Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area (Redirected from New York Area - NY NJ CT PA) Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

2

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

3

Assessment of Summer RBOB Supply for NY & CT  

Gasoline and Diesel Fuel Update (EIA)

Update of Summer Reformulated Gasoline Supply Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut May 5, 2004 In October 2003, EIA published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) 1 that noted significant uncertainties in gasoline supply for those States for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two States over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline. As discussed on our earlier report, the NY and CT bans on MTBE mainly affect reformulated gasoline (RFG), which in recent years has been provided by domestic refineries on the East Coast (PADD 1) and imports. Our recent findings indicate that

4

NY  

Office of Legacy Management (LM)

NY NY 17.8 Prepared by Oak Ridge Associated Universities Prepgred for Office of Operationaf Safety U.S. Department of Energy Ezrt /ur / POST REMEDIAL ACTION SURVEY PROPERTY OF MODERN LANDFILL, INC. FORMER LOOW SITE LEWISTON, NEW YORK J.D. BERGER R a d i o l o g l c a l S t t e A s s e s s r n e n t P r o g r a m M a n p o t a e r E d u c a t l o n , R e s e a r c h , a n d T r a l n i n g D l v i s l o n FINAL REPORT January 1982 POST REIEDIAT ACTION SURVBY PROPERTY OF }TODBRN I.AIIDPILL' INC. rONGB LOOTI SITE LEIIISTOI, NEI{ YORK Prepared for U.S. Department of Eaergy J . D . B e r g e r P r o j e c t S t a f f R.D. Coudra C.F. Rienke P.[. Frane C.F. 9legver [f.0. Eelton L.A. Young Prepered by Radiological Site Aseessuent Progrm Dlanpower Educatioor Researchr and Training Diviaion Oak Ridge Acaociated Univereitiea Oak Ridger Tenneggee 37830 FINAL REPORT January 1982 Thls report ls based on work performed under contract number DB-AC05-760RO0033 wlth

5

DOE - Office of Legacy Management -- Buffalo NY Site - NY 54  

NLE Websites -- All DOE Office Websites (Extended Search)

Buffalo NY Site - NY 54 Buffalo NY Site - NY 54 FUSRAP Considered Sites Buffalo, NY Alternate Name(s): Bliss & Laughlin Steel Company Niagara Cold Drawn Steel Corporation Ramco Steel Incorporated NY.54-1 NY.54-4 Location: 110 Hopkins Street, Buffalo, New York NY.54-1 Historical Operations: Machined and straightened uranium rods as subcontracted work from National Lead Company, an AEC contractor. NY.54-3 NY.54-4 LTSM012601 Eligibility Determination: Eligible NY.54-4 Radiological Survey(s): Assessment Surveys, Verification Surveys NY.54-6 NY.54-7 NY.54-8 LTSM012601 Site Status: Certified- Certification Basis and Certification Statement BLS000001 LTSM012152 LTSM012584 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

6

NY Green Bank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Meeting in New York, NY: Energy Infrastructure Finance The conventional clean energy capital markets for large scale infrastructure are deep and robust. These markets...

7

?? / Kagaku / ?? /Ky?ri: Science  

E-Print Network (OSTI)

question when considering science and technology in Japanese?? /Kagaku / ?? /Ky?ri: Science Tsukahara T?go Translationto incorporate and develop science and technology from the

Tsukahara, T?go

2012-01-01T23:59:59.000Z

8

Northern Westchester Energy Action Consortium (NY) | Open Energy  

Open Energy Info (EERE)

Energy Action Consortium (NY) Energy Action Consortium (NY) Jump to: navigation, search Logo: Northern Westchester Energy Action Consortium (NY) Name Northern Westchester Energy Action Consortium (NY) Address PO Box 681 Place Somers, New York Zip 10589 Region Northeast - NY NJ CT PA Area Year founded 2009 Website http://www.nweac.org Coordinates 41.3278772°, -73.6948234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3278772,"lon":-73.6948234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Category:Providence, RI | Open Energy Information  

Open Energy Info (EERE)

RI RI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Providence, RI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Providence RI The Narragansett Electric Co.png SVFullServiceRestauran... 66 KB SVQuickServiceRestaurant Providence RI The Narragansett Electric Co.png SVQuickServiceRestaura... 66 KB SVHospital Providence RI The Narragansett Electric Co.png SVHospital Providence ... 60 KB SVLargeHotel Providence RI The Narragansett Electric Co.png SVLargeHotel Providenc... 61 KB SVLargeOffice Providence RI The Narragansett Electric Co.png SVLargeOffice Providen... 61 KB SVMediumOffice Providence RI The Narragansett Electric Co.png SVMediumOffice Provide... 63 KB SVMidriseApartment Providence RI The Narragansett Electric Co.png

10

Category:Syracuse, NY | Open Energy Information  

Open Energy Info (EERE)

Syracuse, NY Syracuse, NY Jump to: navigation, search Go Back to PV Economics By Location Media in category "Syracuse, NY" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Syracuse NY Consolidated Edison Co-NY Inc.png SVFullServiceRestauran... 70 KB SVQuickServiceRestaurant Syracuse NY Consolidated Edison Co-NY Inc.png SVQuickServiceRestaura... 70 KB SVHospital Syracuse NY Consolidated Edison Co-NY Inc.png SVHospital Syracuse NY... 66 KB SVLargeHotel Syracuse NY Consolidated Edison Co-NY Inc.png SVLargeHotel Syracuse ... 69 KB SVLargeOffice Syracuse NY Consolidated Edison Co-NY Inc.png SVLargeOffice Syracuse... 68 KB SVMediumOffice Syracuse NY Consolidated Edison Co-NY Inc.png SVMediumOffice Syracus... 67 KB SVMidriseApartment Syracuse NY Consolidated Edison Co-NY Inc.png

11

Category:Rochester, NY | Open Energy Information  

Open Energy Info (EERE)

Rochester, NY Rochester, NY Jump to: navigation, search Go Back to PV Economics By Location Media in category "Rochester, NY" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Rochester NY Consolidated Edison Co-NY Inc.png SVFullServiceRestauran... 70 KB SVQuickServiceRestaurant Rochester NY Consolidated Edison Co-NY Inc.png SVQuickServiceRestaura... 71 KB SVHospital Rochester NY Consolidated Edison Co-NY Inc.png SVHospital Rochester N... 65 KB SVLargeHotel Rochester NY Consolidated Edison Co-NY Inc.png SVLargeHotel Rochester... 69 KB SVLargeOffice Rochester NY Consolidated Edison Co-NY Inc.png SVLargeOffice Rocheste... 67 KB SVMediumOffice Rochester NY Consolidated Edison Co-NY Inc.png SVMediumOffice Rochest... 67 KB SVMidriseApartment Rochester NY Consolidated Edison Co-NY Inc.png

