarrod A. Nelsen, and Ben Lee

    E-Print Network [OSTI]

    Lee, Ben

    NetSim: An Object-Oriented Architectural Simulator Suite David A. Zier, Jarrod A. Nelsen, and Ben {zier, nelsonja, benl}@eecs.oregonstate.edu Abstract NetSim is an object-oriented based architectural simu- lator suite written in C# and uses Microsoft's .NET Framework. NetSim consists of several

  8. Climate Vulnerabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartmentBoston,ClimateClimate

  9. The climate change and energy security nexus

    SciTech Connect (OSTI)

    King, Marcus Dubois [George Washington University; Gulledge, Jay [ORNL

    2013-01-01T23:59:59.000Z

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategic Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.

  10. The land use climate change energy nexus

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Kline, Keith L [ORNL

    2011-01-01T23:59:59.000Z

    Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered both by changing human resource-management practices and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource extraction and land management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies and sustainability of alternative energy sources. Thus climate change, energy choices, and land-use change are linked, and any analysis in landscape ecology that considers one of these factors should consider them all. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

  11. Climate Change Webinar Series | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle, WA ClimateClimate

  12. CS 525: Advanced Database Organization Study of relational, semantic, and object-oriented data models and interfaces. Database management system

    E-Print Network [OSTI]

    Heller, Barbara

    CS 525: Advanced Database Organization Objectives Study of relational, semantic, and object-oriented data models and interfaces. Database management system techniques for query optimization, concurrency History of database management. Goals of database system development. Relational systems Data models

  13. METR 4553/5553 Climate and Renewable Energy

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4553/5553 Climate and Renewable Energy Spring 2013 Instructor Dr. Susan Postawko Dr. Mark to energy generated by fossil fuels. Course web site: Accessed on Desire2Learn @ http://learn.ou.edu (log of energy and climate Work with others to come to a consensus on questions of energy and climate Format

  14. METR 4553/5553 Climate and Renewable Energy

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4553/5553 Climate and Renewable Energy Spring 2014 Instructor Dr. Susan Postawko Office NWC feasible alternatives to energy generated by fossil fuels. Course web site: Accessed on Desire2Learn @ http of the sciences of energy and climate · Work with others to come to a consensus on questions of energy and climate

  15. Issued March 2004 Global Climate & Energy Project

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    University Objective The objective of this project is to develop optimized nanocomposite materials for high of the project Design of Nanotube-Metal Nanocluster Complex Meeting the Hydrogen Storage Material RequirementsIssued March 2004 Global Climate & Energy Project STANFORD UNIVERSITY Nanomaterials Engineering

  16. President Obama Touts Renewable Energy, Efficiency in Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, Efficiency in Climate Plan President Obama Touts Renewable Energy, Efficiency in Climate Plan July 3, 2013 - 5:09pm Addthis President Obama announced on June 25...

  17. Energy and Climate Change: 15th National Conference and Global...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Climate Change: 15th National Conference and Global Forum on Science, Policy, and the Environment Energy and Climate Change: 15th National Conference and Global Forum on...

  18. Climate Change Science Institute | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S.Climate Action PlanClimate Change

  19. Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency and Renewable Energy |SitesClimate

  20. UNEP Ris Centre Energy, Climate and Sustainable Development

    E-Print Network [OSTI]

    UNEP Risø Centre ­ Energy, Climate and Sustainable Development International and Danish research & Poverty · Energy Efficiency & Renewable Energy · Energy Sector Reform · CDM & Carbon markets · Development · Development and Energy in Africa ­ analytical activities: ­ Examining energy-development linkages in existing

  1. Climate Vulnerabilities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisitionDevelopmentChoose

  2. Sandia Energy - Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal Home

  3. Eos Climate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission LtdEnvisolar Jump to:EolianyEonEos

  4. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable Energy Technology

  5. Climate Care | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: Energy Resources

  6. Climate Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: Energy ResourcesLtdLoanCourse

  7. Climate Strategy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham,KnowledgeRisk

  8. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  9. Climate Change Science Institute | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

  10. A portable, parallel, object-oriented Monte Carlo neutron transport code in C++

    SciTech Connect (OSTI)

    Lee, S.R.; Cummings, J.C. [Los Alamos National Lab., NM (United States); Nolen, S.D. [Texas A and M Univ., College Station, TX (United States)]|[Los Alamos National Lab., NM (United States)

    1997-05-01T23:59:59.000Z

    We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.

  11. Reliability Analysis of Electric Power Systems Using an Object-oriented Hybrid Modeling Approach

    E-Print Network [OSTI]

    Schläpfer, Markus; Kröger, Wolfgang

    2012-01-01T23:59:59.000Z

    The ongoing evolution of the electric power systems brings about the need to cope with increasingly complex interactions of technical components and relevant actors. In order to integrate a more comprehensive spectrum of different aspects into a probabilistic reliability assessment and to include time-dependent effects, this paper proposes an object-oriented hybrid approach combining agent-based modeling techniques with classical methods such as Monte Carlo simulation. Objects represent both technical components such as generators and transmission lines and non-technical components such as grid operators. The approach allows the calculation of conventional reliability indices and the estimation of blackout frequencies. Furthermore, the influence of the time needed to remove line overloads on the overall system reliability can be assessed. The applicability of the approach is demonstrated by performing simulations on the IEEE Reliability Test System 1996 and on a model of the Swiss high-voltage grid.

  12. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  13. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD) 

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  14. Climate Zones | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT

  15. Climate Change | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1Clay

  16. Sandia Energy - Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied & Computational Math Home

  17. Climate Policies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity

  18. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump

  19. Climate Trust | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to: navigation,

  20. IPCC Special Report on Renewable Energy Sources and Climate Change

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Chapter 4 Geothermal Energy Chapter 5 Hydropower Chapter 6 Ocean Energy Chapter 7 Wind Energy Chapter 8#12;IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Edited Summary Chapter 1 Renewable Energy and Climate Change Chapter 2 Bioenergy Chapter 3 Direct Solar Energy

  1. Climate Bridge Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTracker JumpClimateBridge

  2. Committee on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonialComancheCommittee on Climate

  3. Climate Clean Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -ProjectClimate Clean

  4. Climate Leaders Management | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergyClimate Leaders

  5. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01T23:59:59.000Z

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  6. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower Systems

  7. Sandia Energy » Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,

  8. Climate Change Assessment | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimate Change

  9. Sandia Energy - Climate Measurement & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &Climate Measurement &

  10. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global EmissionsNIFEName Climate

  11. London Climate Change Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLCLiuzhouLoganLondon Climate

  12. Alliance for Climate Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNewInformationClimate Protection

  13. ClimateWorks Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to:ClimateAgricultureFeed

  14. ClimateCHECK | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA)ClimateCHECK Jump

  15. ClimateTechWiki | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA)ClimateCHECK

  16. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon Capture &

  17. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon Capture

  18. Sandia Energy » Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team Attends

  19. Climate Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: Energy

  20. Climate Change: Effects on Our Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimateClimate Change:

  1. Climate Change: Energy and Community Impacts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimateClimate

  2. Development of an object-oriented simulation code for repository performance assessment

    SciTech Connect (OSTI)

    Tsujimoto, Keiichi; Ahn, J.

    1999-07-01T23:59:59.000Z

    As understanding for mechanisms of radioactivity confinement by a deep geologic repository improves at the individual process level, it has become imperative to evaluate consequences of individual processes to the performance of the whole repository system. For this goal, the authors have developed a model for radionuclide transport in, and release from, the repository region by incorporating multiple-member decay chains and multiple waste canisters. A computer code has been developed with C++, an object-oriented language. By utilizing the feature that a geologic repository consists of thousands of objects of the same kind, such as the waste canister, the repository region is divided into multiple compartments and objects for simulation of radionuclide transport. Massive computational tasks are distributed over, and executed by, multiple networked workstations, with the help of parallel virtual machine (PVM) technology. Temporal change of the mass distribution of 28 radionuclides in the repository region for the time period of 100 million yr has been successfully obtained by the code.

  3. Development of an object-oriented dynamics simulator for a LFR DEMO

    SciTech Connect (OSTI)

    Ponciroli, R.; Bortot, S.; Lorenzi, S.; Cammi, A. [Politecnico di Milano, Dept. of Energy, CeSNEF-Nuclear Engineering Div., via Ponzio 34/3, 20133 Milano (Italy)

    2012-07-01T23:59:59.000Z

    A control-oriented dynamics simulator for a Generation IV Lead-cooled Fast Reactor (LFR) demonstrator (DEMO) has been developed aimed at providing a flexible, simple and fast-running tool allowing to perform design-basis transient and stability analyses, and to lay the foundations for the study of the system control strategy. For such purposes, a model representing a compromise between accuracy and straightforwardness has been necessarily sought, and in this view an object-oriented approach based on the Modelica language has been adopted. The reactor primary and secondary systems have been implemented by assembling both component models already available in a specific thermal-hydraulic library, and ad hoc developed nuclear component models suitably modified according to the specific DEMO configuration. The resulting overall plant simulator, incorporating also the balance of plant, consists in the following essential parts: core, integrated steam generator/primary pump block, cold and hot legs, primary coolant cold pool, turbine, heat sink, secondary coolant pump. Afterwards, the reactor response to typical transient initiators has been investigated: feedwater mass flow rate and temperature enhancement, turbine admission valve coefficient variation, increase of primary coolant mass flow rate, and transient of overpower have been simulated; results have been compared with the outcomes of analogous analyses performed by employing a lumped-parameter DEMO plant model. (authors)

  4. Overture: An advanced object-oriented software system for moving overlapping grid computations

    SciTech Connect (OSTI)

    Brown, D.L.; Henshaw, W.D.

