National Library of Energy BETA

Sample records for oak creek coal

  1. OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL DEGAS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 20082008707 1OAK GROVE C OAL D

  2. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  3. Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek

    E-Print Network [OSTI]

    Gray, Matthew

    1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

  4. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  5. White Oak Creek Watershed topographic map and related materials

    SciTech Connect (OSTI)

    Farrow, N.D.

    1981-04-01

    On March 22, 1978 a contract was let to Accu-Air Surveys, Inc., of Seymour, Indiana, to produce a topographic map of the White Oak Creek Watershed. Working from photography and ground control surveys, Accu-Air produced a map to ORNL's specifications. The map is in four sections (N.W., N.E., S.W., S.E.) at a scale of 1:2400. Contour intervals are 5 ft (1.5 m) with accented delineations every 25 ft (7.6 m). The scribe method was used for the finished map. Planimetric features, roads, major fence lines, drainage features, and tree lines are included. The ORNL grid is the primary coordinate system which is superimposed on the state plain coordinates.

  6. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  7. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  8. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  9. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  10. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  11. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  12. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    SciTech Connect (OSTI)

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  13. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  14. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  15. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect (OSTI)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  16. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-12-01

    This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain.

  17. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M. [ed.] [ed.; Adams, S.M.; Bailey, R.D. [and others] [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  18. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  19. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M. [ed.] [ed.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  20. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect (OSTI)

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  1. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  2. Coal Creek, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek, Colorado: Energy Resources

  3. MHK Projects/Coal Creek Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to:Projects/AlaskaInformationCreek Project

  4. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  6. Sampling and analysis plan for Phase II of the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that affect ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of environmental and media testing. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, surface water, seeps, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetland. Groundwater, surface water, and seeps will be monitored continuously for field parameters and sampled for analytical parameters during pump tests conducted periodically during the investigation. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment.

  7. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan.

  8. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

  9. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  10. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Black, M.C. (Oklahoma State Univ., Stillwater, OK (United States)); Gatz, A.J. Jr. (Ohio Wesleyan Univ., Delaware, OH (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  11. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit.

  12. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  13. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect (OSTI)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others] [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  14. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect (OSTI)

    Hinzman, R.L.; Adams, S.M.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  15. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

  16. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

  17. Sampling and analysis plan for treatment water and creek water for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This document provides the Environmental Restoration Program with information about the methodology, organizational structure, quality assurance and health and safety practices to be employed during the water sampling and analysis activities associated with the remediation of the Lower East Fork Poplar Creek Operable Unit during remediation of the National Oceanic and Atmospheric Administration and Bruner sites.

  18. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  19. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  20. Work plan for support to Upper East Fork Poplar Creek east end VOC plumes well installation project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    Under the Resource Conservation and Recovery Act of 1976 guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire Oak Ridge Reservation (ORR) was placed on the National Priorities List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites in November 1989. Following CERCLA guidelines, sites within the ORR require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) or an engineering evaluation/cost analysis (EE/CA) of potential remedial actions. Data from monitoring wells at the east end of the Y-12 Plant have identified an area of groundwater contamination dominated by the volatile organic compound (VOC) carbon tetrachloride; other VOCs include chloroform, tetrachloroethene, and trichloroethene.

  1. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  2. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  3. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  4. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report contains groundwater quality data obtained during the 1993 calendar year (CY) at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the East Fork Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with the Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  5. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee: 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant. The regime extends west from a surface water and shallow groundwater divide located near the west end of the plant to Scarboro Road (directions in this report are in reference to the Y-12 Plant grid system unless otherwise noted). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy.

  6. An Assessment of health risk associated with mercury in soil and sediment from East Fork Poplar Creek, Oak Ridge, Tennessee. Final report

    SciTech Connect (OSTI)

    Revis, N.; Holdsworth, G.; Bingham, G.; King, A.; Elmore, J.

    1989-04-01

    This report presents results from a study conducted to determine the toxicity of Mercury in soils sediments samples. Mice were fed via diet, soils and sediment, from various locations along the East Fork Poplar creek. Tissue distribution of pollutants was determined at various intervals. The tissue level relative to toxicity was used to determine the effect of a complex matrix on the gastrointestinal absorption and tissue distribution of the pollutants (other pollutants included cadmium and selenium).

  7. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  8. Technical background information for the environmental and safety report, Volume 4: White Oak Lake and Dam

    SciTech Connect (OSTI)

    Oakes, T.W.; Kelly, B.A.; Ohnesorge, W.F.; Eldridge, J.S.; Bird, J.C.; Shank, K.E.; Tsakeres, F.S.

    1982-03-01

    This report has been prepared to provide background information on White Oak Lake for the Oak Ridge National Laboratory Environmental and Safety Report. The paper presents the history of White Oak Dam and Lake and describes the hydrological conditions of the White Oak Creek watershed. Past and present sediment and water data are included; pathway analyses are described in detail.

  9. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  10. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  11. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  12. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  13. Oak Ridge Office

    Office of Environmental Management (EM)

    PO. Box 2001 Oak Ridge, Tennessee 37831 July 21, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3783 1 Dear Mr....

  14. Stream periphyton and coal mining: Comparative Effects in the Elk Flathead Rivers of Southeastern British Columbia

    E-Print Network [OSTI]

    Renn, Susan C.P.

    ecosystems. Drainage from mines and mine tailings often leach acid waters, heavy metals, and dissolved drainage of Michel Creek, a tributary of the Elk River. Michel Creek receives various forms of runoff from the Coal Mountain Mine in the Elk River Basin. Compared to Flathead drainage streams, Michel Creek biomass

  15. Biodiversity Corridors in Alamo Creek, Vacaville, California

    E-Print Network [OSTI]

    Urrechaga, Jose; Wei, Xinghan

    2012-01-01

    Troy Horn, Oct, 2003 4.   Alamo Creek final report, 2005Biodiversity Corridors in Alamo Creek, Vacaville, Californiain the city and uses Alamo Creek, in Vacaville, California,

  16. Oak Ridge Office

    Office of Environmental Management (EM)

    - Mr. Steve Dixon, Chairman Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3 783 0 Dear Mr. Dixon: RESPONSE TO RECOMMENDATION ON PROVIDING...

  17. Waller Creek Urban Redevelopment 

    E-Print Network [OSTI]

    McDonald, S.

    2013-01-01

    Winkler Melba Whatley Waller Creek Conservancy Directors – November 2013 ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CITY COUNCIL APPROVES DESIGN PLAN... Antonio, Texas Dec. 16-18 Thomas Phifer ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 8Waller Creek and a Chain of Parks Palm Park Shaded Respite The Narrows Intensified Urbanity The Refuge...

  18. Oak Creek Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGE Energy Resources, IncInc Jump to: navigation,

  19. Town of Oak Creek, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformationLaverne, Oklahoma (UtilityYorkInformationTown of

  20. Oak Creek - Phase 2A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu, Hawaii:

  1. Oak Creek Energy Systems Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu, Hawaii:I Jump

  2. Oak Creek Energy Systems Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu, Hawaii:I

  3. Oak Creek Energy Systems Wind Farm III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu, Hawaii:IIII

  4. Oak Creek Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu,

  5. //exeCutivesummary This report synthesizes historical evidence into a picture of how Coyote Creek looked and functioned

    E-Print Network [OSTI]

    South Babb Creek Laguna Socayre Norwood Creek Thompson Creek Upper Silver Creek Tulare Hill Laguna Seca

  6. Declared Wolf Creek

    Office of Environmental Management (EM)

    15-Nov 22-Nov 29-Nov 6-Dec 13-Dec 20-Dec 27-Dec 115% Nameplate Declared Wolf Creek UNIT 1 (MW) 52 45 52 52 52 52 52 52 52 52 52 52 52 UNIT 2 (MW) 52 45 52 52 52 52 52 52 52 52...

  7. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  8. Oak Ridge Y-12 Plant groundwater protection program management plan

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  9. Manager, Oak Ridge Office

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide overall executive leadership to and integration of the Oak Ridge Integrated Support Center, which houses mission critical activities and support...

  10. Oakes College: An Oral History

    E-Print Network [OSTI]

    2011-01-01

    Oakes College: An Oral History Blake: That’s unfortunate. I’Oakes College: An Oral History Charland: It took awhile toOakes College: An Oral History with: J. Herman Blake Roberto

  11. Oak Ridge Reservation Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security Complex production workers.

  12. Structural characteristics and gasification reactivity of chars prepared from K{sub 2}CO{sub 3} mixed HyperCoals and coals

    SciTech Connect (OSTI)

    Atul Sharma; Hiroyuki Kawashima; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

    2009-04-15

    HyperCoal is a clean coal with mineral matter content <0.05 wt %. Oaky Creek (C = 82%), and Pasir (C = 68%) coals were subjected to solvent extraction method to prepare Oaky Creek HyperCoal, and Pasir HyperCoal. Experiments were carried out to compare the gasification reactivity of HyperCoals and parent raw coals with 20, 40, 50 and 60% K{sub 2}CO{sub 3} as a catalyst at 600, 650, 700, and 775{sup o}C with steam. Gasification rates of coals and HyperCoals were strongly influenced by the temperature and catalyst loading. Catalytic steam gasification of HyperCoal chars was found to be chemical reaction controlled in the 600-700{sup o}C temperature range for all catalyst loadings. Gasification rates of HyperCoal chars were found to be always higher than parent coals at any given temperature for all catalyst loadings. However, X-ray diffraction results showed that the microstructures of chars prepared from coals and HyperCoals were similar. Results from nuclear magnetic resonance spectroscopy show no significant difference between the chemical compositions of the chars. Significant differences were observed from scanning electron microscopy images, which showed that the chars from HyperCoals had coral-reef like structures whereas dense chars were observed for coals. 26 refs., 8 figs., 2 tabs.