12

DOE - Office of Legacy Management -- New York, NY, Site - NY 61  

Office of Legacy Management (LM)

York, NY, Site - NY 61 York, NY, Site - NY 61 FUSRAP Considered Sites New York, NY Alternate Name(s): Baker and Williams Warehouses Ralph Ferrara Company Warehouses Ralph Ferrara, Inc. NY.61-2 Location: 513-519, 521-527, and 529-535 West 20th Street, New York, New York NY.61-3 Historical Operations: Received and stored uranium ores and concentrates for MED. NY.61-5 NY.61-6 NY.61-7 Eligibility Determination: Eligible NY.61-1 NY.61-2 Radiological Survey(s): Assessment Surveys, Verification Surveys NY.61-3 NY.61-4 NY.61-8 NY.61-9 NY.61-10 Site Status: Certified - Certification Basis, Federal Register Notice Included NY.61-11 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP Also see New York, New York, Site

13

DOE - Office of Legacy Management -- Niagara Falls Storage Site NY - NY 17  

Office of Legacy Management (LM)

Niagara Falls Storage Site NY - NY Niagara Falls Storage Site NY - NY 17 FUSRAP Considered Sites Niagara Falls Storage Site, NY Alternate Name(s): Lake Ontario Ordnance Works (LOOW) Niagara Falls Storage Site (NFSS) DOE-Niagara Falls Storage Site NY.17-1 NY.17-3 Location: Lewiston, New York NY.17-5 Historical Operations: Stored, shipped, and buried radioactive equipment and waste for MED and AEC containing uranium, radium, and thorium. Contains Interim Waste Containment Structure. NY.17-1 NY.17-2 NY.17-14 Eligibility Determination: Eligible NY.17-4 Radiological Survey(s): Assessment Surveys NY.17-3 NY.17-5 NY.17-6 NY.17-7 NY.17-8 NY.17-9 NY.17-10 NY.17-11 NY.17-12 NY.17-14 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. NY.17-13 NY.17-14 NY.17-15 NY.17-16 USACE Website Long-term Care Requirements: To be determined upon completion.

14

ACIM-~ NY.49  

Office of Legacy Management (LM)

' ' h:. ,,, ,_" , ACIM-~ NY.49 .,. i MEMORANDUM TO: FILE DATE FE: __~-tt_c~7' e_-_~-~------- --------- "%Kf-- ---- ---i------- Current: ~~~~~~--------__---_______ xf yee, date contacted- IVPE OF OPERATION f- ------------- Research & Development 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process z Theoretical Studies Sample 84 Analysis 0 Production 0 Disposal/Storage a Facility Type 0 Manufacturing 0 University 0 Research Organization 0 Government Sponsored Fat a Other ------------------ c] Prime 0 Other information (i.e., co 0 Subcontractor + fixed fee, unit price, 0 Purchase Order time & material, +x:) G-----------^-------------- . ~~~~-----____~-~----------~ Contract/Purchase Order # ---------------------------------

15

NY-%-3 P  

Office of Legacy Management (LM)

NY-%-3 NY-%-3 P m F P F ?- P m ?- c m P P CII (I pl F F- 3?r -J-J-. _- /, i ;. / 0 Aerospace Report No. ATR-82 (796344-2 i Aq, is y !i,' Evaluation of the 1943Hto# 1946 ilid Liquid Effluent Discharge From the Linde Air Products Company Ceramics Plant December 198 I Prepared for Office of Operational Safety Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness U.S. DEPARTMENT OF ENERGY Prepared by Environment and Conservation Directorate Eastern Technical Division THE AEROSPACE CORPORATION Germantown, Maryland Contract No. DE-ACOP-81EV10532 I- ,- A e r o s p a c e R e p o r t N o . A T R - 8 2 ( 7 9 6 3 - 0 4 ) - 2 E V A L U A T IO N O F T H E 1 9 4 3 - T O - 1 9 4 6 L IQ U ID E F F L U E N T D IS C H A R G E F R O M T H E L INDE A IR P R O D U C T S C O M P A N Y C E R A M ICS P L A N T D e c e m b e r 1 9 8 1 P r e p a r e d for O

16

QER Public Meeting in Providence, RI & Hartford, CT: New England...  

Office of Environmental Management (EM)

& Local Affairs - New England Dominion Resources, Inc. Remarks of Joe Rose, President, Propane Gas Association of New England Remarks of Michael Trunzo, President & CEO, New...

17

DOE - Office of Legacy Management -- Guterl Specialty Steel - NY 12  

Office of Legacy Management (LM)

Guterl Specialty Steel - NY 12 Guterl Specialty Steel - NY 12 FUSRAP Considered Sites Guterl Specialty Steel, NY Alternate Name(s): Simonds Saw and Steel Co. Guterl Steel Allegheny Ludlum Steel Corp. NY.12-1 NY.12-2 Location: Ohio Street and Route 95, Lockport, New York NY.12-12 Historical Operations: Performed rolling mill operations on natural uranium and thorium metal. NY.12-6 NY.12-7 Eligibility Determination: NY.12-11 Radiological Survey(s): Assessment Surveys NY.12-1 NY.12-4 NY.12-8 NY.12-9 NY.12-12 Site Status: Cleanup pending by U.S. Army Corps of Engineers. NY.12-10 NY.12-11 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Guterl Specialty Steel, NY NY.12-1 - ORNL Letter; Cottrell to Turi; Radiological Survey of the

18

DOE - Office of Legacy Management -- Colonie - NY 06  

NLE Websites -- All DOE Office Websites (Extended Search)

Considered Sites > Colonie - NY 06 Considered Sites > Colonie - NY 06 FUSRAP Considered Sites Colonie, NY Alternate Name(s): Colonie Interim Storage Site National Lead Industries NY.06-1 Location: 1130 Central Avenue, Colonie, New York NY.06-1 Historical Operations: Fabricated and processed uranium metal for the AEC, resulting in contamination from thorium and natural, enriched, and depleted uranium. NY.06-1 NY.06-4 NY.06-5 Eligibility Determination: Eligible NY.06-2 NY.06-3 Radiological Survey(s): Assessment Surveys, Verification Surveys NY.06-6 NY.06-7 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. NY.06-8 NY.06-9 NY.06-10 NY.06-11 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Colonie, NY Colonie Site Aerial Photograph

19

DOE - Office of Legacy Management -- Niagara Falls Vicinity Properties NY -  

Office of Legacy Management (LM)

Niagara Falls Vicinity Properties Niagara Falls Vicinity Properties NY - NY 17 FUSRAP Considered Sites Niagara Falls Vicinity Properties, NY Alternate Name(s): Lake Ontario Ordnance Works (LOOW) Niagara Falls Storage Site (NFSS) DOE-Niagara Falls Storage Site NY.17-1 NY.17-3 Location: Lewiston , New York NY.17-5 Historical Operations: Stored, shipped, and buried radioactive equipment and waste for MED and AEC containing uranium, radium, and thorium. Portions of the former site are privately owned, creating a "site" for the vicinity properties. NY.17-1 NY.17-2 NY.17-14 Eligibility Determination: Eligible NY.17-4 Radiological Survey(s): Assessment Surveys, Verification Surveys NY.17-3 NY.17-5 NY.17-6 NY.17-7 NY.17-8 NY.17-9 NY.17-10 NY.17-11 NY.17-12 NY.17-14 Site Status: Certification Basis, including Federal Register Notice for 23 properties. Cleanup in progress for additional 3 VPs. NY.17-13

20

WA_02_015_AIR_PRODUCTS_AND_CHEMICALS_INC_Waiver_of_Patent_Ri...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatentRi.pdf WA02015AIRPRODUCTSANDCHEMICALSINCWaiverofPatent...