    1996-09-01T23:59:59.000Z

    While the development of high-level, easy-to-use, software libraries for numerical computations has been successful in some areas (e.g. linear system solvers, ODE solvers, grid generation), this has been an elusive goal for developers of partial differential equation (PDE) solvers. The advent of new high level languages such as C++ has begun to make this an achievable goal. This report discusses an object- oriented environment that we are developing for solving problems on overlapping (Chimera) grids. The goal of this effort is to support flexible PDE solvers on adaptive, moving, overlapping grids that cover a domain and overlap where they meet. Solutions values at the overlap are determined by interpolation. The overlapping grid approach is particularly efficient for rapidly generating high- quality grids for moving geometries since as the component grids move, only the list of interpolation points changes, and the component grids do not have to be regenerated. We use structured component grids so that efficient, fast finite-difference algorithms can be used. Oliger-Berger-Corella type mesh refinement is used to efficiently resolve fine features of the flow.

  5. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    SciTech Connect (OSTI)

    Kuiper, J.; Ayers, A.; Johnson, R. [Argonne National Lab., IL (United States); Tolbert-Smith, M. [USDOE Germantown, Maryland (United States). Office of Program Integration

    1996-03-01T23:59:59.000Z

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems.

  6. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure ModeGeothermalParticipated

  7. Sandia Energy - Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure

  8. Energy Climate Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho Zip: ID

  9. Climate Threat to the Planet* Implications for Energy Policy

    E-Print Network [OSTI]

    Hansen, James E.

    Climate Threat to the Planet* Implications for Energy Policy Jim Hansen 4 July 2008 United Nations's Paleoclimate History 2. On-Going Climate Changes 3. Climate Models #12;#12;Green Triangle = Volcano; Red Box;#12;Observations: Domingues, C.M. et al., Nature 453, 1090-1093, 2008. Model: Hansen, J. et al., Science 308, 1431

  10. An Object-Oriented Metamodel for Bunge-Wand-Weber Ontology Arvind W. Kiwelekar, Rushikesh K. Joshi

    E-Print Network [OSTI]

    Joshi, Rushikesh K.

    An Object-Oriented Metamodel for Bunge-Wand-Weber Ontology Arvind W. Kiwelekar, Rushikesh K. Joshi, India awk,rkj @cse.iitb.ac.in Abstract A UML based metamodel for Bunge-Wand-Weber (BWW) ontology of model- ing language constructs [Joerg, 2005; Yair and Weber, 1990; Joerg and Wand, 2005; Yair and Weber

  11. WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING (QAOOSE'2003) Evolution of Cyclomatic Complexity in Object

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    7 TH WORKSHOP ON QUANTITATIVE APPROACHES IN OBJECT-ORIENTED SOFTWARE ENGINEERING (QAOOSE'2003) 1-- It is a generally accepted fact that software systems are constructed and gradually refined over a period of time and predictions about further evolution of software systems. Historically, collection of sufficient data to build

  12. Climate Change Science Institute | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S.Climate Action Plan

  13. EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...

    Open Energy Info (EERE)

    Type: Publications Website: www.ebrd.comdownloadsresearchfactsheetssei.pdf Cost: Free EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate Change Mitigation...

  14. RISNEWS JUNE 2007 NO Energy, climate and sustainable development in

    E-Print Network [OSTI]

    RISØNEWSNO 12007PAGE1 RISØNEWS JUNE 2007 NO 1 Energy, climate and sustainable development in the global fight for sustainable development ..................................................4 New partnerships encourage sustainable development

  15. Essays on climate change, energy, and independence 

    E-Print Network [OSTI]

    Comerford, David

    2013-11-27T23:59:59.000Z

    This thesis contains three separate papers. A balance of questions: what can we ask of climate change economics? is a critical analysis of the economics of climate change literature. It concludes that much more research ...

  16. Achieving Economic Results Through the Climate Wise Energy Management Program

    E-Print Network [OSTI]

    Kraly, K. F.

    Cosmair's Clark Manufacturing Facility joined the Climate Wise program, a voluntary industrial energy efficiency program sponsored by the US EPA, to support its commitment to energy conservation excellence and total environmental awareness, while...

  17. Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland:Glenwillow,OpenEIGlobal Climate and

  18. Sandia National Laboratories: Energy and Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Resolving a Key to How...

  19. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Sandia Participated in the...

  20. Nuclear energy output slows as climate warms

    SciTech Connect (OSTI)

    Kramer, David

    2014-06-01T23:59:59.000Z

    New reports from the Intergovernmental Panel on Climate Change and the US government say the window is closing for actions to avert the worst effects of warming.

  1. Varying trends in surface energy fluxes and associated climate between 1960 and 2002 based on transient climate simulations

    E-Print Network [OSTI]

    Varying trends in surface energy fluxes and associated climate between 1960 and 2002 based have analyzed transient climate simulations from 1960 to 2002 with and without anthropogenic aerosols and associated climate between 1960 and 2002 based on transient climate simulations, Geophys. Res. Lett., 32, L

  2. Parallel Object Oriented Implementation of a 2D Bounded Electrostatic Plasma PIC Simulation \\Lambda

    E-Print Network [OSTI]

    Bystroff, Chris

    energy is an important application area of plasma physics research, but more familiar examples include

  3. Climate Change and Energy Infrastructure Exposure to Storm Surge...

    Broader source: Energy.gov (indexed) [DOE]

    found that an extensive amount of U.S. energy infrastructure is currently exposed to damage from hurricane storm surge and that climate change is likely to substantially increase...

  4. Considerations for Energy Efficient Showers in Hot-Humid Climates

    E-Print Network [OSTI]

    Claridge, D. E.; Turner, W. D.

    1989-01-01T23:59:59.000Z

    CONSIDERATIONS FOR ENERGY EFFICIENT SHOWERS IN HOT-HUMID CLIMATES D. E. Claridge and W.D. Turner Energy Systems Laboratory Department of Mechanical Engineering Texas ALM University ABSTRACT Measurements have been conducted on four low... for typical operation in Texas. This has significant implications for everyone who purchases or uses showerheads; this is particularly true in hot climates where supply water temperatures are relatively high. TESTS CONDUCTED Showerheads Tested Two...

  5. Climate change and energy security: an analysis of policy research

    SciTech Connect (OSTI)

    King, Marcus Dubois [George Washington University] [George Washington University; Gulledge, Jay [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The literature on climate change's impacts on energy security is scattered across disparate fields of research and schools of thought. Much of this literature has been produced outside of the academy by scholars and practitioners working in "think tanks," government agencies, and international/multilateral institutions. Here we reviewed a selected set of 58 articles and reports primarily from such sources and performed textual analysis of the arguments. Our review of this literature identifies three potential mechanisms for linking climate change and energy security: Climate change may 1) create second-order effects that may exacerbate social instability and disrupt energy systems; 2) directly impact energy supply and/or systems or 3) influence energy security through the effects of climate-related policies. We identify emerging risks to energy security driven by climate mitigation tech-nology choices but find less evidence of climate change's direct physical impacts. We used both empirical and qualitative selection factors for choosing the grey literature sample. The sources we selected were published in the last 5 years, available through electronic media and were written in language accessible to general policy or academic readers. The organi-zations that published the literature had performed previous research in the general fields of energy and/or climate change with some analytical content and identified themselves as non-partisan. This literature is particularly valuable to scholars because identifies understudied relationships that can be rigorously assessed through academic tools and methodologies and informs a translational research agenda that will allow scholars to engage with practitioners to address challenges that lie at the nexus of climate change and energy security.

  6. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect (OSTI)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15T23:59:59.000Z

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  7. Climate VISION Progress Report 2007 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimateClimateClimate

  8. Climate Vision Progress Report 2007 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle, WA ClimateClimateClimate

  9. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role of Government-Sponsored R&D" as part of a session on "The...

  10. METR 4553/5553 Climate and Renewable Energy

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4553/5553 Climate and Renewable Energy 11:30-12:45 TR, Room 5600 NWC Spring 2012 Instructor Dr: "Renewable Energy", Godfrey Boyle, Oxford University Press, 2004 Course web site: Accessed on Desire2Learn 10 Week 14 Global warming and renewable energy Week 15 Environmental Tech EXAM 2 (Thurs., April 26

  11. Columbia University Energy Options & Paths to Climate Stabilization

    E-Print Network [OSTI]

    Mauel, Michael E.

    -lived radioactive components. · Safe: no catastrophic accidents; Low-risk for nuclear materials proliferation WhyMike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: "Pipe Dream or Panacea" #12;Mike Mauel Columbia University Energy Options & Paths

  12. Energy Conclave 2010 The global energy concerns of depleting fossil fuels and climate change have put

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    at the rapidly increasing energy demand, the limited supply of fossil fuels and the increased concern over globalEnergy Conclave 2010 8th - 15th The global energy concerns of depleting fossil fuels and climate

  13. ForPeerReview AN OBJECT-ORIENTED APPROACH FOR THE PORE-SCALE SIMULATION OF

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    , Emmanuel; Chevron Energy Technology Company, Petrophysics Torres-Verdin, Carlos; The University of Texas, Austin Texas 78712; presently Chevron North America Exploration and Production, 11111 S. Wilcrest Dr-Verdín2 1 Formerly University of Texas at Austin, Department of Petroleum and Geosystems Engineering

  14. Object-Oriented ASIP Design and Synthesis Maziar Goudarzi1,2

    E-Print Network [OSTI]

    Mycroft, Alan

    and higher area and energy consumption when compared to ASICs. To minimise this risk, a five-step disciplined for each of its instances. We describe an alternative synthesis approach which parallels the software subset of ODETTE to include object instances ad- dressed by pointer as is common in software

  15. Energy Piles in Cooling Dominated Climates

    E-Print Network [OSTI]

    Akrouch, Ghassan

    2014-04-10T23:59:59.000Z

    . In summer, ground temperature is lower than air temperature, and so the ground may be used as a heat sink. The opposite is true in winter; the ground becomes a heat source. This technology is used efficiently in cold, heating dominated climates. Could...