  13. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak I Oak

  14. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Miller, D.E. [ed.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2`s role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments.

  15. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    Review, Oak Ridge National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National...

  16. Lower East Fork Poplar Creek

    Office of Environmental Management (EM)

    is safe for limited water-contact recreational uses, such as wading in footwear. Eating fish from the creek is not recommended based upon the level of mercury in the fish. Are...

  17. Data supplement to: quality of coal mine drainage in Washington, 1975-77

    SciTech Connect (OSTI)

    Fuste, L.A.; Packard, F.A.; Fretwell, M.O.; Garland, D.P.

    1983-01-01

    The US Geological Survey studied coal-mine drainage in western Washington to (1) characterize the water quality of drainage from abandoned mines in the 11 coal-bearing areas of the state; (2) examine the water-quality effects on a stream receiving drainage from an abandoned coal mine; (3) determine the baseline water-quality conditions at two prospective underground coal-mine areas; and (4) recommend procedures for monitoring stream quality in the baseline areas in the event that mining occurs. This report presents physical, chemical, and biological data collected during the study period from Gallop Creek (Whatcom County), Loretta Creek (Skagit County), and Wilkeson Creek (Pierce County) and from 100 abandoned coal mines in western Washington, and from a borehole hydraulic-mining test site. Biological information included taxonomic identifications and counts of benthic invertebrates and periphytic algae. 8 references, 21 tables, 10 maps.

  18. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak

  19. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak I

  20. Oak Ridge Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak I1

  1. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  2. Oak Poisoning in Livestock. 

    E-Print Network [OSTI]

    Dollahite, J. W.; Housholder, G. T.; Camp, B. J.

    1966-01-01

    leaves. All developed severe signs of poisoning an~l fiv: died (Figure 2). Six other calves were fed oitk ir! quantities averaging 32.1 percent of their body \\vc.i~h. and 1.8 pounds daily of supplementary feed. Fivc . these developed signs of oak...

  3. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Blaylock, B.G.; Boston, H.L.; Frank, M.L.; Garten, C.T.; Houston, M.A.; Kimmel, B.L.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Berry, J.B.; Talmage, S.S.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  4. Biodiversity Corridors in Alamo Creek, Vacaville, California

    E-Print Network [OSTI]

    Urrechaga, Jose; Wei, Xinghan

    2012-01-01

    The primary information source is from our field trip oninformation about Alamo Creek comes from three primary sources.

  5. Asotin Creek Model Watershed Plan

    SciTech Connect (OSTI)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  6. TURKEY CREEK BASIN Kansas and Missouri

    E-Print Network [OSTI]

    US Army Corps of Engineers

    TURKEY CREEK BASIN Kansas and Missouri MODIFICATION REQUEST Modification to the authorized total the Turkey Creek channel and runoff from the adjacent hillsides, and the current depth of flooding along in the past decade. Additionally, the Turkey Creek tunnel constructed in 1919 to divert the channel away from

  7. Historical Ecology of Alameda Creek

    E-Print Network [OSTI]

    flowing under bridge Would always have to drive through water running water "excessively deep" hole Always the water comes out again." (Danti 1795) #12;Pools in Alameda Creek ca. 1860-1875 4-6 feet deep Always sure of finding water Swim until July/Aug 6-10 feet deep Standing, not running water "swimming in there at any

  8. DOE - Office of Legacy Management -- Hoe Creek Underground Coal

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDivHarshaw Chemical

  9. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Energy Savers [EERE]

    Inspection, Oak Ridge National Laboratory - October 2008 Independent Oversight Inspection, Oak Ridge National Laboratory - October 2008 October 2008 Inspection of Nuclear Safety at...

  10. Oak Ridge Site Specific

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific adviSORy

  11. Oak Ridge O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak Ridge NationalO ffice

  12. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak Ridge NationalO

  13. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak Ridge NationalOP.O.

  14. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak Ridge

  15. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak RidgeOctober 1, 2008

  16. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak RidgeOctober 1,

  17. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe1Oak RidgeOctober 1,22,

  18. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993.

  19. Case Study: Goose Creek CISD 

    E-Print Network [OSTI]

    White, D.

    2014-01-01

    GOOSE CREEK CISD FINANCIALS • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... • $693,866 project • $87k annual savings • 682,228 kWh annual savings IMPROVEMENTS • HVAC, lighting and water efficiency, computer power management case study Lake Dallas ISD was interested in improving the energy efficiency and aging infrastructure...

  20. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    OF COAL MODEL COMPOUNDS AND COAL LIQUIDS James Anthony AprilCOAL MODEL COMPOUNDS AND COAL LIQUIDS James Anthony Wrathalla promising agent in coal-liquid desulfurization, assuming

  1. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  2. New Jersey Nuclear Profile - Oyster Creek

    U.S. Energy Information Administration (EIA) Indexed Site

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    SciTech Connect (OSTI)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  4. Water balance report for the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    NONE

    1994-07-01

    The Y-12 Plant, which occupies approximately 800 acres, was built by the Army Corps of Engineers in 1943 as part of the Manhattan Project in Oak Ridge, Tennessee. Recently, Martin Marietta Energy Systems, who manages the Y-12 Plant, has been concerned with the effects of water consumption and losses at the plant facility, and the ability of ground water beneath the site to act as a source of water seepage into East Fork Poplar Creek or as a source of water infiltration into subsurface strata. This has prompted the need to perform a water balance study on the facility. Data regarding all uses of municipal water and sources of discharge from the plant were recorded and then water balance calculations were performed using a computer model developed in a multi-dimensional electronic spreadsheet. This report describes the results of this research and includes the flow data collected during the study.

  5. U.S. Department of Energy, Oak Ridge Office and URS/CH2M Oak...

    Office of Environmental Management (EM)

    Energy, Oak Ridge Office and URSCH2M Oak Ridge, LLC (UCOR) East Tennessee Technology Park (ETTP) Contract Partnering Agreement U.S. Department of Energy, Oak Ridge Office and URS...

  6. Bennett Creek | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher Homes JumpCreek Jump to: navigation,

  7. Panther Creek | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPan AfricanHomePantexCreek Jump

  8. Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    Complex Oak Ridge National Laboratory East Tennessee Technology Park Electronic publisher Editors Graphic's Vision for the East Tennessee Technology Park Mission under Contract DE-SC-0004645 #12;#12;iii Contents................................................................................................1-2 1.3.2 Climate

  9. Sediment dynamics of an impounded river: Yegua Creek, Texas 

    E-Print Network [OSTI]

    Martinez, Adriana Elizabeth

    2009-05-15

    , Yegua Creek drainage basin ................................. 22 6 Annual peak discharge 1925-1991............................................................. 24 7 Flood frequency curve for Yegua Creek before and after stream impoundment... ....... 85 44 Depositional and erosional features upstream of Y50US .......................... 86 45 Yegua Creek depositional feature downstream of Somerville Dam .......... 87 46 Same location on Yegua Creek after major flood event...

  10. Campbell Creek Research Homes FY 2012 Annual Performance Report

    SciTech Connect (OSTI)

    Gehl, Anthony C; Munk, Jeffrey D; Jackson, Roderick K; Boudreaux, Philip R; Khowailed, Gannate A

    2013-01-01

    The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

  11. Landowners lead successful Buck Creek restoration 

    E-Print Network [OSTI]

    Boutwell, Kathryn S.

    2012-01-01

    manager for Buck Creek, said that in ????, landowners took the initiative to secure the scienti?c information needed to be?er evaluate both water quality in the creek as well as potential sources of bacteria across the watershed. Using funding secured... from the Texas State Soil and Water Conservation Board?s Clean Water Act provided by the EPA, the Buck Creek restoration e?ort began. Initially, AgriLife sta? collected water quality data and conducted a source survey of the watershed, according...

  12. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect (OSTI)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  13. Coal with CCS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek, Colorado: EnergyCoal with

  14. Coaling, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek, Colorado: EnergyCoal

  15. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility -...

  16. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  17. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    that own the scores of coal power plants whose coal ismillion tons in 2006. Coal power plants currently accountan electric generating coal power plant that would be built

  18. Cerrito Creek step-pools: An opportunity for restoration and education at Blake Garden

    E-Print Network [OSTI]

    Behrends, Nathaniel

    2008-01-01

    Post-Project Assessment of the Alamo Creek Restoration (EastBerkeley campus, East Alamo Creek at the Windemereand stepping- stones. East Alamo Creek Case Study: This

  19. A post project appraisal of the restoration/rehabilitation of Alamo Creek

    E-Print Network [OSTI]

    Smolko, Darrell

    2003-01-01

    Associates, Ltd. , Alamo Creek: Conceptual Restoration Plan/Basis of Design Summary Alamo Creek Restoration, Phase 1aRestoration/Rehabilitation of Alamo Creek Darrell Smolko UC

  20. Rainwater in the Urban Landscape: The Garrison Creek Demonstration Project [Infrastructure as Landscape, Landscape as Infrastructure

    E-Print Network [OSTI]

    Brown, James; Storey, Kim

    1996-01-01

    public space. Toronto's Garrison Creek is a typical exampleit V ..-v..-. Urban The Garrison Creek Bemonstration Projectl Co-evolving systems: Toronto's Garrison Creek Ravine, city

  1. Bechtel Jacobs Company LLC Sampling and Analysis Plan for the Water Resources Restoration Program for Fiscal Year 2009, Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Ketelle R.H.