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NY.O-20- I  

Office of Legacy Management (LM)

; I.-' ; I.-' NY.O-20- I ' 3% 3 MEMORANDUM TO: FILE FKOM: An&x?! w311E? SUHYECT: .Elimination of Pyroferric Co. New Yor SITE ALT NAME: EYE&XCLG f2!Y2~!2Y 621 E. 216th St. CITY: N__ew_ yw-r; STATE: N__V _ok!kEKm. Past: P_rrof_errrLc Go: current: Qwner contacted X yes no; if yes, date co Past owner2 IYE OE C)PEEux!N g Research et Develapment Faci - Production scale testing x M XX - Experimental tests U - Henoh.Scale Process R - Theoretical Studies Gove - Sample % Analysis 0 Production Disposal/Storage "t acted 1 1/10/G iz 17 -&49s300 move !d t li ari ty TYPO "i e+i "! "7 Prime Othe X Subcontractor Furcharje Order r: + fixed time 8: n k, Elr( NY NATE NI?IME: P_YD2fC Inter" Contract/Purchase Order # 33482 with AMF ----- ---- ---

22

DOE - Office of Legacy Management -- Syracuse University - NY 29  

Office of Legacy Management (LM)

Syracuse University - NY 29 Syracuse University - NY 29 FUSRAP Considered Sites Site: SYRACUSE UNIVERSITY (NY.29) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Syracuse , New York NY.29-1 Evaluation Year: 1994 NY.29-2 Site Operations: Activities included work with uranium oxide and the precipitation of thorium iodate from homogeneous solution. NY.29-1 NY.29-3 NY.29-4 Site Disposition: Eliminated - Potential for contamination remote NY.29-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium NY.29-3 NY.29-4 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SYRACUSE UNIVERSITY NY.29-1 - AEC Memorandum; Belmore to Rodden; Request for Uranium

23

DOE - Office of Legacy Management -- Bethlehem Steel Corporation - NY 02  

Office of Legacy Management (LM)

Bethlehem Steel Corporation - NY 02 Bethlehem Steel Corporation - NY 02 FUSRAP Considered Sites Site: BETHLEHEM STEEL CORPORATION (NY.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Lackawanna , New York NY.02-1 Evaluation Year: 1985 NY.02-2 Site Operations: Conducted high temperature alpha-phase rolling tests on uranium metal in the 1950s. NY.02-3 Site Disposition: Eliminated - Radiation levels below criteria NY.02-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.02-3 Radiological Survey(s): Yes NY.02-4 NY.02-5 Site Status: Eliminated from consideration under FUSRAP NY.02-6 Also see Documents Related to BETHLEHEM STEEL CORPORATION NY.02-1 - Bethlehem Steel Corp. Letter; Subject: Completed Access

24

Category:New York, NY | Open Energy Information  

Open Energy Info (EERE)

York, NY York, NY Jump to: navigation, search Go Back to PV Economics By Location Media in category "New York, NY" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant New York NY Consolidated Edison Co-NY Inc.png SVFullServiceRestauran... 70 KB SVQuickServiceRestaurant New York NY Consolidated Edison Co-NY Inc.png SVQuickServiceRestaura... 71 KB SVHospital New York NY Consolidated Edison Co-NY Inc.png SVHospital New York NY... 64 KB SVLargeHotel New York NY Consolidated Edison Co-NY Inc.png SVLargeHotel New York ... 68 KB SVLargeOffice New York NY Consolidated Edison Co-NY Inc.png SVLargeOffice New York... 67 KB SVMediumOffice New York NY Consolidated Edison Co-NY Inc.png SVMediumOffice New Yor... 67 KB SVMidriseApartment New York NY Consolidated Edison Co-NY Inc.png

25

Los Alamos technology to be featured on CSI: NY  

NLE Websites -- All DOE Office Websites (Extended Search)

on CSI: NY Los Alamos technology to be featured on CSI: NY The multipurpose "sampler gun" rapidly collects and tracks radiological, chemical, and biological samples in solid,...

26

Price of Massena, NY Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet) Price of Massena, NY Natural Gas Pipeline Exports to Canada (Dollars per Thousand Cubic Feet)...

27

DOE - Office of Legacy Management -- Memorial Hospital - NY 0...  

Office of Legacy Management (LM)

Memorial Hospital - NY 0-16 FUSRAP Considered Sites Site: MEMORIAL HOSPITAL (NY.0-16 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

28

DOE - Office of Legacy Management -- Hooker Chemical Co - NY 05  

Office of Legacy Management (LM)

Hooker Chemical Co - NY 05 Hooker Chemical Co - NY 05 FUSRAP Considered Sites Site: Hooker Chemical Co. (NY.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Occidental Chemical Corporation Hooker Electrochemical Corporation NY.05-1 NY.05-2 Location: Niagara Falls , New York NY.05-3 Evaluation Year: 1985 NY.05-1 NY.05-2 Site Operations: Design, engineering, construction, equipping and operation of a plant for the manufacture of Product 45 (xylene hexachloride); MFL (Miller's fluorolubricant); P-45Cl; and recovered P-45Cl2 from residues produced in the manufacture of P-45Cl; used hydrochloric acid (a byproduct of the P-45 Program) in the chemical processing of uranium-bearing slag as a precursor to recovery. NY.05-2 NY.05-4 Site Disposition: Eliminated - Radiation levels below criteria NY.05-1

29

DOE - Office of Legacy Management -- New York University - NY 50  

Office of Legacy Management (LM)

University - NY 50 University - NY 50 FUSRAP Considered Sites Site: NEW YORK UNIVERSITY (NY.50) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.50-1 Evaluation Year: 1987 NY.50-1 Site Operations: Activities were related to equipment development. Counters and a small quantity of uranium oxide were provided by the AEC for work under contract AT(30-1)-1256. NY.50-2 NY.50-3 NY.50-4 NY.50-1 Site Disposition: Eliminated - Potential for contamination considered remote - Limited quantity of radioactive material used at this site NY.50-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.50-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