  16. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    Energy efficiency and energy awareness in Botswana; ESI,awareness and training was the most frequently identified opportunity for improved energy

  17. International Energy and Climate Initiative - Energy+ | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:

  18. Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint

    SciTech Connect (OSTI)

    Long, N.; Fleming, K.; Brackney, L.

    2011-12-01T23:59:59.000Z

    Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

  19. CASL-U-2015-0087-000 Dakota, A Multilevel Parallel Object-Oriented Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o . CL25-0006-000 Design of87-000

  20. Conceptual understanding of climate change with a globally resolved energy balance model

    E-Print Network [OSTI]

    Dommenget, Dietmar

    Conceptual understanding of climate change with a globally resolved energy balance model Dietmar on the surface energy balance by very simple repre- sentations of solar and thermal radiation, the atmospheric and cold regions to warm more than other regions. Keywords Climate dynamics Á Climate change Á Climate

  1. The Role of Behavioural Economics in Energy and Climate Policy

    E-Print Network [OSTI]

    Pollitt, Michael G.; Shaorshadze, Irina

    in renewable electricity supply. Keywords behavioural economics, energy economics, energy demand, energy efficiency, private provision of public goods JEL Classification D03, D10, Q40, Q58 Contact m.pollitt@jbs.cam.ac.uk Publication December 2011... . Climate policy significantly  interacts with both of  these elements of energy policy via the introduction of expensive and intermittent renewable electricity  and heat. If consumer behaviour can be changed to reduce energy demand or to make energy demand  more  responsive  in  time...

  2. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02T23:59:59.000Z

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  3. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    E-Print Network [OSTI]

    DeForest, Nicolas

    2014-01-01T23:59:59.000Z

    > [5] Sivak M, Potential energy demand for cooling in the 50residential cooling energy demand to climate change, Energyof the potential cooling energy demand comes from developing

  4. Energy Systems & Climate Change The Evergreen St. College

    E-Print Network [OSTI]

    Zita, E.J.

    project · Investigate your question; test your hypotheses · Build something? Generate and/or analyze data. Reference: For each of your sources, start with the data: · Books: Title, Author, year (publisher, ISBNResearch in Energy Systems & Climate Change The Evergreen St. College Dr. E.J. Zita zita

  5. Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

  6. Atmosclear Climate Club | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture

  7. Climate VISION: Events - Energy Efficient Homes Worksho

    Office of Scientific and Technical Information (OSTI)

    Energy Efficient Homes Workshop Objective: Discuss how, by working together, government and the private sector can transform the housing market so that builders construct and...

  8. Climate Technology Initiative (CTI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind

  9. Climate Technology Initiative (CTI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind(Redirected from

  10. ClimateWorks | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind(Redirected

  11. Netherlands Climate Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) Jump to:

  12. Guides and Case Studies for Marine Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on Energy andEnergyofMarine Climates Guides

  13. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia (Sandia National Laboratories, Livermore, CA); Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Eddy, John P.

    2011-12-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  14. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01T23:59:59.000Z

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  15. Climate for Collaboration: Analysis of US and EU Lessons and Opportunities in Energy and Climate Policy

    SciTech Connect (OSTI)

    De Vita, A.; de Connick, H.; McLaren, J.; Cochran, J.

    2009-11-01T23:59:59.000Z

    A deepening of cooperation between the United States and the European Union requires mutual trust, and understanding of current policies, challenges and successes. Through providing such understanding among policymakers, industry and other stakeholders in both economies, opportunities for transatlantic cooperation on climate change and energy policy emerge. This paper sets out by discussing the environmental, legislative, and economic contexts of the EU and US as related to climate. This context is essential to understanding how cap-and-trade, renewable energy and sustainable transportation policies have taken shape in the EU and the US, as described in Chapter 3.1. For each of these policies, a barrier analysis and discussion is provided. Chapter 4 builds off this improved understanding to listobservations and possible lessons learned. The paper concludes with recommendations on topics where EU and US interests align, and where further cooperation could prove beneficial.

  16. Alliance for Climate Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation,AlleghanyAlliance for

  17. President's Climate Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric, Inc.DepartmentFleetEnergy view ofPresident’s

  18. Sequoia Climate Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoul Marine Co Ltd

  19. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEurico Ferreira SA(Redirected from

  20. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEurico Ferreira SA(Redirected

  1. SEAB Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-EStandards0SEAB

  2. Buildings and Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy3BuildingOS by

  3. Climate Action Planning Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC Smart

  4. Climate Action Tracker | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTracker Jump to:

  5. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTracker Jump

  6. Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation Exchange

  7. Climate Financing Options | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation ExchangeOptions

  8. Climate Investment Funds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformationFunds Jump to:

  9. Climate Policy Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformationFunds Jump

  10. Climate Registry Information System | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformationFunds

  11. Climate Technology Initiative Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean

  12. Presidential Climate Action Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy Efficiency

  13. SEAB Climate Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment ofNone System: Georgia-Alabama-South0 North

  14. Chicago Climate Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnut CapitalChi

  15. Natural Climate Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource Europe Ltd

  16. Big Tree Climate Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big CreekBigWindTree

  17. The Climate Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCity of Union City Jump to:The

  18. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -Project Phase 2

  19. Climate Financing for Cities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -ProjectClimatefor

  20. Climate Leaders Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy

  1. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEFAppropriationReference Manual Logo:

  2. Climate Change Advisory Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: Energy ResourcesLtd Place:

  3. Climate Compatible Development Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: Energy ResourcesLtdLoanCourse

  4. Climate Funds Update | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham, England,

  5. Climate Human Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham, England,Human

  6. Climate Knowledge Brokers Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham,Knowledge Brokers

  7. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork: EnergyWitham,Knowledge

  8. Global Climate Change Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial Energy HoldingsGlacialReport

  9. Climate Action Champions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency and Renewable Energy |Sites

  10. Building America Climate-Specific Guidance | Department of Energy

    Energy Savers [EERE]

    Building America Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America Climate-Specific Guidance 2014 Housing Innovation...

  11. Integrated energy planning: Strategies to mitigate climate change

    SciTech Connect (OSTI)

    Ortiz, J.N.; Sheffield, J.W.

    1997-06-01T23:59:59.000Z

    The Framework Convention on Climate Change, signed by more than 150 governments worldwide in June 1992, calls on parties to the Convention to undertake inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport, and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, the energy sector will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planning analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention`s commitments. It involves the development of scenarios based on energy end uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more mitigation scenario. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates the events assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy interventions.

  12. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, AlaskaASEM GreenA

  13. Climate Change Adaptation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1Clay SellBoston,Oberlin,Compact, FL

  14. WWF-Climate Prep | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to: navigation,WSDNR Forms Jump

  15. Chalmers Climate Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:CerionChagrin Falls,

  16. California Climate Action Registry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28 2013

  17. Post 2012 Climate Regime | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidon Solar Services PvtPost

  18. Sandia Energy - Climate & Earth Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &

  19. IAIA Climate Symposiums | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectProgramsAlterationAl.,GRC JayIAIA

  20. E ON Climate Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbH Jump to:EAGE ON

  1. Office of Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdaleOdersun AG Jump to:Office of

  2. The Climate Registry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation, searchLookTheRegistry

  3. Strategic Climate Fund (SCF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategic Capital Investments LLC Jump to:SCF) Jump

  4. Tianjin Climate Exchange TCX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+Tianjiao Technology Jump

  5. Chicago Climate Exchange CCX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,VolcanicChevronJump to:CCX Jump

  6. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation, search Logo:

  7. Climate Zone Number 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation, searchNumber

  8. Climate Zone Number 3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation,

  9. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation,is defined as

  10. Climate Zone Subtype A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation,is defined

  11. Climate Zone Subtype B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation,is definedB)

  12. Climate Zone Subtype C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation,is

  13. Climate Zone 1A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to: navigation,type

  14. Climate Zone 1B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to: navigation,type1B

  15. Climate Zone 2A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:

  16. Climate Zone 2B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 < CDD50ºF

  17. Climate Zone 3A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 <

  18. Climate Zone 3B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 <B is

  19. Climate Zone 3C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 <B isas

  20. Climate Zone 4A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 <B

  1. Climate Zone 4B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300 <BCDD50ºF

  2. Climate Zone 4C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:6300

  3. Climate Zone 5A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A Jump to:

  4. Climate Zone 5B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A Jump to:B

  5. Climate Zone 5C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A Jump

  6. Climate Zone 6A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A JumpCold -

  7. Climate Zone 6B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A JumpCold -

  8. Climate Zone 7A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A JumpCold

  9. Climate Zone 7B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005A

  10. Climate Zone 8A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005Adefined as

  11. Climate Zone 8B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005Adefined

  12. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump to:63005Adefinedis

  13. Climate Zone Number 4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust Jump

  14. Climate Zone Number 6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA) with IP Units 7200

  15. Climate Zone Number 7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA) with IP Units

  16. Climate Zone Number 8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA) with IP

  17. T. Richards, G. I. Webb and N. Craske (1988). "Object-oriented Control for Intelligent Computer Assisted Learning Systems ". Page 1 of 15

    E-Print Network [OSTI]

    Webb, Geoff

    Assisted Learning Systems ". Page 1 of 15 OBJECT-ORIENTED CONTROL FOR INTELLIGENT COMPUTER ASSISTED LEARNING SYSTEMS Tom Richards Computer Science, La Trobe University Geoff Webb Computing and Information an approach to providing a general-purpose authoring/tutoring shell for intelligent computer assisted learning

  18. Climate change and renewable energy portfolios 

    E-Print Network [OSTI]

    Burnett, Dougal James

    2012-06-25T23:59:59.000Z

    The UK has a commitment to reduce greenhouse gases by at least 80% from 1990 levels by 2050. This will see the proportion of energy generated in the UK from renewable resources such as wind, solar, marine and bio-fuels ...