    2008-09-25

    The Oak Ridge Reservation (ORR) Water Resources Restoration Program (WRRP) was established by the U. S. Department of Energy (DOE) in 1996 to implement a consistent approach to long-term environmental monitoring across the ORR. The WRRP has four principal objectives: (1) to provide the data and technical analysis necessary to assess the performance of completed Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) actions on the ORR; (2) to perform monitoring to establish a baseline against which the performance of future actions will be gauged and to support watershed management decisions; (3) to perform interim-status and post-closure permit monitoring and reporting to comply with Resource Conservation and Recovery Act of 1976 (RCRA) requirements; and (4) to support ongoing waste management activities associated with WRRP activities. Water quality projects were established for each of the major facilities on the ORR: East Tennessee Technology Park (ETTP); Oak Ridge National Laboratory (ORNL), including Bethel Valley and Melton Valley; and the Y-12 National Security Complex (Y-12 Complex or Y-12), including Bear Creek Valley (BCV), Upper East Fork Poplar Creek (UEFPC), and Chestnut Ridge. Off-site (i.e., located beyond the ORR boundary) sampling requirements are also managed as part of the Y-12 Water Quality Project (YWQP). Offsite locations include those at Lower East Fork Poplar Creek (LEFPC), the Clinch River/Poplar Creek (CR/PC), and Lower Watts Bar Reservoir (LWBR). The Oak Ridge Associated Universities (ORAU) South Campus Facility (SCF) is also included as an 'off-site' location, although it is actually situated on property owned by DOE. The administrative watersheds are shown in Fig. A.l (Appendix A). The WRRP provides a central administrative and reporting function that integrates and coordinates the activities of the water quality projects, including preparation and administration of the WRRP Sampling and Analysis Plan (SAP). A brief summary is given of the organization of the SAP appendices, which provide the monitoring specifics and details of sampling and analytical requirements for each of the water quality programs on the ORR. Section 2 of this SAP provides a brief overview and monitoring strategy for the ETTP. Section 3 discusses monitoring strategy for Bethel Valley, and Melton Valley background information and monitoring strategy is provided in Section 4. BCV and UEFPC monitoring strategies are presented in Sect. 5 and 6, respectively. Section 7 provides background information and monitoring strategy for all off-site locations.

  2. Effects of Shade on Blue Oak and Coast Live Oak Regeneration in California Annual Grasslands1

    E-Print Network [OSTI]

    Effects of Shade on Blue Oak and Coast Live Oak Regeneration in California Annual Grasslands1 manipulation. A split-plot, multifactorial experi ment was designed to test whether blue oak (Quercus douglasii herbaceous vegetation was not manipulated. Even under conditions of prolonged, severe drought, blue oaks

  3. San Francisquit LosTrancosCreek

    E-Print Network [OSTI]

    Kay, Mark A.

    San Francisquit o C reek LosTrancosCreek Lake Lagunita Felt Lake Searville Lake Bear Gulch HOOVER PARK PEERS PARK SHORELINE GOLF LINKS SHORELINE AT MOUNTAIN VIEW SEALE PARK KELLOG PARK BOWLING

  4. EIS-0346: Salmon Creek Project, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  5. Hills Creek Powerhouse Turbine and Unit Rehabilitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and oxygen content suitable for fish, require the project to discharge a minimum of 300 cfs throughout its entire operating head range. The Francis runners at Hills Creek have...

  6. Environmental Survey Report for ORNL: Small Mammal Abundance and Distribution Survey Oak Ridge National Environmental Research Park 2009 - 2010

    SciTech Connect (OSTI)

    Giffen, Neil R; Reasor, R. Scott; Campbell, Claire L.

    2009-12-01

    This report summarizes a 1-year small mammal biodiversity survey conducted on the Oak Ridge National Environmental Research Park (OR Research Park). The task was implemented through the Oak Ridge National Laboratory (ORNL) Natural Resources Management Program and included researchers from the ORNL Environmental Sciences Division, interns in the Oak Ridge Institute for Science and Education Higher Education Research Experiences Program, and ORNL Environmental Protection Services staff. Eight sites were surveyed reservation wide. The survey was conducted in an effort to determine species abundance and diversity of small mammal populations throughout the reservation and to continue the historical inventory of small mammal presence for biodiversity records. This data collection effort was in support of the approved Wildlife Management Plan for the Oak Ridge Reservation, a major goal of which is to maintain and enhance wildlife biodiversity on the Reservation. Three of the sites (Poplar Creek, McNew Hollow, and Deer Check Station Field) were previously surveyed during a major natural resources inventory conducted in 1996. Five new sites were included in this study: Bearden Creek, Rainy Knob (Natural Area 21), Gum Hollow, White Oak Creek and Melton Branch. The 2009-2010 small mammal surveys were conducted from June 2009 to July 2010 on the Oak Ridge National Environmental Research Park (OR Research Park). The survey had two main goals: (1) to determine species abundance and diversity and (2) to update historical records on the OR Research Park. The park is located on the Department of Energy-owned Oak Ridge Reservation, which encompasses 13,580 ha. The primary focus of the study was riparian zones. In addition to small mammal sampling, vegetation and coarse woody debris samples were taken at certain sites to determine any correlations between habitat and species presence. During the survey all specimens were captured and released using live trapping techniques including Sherman and pitfall traps. In total 227 small mammals representing nine species were captured during the course of the study. The most common species found in the study was the white-footed mouse (Peromyscus leucopus). The least common species found were the deer mouse (Peromyscus maniculatus), meadow jumping mouse (Zapus hudsonius), woodland vole (Microtus pinetorum), and northern short-tailed shrew (Blarina brevicauda).

  7. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  10. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  11. Field sampling and analysis plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    The former YS-860 Firing Ranges are located at the eastern end of the Oak Ridge Y-12 Plant outside the primary facility fence line and west of Scarboro Road within the Upper East Fork Poplar Creek watershed in Oak Ridge, Tennessee. A decision has been made by the US Department of Energy to conduct a removal action of lead-contaminated soils at this site as part of early source actions within the Upper East Fork Poplar Creek watershed. This non-time critical removal action of bullets and lead-contaminated soil from the YS-860 Firing Ranges is being conducted as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 action. These actions are consistent with the Oak Ridge Reservation Environmental Restoration Program. The removal action will focus on the excavation of bullets and lead-contaminated soil from the shooting range berms, transportation of the material to a permitted treatment facility for disposal, demolition and land filling of a concrete trench and asphalt pathways at the site, and grading and revegetating of the entire site. This report is the field sampling and analysis plan for the removal action at the former YS-860 Firing Ranges. The field sampling and analysis plan addresses environmental sampling for lead after the removal of lead-contaminated soil from the target berm area. The objective of this sampling plan is to obtain sufficient analytical data to confirm that the removal action excavation has successfully reduced lead levels in soil to below the action level of 1,400 micrograms/g.

  12. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  13. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    in soil, sediment, surface water, groundwater, in and underneath buildings, drains, and sumps. Mercury continues to be released into Upper East Fork Poplar Creek (UEFPC) from...

  14. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  15. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  16. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fairlawn, NJ)

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  17. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars Calendar HomeNETLCareersCoal

  18. Coal companies hope to receive carbon credits for methane reductions

    SciTech Connect (OSTI)

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

  19. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  20. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

  1. Oak Leaf Roller and Springtime Defoliation of Live Oak Trees 

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2004-03-26

    . Two such caterpillars are the oak leaf roller, Archips semiferana (Walker) (Lepi- doptera: Tortricidae), and an associated species, Sparga- nothis pettitana. These insects occur throughout Texas but are most destructive in the Hill Country and South... broad- rimmed hats and long-sleeved shirts while out- doors may also help prevent contact with these insects. Damage When a tree is defoliated during the growing season, it becomes stressed and occasionally seri- ous damage can occur. Green leaves...

  2. Ten Years of Oak Restoration in City of Walnut Creek Open Spaces1

    E-Print Network [OSTI]

    Standiford, Richard B.

    with different restoration methods over the years until we found the methods we believe are well adapted to our warm and moderately dry climate. The City provides storage space for our equipment and materials, and this continued until 1990 when about 425 acres in Shell Ridge were withdrawn from grazing. In 1997 about 375

  3. Surface Water Chemistry in White Oak Creek, North-East Texas: Effect of Land Use 

    E-Print Network [OSTI]

    Watson, Eliza

    2012-02-14

    Over the last few decades increasing attention has been paid to the effects of land use activities and land management on stream water quality. Recent research has largely focused on dominant land uses such as urban development and agricultural...

  4. The prehistory of the Little Pin Oak Creek Site (41FY53), Fayette County, Texas 

    E-Print Network [OSTI]

    Largent, Floyd Brisco

    1991-01-01

    8 cd 0 x Q 8 0 E CI3 l 0 z 0 ch 0 V 0 O Ea M 'V) g ~cd- CI5 0 ccc 0 cd 0 + + + 2 E E CCd + + + 6 E 8 16 The surface elevation of each coring station was measured prior to coring, so that it was possible to determine... the Middle Archaic Period (5, 000-3, 000 years ago) have been recovered. Site occupation peaked during the Late Archaic and Late Prehistoric periods, approximately 2, 000-1, 200 years ago. The site is characterized by three depositional stream terraces...

  5. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName0 Jump to:Oahu,Wind Power

  6. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  7. DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2

    E-Print Network [OSTI]

    US Army Corps of Engineers

    #12;#12;DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2 DAM SAFETY MODIFICATION3 &4 Environmental Assessment Pine Creek Dam, Oklahoma Dam Safety Modification & Interim Risk Reduction Measure and risk reduction measures necessary to correct structural and maintenance deficiencies of Pine Creek Dam

  8. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  9. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  10. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

  11. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  12. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberTable 15: Coal Supply, Disposition, and Prices”, http://

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    increase in rail coal transportation costs in the future? (Ythus, the cost of coal transportation via unit trains ischance of the cost of coal transportation increasing are

  14. Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental

    E-Print Network [OSTI]

    Pennycook, Steve

    monitoring program are analyzed to assess the environmental impact of DOE operations on the entire1 Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE

  15. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Hydrogen from Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U-based technology. (a) Based on equal quantities of coal used to produce hydrogen and electricity 4 #12;Why Hydrogen From Coal? Huge U.S. coal reserves Hydrogen can be produced cleanly from coal Coal can provide

  16. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Broader source: Energy.gov (indexed) [DOE]

    of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science The...