30

DOE - Office of Legacy Management -- Gleason Works - NY 55  

Office of Legacy Management (LM)

Gleason Works - NY 55 Gleason Works - NY 55 FUSRAP Considered Sites Site: GLEASON WORKS (NY.55 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Rochester , New York NY.55-1 Evaluation Year: 1994 NY.55-2 Site Operations: Metal fabrication operations - Rolled uranium metal. NY.55-1 Site Disposition: Eliminated - Potential for contamination considered remote NY.55-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.55-1 Radiological Survey(s): Health and Safety Monitoring NY.55-1 NY.55-3 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to GLEASON WORKS NY.55-1 - NLO Report; Klein to Quigley; Trip Report to the Gleason Works, Rochester, New York on October 30 Thru November 10, 1961; December

31

DOE - Office of Legacy Management -- Electromet Corporation - NY 04  

Office of Legacy Management (LM)

Electromet Corporation - NY 04 Electromet Corporation - NY 04 FUSRAP Considered Sites Site: Electromet Corporation (NY.04 ) Eliminated from consideration under FUSRAP - Referred to US EPA and New York State Designated Name: Not Designated Alternate Name: None Location: 4625 Royal Avenue , Niagara Falls , New York NY.04-1 Evaluation Year: 1985 NY.04-2 NY.04-3 Site Operations: Cast zirconium sponge into ingots in the 1950s. NY.04-4 Site Disposition: Eliminated - No Authority NY.04-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Zirconium NY.04-4 Radiological Survey(s): Yes NY.04-6 Site Status: Eliminated from consideration under FUSRAP - Referred to US EPA and New York State NY.04-2 Also see Documents Related to Electromet Corporation

32

EV Community Readiness projects: New York City and Lower Hudson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

33

DOE - Office of Legacy Management -- Rensslaer Polytechnic Institute - NY  

Office of Legacy Management (LM)

Rensslaer Polytechnic Institute - Rensslaer Polytechnic Institute - NY 18 FUSRAP Considered Sites Site: RENSSLAER POLYTECHNIC INSTITUTE (NY.18 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Troy , New York NY.18-1 Evaluation Year: 1987 NY.18-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment - under AEC license. NY.18-1 Site Disposition: Eliminated - Potential for residual contamination considered remote NY.18-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.18-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to RENSSLAER POLYTECHNIC INSTITUTE

34

DOE - Office of Legacy Management -- Seneca Army Depot - NY 11  

NLE Websites -- All DOE Office Websites (Extended Search)

Seneca Army Depot - NY 11 Seneca Army Depot - NY 11 FUSRAP Considered Sites Site: SENECA ARMY DEPOT (NY.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Romulus , New York Evaluation Year: 1985 NY.11-2 NY.11-3 Site Operations: Eleven bunkers were used to store approximately 2,000 drums of pitchblende ore in the early 1940's. The bunkers were returned to munitions storage service after removal of the ore drums. NY.11-4 Site Disposition: Eliminated - Referred to The Department of the Army NY.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Pitchblende Ore NY.11-3 Radiological Survey(s): Yes NY.11-5 Site Status: Eliminated from consideration under FUSRAP NY.11-2 Also see Documents Related to SENECA ARMY DEPOT

35

DOE - Office of Legacy Management -- Radiation Applications Inc - NY 57  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Applications Inc - NY 57 Radiation Applications Inc - NY 57 FUSRAP Considered Sites Site: RADIATION APPLICATIONS, INC. ( NY.57 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: RAI NY.57-1 Location: 370 Lexington Avenue , New York , New York NY.57-3 Evaluation Year: 1991 NY.57-4 Site Operations: Developed foam separation techniques and proposed investigations to remove cesium and strontium from fission product waste solutions. No indication that a substantial quantity of radioactive material was involved. NY.57-3 NY.57-5 Site Disposition: Eliminated - Potential for contamination considered remote NY.57-4 Radioactive Materials Handled: None Indicated NY.57-1 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated

36

DOE - Office of Legacy Management -- Love Canal - NY 24  

Office of Legacy Management (LM)

Love Canal - NY 24 Love Canal - NY 24 FUSRAP Considered Sites Site: LOVE CANAL (NY.24 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None NY.24-1 Location: Region running from Old Military Road from the 16-acre rectangular piece of land in the southeast corner of Niagara Falls into the Township of Lewiston , Niagara Falls , New York NY.24-3 Evaluation Year: 1987 NY.24-1 Site Operations: Chemical storage and disposal. NY.24-1 NY.24-3 Site Disposition: Eliminated - No residual radioactive material found NY.24-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): Yes NY.24-5 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to LOVE CANAL

37

DOE - Office of Legacy Management -- Markite Co - NY 49  

Office of Legacy Management (LM)

Markite Co - NY 49 Markite Co - NY 49 FUSRAP Considered Sites Site: MARKITE CO. (NY.49 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 155 Waverly Place , New York , New York NY.49-1 Evaluation Year: 1987 NY.49-2 Site Operations: Conducted experiments with very small amounts of uranium and thorium. NY.49-2 Site Disposition: Eliminated - Handled limited amounts of radioactive materials - Potential for contamination remote NY.49-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium NY.49-2 NY.49-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARKITE CO. NY.49-1 - AEC Memorandum; Morgan to Youngs; Accountability at

38

DOE - Office of Legacy Management -- National Carbon Co - NY 48  

Office of Legacy Management (LM)

Carbon Co - NY 48 Carbon Co - NY 48 FUSRAP Considered Sites Site: NATIONAL CARBON CO (NY.48) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.48-1 Evaluation Year: 1987 NY.48-2 Site Operations: Produced graphite for the MED/AEC. NY.48-1 NY.48-2 NY.48-3 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote - No indication that radioactive material was used on the site NY.48-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NATIONAL CARBON CO NY.48-1 - AEC Letter; Crenshaw to National Carbon Company (Attn.:

39

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

40

WA_00_018_PRAXAIR_Waive_of_Domestic_and_Foreign_Invention_Ri...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInventionRi.pdf WA00018PRAXAIRWaiveofDomesticandForeignInvention...

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

42

DOE - Office of Legacy Management -- Buflovak Co - NY 56  

Office of Legacy Management (LM)

Buflovak Co - NY 56 Buflovak Co - NY 56 FUSRAP Considered Sites Site: Buflovak Co. (NY.56 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1543 Fillmore Ave. , Buffalo , New York NY.56-1 Evaluation Year: 1991 NY.56-2 Site Operations: Research and testing with uranium raffinate. NY.56-1 Site Disposition: Eliminated - Possibility for contamination considered remote due to scope of tests conducted and indication of cleanup operations after tests NY.56-1 NY.56-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Raffinate NY.56-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Buflovak Co.