  19. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  20. Veterans Advancing Clean Energy and Climate

    ScienceCinema (OSTI)

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2014-01-07T23:59:59.000Z

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  1. Veterans Advancing Clean Energy and Climate

    SciTech Connect (OSTI)

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2013-11-11T23:59:59.000Z

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  2. Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate

    E-Print Network [OSTI]

    Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

    2006-01-01T23:59:59.000Z

    Fifteenth Symposium on Improving Building Systems in Hot and Humid Climate July 24-26, 2006 The Buena Vista Palace Hotel, Orlando, Florida TOWARDS ENERGY EFFICIENT BUILDING ASSETS: A REVIEW ON SUB-TROPICAL CLIMATE A.A. CHOWDHURY M.G. RASUL M... building’s stability. To approach the concept of energy efficient building assets in a sub-tropical climate, building assets must adopt a number of innovative strategies to take advantage of subtropical climate. The importance of energy efficiency...

  3. Blackout: coal, climate and the last energy crisis

    SciTech Connect (OSTI)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15T23:59:59.000Z

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  4. Financing Global Climate Change Mitigation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at MethilGlobal Climate Change

  5. Financing a Global Deal on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at MethilGlobal Climate Changea Global

  6. From Climate Finance to Financing Green Growth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight Best PracticeFrey NouvellesClimate

  7. Climate Analysis Indicators Tool (CAIT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTracker JumpClimate

  8. Climate and Development Knowledge Network (CDKN) Feed | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation Climate and Development

  9. Climate and Development Knowledge Network (CDKN) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation Climate and

  10. Paraguay-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute, Colorado:Paraguay-USAID Climate

  11. Nepal-Climate Finance Readiness Programme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX Ltd Jump to: navigation, searchNepal-Climate

  12. Nepal-Climate and Carbon Unit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX Ltd Jump to: navigation,SNV-Climate and

  13. US State Climate Action Plans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNealState Climate Action

  14. Climate Analysis Indicators Tool (CAIT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -Project Phase 2Climate

  15. Climate Leadership in Parks (CLIP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergyClimate

  16. Colombia-Climate Finance Readiness Programme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur dColmar, Pennsylvania:Colombia-Climate

  17. Bangladesh-USAID Climate Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower Systems JumpUSAID Climate Activities

  18. Additions to a Design Tool for Visualizing the Energy Implications of California’s Climates

    E-Print Network [OSTI]

    Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

    2009-01-01T23:59:59.000Z

    Passive Solar Energy Book, Rodale Press 1979 Milne, Murray, and Baruch Givoni, Chapter 6, "Architectural Design Based on Climate", Energy Conservation through Building Design,

  19. Climate & Environmental Sciences | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean0 TEMPERATURE00909100910

  20. US Energy Sector Vulnerabilities to Climate Change

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel for U.S.URTAC MeetingofUS Department of.tif

  1. US Energy Sector Vulnerabilities to Climate Change

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel for U.S.URTAC MeetingofUS Department of.tif

  2. Americas' Energy Leaders Take Action to Realize Energy and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable energy, cleaner fossil fuels, critical infrastructure, and energy poverty alleviation. DOE's Assistant Secretary for Policy and International Affairs David...

  3. Preliminary assessment of climate change impacts on the UK onshore wind energy resource

    E-Print Network [OSTI]

    Harrison, Gareth

    while summer decreases. Keywords: climate change, United Kingdom, wind energy, wind climate. 1, the potential for changes in climate to affect the significant onshore wind resource in the United Kingdom (UK contributor to future long term renewable energy targets. This is particularly true in the United Kingdom (UK

  4. The private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure

    E-Print Network [OSTI]

    Hart, Craig A

    2007-01-01T23:59:59.000Z

    This dissertation examines the financial aspects of climate change relating to the private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure. The dissertation examines (a) potential ...

  5. ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

    SciTech Connect (OSTI)

    McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

    2013-11-01T23:59:59.000Z

    The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.

  6. Climate Change and Energy Infrastructure Exposure to Storm Surge and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimate

  7. Climate Action Champions: Seattle, WA | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle, WA Climate Action

  8. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar GroupInformationInformationYearConstruction1 JumpModelClimateZone

  9. Madagascar-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOGMadagascar-USAID Climate

  10. Sonoma County-Climate Protection Campaign | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jump to:Solibro ABSonatrach JumpCounty-Climate

  11. Mexican-German Climate Alliance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier(RedirectedMexican-German Climate

  12. Climate and Development Knowledge Network (CDKN) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to:Climate and Development

  13. Climate-Smart Agriculture Country Profiles | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to:ClimateAgriculture

  14. UNDP-Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull HydroUK CentreMechanism JumpClimate

  15. USFS-Climate Change Resource Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobal Map-AnnexUSFS-Climate Change

  16. UNEP Climate Change Resource Kit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15:WebJump to:Climate Change

  17. International Center for Climate Governance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformation International Center forClimate

  18. Development and Analysis of a Sustainable Low Energy House in a Hot and Humid Climate

    E-Print Network [OSTI]

    Chulsukon, P.; Haberl, J. S.; Degelman, L. O.; Sylvester, K. E.

    2002-01-01T23:59:59.000Z

    cooling. In cold-climate countries, electricity is often used for space heating as well. Natural gas is mainly Energy Used in Building Demolition Demolition Removal Energy Used in Building Operation Space Cooling Lighting Equipment Water... Lifetime Building Energy Consumption Figure 1: Lifetime Building Energy Consumption Components for a Typical Residence in Thailand. used for only cooking for hot and humid climates such as Thailand. In cold climates, gas is also used for space...

  19. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating data for use in building energy simulations by EnergyPlus. Two types of residential buildings and seven

  20. June 10, 2013 Canada's energy future meeting demand AND the climate change challenge

    E-Print Network [OSTI]

    Pedersen, Tom

    MEDIA TIP June 10, 2013 Canada's energy future ­meeting demand AND the climate change challenge Energy and business reporters are welcome to attend a high-level energy experts' presentation and panel on "Seeking Common Ground on Canada's Energy Future" during the Pacific Institute for Climate Solutions (PICS

  1. PEACE CORPS ENERGY AND CLIMATE PARTNERSHIP OF THE AMERICAS (ECPA) INITIATIVE

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    the capacity of communities in Latin America to address rural energy poverty through a multi-faceted approachPEACE CORPS ENERGY AND CLIMATE PARTNERSHIP OF THE AMERICAS (ECPA) INITIATIVE Peace Corps' awareness to promote behavior change related to energy conservation, use of renewable energy, climate

  2. Cold-Climate Case Study for Affordable Zero Energy Homes

    SciTech Connect (OSTI)

    Norton, P.; Christensen, C.

    2006-01-01T23:59:59.000Z

    This project, supported by the U.S. Department of Energy's Building America Program, is a case study in reaching zero energy within the affordable housing sector in cold climates. The design of the 1200 square foot, 3-bedroom Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed using an early version of the BEOpt building optimization software with additional analysis using DOE2. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design towards simple, easily maintained mechanical systems and volunteer-friendly construction techniques.

  3. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Communication. IPCC (Intergovernmental Panel on Climate Change).climate change are planned, but not yet under way (Knowles, personal communication.Communication. Greg Fishman and Dave Hawlkins. California Climate Change

  4. Secretary Chu Invites Energy Leaders to the Energy and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    programs to promote low-carbon economic growth, improve energy security and end energy poverty." The Ministerial will have two parts. The first day will be a meeting of...

  5. A Net Energy-based Analysis for a Climate-constrained Sustainable Energy Transition

    E-Print Network [OSTI]

    Sgouridis, Sgouris; Csala, Denes

    2015-01-01T23:59:59.000Z

    The transition from a fossil-based energy economy to one based on renewable energy is driven by the double challenge of climate change and resource depletion. Building a renewable energy infrastructure requires an upfront energy investment that subtracts from the net energy available to society. This investment is determined by the need to transition to renewable energy fast enough to stave off the worst consequences of climate change and, at the same time, maintain a sufficient net energy flow to sustain the world's economy and population. We show that a feasible transition pathway requires that the rate of investment in renewable energy should accelerate approximately by an order of magnitude if we are to stay within the range of IPCC recommendations.