  17. Blue oak seedling age influences growth and mortality

    E-Print Network [OSTI]

    Phillips, Ralph L.; McDougald, Neil K.; McCreary, Doug D.; Atwill, Edward R.

    2007-01-01

    1997b. Stand- level status of blue oak sapling recruitment1991. Soil water effects on blue oak seedling establishment.NK, Standiford RB, Frost WE. 1996. Blue oak seedlings may be

  18. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  19. Clear Creek, Texas Flood Risk Management Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix ­ Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

  20. Collaborative Monitoring in Walnut Creek, California1

    E-Print Network [OSTI]

    Standiford, Richard B.

    that they gained insight into priorities of Preserve users and knowledge of areas that might require new management regeneration and native grass populations in target management areas in the four Open Space Preserves and had to re-examine some of their own assumptions. The City of Walnut Creek managers stated

  1. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    SciTech Connect (OSTI)

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.; Boudreaux, Philip R.; Miller, William A.; New, Joshua Ryan; Khowailed, Giannate

    2015-06-01

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home. New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.

  2. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  3. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011...

  4. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Broader source: Energy.gov (indexed) [DOE]

    whether Oak Ridge Associated Universities Oak Ridge Institute for Science and Education is continuing to perform at a level deserving DOE-VPP Star recognition. The Team...

  5. PIA - Oak Ridge Institute for Science and Education Program Applicant...

    Energy Savers [EERE]

    Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PIA - Oak Ridge Institute for Science and Education Program Applicant and...

  6. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...

  7. DOE Awards $3 Million Contract to Oak Ridge Associated Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Awards 3 Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards 3 Million Contract to Oak Ridge Associated Universities for...

  8. Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

  9. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect (OSTI)

    Wilzbach, K.E.; Reilly, C.A. Jr.

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  10. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  11. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    Railroads”, Conference on the Future of Coal, U.S. SenateFuture Impacts of Coal Distribution Constraints on Coal Costone at that! -ii- Future Impacts of Coal Distribution

  12. Types of Student Engagement and Commitment to Stream Stewardship: Strawberry Creek on University of California at Berkeley Campus

    E-Print Network [OSTI]

    Javier, Alexander; Jones, Darryl; Tannenbaum, Sara Rose

    2011-01-01

    Charbonneau, R. B. 1987. Strawberry Creek Management Plan,R. and Resh, V.H. 1992. Strawberry Creek on the Universityto Stream Stewardship: Strawberry Creek on University of

  13. DOE Oak Ridge Operations managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQ F 1410.2 FormU.S. DOE Office ofObama09Oak

  14. Shady Oaks | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectionalIndustrielsOaks Jump to:

  15. Oak Ridge | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO.ORSSABOUOOakServicesOak

  16. Even more Oak Ridge transitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8) Wigner Home ·theEven more Oak Ridge

  17. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  18. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving (Fairview Park, OH)

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  19. Oak Ridge National Laboratory National Security Programs

    E-Print Network [OSTI]

    Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies and Homeland Security #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Nuclear Nonproliferation $27,050 Cleanup $7,481 Science $359M National Security $278M Energy $170M Cleanup $0.8M Total $1.08B

  20. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  1. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  2. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  3. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  4. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  5. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  6. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  7. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  8. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  9. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  10. OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    1 OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY BPWorkshop-2005 - LRB OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY presented by L.R. Baylor in collaboration with P.B. Parks*, S

  11. Inconsistent Application of Environmental Laws and Policies to California's Oak

    E-Print Network [OSTI]

    Inconsistent Application of Environmental Laws and Policies to California's Oak Woodlands1 Gregory of environmental laws and policies to California's oak woodlands and associated resources. Specifically, large of Environmental Laws and Policies to California's Oak Woodlands-- Giusti and Merenlender Oaks continue

  12. Upper Turkey Creek, Merriam, Kansas Feasibility Report Flood Risk Management Project Report Summary

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Upper Turkey Creek, Merriam, Kansas Feasibility Report Flood Risk Management Project Report Summary 1 REPORT SUMMARY UPPER TURKEY CREEK BASIN PROJECT FEASIBILITY REPORT AND INTEGRATED ENVIRONMENTAL Study Authority. The Upper Turkey Creek Basin Project, Flood Risk Management Feasibility Study (the

  13. Development of a Discharge-Stage Rating Curve for Strawberry Creek

    E-Print Network [OSTI]

    Hunt, Lisa

    2011-01-01

    Stage Rating Curve for Strawberry Creek Lisa Hunt ReferencesCharbonneau, R. 1987. Strawberry Creek Management Plan,R. and V.H. Resh. 1992. Strawberry Creek on the University

  14. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  15. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak I1Oak

  16. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  17. The potential use of thiabendazole and propiconazole for oak wilt control in live oak 

    E-Print Network [OSTI]

    Roberts, Paul Edwin

    1988-01-01

    analysis with a variable acceptance level of 0. 15. 28 Models tested for xylem pressure potential, using stepwise regression analysis with a variable acceptance level of 0. 15. . . . . . . . . . . . 29 Phytotoxicity rating of live oaks injected...THE POTENTIAL USE OF THIABENDAZOLE AND PROPICONAZOLE FOR OAK WILT CONTROL IN LIVE OAK A Thesis by PAUL EDWIN ROBERTS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  18. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    coal type mining. Production by coal type Since 1980, China maximizedthe production shares of coal types, the shares of different

  20. Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    purposes, such as environmental restoration/remedial investigation reports, waste management sector business/industrial park; the Oak Ridge Institute for Science and Education (ORISE) South Campus

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    power plant pulverized coal power plant v Advanced Coal WindMW coal gasification combined cycle power plant equippedMW coal gasification, combined cycle power plant equipped

  2. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Bruce Hicks, Vice Chair Howard Holmes Jennifer Kasten Belinda Price Mary Smalling Wanda Smith Corkie Staley Others present Dave Adler, DOE-Oak Ridge Office (DOE-ORO), Alternate...

  3. Major Oak Diseases and Their Control. 

    E-Print Network [OSTI]

    Johnson, Jerral D.; Appel, David N.

    1984-01-01

    in many areas where oaks are the predominant native tree species. Research shows that much of this mortality is due to disease-causing organisms or disease complexes 10- volving environmental stress and pathogens. FOLIAR DISEASES Anthracnose (Fungus... tor nado, hurricane, severe hail or following a period of mechanical activity around oak trees. Heavy equip- ment working around trees can create large wounds. When this occurs, insects are attracted to the site and may be carrying the wilt...

  4. The importance of tidal creek ecosystems Keywords: Estuary; Tidal creek; Pollution

    E-Print Network [OSTI]

    Mallin, Michael

    . They are most abundant along the Atlantic Seaboard from New Jersey to Florida, and along the Gulf Coast). Tidal creeks are especially abundant in low-energy systems such as protected areas behind barrier. As an example, the four southernmost coastal counties in North Carolina (Onslow, Pender, New Hanover

  5. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  6. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  7. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  8. Leon Creek Flood Risk Management Project San Antonio, Texas

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Leon Creek Flood Risk Management Project San Antonio, Texas 27 March 2014 ABSTRACT: Leon Creek is an important riverine system located on the western side of San Antonio in Bexar County Texas. The high flood that result in extremely rapid but relatively short-duration flood peaks and high velocity stream flows

  9. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-Print Network [OSTI]

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan.C. December 1996 #12;ABSTRACT This document summarizes data collected during the first year of the Bridge transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  10. Edwards Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico: EnergyEnergyCreek Geothermal Project

  11. Fermilab | Tritium at Fermilab | Indian Creek Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861MayArtQuestions forFeature photoIndian Creek

  12. Dry Creek Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National ClimateDongyingOpen Energy3) Jump to:Creek

  13. Separation Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectional ModelofSenerSeparation Creek

  14. Smith Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreek Geothermal Project Jump

  15. Stony Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump to: navigation,

  16. Twin Creeks Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack WindTuvalu:Creeks

  17. Willow Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,WhatUtilityRateNamingHelperVirginia:Willow Creek Wind

  18. Forest Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to: navigation,PortalCreek Wind Farm

  19. Lava Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill JumpLava Creek

  20. Bear Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-LosCreek Wind

  1. Cobb Creek Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover HillCobalt Biofuels JumpCreek

  2. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment ToolkitBull Creek Wind Farm Jump

  3. Bear Creek Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585Bear Creek Valley

  4. Papalote Creek II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPan AfricanHomePantexCreek

  5. Papalote Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPan AfricanHomePantexCreekWind

  6. Oak Ridge National Laboratory 5-1 5. Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    science, energy, high-performance computing, systems biology, and national security. ORNL partnersOak Ridge National Laboratory 5-1 5. Oak Ridge National Laboratory ORNL is the largest science and energy national laboratory in the DOE system. ORNL's scientific programs focus on materials, neutron

  7. Oak Ridge National Laboratory 5-1 5. Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    science, energy, high-performance computing, systems biology, and national security. ORNL partners1 Oak Ridge National Laboratory 5-1 5. Oak Ridge National Laboratory ORNL is the largest science and energy national laboratory in the DOE system. ORNL's scientific programs focus on materials, neutron

  8. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeCan Coal Deliver? America’s Coal Potential & Limits”, Studycoal generating units currently in operation throughout North America (

  10. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    5 Figure 1: Map of U.S. coal plants and generating1: Map of U.S. coal plants and generating units (GED, 2006a)of an electric generating coal power plant that would be

  11. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    than those of other coal types, depending on the location oftrue that different coal types (in terms of heating values,= installed capacity of i-type coal plants [GW]; HR i = heat

  12. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  13. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  14. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  15. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international...