43

DOE - Office of Legacy Management -- Sylvania Corning Plant - NY 19  

Office of Legacy Management (LM)

Plant - NY 19 Plant - NY 19 FUSRAP Considered Sites Sylvania-Corning, NY Alternate Name(s): Sylvania Electric Products, Inc. Sylvania Corp. NY.19-1 NY.19-4 Location: Cantiaque Road, Hicksville, Long Island, New York NY.19-5 Historical Operations: Pilot-scale production of powdered metal uranium slugs for AEC's Hanford reactor. NY.19-4 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey NY.19-3 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Sylvania-Corning, NY Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

44

DOE - Office of Legacy Management -- Staten Island Warehouse - NY 22  

Office of Legacy Management (LM)

Staten Island Warehouse - NY 22 Staten Island Warehouse - NY 22 FUSRAP Considered Sites Staten Island Warehouse, NY Alternate Name(s): Archer-Daniels Midland Company NY.22-3 Location: 2393 Richmond Terrace, Port Richmond, New York NY.22-2 Historical Operations: Stored pitchblende (high-grade uranium ore), which was purchased by the MED for the first atomic bomb. NY.22-3 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey NY.22-5 Site Status: Referred by DOE, evaluation in progess by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Staten Island Warehouse, NY NY.22-1 - MED Trip Report Summary; Authors: Ruhoff (Corps of Engineers) and Geddes (Stone & Webster); Subject: Trip to New York;

45

DOE - Office of Legacy Management -- American Railway Express Office - NY  

Office of Legacy Management (LM)

Railway Express Office - Railway Express Office - NY 0-03 FUSRAP Considered Sites Site: American Railway Express Office (NY.0-03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: American Railway Express (Downtown) , New York , New York NY.0-03-1 Evaluation Year: 1987 NY.0-03-1 Site Operations: None - Involved with a fire during transport of uranium scrap. NY.0-03-2 Site Disposition: Eliminated - Potential for contamination remote NY.0-03-1 NY.0-03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium scrap NY.0-03-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP NY.0-03-1 Also see Documents Related to American Railway Express Office

46

DOE - Office of Legacy Management -- Ledoux and Co - NY 37  

NLE Websites -- All DOE Office Websites (Extended Search)

Ledoux and Co - NY 37 Ledoux and Co - NY 37 FUSRAP Considered Sites Site: LEDOUX AND CO. (NY.37 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 155 Avenue of the Americas , New York , New York NY.37-1 Evaluation Year: 1987 NY.37-1 Site Operations: Prime contractor to AEC, African Metals. LeDoux handled radioactive materials under this contract at other locations; records indicate that radioactive materials were not sent to the New York office. NY.37-1 Site Disposition: Eliminated - Potential for contamination considered remote - Radioactive materials were not handled NY.37-2 NY.37-3 Radioactive Materials Handled: No NY.37-2 Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated

47

DOE - Office of Legacy Management -- Polytechnic Institute of Brooklyn - NY  

Office of Legacy Management (LM)

Polytechnic Institute of Brooklyn - Polytechnic Institute of Brooklyn - NY 0-19 FUSRAP Considered Sites Site: NY.0-19 (POLYTECHNIC INSTITUTE OF BROOKLYN) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-19-1 Evaluation Year: 1987 NY.0-19-1 Site Operations: Research and development involving only small quantities of radiological material in a controlled environment. NY.0-19-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-19-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not specified NY.0-19-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NY.0-19 NY.0-19-1 - Aerospace Letter; Young to Wallo; Subject: Elimination

48

US MidAtl NY Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

49

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

50

Seneca Army Depot EPA ID#: NY0213820830  

E-Print Network (OSTI)

addressed through removal actions, investigations and remedial actions. Response Action Status Ash Landfill conservation/ recreation. The Final Remedial Investigation (RI) Report was completed in June 1994. The removal additional continuous reactive walls to remediate the VOCs in groundwater. A Record of Decision (ROD

51

DOE - Office of Legacy Management -- Sacandaga - NY 51  

Office of Legacy Management (LM)

York NY.51-1 Evaluation Year: 1992 NY.51-2 Site Operations: Plant operated by General Electric during period spanning 1947 to 1951. Facilities housed studies involving radar,...

52

Geothermal energy and district heating in Ny-lesund, Svalbard .  

E-Print Network (OSTI)

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-lesund. The current energy supply in Ny-lesund is a diesel generator, (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

53

DOE - Office of Legacy Management -- ACF Industries Inc - NY...  

Office of Legacy Management (LM)

Evaluation Year: 1987 NY.13-1 Site Operations: Procured, produced, and delivered mechanical and cryogenic weapons components. No radioactive materials used at the site. NY.13-2...

54

DOE - Office of Legacy Management -- C I Haynes Inc - RI 02  

NLE Websites -- All DOE Office Websites (Extended Search)

C I Haynes Inc - RI 02 C I Haynes Inc - RI 02 FUSRAP Considered Sites Site: C. I. Haynes, Inc. (RI.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: C.I. Hayes, Incorporated RI.02-1 Location: Cranston , Rhode Island RI.02-1 Evaluation Year: 1994 RI.02-2 RI.02-3 Site Operations: Performed limited scale tests on heat treating uranium in a vacuum cold-wall furnace in 1964 RI.02-1 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantities of material handled RI.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium RI.02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to C. I. Haynes, Inc.

55

DOE - Office of Legacy Management -- Linde Air Products Division - NY 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Division - NY 08 Division - NY 08 FUSRAP Considered Sites Linde Air Products Division - Towanda, NY Alternate Name(s): Praxair Linde Aire Products Div. of Union Carbide Corp. Linde Ceramics Plant Uranium Refinery, Linde Site NY.08-4 Location: East Park Drive and Woodward, Tonawanda, New York NY.08-5 Historical Operations: Processed uranium compounds for MED and AEC. Includes Towanda Landfill as a VP. NY.08-1 NY.08-2 Eligibility Determination: Eligible NY.08-9 Radiological Survey(s): Assessment Surveys NY.08-3 NY.08-5 NY.08-6 NY.08-7 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. NY.08-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Linde FUSRAP Site Documents Related to Linde Air Products Division - Towanda, NY

56

Supplementary southern standards for UBV(RI)C photometry  

Science Journals Connector (OSTI)

......RCIC. Fainter UBV standards were added (Menzies...Cousins 1983), and a review of the results from...transformation to the standard UBV and (RI)C has...test these proposed standards by repeated observation and we plan to include these in......