  6. Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports

    E-Print Network [OSTI]

    Miami, University of

    Explorations of Atmosphere­Ocean­Ice Climates on an Aquaplanet and Their Meridional Energy climates--some with polar ice caps, some without--even though they are driven by the same incoming solar is a useful guide. In cold climates with significant polar ice caps, however, meridional gradients in albedo

  7. Guides and Case Studies for Marine Climates | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs, andCertificates, andandHot-Humid Climates Guides

  8. Accelerated Climate Modeling For Energy Marcia Branstetter Katherine Evans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME - Accelerated Climate Modeling

  9. Americas' Energy Leaders Take Action to Realize Energy and Climate

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas | Department of Energy

  10. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme...

    Broader source: Energy.gov (indexed) [DOE]

    trends on the U.S. energy sector. Report updated July 16, 2013. Explore an interactive map that shows where climate change has already impacted the energy sector. US Energy...

  11. Climate Sensitivity of Marine Energy Dr Gareth P. Harrison* and Dr A. Robin Wallace

    E-Print Network [OSTI]

    Harrison, Gareth

    Introduction Marine energy has a key role to play in meeting long term renewable energy targets as part examination is justified. #12;2 2 Changing Offshore Climate From the late 1980s the trend of increasing wave1 Climate Sensitivity of Marine Energy Dr Gareth P. Harrison* and Dr A. Robin Wallace School

  12. Assessing climate change impacts on the near-term stability of the wind energy

    E-Print Network [OSTI]

    Pryor, Sara C.

    Assessing climate change impacts on the near-term stability of the wind energy resource over- ble emissions of carbon dioxide. The wind energy resource is natu- rally a function of the climate, leading some to question the continued viability of the wind energy industry. Here we briefly articulate

  13. A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model

    E-Print Network [OSTI]

    Díaz, Jesús Ildefonso

    A Finite Element Algorithm of a Nonlinear Diffusive Climate Energy Balance Model R. BERMEJO,1 J. This model belongs to the category of energy balance models introduced independently by the climatologists M climate. The energy balance model we are dealing with consists of a two-dimensional nonlinear parabolic

  14. Assessing the Role of Energy in Development and Climate Policies in Large Developing Countries

    E-Print Network [OSTI]

    Assessing the Role of Energy in Development and Climate Policies in Large Developing Countries Amit conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed

  15. The role of renewable energy in climate stabilization: results from the EMF27

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The role of renewable energy in climate stabilization: results from the EMF27 scenarios Gunnar the role of renewable energy in climate change mitigation. Renewables currently supply approximately 18, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive

  16. ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR

    E-Print Network [OSTI]

    ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR AFRICA, THE MIDDLE Management Title of Thesis: Assessing Climate Change Mitigation with a Hybrid Energy-Economy Approach create a hybrid energy-economy model for developing countries in Africa, the Middle East and Latin

  17. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    ScienceCinema (OSTI)

    Mark Levine

    2010-01-08T23:59:59.000Z

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  18. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    SciTech Connect (OSTI)

    Mark Levine

    2009-02-24T23:59:59.000Z

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  19. Global Climate and Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermal energy toGettingGiveand Energy

  20. Energy and Climate Partnership of the Americas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol JumpEnergy SystemSystems Network ESNVisions

  1. Climate Change: Effects on Our Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1ClayChange: Effects on Our Energy

  2. Clean Energy Investment and Climate Change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean Economy Network Jump to:sourceClean

  3. Climate Change and Clean Energy Project (CEnergy) Toolkit | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -Project

  4. Britain's Department of Energy and Climate change | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridger Valley Elec Assn,

  5. Trexler Climate Energy Services TC ES | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f

  6. Energy and Climate Partnership of the Americas | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7, 2009Energy Initiative |The

  7. Energy Conference 2009 - A New Climate for Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator of U.S.U.S.U.S. Energy

  8. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducationRemediation » PaducahPartnership for Energy

  9. VIDEO: Moniz Talks Energy and Climate Policy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict4 VARIATIONS IN THEVERA Core1Moniz

  10. Major Economies Forum on Energy and Climate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource History View NewWind Farm

  11. Stanford- Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop,Lanka-DLRStandard Ethanol LLC Jump

  12. Climate-Proofing Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:Trust JumpA)

  13. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01T23:59:59.000Z

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  14. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    1997. “Climate Change and Water Resources. ” Climatic Change2006. Cost and Value of Water Use at Combined-Cycle Power2006. Cost and Value of Water Use at Combined-Cycle Power

  15. Commercial Building HVAC Energy Usage in Semi-Tropical Climates

    E-Print Network [OSTI]

    Worbs, H. E.

    1987-01-01T23:59:59.000Z

    The design of heating and cooling equipment in semi-tropical climates presents some design considerations and limitations not so prevalent in temperate climates. In some cases, the heating season may be non-existent for all practical purposes...

  16. Tribal Leaders Summit on Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Leaders Summit on Climate Change Tribal Leaders Summit on Climate Change January 15, 2015 9:00AM PST to January 16, 2015 1:00PM PST Doubletree Lloyd Center, Portland Oregon...

  17. National Conference and Global Forum on Science, Policy and the Environment Energy and Climate Change

    Broader source: Energy.gov [DOE]

    The 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change will develop and advance partnerships that focus on transitioning the world to a new "low carbon" and "climate resilient" energy system. It will emphasize putting ideas into action - moving forward on policy and practice.

  18. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in India

    E-Print Network [OSTI]

    McNeil, Michael A.

    2013-01-01T23:59:59.000Z

    Future - How Much Can Efficiency Achieve? ECEEE Summeron Enhanced Energy Efficiency. Energy Synergy Dialogue.Business Case for Energy Efficiency in Support of Climate

  19. The Climate + Energy Project is excited to announce an exclusive screening of the docu-series about climate change, YEARS OF LIVING DANGEROUSLY.

    E-Print Network [OSTI]

    -series about climate change, YEARS OF LIVING DANGEROUSLY. The 9-part series premiered on April 13, 2014. CEP on Climate Change (IPCC) Reports. Tuesday, November 11th , Lawrence Years of Living Dangerously events: FilmThe Climate + Energy Project is excited to announce an exclusive screening of the SHOWTIME® docu

  20. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  1. Application and Design of Residential Building Energy Saving in Cold Climates 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    Climate is the one of main considerations for residential building design since the green and energy saving building has become the trend in the building industry. China is actively popularizing high energy-effective and environment harmonious...

  2. An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J. S.

    2006-01-01T23:59:59.000Z

    Systems in Hot and Humid Climates, Orlando, Florida, July 24-26, 2006 Methodology 1. Development of the Basecase Simulation Model 2. Analysis of Energy Saving Measures 3. Development of the Maximum Energy-Efficient House 4. Economic Analysis DOE-2 Input...AN ANALYSIS OF MAXIMUM RESIDENTIAL ENERGY EFFICIENCY IN HOT AND HUMID CLIMATES Mini Malhotra Graduate Research Assistant Jeff Haberl, Ph.D., P.E. Professor/Associate Director Energy Systems Laboratory, Texas A&M University College...

  3. Promoting India's development: energy security and climate security are convergent goals

    SciTech Connect (OSTI)

    Rajan, Gupta [Los Alamos National Laboratory; Shankar, Harihar [Los Alamos National Laboratory; Joshi, Sunjoy [INDIA

    2009-01-01T23:59:59.000Z

    This paper investigates three aspects of the energy-climate challenges faced by India. First, we examine energy security in light of anticipated growth in power generation in response to the national goal of maintaining close to 10% growth in GDP. Second, we examine possible options for mitigation and adaptation to climate change for India that it can take to the coming Copenhagen meeting on climate change. Lastly, we introduce an open web based tool for analyzing and planning global energy systems called the Global Energy Observatory (GEO).

  4. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect (OSTI)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22T23:59:59.000Z

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  5. China-Energy and Climate Change Research Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy HoldingMIT Sector Climate,

  6. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    Journal of heating, Ventilation and Refrigeration Research,on Cold Climate, Heating, Ventilation and Air-Conditioning,Ventilation Effectiveness, Federation of European Heating

  7. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01T23:59:59.000Z

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  8. Evaluation of Vegetative Roofs' Performance on Energy Consumption in Hot and Humid Climates

    E-Print Network [OSTI]

    Anderson, J.; Azarbayjani, M.

    with Building (6) is that it is located in (Florida), whereas the other buildings are located in cold climates (Maryland, New York, and south Texas). In hot climates most of the energy consumption is used for the air-conditioning of the buildings..., whereas in cold climates most of the energy is used for heating the buildings. However, it could be argued that it is more energy consuming to cool a space than to heat it. This is attributed to the fact that there is heat dissipation from light...

  9. Estimating Energy Efficiency Impacts Using Climate Wise "Wise Rules"

    E-Print Network [OSTI]

    Milmoe, P. H.; Winkelman, S. R.

    use. Climate Wise provides technical assistance in the form of efficiency check-lists, handbooks, and one-on-one support through a toll-free Wise Line to help partners identify efficiency measures and quantify project impacts. Climate Wise has...

  10. Energy performance of a dual airflow window under different climates Jingshu Wei1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    -e windows was also calculated for com parison. The dual airflow window can reduce heating energy1 Energy performance of a dual airflow window under different climates Jingshu Wei1 , Jianing Zhao1. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window

  11. Clean Energy and Climate Policy for U.S. Growth and

    E-Print Network [OSTI]

    Wildermuth, Mary C

    Clean Energy and Climate Policy for U.S. Growth and Job Creation An Economic Assessment of the American Clean Energy and Security Act and the Clean Energy Jobs and American Power Act Executive Summary to reduce greenhouse gas emissions, the American Clean Energy Security Act (ACES), was introduced into the U

  12. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  13. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  14. Large climate-moderating envelopes for enclosed structures: a preliminary evaluation of energy conservation potential

    SciTech Connect (OSTI)

    Wendt, R.L.; Giles, G.E.; Park, J.E.