  16. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  17. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  18. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  19. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    minerals Metallic ores Coal Crude petroleum Gasoline FuelMetallic ores and concentrates Coal Crude Petroleum Gasoline and aviation turbine fuel

  20. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

  1. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  2. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  3. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    10%. These two properties can be used to classify coals forsulfur in the coal to be burned. Other properties, such as

  4. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  5. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    SciTech Connect (OSTI)

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  6. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  7. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  8. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  9. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  10. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  11. English Country Dance 2015 Parking in Oak Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking in Oak Park Due to major construction, parking for the Oak Park dances is a bit challenging, so please allow yourself a little more time and patience. Below are parking...

  12. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938, option 4 Melyssa Noe,...

  13. UT OAK RIDGE FACILITY To Y-12 National

    E-Print Network [OSTI]

    5 UT ­ OAK RIDGE FACILITY To Y-12 National Security Complex To East Tennessee Technology Park (ETTP To Oak Ridge National Laboratory 9 3 2 4 1 9 7 6 8 TU LANE TU LANE NEWYORK UT OUTREACH CENTER UT

  14. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  15. Water Quality Monitoring in the Buck Creek Watershed and Facilitation of Buck Creek Watershed Partnership 

    E-Print Network [OSTI]

    Gregory, L.; Dyer, P.

    2013-01-01

    & 20376); two are in AU 0207A_02 (stations 20365 & 20368) and one is located on a tributary of the creek (station 20367). Building on this recommendation, two additional sites were included in the Interim Monitoring project. These added stations... the Interim Monitoring project Table 1. Water quality monitoring station descriptions Project? Site?No.?? TCEQ? Monitoring? Station?No.? General?Station?Location?&?Description? County? TCEQ Assessment Unit Station is Located In BC 03 20365 Buck...

  16. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  17. Blue oak seedlings may be older than they look

    E-Print Network [OSTI]

    Blue oak seedlings may be older than they look Ralph L. Phillips u Neil K. McDougald o Richard B. Standiford William E.Frost A 4-year study indicates that na- tive blue oak seedlings are prob- ably much the year of above- average rainfall. Blue oak (Quercusdouglasii)trees are a valuable economic and aesthetic

  18. DOE/ORO/2296 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;DOE/ORO/2296 Oak Ridge Reservation Annual Site Environmental Report for 2008 on the World Project manager, DOE-ORO David Page September 2009 Prepared by Oak Ridge National Laboratory P.O. Box 2008 ........................................................................................................................ 1-1 1.2 History of the Oak Ridge Reservation

  19. Oak Ridge ReseRvatiOn DOE/ORO/2379

    E-Print Network [OSTI]

    Pennycook, Steve

    Oak Ridge ReseRvatiOn DOE/ORO/2379 Annual Site Environmental Report 2010 #12;Cover Image and Design Annual Site Environmental Report 2010 #12;DOE/ORO/2379 Oak Ridge Reservation Annual Site Environmental ................................................................................................................................1-1 1.2 History of the Oak Ridge Reservation

  20. DOE/ORO/2261 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;DOE/ORO/2261 Oak Ridge Reservation Annual Site Environmental Report for 2007 on the World, Jane Parrott Project manager, DOE-ORO David Page September 2008 Prepared by Oak Ridge National........................................................................................................................ 1-1 1.2 History of the Oak Ridge Reservation

  1. at Oak Ridge National Laboratory A Project of

    E-Print Network [OSTI]

    ! #12;National Energy Security Center Halcyon Commercialization Center From a Single Office to an EntireOak Ridge at Oak Ridge National Laboratory A Project of One of the Community Reuse Organization Building... ...Partnerships with Oak Ridge National Laboratory have Never Been Easier! The Design Phase I

  2. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01

    coal are least expensive when produced from the Powder River Basin region, where cheaper surface mining

  3. SME Annual Meeting February 24-26, 2003, Cincinnati Ohio

    E-Print Network [OSTI]

    physical properties. A cutterhead was built to this design and tested in 20 Mile Coal Company's underground Modifications for Respirable Dust Reduction on Continuous Miners in Underground Coal Mining Brian Asbury1 Mike 2 20 Mile Coal Company RAG Oak Creek, CO ABSTRACT A grant provided by the National Institute

  4. Oak Ridge Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew2008Group,OAK RIDGE, Tenn.Use |Oak

  5. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak of EnvironmentalY-12Oak

  6. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak Ridge Site

  7. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak Ridge

  8. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak Ridge3:

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak Ridge3:4:

  10. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak

  11. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak4 Annual

  12. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak4

  13. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak41, 2015

  14. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak41,

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite SpecificOak41,Tuesday,

  16. Oak Ridge National Laboratory | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO.ORSSABOUOOak RidgeOakOak

  17. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  18. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2005-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contai

  19. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2006-09-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2005 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2005 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2005 monitoring data is deferred to the ''Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium'' (BWXT 2006). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2005 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2005. Section 4 presents an a summary of the CY 2005 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2005 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2005 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G co

  20. Alternative Perspectives on the Battle of Wolf Creek of 1938

    E-Print Network [OSTI]

    Warde, Mary Jane

    2001-09-01

    The Battle of Wolf Creek in northwestern Oklahoma in 1838 was highly significant to the Cheyenne, Arapaho, Kiowa, Comanche, and Plains Apache tribes, but little known beyond their mutual frontier. Their oral accounts of the battle allow us...

  1. The battle of Sailor's Creek: a study in leadership 

    E-Print Network [OSTI]

    Smith, Cloyd Allen, Jr.

    2007-04-25

    The Battle of Sailor's Creek, 6 April 1865, has been overshadowed by Lee's surrender at Appomattox Court House several days later, yet it is an example of the Union military war machine reaching its apex of war making ...

  2. HYDROLOGY OF BISHOP CREEK, CALIFORNIA: AN ISOTOPIC ANALYSIS 1

    E-Print Network [OSTI]

    diverting Bishop creek water for hydroelectric power for many years. Recently there has been concern that must be released from the hydroelectric power plants to the channel, during certain times of the year

  3. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  4. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  5. Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    /remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data sector business/industrial park; the Oak Ridge Institute for Science and Education (ORISE) South Campus

  6. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  8. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  9. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  10. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  11. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  12. Oak Ridge reservation land-use plan

    SciTech Connect (OSTI)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  13. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  14. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

  15. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  16. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  17. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  18. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  19. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  20. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  1. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  2. Calendar Year 2011 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Elvado Environmental LLC,

    2012-12-01

    This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures that the CY 2011 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. This report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC/UCOR. Such details are deferred to the respective programmatic plans and reports issued by BJC. Collectively, the groundwater and surface water monitoring data obtained during CY 2011 by the Y-12 GWPP and BJC/UCOR address DOE Order 436.1 and DOE Order 458.1 requirements for monitoring groundwater and surface water quality in areas (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring) and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). This report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. This report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.

  3. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

  4. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    mines in China lowers the coal recovery rate and increasesthat China’s average coal recovery rate is 30% nationallyimproved aggregate coal recovery rates and local- scale

  5. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  7. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 4 (July 2015) Archived Editions: Coal...

  8. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

  9. C(re)ek-storation Community Collaboration Site: North Fork of Strawberry Creek by La Loma and Le Conte Avenues

    E-Print Network [OSTI]

    Tannenbaum, Sara Rose

    2011-01-01

    1987. Excerpts from: The Strawberry Creek Management Plan.and Vince Resh. 1992. Strawberry Creek on the University ofSite: North Fork of Strawberry Creek by La Loma and Le Conte

  10. Crane Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumerLEDS Tier ICowatec AG JumpElectric

  11. ClipperCreek Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClio Power Ltd Jump to: navigation,

  12. Post-Project Assessment of the 2003 Cerrito Creek Restoration and Recommendations for Additional Stormwater Management

    E-Print Network [OSTI]

    Adlong, Michelle; Cook, Michael; Kennedy, Matthew

    2011-01-01

    near Kains Ave) Willow - Salix sp. (prolific along entirebank primarily) Willows - Salix sp. (various) Poison Oak -

  13. Aquatic Natural Areas Analysis and Evaluation: Oak Ridge Reservation

    SciTech Connect (OSTI)

    Baranski, Dr. Michael J.