D. Kilkenny; F. Van Wyk; G. Roberts; F. Marang; D. Cooper

1998-02-11T23:59:59.000Z

57

Ri* Report No. 139 Danish Atomic Energy Commission  

E-Print Network (OSTI)

I 3 Ri* Report No. 139 Danish Atomic Energy Commission Research Establishment Riso Metallurgy Energy Commission Research Establishment Riso METALLURGY DEPARTMENT ANNUAL PROGRESS REPORT for th* Period firet pbaaa, aeorieoaf olamente willba laaaaiBaaliii ail lorIrradiation InmoHaMoa raarrtor ia Norway

58

RI&E Nano particles*) Carried out by  

E-Print Network (OSTI)

1 RI&E Nano particles*) Carried out by: Faculty: CTW/EWI/TNW Department: 1. Information Nano characteristics of nano material (or parent material) **) Carcinogenic Mutagenic Reprotoxic Density (kg/dm3 ) kg/dm3 State of aggregation of the nano material Liquid Solid 2. Health hazard nano material Danger

Twente, Universiteit

59

NlZWYORK4,N.Y.  

Office of Legacy Management (LM)

AFRICAN .METALS~ C~RPO~~XON AFRICAN .METALS~ C~RPO~~XON 41 BROAD STREET . i. ,,J iI: : LE OCT 2 2 1945 NlZWYORK4,N.Y. :October 5, 1945. Af-2-a L.: I.__: '../ . ._ The Area Engineer, U.S. Engineer Office, P.O. BOX 42, Station F., New York 16, N.Y. Gentlemen: Contract W-7405 eng-4. Reference is made to your letter EIDM A-33 MS of August 27th, 1945. Contract W-7405 eng-4 called for the delivery of 100 T of M-31, the M308 content of which was sold to you, whereas we reserved all rights to the R-l contained therein. We hereby certify that the liability of the Gouvernment in connection with the M308 contained--has .3*,., been completely fulfilled, and that the R-l%ontained has been returned to us in accordance with separate contract entered into between this Corporation and the Eldorado

60

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1994 January ........................... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ......................... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5 March .............................. 91.4 92.5 92.1 85.9 88.3 83.6 89.4 91.0 91.2 102.0 April ................................ 88.2 89.0 89.4 80.8 86.0 78.2 85.1 88.3 89.2 93.7 May ................................. 86.1 86.6 85.4 76.8 85.1 75.4 83.3 86.7 84.4 83.1 June ................................ 85.2 85.6 86.1 75.6 83.7 73.1 82.3 84.6 82.0 W July ................................. 82.7 83.1 84.2 75.6 82.1 71.8 81.6 83.0 80.5 W August ............................ 82.1 82.4 79.7 78.0 78.7 72.8 84.0 83.8 82.3 81.9 September ...................... 83.2 83.7 80.5 78.5 81.1 72.9 84.7 83.3 83.1 86.2 October ........................... 84.7

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1993 January ........................... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ......................... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8 March .............................. 95.4 96.5 96.7 86.4 94.8 86.6 92.4 93.7 92.4 108.5 April ................................ 92.6 93.4 93.6 83.0 91.5 84.5 90.4 91.2 91.6 106.7 May ................................. 91.1 91.7 91.6 81.7 91.1 83.9 90.7 91.3 89.4 104.3 June ................................ 88.9 89.4 88.6 81.1 88.6 82.4 87.6 89.7 90.6 100.4 July ................................. 85.6 85.9 86.5 78.5 83.9 78.3 85.2 85.5 86.4 100.2 August ............................ 84.1 84.6 84.0 77.4 83.4 76.0 82.7 85.6 83.5 96.1 September ...................... 85.5 85.8 84.2 78.3 83.8 74.9 84.8 86.6 84.6 95.5 October ...........................

62

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1995 January ........................... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ......................... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4 March .............................. 86.6 87.3 87.0 76.3 82.5 77.7 87.0 85.6 87.6 103.3 April ................................ 85.4 85.8 85.2 76.7 81.9 76.6 86.5 84.8 87.0 100.0 May ................................. 86.4 86.9 86.5 78.7 84.7 75.8 86.1 84.5 85.2 93.2 June ................................ 84.6 85.2 84.2 78.1 82.5 74.5 83.2 83.9 83.0 NA July ................................. 82.0 82.4 79.4 76.9 80.6 72.9 81.7 81.7 80.0 85.1 August ............................ 80.7 81.1 77.4 76.7 80.9 73.0 85.3 81.7 82.1 W September ...................... 82.3 82.7 79.2 76.2 81.7 73.8 84.9 82.5 82.4 86.1 October ...........................

63

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1997 January ........................... 107.9 109.0 108.6 105.2 106.5 102.1 107.0 104.4 106.5 130.4 February ......................... 105.1 106.0 105.2 102.2 103.4 101.0 104.5 103.5 104.2 127.0 March .............................. 101.6 102.5 99.3 94.3 97.7 98.6 100.4 103.1 100.7 121.4 April ................................ 99.2 100.3 97.6 90.9 95.9 95.2 99.4 100.4 100.1 116.3 May ................................. 96.4 97.1 93.4 90.6 93.0 91.9 97.3 97.7 96.4 108.6 June ................................ 92.3 92.9 89.9 88.1 89.1 89.1 93.3 92.9 90.8 99.9 July ................................. 88.3 88.7 83.7 86.7 87.5 85.6 91.6 91.1 88.8 W August ............................ 86.9 86.8 84.2 85.8 84.7 85.3 91.0 92.7 89.2 W September ...................... 88.7 89.0 85.5 87.0 87.0 86.3 91.2 91.7 88.5 NA October ...........................

64

Year Month U.S. Average PAD District I Average CT ME MA NH RI  

Gasoline and Diesel Fuel Update (EIA)

1996 January ........................... 94.6 96.1 94.5 93.0 92.0 89.1 94.9 92.6 94.7 111.7 February ......................... 95.9 97.5 96.2 93.2 93.8 90.8 95.6 93.7 94.4 112.9 March .............................. 99.1 100.6 99.6 96.7 99.3 93.8 99.7 97.3 96.1 117.7 April ................................ 101.5 102.7 102.1 98.7 101.5 96.5 98.8 100.3 100.7 115.9 May ................................. 97.8 98.1 96.8 95.4 95.9 93.6 94.9 98.8 98.0 109.7 June ................................ 91.0 91.3 88.8 90.1 87.9 87.2 88.7 92.2 91.9 102.5 July ................................. 87.9 88.0 84.9 87.5 87.5 83.6 87.7 88.5 91.0 97.3 August ............................ 88.1 88.2 84.0 89.5 89.0 85.1 88.3 89.0 91.0 99.2 September ...................... 94.5 94.4 92.5 96.4 93.1 91.9 96.6 94.4 95.3 106.2 October ...........................