    1981-12-01T23:59:59.000Z

    An investigation was made of the basic impacts of putting a large secondary enclosure around a number of functions and thereby creating a Large Climate Moderating Envelope (LCME). This study is a preliminary estimate of the energy conservation benefits of an LCME. A hypothetical LMCE design was chosen and a coupled fluid dynamic and energy transport analysis was performed to estimate the energy conservation potential of this design. The heat transfer models included insolation, outside air temperature and wind, thermal radiation exchange with the sky, and between the fabric and ground and thermal storage in the earth mass beneath the LCME. The energy transported within the fluid by the buoyancy driven circulation was modeled as an incompressible fluid utilizing the Boussinesq approximation. The climatic conditions were assumed to vary in smooth repeating daily cycles. The numerical simulation of climatic variation was continued until the results within the LCME achieved a repeating daily cycle. The results for selected seasonally characteristic days were utilized to estimate the annual energy consumption of structures within an LCME relative to similar structures exposed to the exterior environment. The relative annual energy savings for summer-dominated climates was estimated to be approx. 70%. The energy savings for a winter-dominated climate LCME were estimated to be somewhat smaller but the LCME concept could offer significant benefits for agricultural applications for this type of climate.

  15. "Climate Wise" in the Lone Star State: A Successful Partnership for Energy Efficiency in Austin, Texas

    E-Print Network [OSTI]

    Allen, S. J.; Schare, S.

    The City of Austin, Texas is forming partnerships with local companies to lower energy consumption and improve environmental performance within the industrial sector. As a local government participant in the federal Climate Wise program, Austin...

  16. "Climate Wise" in the Lone Star State: A Successful Partnership for Energy Efficiency in Austin, Texas 

    E-Print Network [OSTI]

    Allen, S. J.; Schare, S.

    1997-01-01T23:59:59.000Z

    The City of Austin, Texas is forming partnerships with local companies to lower energy consumption and improve environmental performance within the industrial sector. As a local government participant in the federal Climate Wise program, Austin...

  17. Low energy cooling in multi-storey buildings for hot, arid climates

    E-Print Network [OSTI]

    Mostafa, Amira M

    1989-01-01T23:59:59.000Z

    This thesis discusses passive and low energy cooling strategies and systems in hot arid climates. The choice of a certain strategy, as well as determining the appropriate cooling schemes for such a context becomes of prime ...

  18. Application and Design of Residential Building Energy Saving in Cold Climates

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    combines indoor microclimates in order to decrease the building life cycle energy consumption. The air wall technology is studied for adoption of cold climate features. The research results through a National Demonstration Building Project (NDBP) show...

  19. DRAFT Syllabus for Energy Systems & Climate Change, Winter 2010 (See Moodle for updates and links)

    E-Print Network [OSTI]

    DRAFT Syllabus for Energy Systems & Climate Change, Winter 2010 (See Moodle for updates and links research & Faculty office hours 26 Feb. Gore Ch.8 (Nuclear); Start Seminar on Revenge of Gaia Week 9 1 Mar

  20. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    SciTech Connect (OSTI)

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter; Lowry, Thomas; Middleton, Richard; Pate, Ron; Tidwell, Vincent C.; Arnold, J. G.; Averyt, Kristen; Janetos, Anthony C.; Izaurralde, Roberto C.; Rice, Jennie S.; Rose, Steven K.

    2012-03-01T23:59:59.000Z

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  1. Summary for Policy Makers: Intergovernmental Panel on Climate Change Special Report Renewable Energy Sources (SRREN)

    SciTech Connect (OSTI)

    Arvizu, Dan; Bruckner, Thomas; Christensen, John; Devernay, Jean-Michel; Faaij , Andre; Fischedick, Manfred; Goldstein, Barry; Hansen, Gerrit; Huckerby , John; Jager-Waldau, Arnulf; Kadner, Susanne; Kammen, Daniel; Krey, Volker; Kumar, Arun; Lewis , Anthony; Lucon, Oswaldo; Matschoss, Patrick; Maurice, Lourdes; Mitchell , Catherine; Moomaw, William; Moreira, Jose; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Rahman, Atiq; Sathaye, Jayant; Sawin, Janet; Schaeffer, Roberto; Schei, Tormod; Schlomer, Steffen; Sims, Ralph; von Stechow, Christoph; Verbruggen, Aviel; Urama, Kevin; Wiser, Ryan; Yamba, Francis; Zwickel, Timm

    2011-05-08T23:59:59.000Z

    The Working Group III Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy (RE) sources to the mitigation of climate change. It is intended to provide policy relevant information to governments, intergovernmental processes and other interested parties. This Summary for Policymakers provides an overview of the SRREN, summarizing the essential findings. The SRREN consists of 11 chapters. Chapter 1 sets the context for RE and climate change; Chapters 2 through 7 provide information on six RE technologies, and Chapters 8 through 11 address integrative issues.

  2. Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate 

    E-Print Network [OSTI]

    Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

    2006-01-01T23:59:59.000Z

    ., Clark R. J., Building energy efficiency in different climates. Specific Eng, October, 1992 Halliday S., Beggs C. B., Sleigh P.A., The use of solar desiccant cooling in the UK: A fesibility study, Applied Thermal Engineering, 22, 1327- 1338, 2002...Fifteenth Symposium on Improving Building Systems in Hot and Humid Climate July 24-26, 2006 The Buena Vista Palace Hotel, Orlando, Florida TOWARDS ENERGY EFFICIENT BUILDING ASSETS: A REVIEW ON SUB-TROPICAL CLIMATE A.A. CHOWDHURY M.G. RASUL M...

  3. Women at the White House Talk Climate and Energy Solutions |...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Public Affairs More from the Summit: Watch Secretary Moniz's remarks on finding climate change solutions. View the photo gallery. Last week, a select group of 100 women...

  4. Modeling Climate Feedbacks to Energy Demand: The Case of China

    E-Print Network [OSTI]

    Asadoorian, Malcolm O.

    This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and ...

  5. Evaluation of Energy Efficiency Measures in Hot and Humid Climates

    E-Print Network [OSTI]

    Zhao, Y.; Erwine, B.; Leonard, P.; Pease, B.; Dole, A.; Lee, A.

    Hot and humid climates present some of the most complex challenges for sustainable building designs. High temperatures coupled with high humidity create extreme comfort problems and exacerbate the potential for condensation, mold and mildew...

  6. Climate Change Taxes and Energy Efficiency in Japan

    E-Print Network [OSTI]

    Kasahara, Satoru.

    In 2003 Japan proposed a Climate Change Tax to reduce its CO2 emissions to the level required by the Kyoto Protocol. If implemented, the tax would be levied on fossil fuel use and the revenue distributed to several sectors ...

  7. Climate benefits from alternative energy uses of biomass plantations in Uganda

    E-Print Network [OSTI]

    Vermont, University of

    Climate benefits from alternative energy uses of biomass plantations in Uganda Giuliana Zanchi a Uganda. Two alternative energy uses are explored: a) electricity production through wood gasification for several decades in Uganda due to low accessibility to alternative energy sources [2]. In addition, biomass

  8. Better Technologies Key to Addressing Climate Change Energy Department official explains U.S. initiatives

    E-Print Network [OSTI]

    Better Technologies Key to Addressing Climate Change Energy Department official explains U.S. initiatives 17 December 2004 More energy-efficient technologies will be key to reducing greenhouse gas portfolio of technology options that can provide abundant energy to power economic development and still

  9. RISNEWS DECEMBER2007NO Global climate and energy challenges can be solved

    E-Print Network [OSTI]

    RISØNEWSNO 22007PAGE1 RISØNEWS DECEMBER2007NO 2 Global climate and energy challenges can be solved). Within the field of sustainable energy, we conduct research into bioenergy, fuel cells and hydrogen, emerging energy tech- nologies, society and systems, and wind power. If we wish to limit the global

  10. Vol. 16, No. 2 May 2006Global Energy and Water Cycle Experiment World Climate Research Programme

    E-Print Network [OSTI]

    's climate system is an energy cycle that converts absorbed solar radiation into heat and associated, its rapid rotation, and its elliptical orbit about the sun, the solar heating is neither uniform nor ARE A NET SINK OF ENERGY Left panel shows zonal, seasonal average generation of available potential energy

  11. Solar energy for heat and electricity: the potential for mitigating climate change

    E-Print Network [OSTI]

    Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. EkiNs-DaukEs Executive summary Why are we interested in using solar energy? Sunlight provides the energy source. In developing countries, solar technologies are already in use to enhance the standard of living

  12. Computable General Equilibrium Models for the Analysis of Energy and Climate Policies

    E-Print Network [OSTI]

    Wing, Ian Sue

    Computable General Equilibrium Models for the Analysis of Energy and Climate Policies Ian Sue Wing of energy and environmental policies. Perhaps the most important of these applications is the analysis Change, MIT Prepared for the International Handbook of Energy Economics Abstract This chapter is a simple

  13. CLIMATE CHANGE AND THE UK SOLAR ENERGY RESOURCE Dougal Burnett*1

    E-Print Network [OSTI]

    Harrison, Gareth

    CLIMATE CHANGE AND THE UK SOLAR ENERGY RESOURCE Dougal Burnett*1 and Gareth P. Harrison1 1 School of southern UK will get sunnier and benefit from increased solar energy resource in #12;summer, while cloud cover and slightly reduced solar energy resource. The UK will see an overall annual increase of 2

  14. Sandia National Laboratories: Accelerated Climate Modeling for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Climate Modeling for Energy New Project Is the ACME of Computer Science to Address Climate Change On December 3, 2014, in Analysis, Climate, Global Climate & Energy,...