    2011-04-01

    This report presents an assessment of the natural area value of eight Aquatic Natural Areas (ANAs) and seven Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) in Anderson and Roane Counties in east Tennessee. It follows a previous study in 2009 that analyzed and evaluated terrestrial natural areas on the Reservation. The purpose of both studies was to evaluate and rank those specially designated areas on the Reservation that contain sensitive species, special habitats, and natural area value. Natural areas receive special protections through established statutes, regulations, and policies. The ORR contains 33,542 acres (13,574 ha) administered by the Department of Energy. The surface waters of the Reservation range from 1st-order to 5th-order streams, but the majority of the streams recognized as ANAs and ARAs are 1st- and 2nd-order streams. East Fork Poplar Creek is a 4th-order stream and the largest watershed that drains Reservation lands. All the waters of the Reservation eventually reach the Clinch River on the southern and western boundaries of the ORR. All available information was collected, synthesized, and evaluated. Field observations were made to support and supplement the available information. Geographic information system mapping techniques were used to develop several quantitative attributes about the study areas. Narrative descriptions of each ANA and ARA and tables of numerical data were prepared. Criteria for assessment and evaluation were developed, and eight categories of factors were devised to produce a ranking system. The evaluation factors used in the ranking system were: (A) size of area, (B) percentage of watershed protected, (C) taxa present with protected status, (D) overall biotic diversity, (E) stream features, (F) water quality and use support ratings, (G) disturbance regime, and (H) other factors. Each factor was evaluated on a 5-point ranking scale (0-4), and each area received a composite score, where 32 was the maximum score possible. A highly ranked ANA or ARA is one that is large in size compared to other areas, includes a greater proportion of the watershed within Reservation boundaries, contains a number of status taxa at high densities, exhibits a high overall biodiversity, has very good or excellent habitat and water quality, is well protected and isolated from disturbances, and shows several other characteristics that contribute to natural area value. In this report, the term 'natural area' is loosely defined as a terrestrial or aquatic system that exhibits, or is thought to exhibit, high natural integrity and other significant natural values. The purpose of the present study is to evaluate and rank the currently recognized Aquatic Natural Areas (ANAs) and Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) for their natural area value. A previous study (Baranski 2009) analyzed, evaluated, and ranked terrestrial areas (Natural Areas [NAs], Reference Areas [RAs], and Cooperative Management Areas [CMAs]) on the ORR for natural area value, and a precise methodology for natural area evaluation was developed. The present study is intended to be a complement and companion to the terrestrial area study and attempts to employ a similar methodology for aquatic areas so that aquatic and terrestrial areas can be compared on a similar scale. This study specifically develops criteria for assessing the ecological, biodiversity, and natural area importance and significance of aquatic systems on the Reservation in a relevant and consistent manner. The information can be integrated into the Tennessee Natural Heritage Program (http://tn.gov/environment/na/nhp.shtml) system and applied to potential new aquatic areas. Further, the information will be useful in planning, management, and protection efforts on the ORR.

  14. Federal Facility Agreement Annual Progress Report for Fiscal Year 1999 Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC

    2000-01-01

    The U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) EM Program adopted a watershed approach for performing Remedial Investigations (RIs) and characterizations for ORR because it is an effective system for determining the best methods for protecting and restoring aquatic ecosystems and protecting human health. The basic concept is that water quality and ecosystem problems are best solved at the watershed level rather than at the individual water-body or discharger level. The watershed approach requires consideration of all environmental concerns, including needs to protect public health, critical habitats such as wetlands, biological integrity, and surface and ground waters. The watershed approach provides an improved basis for management decisions concerning contaminant sources and containment. It allows more direct focus by stakeholders on achieving ecological goals and water quality standards rather than a measurement of program activities based on numbers of permits or samples. The watershed approach allows better management strategies for investigations, therefore maximizing the utilization of scarce resources. Feasibility studies (FSs) evaluate various alternatives in terms of environmental standards, the protection of human health and the environment, and the costs of implementation to find the optimum solution among them. Society has to decide how much it is willing to spend to meet the standards and to be protective. Conducting FSs is the process of trading off those criteria to pick that optimum point that society wants to achieve. Performing this analysis at the watershed scale allows those trade-offs to be made meaningfully. In addition, a Land Use Control Assurance Plan for the ORR was prepared to identify the strategy for assuring the long-term effectiveness of land use controls. These land use controls will be relied upon to protect human health and the environment at areas of the ORR undergoing remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act and/or the Resource Conservation and Recovery Act. This plan will be implemented by means of a Memorandum of Understanding (MOU) incorporating its terms with the United States EPA and TDEC. The majority of projects described in this report are grouped into five watersheds. They are the East Tennessee Technical Park (ETTP) Watershed (formerly the K-25 Site), the Melton Valley (MV) and Bethel Valley (BV) Watersheds at the Oak Ridge National Laboratory (ORNL), and the Bear Creek Valley (BCV) and Upper East Fork Poplar Creek (UEFPC) Watersheds at the Y-12 Plant.

  15. Features and Dimensions of the Hayward fault zone in the Strawberry and Blackberry Creek Area Berkeley, California

    E-Print Network [OSTI]

    Williams, P.L.

    2011-01-01

    Hayward Fault Zone in the Strawberry and Blackberry Creekward Fault Zone in the Strawberry and Blackberry Creek Area,Hayward fault zone in the Strawberry and Blackberry Creek

  16. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  17. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  18. Hydrocracking catalysts from coals

    SciTech Connect (OSTI)

    Farcasiu, M.; Petrosius, S.C.; Pladner, E. [USDOE Pittsburgh Energy Technology Center, PA (United States); Derbyshire, F.; Jagtoyen, M. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31

    In previous work at PETC it was shown that carbon blacks and carbonized polymers could be active and selective catalysts in hydrocracking reactions of interest for fossil fuels processing. Work at CAER for the production of various activated carbons from coals have shown that the properties of the materials could be varied if they are produced under different conditions. The authors will report work to optimize the catalytic properties of some coal based carbon materials prepared at CAER. One of the most promising materials for this purpose is obtained from an Illinois bituminous coal. The procedure hydroxide solution with coal and reacting in two stages; (1) heat treatment of the solution at 75 C under nitrogen for one hour followed by drying and (2) heat treatment at 400--1,100 C followed by leaching to remove KOH. The product was extensively characterized and its catalytic activity was measured. The catalytic activity of some of the materials is comparable with other, more expensive carbon materials. The catalysts have potential use in upgrading petroleum heavy ends and coal liquefaction.

  19. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    pollution. With coal and liquid transport fuel deficits in26 3.6. Coal-to-liquids and coal-to-70 million tonnes and coal-to-liquids capacity reaches 60

  1. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

    1991-06-01

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  2. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  3. Composition and properties of coals from the Yurty coal occurrence

    SciTech Connect (OSTI)

    N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

    2008-10-15

    Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

  4. ORNL (Oak Ridge National Laboratory) 89

    SciTech Connect (OSTI)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  5. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  6. Chemical characteristics of waters in Karst Formations at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Shevenell, L.A. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    1994-11-01

    Several waste disposal sites are located adjacent to or on a karst aquifer composed of the Cambrian Maynardville Limestone (Cmn) and the Cambrian Copper Ridge Dolomite (Ccr) at the U.S. Department of Energy Oak Ridge Y-12 Plant in Oak Ridge, TN. Highly variable chemical characteristics (i.e., hardness) can indicate that the portion of the aquifer tapped by a particular well is subject to a significant quick-flow component where recharge to the system is rapid and water levels and water quality change rapidly in response to precipitation events. Water zones in wells at the Y-12 Plant that exhibit quick-flow behavior (i.e., high hydraulic conductivity) are identified based on their geochemical characteristics and variability in geochemical parameters, and observations made during drilling of the wells. The chemical data used in this study consist of between one and 20 chemical analyses for each of 102 wells and multipart monitoring zones. Of these 102 water zones, 10 were consistently undersaturated with respect to calcite suggesting active dissolution. Repeat sampling of water zones shows that both supersaturation and undersaturation with respect to dolomite occurs in 46 water zones. Twelve of the zones had partial pressure of CO{sub 2} near atmospheric values suggesting limited interaction between recharge waters and the gases and solids in the vadose zone and aquifer, and hence, relatively short residence times. The preliminary data suggest that the Cmn is composed of a complicated network of interconnected, perhaps anastomosing, cavities. The degree of interconnection between the identified cavities is yet to be determined, although it is expected that there is a significant vertical and lateral interconnection between the cavities located at shallow depths in the Cnm throughout Bear Creek Valley and the Y-12 Plant area.

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  8. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    Natural Gas Coal 233 billion tonnes coal equivalent 97% total fossil fuel reserve base Reserves by location, quality,

  9. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoal Markets

  10. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  11. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  12. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C. (Upper Montclair, NJ); Schindler, Harvey D. (Fairlawn, NJ)

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  13. Dry cleaning of Turkish coal

    SciTech Connect (OSTI)

    Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  14. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  15. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    2009-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  16. 2008 Coal Age buyers guide

    SciTech Connect (OSTI)

    2008-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  17. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  18. (Basic properties of coals and other solids)

    SciTech Connect (OSTI)

    Not Available

    1991-11-25

    This report discusses basic properties of bituminous, subbituminous, and lignite coals. Properties of coal liquids are also investigated. Heats of immersion in strong acids are found for Pittsburgh {number sign}8, Illinois {number sign}6, and Wyodak coals. Production of coal liquids by distillation is discussed. Heats of titration of coal liquids and coal slurries are reported. (VC)

  19. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  20. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  1. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  2. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoal Markets ReleaseCoal

  3. Fast-growing willow shrub named `Fish Creek`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  4. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

  5. Recommendation 169: Establishment of an Oak Ridge Oral History Program

    Broader source: Energy.gov [DOE]

    The ORSSAB recommends DOE-ORO fully endorse the establishment of an Oak Ridge Oral History Program and provide necessary assistance.

  6. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    Deiterding, Ralf

    Laboratory Oak Ridge, Tennessee SIAM Conference on Computational Science and Engineering Costa Mesa version with extended higher-order capabilities and large number of Riemann solvers - Hydrid WENO

  7. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    results of an independent oversight review of the management of safety significant structures, systems, and components at the Oak Ridge Transuranic Waste Processing Center...

  8. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Energy Savers [EERE]

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  9. Oak Ridge Reservation Compliance Order, September 26, 1995 Summary

    Office of Environmental Management (EM)

    Oak Ridge Reservation Compliance Order, September 26, 1995 State Tennessee Agreement Type Compliance Order Legal Driver(s) FFCAct Scope Summary Enforce the Plan and ensure that the...

  10. Welcome - Energy Storage Research at Oak Ridge National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Sciences Directorate ORNL Energy Storage Research at Oak Ridge National Laboratory Home Research Areas R&D Capabilities Partners & Sponsors Selected Publications & Patents...

  11. Oak Ridge Environmental Management Program Completes Work at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately 17.5 million...

  12. Oak Ridge to acquire next generation supercomputer | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McCorkle Communications and Media Relations (865) 574-7308 Oak Ridge to acquire next generation supercomputer Supercomputer simulations enable researchers to address the most...

  13. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Energy Savers [EERE]

    Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus. PDF icon...

  14. Oak Ridge National Laboratory's Waste Diversion Efforts, OAS...

    Broader source: Energy.gov (indexed) [DOE]

    via the Pollution Prevention Tracking and Reporting System. The Oak Ridge National Laboratory (ORNL) Pollution Prevention Program (Program) plays a vital role in the Department's...

  15. DOE Issues Final Request for Proposal for Oak Ridge Transuranic...

    Broader source: Energy.gov (indexed) [DOE]

    from the Oak Ridge National Laboratory; and processing Nuclear Fuel Services soils. Similar services are currently being performed with Wastren Advantage, Inc. The...

  16. ORIGINAL PAPER Environmental change in Garry oak (Quercus garryana)

    E-Print Network [OSTI]

    Gedalof, Ze'ev

    . In this paper we take a multidisciplinary approach (bio- geography, paleoecology, dendrochronology Indigenous people land practices Á Paleoecology Introduction Understanding the complex nature of Garry oak

  17. Energy Department's Oak Ridge National Laboratory Unveils New...

    Office of Environmental Management (EM)

    website. Administered by the Department's Oak Ridge National Laboratory (ORNL), the new site, buildings.ideascale.com, will help technology innovators collect, share and...

  18. ORO Verification of Employment Tracking System(VETS) PIA, Oak...

    Energy Savers [EERE]

    System and Visitor Control System PIA, Oak Ridge Operations Office Occupational Medicine - Assistant PIA, Idaho National Laboratory Freedom of Information and Privacy Act...

  19. Oak Ridge National Laboratory Carbon Fiber Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

  20. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    event. This document corresponds to Appendix C: Analysis Integrated Summary Report of the Technical Assessment Team Report. Oak Ridge National Laboratory Analysis of Waste...

  1. Former Oak Ridge Bechtel Jacobs Employee Charged with Violating...

    Energy Savers [EERE]

    Atomic Energy Act Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of Justice press release announcing that a federal grand jury in the...

  2. ORIS: the Oak Ridge Imaging System program listings. [Nuclear...

    Office of Scientific and Technical Information (OSTI)

    program listings. Nuclear medicine imaging with rectilinear scanner and gamma camera Citation Details In-Document Search Title: ORIS: the Oak Ridge Imaging System program...

  3. Roberts Creek Study Forest: the effects of shelterwood harvesting and blowdown

    E-Print Network [OSTI]

    is sediment produc- tion in domestic water supply creeks. The effects of timber harvesting on sedimentRoberts Creek Study Forest: the effects of shelterwood harvesting and blowdown on sediment production in a small zero-order creek by Robert O. Hudson and Brian D'Anjou KEYWORDS: Shelterwood harvest

  4. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 CONSORTIUM FOR CLEAN COAL UTILIZATION Request for Proposals Date of Issue: February 16, 2015 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of 2009. The mission of the CCCU is to enable environmentally benign and sustainable use of coal, both

  5. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  6. Coal Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  7. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    TABLE 4. Inventory data for blue oak thinning project in8. Standiford RB. 1997. Growth of blue oak on California’s2008. Stump sprouting of blue oaks 19 years after harvest.

  8. PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory -UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel

    E-Print Network [OSTI]

    Hively, Lee M.

    PRESOLICITATION Category: A. Owner: Department of Energy, Oak Ridge National Laboratory - UT Battelle LLC (DOE Contractor), Oak Ridge National Laboratory, Bethel Valley Road P.O. Box 2008, Oak Ridge-Battelle), the management and operating contractor for the United States Department of Energy's Oak Ridge National

  9. Pike Creek, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia,Creek, Ohio:Mississippi:Ohio:Creek,

  10. Coconut Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek,CoastalCochranCoconut Creek,

  11. Kinetics of coal pyrolysis

    SciTech Connect (OSTI)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  12. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  13. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  14. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    SciTech Connect (OSTI)

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  15. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  16. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  17. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  18. Oak Ridge Reservation Compliance Summary 2-1 2. Oak Ridge Reservation Compliance Summary

    E-Print Network [OSTI]

    Pennycook, Steve

    .3.5 The Clean Water Act (CWA) seeks to improve surface water quality by establishing standards and a system disposal sites The Oak Ridge Reservation (ORR) has been on the U.S. Environmental Protection Agency (EPA pollutants through permits and air quality limits. Emissions of radionuclides are regulated by EPA via

  19. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  20. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  1. Clean coal preparation using the Liquids From Coal (LFC) process

    SciTech Connect (OSTI)

    Klugh, D.M.; Marquardt, M.M.; Hoften, S.A. van [SGI International, La Jolla, CA (United States)

    1994-12-31

    With an abundance of coal located in the Pacific Rim region, many economies offer excellent opportunities for the application of clean coal technologies. SGI International`s Liquids From Coal (LFC) Mild Gasification Process is a clean coal technology that can greatly enhance both the economical and environmental use of coal in this area. Indonesia, with its large population and emerging industrial infrastructure, has exhibited one of the fastest growth rates of electrical power consumption in Asia. This paper demonstrates the economic and environmental advantages of the LFC Process as it applies to coals in the Pacific Rim. These advantages are assessed from the results of a technical feasibility study of coal from the Tanjung Enim Region of Indonesia. While Tanjung Enim provides an example of added value and increased lifetime of an existing resource with some environmental benefits, other examples illustrate the excellent opportunity for upgrading coals for export into the Pacific Rim Steaming Coal Trade. These upgraded coals are expected to be very competitive in cost and are expected to be environmentally attractive.

  2. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    SciTech Connect (OSTI)

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  3. Oak Ridge, Tennessee, Warehouses Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN~$ .,2,Oak Ridge,

  4. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific

  5. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific January 12,

  6. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific January 12,

  7. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific January 12,9,

  8. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific January

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific January3

  10. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite Specific

  11. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB ControlOak ofSite

  12. Operating Oak Ridge's "Calutrons"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /JuneOperating Oak Ridge's

  13. Oak Ridge Office of Environmental Management

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO.ORSSABOUOOak Oak Ridge

  14. ORISE: Oak Ridge Sitewide Institutional Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensic ScienceHowNews ReleasesdiseaseOak Ridge

  15. Evidence of Streamflow and Sediment Effects on Juvenile Coho and Benthic Macroinvertebrates of Lagunitas Creek and San Geronimo Creek, Marin County, California

    E-Print Network [OSTI]

    Ball, Joanie; Diver, Sibyl; Hwan, Jason

    2009-01-01

    Resh. 2008. Quantitative linkages among sediment supply,streambed fine sediment, and benthic macroinvertebrates inData: Lagunitas Creek Sediment and Riparian Management Plan,

  16. The geoarchaeology of Buttermilk Creek, Bell County, Texas 

    E-Print Network [OSTI]

    Gibson, Brandy Deanne

    1997-01-01

    was conducted. Buttermilk Creek is a 13 km stream incised into limestone bedrock with a drainage basin size of 43 kM2 , a stream gradient of 8.5 m/km, and a sinuosity of 1.26. This project was undertaken with two objectives in mind-, to create a...

  17. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect (OSTI)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  18. ORESTIMBA CREEK, WEST STANISLAUS COUNTY, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ORESTIMBA CREEK, WEST STANISLAUS COUNTY, CA FLOOD RISK MANAGEMENT PROJECT 29 May 2013 ABSTRACT flood risk management for the City of Newman, Stanislaus County, California and the surrounding area public health risks caused by area flooding included contamination of domestic water wells and inundation

  19. ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996

    E-Print Network [OSTI]

    of Agricultural Practice for Waste Management... 6 3.0 ASSESSMENT RESULTS................................... 7 3 with the environmental guidelines of the Ministry of Agriculture, Fisheries and Food (1992) and the Code of Agricultural Practice for Waste Management (Waste Management Act, Health Act, 1992). Bridge Creek drains a 1,550 km area

  20. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  1. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    SciTech Connect (OSTI)

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  2. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    SciTech Connect (OSTI)

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  3. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    development of new materials #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY HistoricalOAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Fusion Materials Research Steve Zinkle U. S. DEPARTMENT OF ENERGY Outline · Effects of neutron bombardment on structural materials - "Five

  4. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    McDonald, Kirk

    LABORATORY U. S. DEPARTMENT OF ENERGY Possible Alternative · Hg jet & magnet axis in vertical plane · MagnetOAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Tilt Option Discussion Issues Van Graves Phone Conference Sept 22, 2004 #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

  5. NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Upton, NY #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Outline · Properties, Safety Limits · Background - SNS Target Test Facility · Installing Hg & New

  6. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    Pennycook, Steve

    -Supercritical Steam Service - Turbines Phil Maziasz Materials Science and Technology Division Oak Ridge National considered for A-USC steam turbine application Alloy Ni Cr Co Mo Nb Ti Al Mn Si C NI 105 bal 14.85 20.0 5 #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Increasing Steam Temperature and Pressure

  7. Oak Ridge National Laboratory Policy on Research Integrity

    E-Print Network [OSTI]

    Oak Ridge National Laboratory Policy on Research Integrity All researchers performing research for the Oak Ridge National Laboratory (ORNL) must conform to the highest standards scientific integrity includes avoidance of personal conflicts of interest (PCOI), and the appearance of PCOIs, arising from

  8. Oaks and Environmental Education1 Kay Antunez de Mayolo2

    E-Print Network [OSTI]

    may examine how the human use of a natural resource effects the integrity of a natural system management and conservation of our state's natural resources. 1 Presented at the Symposium on Oak Woodlands. These programs could serve as models for groups involving youth in oak education and resource enhancement

  9. Sudden Oak Death: Recent Developments on Trees in Europe1

    E-Print Network [OSTI]

    on rhododendron stock in Germany and the Netherlands in 1993 and the new Phytophthora believed to be the cause in Germany and the Netherlands led to surveys for the pathogen in nursery material, initially in the United on European beech. However, stems of mature Q. cerris (Turkey oak), Q. petraea (sessile oak), Nothofagus

  10. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    SciTech Connect (OSTI)

    Gray, R.H.; Cowser, K.E.