  15. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect (OSTI)

    Maxwell, R M; Kollet, S J

    2008-06-10T23:59:59.000Z

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  16. New Directions: A facelift for the picture of the global energy balance Earth's climate is largely regulated by the global energy balance,

    E-Print Network [OSTI]

    Fischlin, Andreas

    New Directions: A facelift for the picture of the global energy balance Earth's climate is largely regulated by the global energy balance, which considers the energy flows within the climate system a perturbation of this energy balance, through a modification of the energy flows in the polluted atmosphere

  17. United States Department of Energy & Industrial Partnership programs: Climate wise and motor challenge

    SciTech Connect (OSTI)

    Scheilhing, P.E.; Bryson, J.E.; Cho, J.Y.

    1997-06-01T23:59:59.000Z

    This paper will provide an overview of the United States Department of Energy`s Office of Industrial Technologies (OIT) and give a detailed description of the Motor Challenge and Climate Wise programs in the Technology Access Division within OIT. Beginning with background information pertaining to trends in U.S. industry, this paper will describe OIT`s overall strategy for promoting energy efficiency, renewable energy, and waste reduction; give a brief summary of the Technology Access deployment programs, and discuss the benefits Climate Wise and Motor Challenge programs are fostering through government/industry partnerships.

  18. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    SciTech Connect (OSTI)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01T23:59:59.000Z

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different climate models.

  19. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01T23:59:59.000Z

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  20. Climate Change and Optimal Energy Technology Department of Mechanical and Industrial Engineering, College of Engineering, University of Massachusetts, Amherst,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Climate Change and Optimal Energy Technology R&D Policy Erin Baker Department of Mechanical of Massachusetts, Amherst, MA 01003, solak@som.umass.edu Public policy response to global climate change presents accounting for uncertainty and learning in climate change can have a large impact on optimal policy

  1. The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    SciTech Connect (OSTI)

    Kim, Son H.; Edmonds, James A.

    2007-10-24T23:59:59.000Z

    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the world’s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

  2. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    Energy-saving strategies with personalized ventilation inalone if energy-saving strategies are not applied. TheHowever, this energy- saving strategy can be recommended

  3. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    California Energy Commission definition of “heat storm”: “storm“ than the Energy Commission definition quoted above toCalifornia Energy Commission. 2008. Definition of Heat

  4. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, developers manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  5. DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  6. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandia National lababoratory, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandia National lababoratory, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandia National lababoratory, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandia National lababoratory, Livermore, CA); Hough, Patricia Diane (Sandia National lababoratory, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  7. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  8. Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates

    E-Print Network [OSTI]

    Im, P.; Haberl, J.

    This paper presents the analysis of the energy savings potential in K-5 schools in hot and humid climates. For the analysis, an existing K-5 school in Central Texas was selected as a case study school, and the building energy related data...

  9. ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES ventilation systems are better than mixing ventilation systems. The benefits include indoor air quality. This research compared the energy use of a floor-supply displacement ventilation system in a large industrial

  10. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    E-Print Network [OSTI]

    McGuire, A. David

    Surface energy exchanges along a tundra-forest transition and feedbacks to climate Jason Beringer a 21 October 2004; accepted 17 May 2005 Abstract Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest

  11. Advice Provision for Energy Saving in Automobile Climate Control Systems Amos Azaria1

    E-Print Network [OSTI]

    Kraus, Sarit

    energy becomes even greater when consid- ering an electric car, since heavy use of the climate control. In addition to long term reasons, saving energy while driving electrical cars has an additional short-term benefit--it extends the range of travel. This is desirable since electric cars often have a shorter

  12. Small Residence Multizone Modeling with Partial Conditioning for Energy Effieiency in Hot and Humid Climates

    E-Print Network [OSTI]

    Andolsun, Simge

    2013-07-30T23:59:59.000Z

    The purpose of this study is to reduce the energy cost of the low-income households in the hot and humid climates of the U.S. and thereby to help them afford comfortable homes. In this perspective, a new HVAC energy saving strategy, i.e. “partial...

  13. Energy Wheel Performance and Optimization Opportunities for SDVAV AHU's In a Hot & Humid Climate

    E-Print Network [OSTI]

    Zhao, J.; Wang, L.; Watt, J.

    2012-01-01T23:59:59.000Z

    The HVAC system accounts for 30 to 50 percent of a typical building's energy consumption; in hot & humid climates it is closer to the upper end of that range. Implementing effective energy saving measures for the building HVAC system can reduce...

  14. Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates 

    E-Print Network [OSTI]

    Im, P.; Haberl, J.

    2008-01-01T23:59:59.000Z

    This paper presents the analysis of the energy savings potential in K-5 schools in hot and humid climates. For the analysis, an existing K-5 school in Central Texas was selected as a case study school, and the building energy related data...

  15. Energy Wheel Performance and Optimization Opportunities for SDVAV AHU's In a Hot & Humid Climate 

    E-Print Network [OSTI]

    Zhao, J.; Wang, L.; Watt, J.

    2012-01-01T23:59:59.000Z

    The HVAC system accounts for 30 to 50 percent of a typical building's energy consumption; in hot & humid climates it is closer to the upper end of that range. Implementing effective energy saving measures for the building HVAC system can reduce...

  16. Small Residence Multizone Modeling with Partial Conditioning for Energy Effieiency in Hot and Humid Climates 

    E-Print Network [OSTI]

    Andolsun, Simge

    2013-07-30T23:59:59.000Z

    The purpose of this study is to reduce the energy cost of the low-income households in the hot and humid climates of the U.S. and thereby to help them afford comfortable homes. In this perspective, a new HVAC energy saving strategy, i.e. “partial...

  17. Two Billion Cars: What it Means for Climate and Energy Policy

    ScienceCinema (OSTI)

    Daniel Sperling

    2010-01-08T23:59:59.000Z

    April 13, 2009: Daniel Sperling, director of the Institute of Transportation Studies at UC Davis, presents the next installment of Berkeley Lab's Environmental Energy Technologies Divisions Distinguished Lecture series. He discusses Two Billion Cars and What it Means for Climate and Energy Policy.

  18. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

  19. Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost).

    E-Print Network [OSTI]

    McAuley, Derek

    AIM Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost). We want to know if these different communication units prime different motivations more broadly. This implies that considering carbon may result in wider changes in sustainable behaviour

  20. The impacts of climate changes in the renewable energy resources in the Caribbean region

    SciTech Connect (OSTI)

    Erickson III, David J [ORNL

    2010-02-01T23:59:59.000Z

    Assessment of renewable energy resources such as surface solar radiation and wind current has great relevance in the development of local and regional energy policies. This paper examines the variability and availability of these resources as a function of possible climate changes for the Caribbean region. Global climate changes have been reported in the last decades, causing changes in the atmospheric dynamics, which affects the net solar radiation balance at the surface and the wind strength and direction. For this investigation, the future climate changes for the Caribbean are predicted using the parallel climate model (PCM) and it is coupled with the numerical model regional atmospheric modeling system (RAMS) to simulate the solar and wind energy spatial patterns changes for the specific case of the island of Puerto Rico. Numerical results from PCM indicate that the Caribbean basin from 2041 to 2055 will experience a slight decrease in the net surface solar radiation (with respect to the years 1996-2010), which is more pronounced in the western Caribbean sea. Results also indicate that the easterly winds have a tendency to increase in its magnitude, especially from the years 2070 to 2098. The regional model showed that important areas to collect solar energy are located in the eastern side of Puerto Rico, while the more intense wind speed is placed around the coast. A future climate change is expected in the Caribbean that will result in higher energy demands, but both renewable energy sources will have enough intensity to be used in the future as alternative energy resources to mitigate future climate changes.

  1. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  2. China energy, environment, and climate study: Background issues paper

    E-Print Network [OSTI]

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-01-01T23:59:59.000Z

    Amoco Statistical Review of World Energy 1999. Available atI. Environmental Impacts of Energy Caprino, Luciano andas a result of changes in energy use in China’s Jiangsu

  3. Energy and Climate Partnership of the Americas Western Hemisphere...

    Energy Savers [EERE]

    to increase collaboration among participating countries to: Facilitate each country's roadmap to achieve its renewable energy goals in the context of its broader energy...

  4. DOE Launches the "Partnership for Energy Sector Climate Resilience...

    Energy Savers [EERE]

    Entergy; Exelon Corporation; Energy; Great River Entergy; Hoosier Energy; Iberdrola USA; National Grid; New York Power Authority; Pepco Holdings, Inc.; Pacific Gas and...

  5. Diabat L., Blanc Ph., Wald L., Solar radiation climate in Africa. Solar Energy, 76, 733-744, 2004. SOLAR RADIATION CLIMATE IN AFRICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Diabaté L., Blanc Ph., Wald L., Solar radiation climate in Africa. Solar Energy, 76, 733-744, 2004 is very useful for preliminary assessment and modeling of solar energy systems. Following the approach: clearness index, atmosphere optics, clustering, interpolation, map, solar energy systems Nomenclature: (KTd

  6. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04T23:59:59.000Z

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  7. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect (OSTI)

    Johnson, A.E.; Harbour, J.L.