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  11. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  12. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A. (Elizabeth, PA)

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  13. EA-1779: Proposed Changes to the Sanitary Biosolids Land Application Program on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend (e.g., by changing setback requirements from surface water features and potential channels to groundwater) the Sanitary Biosolids Land Application Program at the Oak Ridge Reservation in Oak Ridge, Tennessee.

  14. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  15. White Oak Dam stability analysis. Volume I

    SciTech Connect (OSTI)

    Ahmed, S.B.

    1994-01-01

    A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.

  16. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  17. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  18. Process for changing caking coals to noncaking coals

    DOE Patents [OSTI]

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  19. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1989--September 30, 1991

    SciTech Connect (OSTI)

    Carlson, P.T. (comp.)

    1991-12-01

    The Oak Ridge National Laboratory Fossil Energy Program, involves research and development activities for the Department of Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory's fossil energy activities relate to coal, with current emphasis on materials research development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1989, through September 30, 1991, and is a supplement to the earlier bibliography in this series. It is the intent to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications, full-length papers in published proceedings of conferences, and books and book articles. A major part of the Fossil Energy Program is the Advanced Research and Technology Development Materials Program. The objective of this Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies.

  20. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1989--September 30, 1991

    SciTech Connect (OSTI)

    Carlson, P.T. [comp.

    1991-12-01

    The Oak Ridge National Laboratory Fossil Energy Program, involves research and development activities for the Department of Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relate to coal, with current emphasis on materials research development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1989, through September 30, 1991, and is a supplement to the earlier bibliography in this series. It is the intent to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications, full-length papers in published proceedings of conferences, and books and book articles. A major part of the Fossil Energy Program is the Advanced Research and Technology Development Materials Program. The objective of this Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies.

  1. Pontotoc Co. Greene Co. Hale Co. OAK GROVE C OAL D EGAS CEDAR COVE COAL DEGAS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 October 2015 Table 44. PAD075

  2. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  3. Environmental development plan: coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  4. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  5. H-coal pilot plant. Phase II. Construction. Phase III. Operation. Annual report No. 3

    SciTech Connect (OSTI)

    Not Available

    1981-02-04

    At the request of DOE Oak Ridge, ASFI agreed to assume responsibility for completion of Plant construction in December, 1979, at which time Badger Plants' on-site work was ended. This construction effort consisted of electric heat tracing and insulation of piping and instrumentation. At the close of the reporting period the work was completed, or was projected to be completed, within the ASFI budgeted amounts and by dates that will not impact Plant operations. Engineering design solutions were completed for problems encountered with such equipment as the High Pressure Letdown Valves; Slurry Block Valves; Slurry Pumps; the Bowl Mill System; the Dowtherm System; and the Ebullating Pump. A Corrosion Monitoring Program was established. With the exception of Area 500, the Antisolvent Deashing Unit, all operating units were commissioned and operated during the reporting period. Coal was first introduced into the Plant on May 29, 1980, with coal operations continuing periodically through September 30, 1980. The longest continuous coal run was 119 hours. A total of 677 tons of Kentucky No. 11 Coal were processed during the reporting period. The problems encountered were mechanical, not process, in nature. Various Environmental and Health programs were implemented to assure worker safety and protection and to obtain data from Plant operations for scientific analysis. These comprehensive programs will contribute greatly in determining the acceptability of long term H-Coal Plant operations.

  6. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    1982-01-31

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  7. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  8. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  9. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01

    THE FUEL IS FED FROM THE HOPPER INTO THE TOP OF THE GASIFIER RETORT THROUGH AN AUTOMATIC COAL FEEDER SYSTEM. COAL FROM THE (100 TON) TOP BUNKERS FLOWS THROUGH A STEEL INLET COMPARTMENT INTO A CAST IRON ROTARY DRUM FEEDER. THE 21" I.D. DRUM HAS A 60...? OPENING THROUGH WHICH IT RECEIVES APPROXIMATELY 6 CU. FT. (300 LBS) OF COAL FROM THE BUNKER. LIP SEALS ARE LOCATED AT THE EDGE OF THE OPENINGS TO CUTOFF THE COAL COLUMN AS THE DRUM ROTATES. A KNIFE GATE VALVE IS LOCATED BENEATH THE DRUM TO SEAL...

  10. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  11. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  12. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    We use the AEO 2007 forecast of coal prices. This analysisforecast is available only until 2030; we project coal priceslevelized price of coal is based on EIA AEO 2007 forecast

  14. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  15. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    of a three-body type, involving coal particles (sizes of hin dry coal feeders wi11 be predominantly type involvingabrasion of a two-body type. Coal crushing and mi 11ing

  16. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  17. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    unit water requirement of coal-fired electricity generationin electricity demand. Coal-fired power generation accounted12, the absolute amount of coal-fired capacity grew at an

  18. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  19. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  20. Comprehensive Integrated Planning Process for the Oak Ridge Operations Sites

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC; Lockheed Martin Energy Research Corporation; Lockheed Martin Energy Systems, Inc.

    1999-09-01

    This plan is intended to assist the U.S. Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1A, "Life Cycle Asset Management," and Oak Ridge Operations (ORO) Order 430 on sites under the jurisdiction of DOE-ORO. Those sites are the Oak Ridge Reservation, in Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant, in Paducah, Kentucky; and the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio. DOE contractors at these sites are charged with developing and producing this plan, which is referred to as simply the Comprehensive Integrated Plan.

  1. Oak Ridge Reservation Environmental report for 1990

    SciTech Connect (OSTI)

    Wilson, A.R.

    1991-09-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1990. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1990 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1.

  2. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1989. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1989 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1. 16 figs., 194 tabs.

  3. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.15 KeroseneCoal Glossary

  4. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.15 KeroseneCoal

  5. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73 Table

  6. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73

  7. Annual Coal Distribution Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc. Real73and Foreign

  8. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual

  9. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0

  10. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual00

  11. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual000

  12. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear JanProfileDecadeJulyAnnual0000

  13. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear

  14. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information

  15. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1 U.S.

  16. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information1

  17. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy Information12

  18. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy

  19. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy

  20. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy0

  1. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy00

  2. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy000

  3. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy0001

  4. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S. Energy00011

  5. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.

  6. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.1 U.S.

  7. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S. Energy0 U.S.1 U.S.2 U.S.

  8. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December 2008

  9. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December 2008

  10. Coal Distribution Database, 2006

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December

  11. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q 2009

  12. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q 20093Q

  13. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q

  14. Coal Distribution Database, 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7 December3Q4Q 2009

  15. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.873 -Coal

  16. Coal combustion products (CCPs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient education istheCoalFocuses

  17. EIA -Quarterly Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/SPipelineNatural Gas Energy MarketsCoal

  18. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space Heatingreports Coal

  19. EA-1978: Sand Creek Winds, McCone County, Montana

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  20. Pebble Creek, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |ViewIllinois: Energy ResourcesPebble Creek, Florida:

  1. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    /Liquefaction+Storage +Dispensing+Transporting+Storage +Compression/Vaporization Centralized SMR Coal Gasification Biomass, etc without CO2 Capture X X X X X Biomass gasification without CO2 Capture X X X X X Biomass gasification Wind Electrolysis plus power X X X X X X Coal Gasification with CO2 Capture X X X X X Coal Gasification

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  3. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  4. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    s ability to mitigate carbon dioxide emissions growth. Ifgrowth path, carbon dioxide emissions from coal combustiondependence. 4.4.1. Carbon dioxide emissions Coal is China’s

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01

    materials (6%), delivered heating (district heating) (6%),coal growth. As district heating expands with urbanizationzone, coal use for district heating will depend on the

  7. DOE's Advanced Coal Research, Development, and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous...

  8. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  9. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

  10. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  11. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  12. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  13. Coal Age buyers guide 2007

    SciTech Connect (OSTI)

    2007-07-15

    The buyers guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  14. Coal Age buyers guide 2006

    SciTech Connect (OSTI)

    2006-07-15

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  15. Coal Age buyers guide 2005

    SciTech Connect (OSTI)

    2005-07-01

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  16. Oak Ridge National Laboratory: Recent Accomplishments and Challenges...

    Office of Environmental Management (EM)

    (ORNL) ETTP ORNL Y-12 City of Oak Ridge www.energy.govEM ORNL Scope MV: MSRE Salt Drain Tanks * Bethel Valley D&D and RA scope - 160 facilities - Isotope processing...

  17. OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    · ASME Standards and Technologies, LLC · Chemical Composite Coatings Intl · Columbia Gas · Hatch Moss Mac: Perform financial analyses and incorporate knowledge into codes and standards #12;6 OAK RIDGE NATIONAL

  18. DOE Awards Contract for Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    - The U.S. Department of Energy (DOE) today announced the award of a contract to North Wind Solutions, LLC for waste processing services at the Oak Ridge Transuranic Waste...

  19. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY 1 Applied R&D of 1st and 2nd Generation 40 K and 80 K ­ A 1-Tesla HTS coil will be made with YBCO conductor, instrumented and tested

  20. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.