    1993-06-01T23:59:59.000Z

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  8. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  9. From Public Understanding to Public Policy: Public Views on Energy, Technology & Climate Science in the United States

    E-Print Network [OSTI]

    Aickelin, Uwe

    affiliation with a political party necessarily imply support for their party's position on every issue. NextFrom Public Understanding to Public Policy: Public Views on Energy, Technology & Climate Science towards energy technologies and climate change are explored by reviewing recent surveys of American

  10. Evaluation of Energy Efficiency Measures in Hot and Humid Climates 

    E-Print Network [OSTI]

    Zhao, Y.; Erwine, B.; Leonard, P.; Pease, B.; Dole, A.; Lee, A.

    2010-01-01T23:59:59.000Z

    . These are usually remedied with conventional mechanical air conditioning systems, but the move toward sustainability urges designers to find less energy intensive solutions. An integrated design process coupled with energy modeling and lifecycle analysis can unite...

  11. Interactions Between Energy Security and Climate Change: A Focus...

    Open Energy Info (EERE)

    - Energy Security Resource Type: Publications Website: www.sciencedirect.comscience?obMImg&imagekeyB6V2W-52SN633-5-1&cd Cost: Free Interactions Between Energy...

  12. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy, Land Focus Area: Agriculture, Forestry Topics: Low emission development planning, Pathways analysis Resource...

  13. Climate ChangeClimate Change and Runoff Managementand Runoff Management

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Climate ChangeClimate Change and Runoff Managementand Runoff Management in Wisconsinin Wisconsin NASECA February 3, 2011 David S. Liebl #12;Overview · Understanding climate change · Wisconsin's changing climate · Expected impacts · Adaptation strategies #12;Visible Light Energy in = Energy out Absorbed

  14. China energy, environment, and climate study: Background issues paper

    SciTech Connect (OSTI)

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-10-10T23:59:59.000Z

    The total costs and impacts of expanding energy use in China will depend, in part, on a number of important factors, an understanding of which is vital for China's policy-makers. These issues include the additional environmental and public health impacts associated with energy use, the economic costs of infrastructure expansion to meet growing energy needs, and the potential role that renewable energy technologies could play if pushed hard in China's energy future. This short report summarizes major trends and issues in each of these three areas.

  15. Department of Energy Advances Commercialization of Climate Change

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear Energy Partnership | DepartmentDepartment

  16. Department of Energy Advances Commercialization of Climate Change

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear Energy Partnership |

  17. California's Climate Change Proposed Scoping Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeriesCachoolEnergyCalifornia

  18. Sandia Energy - Sandia Co-Hosts "Climate Risk Forum: Bridging Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.RohitAwards BringsScience

  19. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    SciTech Connect (OSTI)

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12T23:59:59.000Z

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  20. Director-General, The Energy and Resources Institute Chairman, Intergovernmental Panel on Climate Change

    E-Print Network [OSTI]

    Painter, Kevin

    locations diversify raw material sources, especially agricultural or forestry inputs. Industry is alsoDirector-General, The Energy and Resources Institute Chairman, Intergovernmental Panel on Climate extremes can be felt locally or regionally 5 "Mongolian herdsmen face starvation"AGRICULTURE "Heatwave hits

  1. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  2. Guides and Case Studies for All Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on Energy andEnergyof Energy Zero

  3. Climate impacts of energy technologies depend on emissions timing

    E-Print Network [OSTI]

    Edwards, Morgan Rae

    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated ...

  4. Climate VISION: Private Sector Initiatives: Lime - Energy Management

    Office of Scientific and Technical Information (OSTI)

    upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey...

  5. Energy Department Releases Climate Plans on Fifth Anniversary...

    Energy Savers [EERE]

    successes in its efforts to promote clean energy, reduce waste and cut greenhouse gas emissions, including: The Department added 33 buildings to its green building...

  6. Climate Change Task Force Webinar Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council on Environmental Quality in conjunction with the U.S. Departments of Energy, Agriculture, the Interior, Health and Human Services, Housing and Urban Development, and...

  7. Split-System Cold Climate Heat Pump | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverviewEnergy SpelmanSpinning

  8. Brazil National Plan on Climate Change (PNMC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles,Energy Information

  9. Indonesia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudy JumpEnergyBank

  10. Post-2012 Climate Instruments in the transport sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: EnergyPositive

  11. Caribbean Community Climate Change Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S ACarbonWarCardinal Cogen

  12. China Brazil Center on Climate Change and Energy Technology Innovation |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050Open Energy

  13. Guinea-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettopGuilford, Maine: EnergyForestry,

  14. Open Platform of Climate-Smart Planning Instruments | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen) Open

  15. Bangladesh-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley

  16. Malawi-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOEMak-Ban /Management | OpenEnergyEnergy,

  17. Kenya-Capital Markets Climate Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:KentuckyEnergyForum

  18. Kenya-UNDP Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl JumpOpen EnergyOpenUN

  19. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) Jump to: navigation, search

  20. California Climate Exchange CaCX | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy InformationSeriesCachool JumpCairo4

  1. Energy and Climate Breakthroughs in the Real World A Mixed Used Development in Ohio

    E-Print Network [OSTI]

    Dillin, L.; Garforth, P.

    2008-01-01T23:59:59.000Z

    0 014 19/ 5 78 96 13 garforthp@cs.com Energy and Climate Breakthroughs in the Real World ? A Mixed Used Development in Ohio The Marina District development on the banks of the Maumee River in Toledo, Ohio, is a new high density..., the incremental construction costs are well within acceptable levels. On a final historical footnote, the precursor organization of the International District Energy Association was founded over a hundred years ago in?.Toledo, Ohio. In some ways, the Marina...

  2. Guides and Case Studies for Mixed-Humid Climates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on Energy andEnergyofMarine Climates

  3. UKERC Project Final Report Climate change and energy security

    E-Print Network [OSTI]

    Jose, Joemon M.

    House December 2012 It is the hub of UK energy research and the gateway between the UK and international energy research communities. Its interdisciplinary, whole-systems research informs UK policy development and research strategy. · UKERC's Meeting Place, based in Oxford, serves the whole of the UK research community

  4. Regionalized Global Energy Scenarios Meeting Stringent Climate Targets

    E-Print Network [OSTI]

    .grahn@fy.chalmers.se #12;No biomass in the transportation sector #12;No biomass in the transportation sector At least,000 USD/yr to 50,000 USD/yr · Developing regions to Western Europe level #12;Energy demand · Heat/yr · Developing regions to Western Europe level · Passenger transportation increases ten fold #12;Energy demand

  5. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01T23:59:59.000Z

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  6. Lessons Learned: Creating the Chicago Climate Action Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:New York:Leslie County,Less

  7. Gabon-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG2 EnergyGISGSA JumpGTPGabbs,|

  8. Guatemala-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy InformationGrupo Urbas(EC-LEDS) ||

  9. Allianz Climate Solutions ACS GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation,AlleghanyAlliance

  10. Ethiopia-Strategic Climate Institutions Programme (SCIP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR) Sector Energy

  11. Forests and Climate Change Toolbox | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:ForecastForests and

  12. China's National Climate Change Programme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding LtdTitans

  13. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding LtdTitansJump

  14. Building America Climate-Specific Guidance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition » BalancedBestBudgetAbout

  15. Singapore National Climate Change Strategy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky: EnergySinem GeothermalSingapore

  16. 2014 DOE Climate Change Adaptation Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice14 U.S.

  17. Uganda-African Climate Change Resilience Alliance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDBCOSO EGS1/12/20090 Bid5094

  18. Uganda-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDBCOSO EGS1/12/20090

  19. Ukraine-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDBCOSOdatabase[1] World Bank

  20. United Nations Framework Convention on Climate Change | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:UnalakleetInformation United Nations

  1. Vietnam-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela JumpInformation UnitedAsiaWorld

  2. A National Strategy for Adaptation to Climate Change | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29 MarchIsland,in

  3. Honduras-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHolocene MagmaticHonbridgeHonuduras[1]

  4. Climate Change Policy in Israel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC SmartTrackerCountries |

  5. Climate Exchange Plc formerly Chicago Environmental Plc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation Exchange Plc

  6. Climate Investment Funds Webinar Series | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformation

  7. Colombia-UNDP Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated Conductors CylinderColombia(RECP)

  8. Colombia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated Conductors CylinderColombia(RECP)Forestry Topics

  9. World Bank Climate Innovation Centers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters Jump to: navigation, search Name

  10. Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga Solar Ltd Jump to:

  11. Philippines-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonika Jump to:PhilippiDCACo-benefits

  12. Information Toolkit for post-2012 climate policies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogen Jump to:

  13. Center for Climate Strategies Catalog of Policy Options | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol

  14. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information ChinaChina NewUnitedChinaPVChinaCenter)

  15. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:InformationInformationLow CarbonNREL/ChinaAction

  16. Monitoring Climate Finance and ODA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular EnergyGTZ Development of

  17. Nature Conservancy-Climate Wizard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource Europe

  18. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX Ltd Jump to:

  19. OLADE-Central America Climate Change Vulnerability Program | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujira LtdEnergyOK

  20. Building America Climate-Specific Guidance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin usAcquisitionAlex3 AuditBestBoilerPerformance