65

QER Public Meeting in Providence, RI & Hartford, CT: New England Regional Infrastructure Constraints  

Energy.gov (U.S. Department of Energy (DOE))

Meeting Files: Meeting Agenda, Meeting Briefing Memo, Federal Register Notice, Meeting Summary, Transcript of Meeting, and Panelist Remarks

66

DOE - Office of Legacy Management -- Naval Supply Depot AEC Warehouse - NY  

Office of Legacy Management (LM)

Supply Depot AEC Warehouse - Supply Depot AEC Warehouse - NY 36 FUSRAP Considered Sites Site: NAVAL SUPPLY DEPOT, AEC WAREHOUSE (NY.36) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Building 546 , Scotia , New York NY.36-1 Evaluation Year: 1987 NY.36-1 Site Operations: This facility served as a storage and transshipment point for feed materials between the Hanford and commercial metal fabricators in the northeastern states. NY.36-1 NY.36-2 NY.36-3 Site Disposition: Eliminated - Referred to DOD NY.36-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium Metals NY.36-1 NY.36-2 NY.36-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD NY.36-1

67

STATEMENT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RI RI GHTS FOR TECHNOLOGY DEVELOPED UNDER DOE FUNDING AGREEMENTS RELATING TO DOE'S SOLID STATE LIGHTING PRODUCT DEVELOPMENT ROUND 8; DOE FUNDING OPPORTUNITY ANNOUNCMEN T DE-FOA-0000563; W(C)-2011-012 ; CH1632 The Department of Energy Office of Energy Efficiency and Renewable Energy anticipates providing federal financial assistance in the form of cooperative agreements that develop or improve commercially viable materials, devices, or systems for solid-state lighting general illumination applications. Successful applicants will engage in applied resea rch in the Solid State Lighting (SSL) Product Development Program . Product Development is the systematic use of knowledge gained from basic and applied research to develop or improve commercially viable materials, devices, or systems. Technical

68

Property:EIA/861/IsoNy | Open Energy Information  

Open Energy Info (EERE)

IsoNy IsoNy Jump to: navigation, search Property Name ISO_NY Property Type Boolean Description Indicates that the organization conducts operations in the NY ISO region [1] References ↑ "EIA Form EIA-861 Final Data File for 2010 - 861 Webfile Layout for 2010.doc" Pages using the property "EIA/861/IsoNy" Showing 25 pages using this property. (previous 25) (next 25) A AES Eastern Energy LP + true + AP Holdings LLC + true + Agway Energy Services, LLC + true + B Bath Electric Gas & Water Sys + true + Bluerock Energy, Inc. + true + C Central Hudson Gas & Elec Corp + true + City of Salamanca, New York (Utility Company) + true + City of Sherrill, New York (Utility Company) + true + City of Watertown, New York (Utility Company) + true +

69

DOE - Office of Legacy Management -- Tonawanda North Units 1 and 2 - NY 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonawanda North Units 1 and 2 - NY Tonawanda North Units 1 and 2 - NY 10 FUSRAP Considered Sites Tonawanda North, NY, Units 1 and 2 Alternate Name(s): Ashland #1 and Ashland #2 Haist Property Seaway Area D Rattlesnake Creek NY.10-1 Location: State Highway 266, east of Interstate Highway 190, Tonawanda, NY NY.10-4 Historical Operations: Served as a repository for refined uranium and vanadium residues containing thorium and radium, generated by Linde Air Products. NY.10-4 NY.10-5 NY.10-6 NY.10-7 NY.10-9 Eligibility Determination: Eligible NY.10-1 NY.10-2 NY.10-3 Radiological Survey(s): Assessment Survey NY.10-4 Site Status: Certified - Certification Basis, Declaration of Completion Included NY.10-11 NY.10-13 NY.10-14 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

70

DOE - Office of Legacy Management -- Ithaca Gun Co Inc - NY 53  

Office of Legacy Management (LM)

Ithaca Gun Co Inc - NY 53 FUSRAP Considered Sites Site: ITHACA GUN CO., INC. (NY.53 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate...

71

Price of Champlain, NY Natural Gas LNG Imports from Canada (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Champlain, NY Natural Gas LNG Imports from Canada (Dollars per Thousand Cubic Feet) Price of Champlain, NY Natural Gas LNG Imports from Canada (Dollars per Thousand Cubic Feet)...

72

DOE - Office of Legacy Management -- Radium Chemical Co Inc - NY 60  

NLE Websites -- All DOE Office Websites (Extended Search)

Radium Chemical Co Inc - NY 60 Radium Chemical Co Inc - NY 60 FUSRAP Considered Sites Site: RADIUM CHEMICAL CO., INC (NY.60 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.60-1 Evaluation Year: 1987 NY.60-1 Site Operations: Commercial Producer of Radium. NY.60-1 Site Disposition: Eliminated - Commercial site - EPA cleanup project NY.60-1 Radioactive Materials Handled: Yes NY.60-1 Primary Radioactive Materials Handled: Radium NY.60-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to RADIUM CHEMICAL CO., INC NY.60-1 - Memorandum; A. Wallo to the File; Subject: FUSRAP review and elimination of the Radium Chemical Co. site in New York, NY; November

73

DOE - Office of Legacy Management -- Simmons Machine and Tool Inc - NY 35  

NLE Websites -- All DOE Office Websites (Extended Search)

Simmons Machine and Tool Inc - NY Simmons Machine and Tool Inc - NY 35 FUSRAP Considered Sites Site: SIMMONS MACHINE AND TOOL, INC (NY.35) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1000 North Broadway , Albany , New York NY.35-1 Evaluation Year: 1987 NY.35-2 Site Operations: Tested equipment and machined uranium to test the equipment (one time event). NY.35-1 NY.35-2 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope and duration of activity performed at the site NY.35-2 NY.35-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.35-1 NY.35-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

74

DOE - Office of Legacy Management -- Utica Street Warehouse - NY 0-23  

Office of Legacy Management (LM)

Street Warehouse - NY 0-23 Street Warehouse - NY 0-23 FUSRAP Considered Sites Site: UTICA STREET WAREHOUSE (NY.0-23) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 240 West Utica Street , Buffalo , New York NY.0-23-2 Evaluation Year: 1987 NY.0-23-1 Site Operations: Stored and rebarrelled uranium process residues from operations at Linde. NY.0-23-3 Site Disposition: Eliminated - Original building demolished. Current land use - Parking facility. Potential for residual radioactive contamination considered remote. NY.0-23-1 Radioactive Materials Handled: Yes NY.0-23-1 Primary Radioactive Materials Handled: Natural Uranium Process Residues NY.0-23-1 Radiological Survey(s): None Indicated NY.0-23-1 Site Status: Eliminated from consideration under FUSRAP NY.0-23-1

75

DOE - Office of Legacy Management -- Eastman Kodak Laboratory - NY 0-09  

Office of Legacy Management (LM)

Eastman Kodak Laboratory - NY 0-09 Eastman Kodak Laboratory - NY 0-09 FUSRAP Considered Sites Site: Eastman Kodak Laboratory (NY.0-09 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Eastman Kodak Rochester Lab NY.0-09-1 Location: Rochester , New York NY.0-09-1 Evaluation Year: 1987 NY.0-09-1 NY.0-09-2 Site Operations: Research and development with natural uranium solutions in 1943. NY.0-09-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.0-09-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Eastman Kodak Laboratory NY.0-09-1 - Memorandum/Checklist; Wallo to the File; Subject:

76

THE UBV(RI){sub C} COLORS OF THE SUN  

SciTech Connect

Photometric data in the UBV(RI){sub C} system have been acquired for 80 solar analog stars for which we have previously derived highly precise atmospheric parameters T{sub eff}, log g, and [Fe/H] using high-resolution, high signal-to-noise ratio spectra. UBV and (RI){sub C} data for 46 and 76 of these stars, respectively, are published for the first time. Combining our data with those from the literature, colors in the UBV(RI){sub C} system, with {approx_equal} 0.01 mag precision, are now available for 112 solar analogs. Multiple linear regression is used to derive the solar colors from these photometric data and the spectroscopically derived T{sub eff}, log g, and [Fe/H] values. To minimize the impact of systematic errors in the model-dependent atmospheric parameters, we use only the data for the 10 stars that most closely resemble our Sun, i.e., the solar twins, and derive the following solar colors: (B - V){sub Sun} = 0.653 {+-} 0.005, (U - B){sub Sun} = 0.166 {+-} 0.022, (V - R){sub Sun} = 0.352 {+-} 0.007, and (V - I){sub Sun} = 0.702 {+-} 0.010. These colors are consistent, within the 1{sigma} errors, with those derived using the entire sample of 112 solar analogs. We also derive the solar colors using the relation between spectral-line-depth ratios and observed stellar colors, i.e., with a completely model-independent approach, and without restricting the analysis to solar twins. We find (B - V){sub Sun} = 0.653 {+-} 0.003, (U - B){sub Sun} = 0.158 {+-} 0.009, (V - R){sub Sun} = 0.356 {+-} 0.003, and (V - I){sub Sun} = 0.701 {+-} 0.003, in excellent agreement with the model-dependent analysis.

Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Michel, R.; Schuster, W. J. [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apartado Postal 877, Ensenada, B.C., CP 22800 (Mexico); Sefako, R.; Van Wyk, F. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Tucci Maia, M. [UNIFEI, DFQ-Instituto de Ciencias Exatas, Universidade Federal de Itajuba, Itajuba MG (Brazil); Melendez, J. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil); Casagrande, L. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching (Germany); Castilho, B. V. [Laboratorio Nacional de Astrofisica/MCT, Rua Estados Unidos 154, 37504-364 Itajuba, MG (Brazil)

2012-06-10T23:59:59.000Z

77

ANNUAL FIRE SAFETY REPORT 2013 Ithaca, NY Campus  

E-Print Network (OSTI)

related services including programs in: · Fire Protection, Emergency Services, Emergency Management o Fire Protection Systems and Equipment o University Fire Marshal o Emergency Management o Events Management oANNUAL FIRE SAFETY REPORT 2013 Ithaca, NY Campus http

Chen, Tsuhan

78

ANNUAL FIRE SAFETY REPORT 2012 Ithaca, NY Campus  

E-Print Network (OSTI)

: · Fire Protection, Emergency Services, Emergency Management o Fire Protection Systems and Equipment oANNUAL FIRE SAFETY REPORT 2012 Ithaca, NY Campus http Annual Fire Safety Report 2012 Page 2 From the Department of Environmental Health and Safety (EH

Chen, Tsuhan

79

Massena, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Massena, NY Natural Gas Imports by Pipeline from...

80

Champlain, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Champlain, NY Natural Gas Imports by Pipeline from...

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Waddington, NY Natural Gas Pipeline Imports From Canada (Million...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 1302015 Next Release Date: 2272015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Waddington, NY Natural Gas Imports by Pipeline from...

82

DOE - Office of Legacy Management -- Allegheny-Ludlum Steel Corp - NY 0-02  

Office of Legacy Management (LM)

Allegheny-Ludlum Steel Corp - NY Allegheny-Ludlum Steel Corp - NY 0-02 FUSRAP Considered Sites Site: ALLEGHENY-LUDLUM STEEL CORP. (NY.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Al-Tech Specialty Steel NY.0-02-1 Location: Watervliet and Dunkirk , New York NY.0-02-1 Evaluation Year: 1985 NY.0-02-2 Site Operations: Processed uranium metal for the AEC in the early 1950s; rolled uranium billets into rods. NY.0-02-3 Site Disposition: Eliminated - Potential for contamination remote - Confirmed by radiological survey NY.0-02-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal NY.0-02-3 Radiological Survey(s): Yes NY.0-02-4 Site Status: Eliminated from consideration under FUSRAP Also see

83

DOE - Office of Legacy Management -- Lucius Pitkin - NY 0-15  

Office of Legacy Management (LM)

Lucius Pitkin - NY 0-15 Lucius Pitkin - NY 0-15 FUSRAP Considered Sites Site: Lucius Pitkin (NY.0-15 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 47 Fulton Street , New York , New York NY.0-15-1 Evaluation Year: 1987 NY.0-15-1 Site Operations: No MED or AED work done at this site. Contractor supervised activities at Middlesex Sampling Plant in Middlesex, NJ such as assaying, sampling and weighing of ore. NY.0-15-1 NY.0-15-2 Site Disposition: Eliminated - No radioactive material handled at this site NY.0-15-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None NY.0-15-1 NY.0-15-2 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see

84

DOE - Office of Legacy Management -- American Machine and Foundry Co - NY  

NLE Websites -- All DOE Office Websites (Extended Search)

Machine and Foundry Co - Machine and Foundry Co - NY 26 FUSRAP Considered Sites Site: American Machine and Foundry Co ( NY.26 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Lutheran Medical Center NY.26-1 Location: Second Avenue and 56th Street , Brooklyn , New York NY.26-2 Evaluation Year: 1992 NY.26-1 Site Operations: 1951 - 1954 conducted metal fabrication operation on uranium and thorium metals. NY.26-3 NY.26-4 Site Disposition: Eliminated - Potential for contamination considered remote based on results of radiological monitoring and sampling and extensive renovation of the site NY.26-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium and Thorium metal NY.26-1 Radiological Survey(s): Yes NY.26-5

85

Best fit refractive index of matching liquid for 3D NIPAM gel dosimeters using optical CT  

Science Journals Connector (OSTI)

Abstract The accuracy of an optical computed tomography (CT)-based dosimeter is significantly affected by the refractive index (RI) of the matching liquid. Mismatched RI induces reflection and refraction as the laser beam passes through the gel phantom. Moreover, the unwanted light rays collected by the photodetector produce image artifacts after image reconstruction from the collected data. To obtain the best image quality, this study investigates the best-fit RI of the matching liquid for a 3D NIPAM gel dosimeter. The three recipes of NIPAM polymer gel used in this study consisted of 5% gelatin, 5% NIPAM and 3% N,N'-methylene bisacrylamide, which were combined with three compositions (5, 10, and 20mM) of Tetrakis (hydroxymethyl) phosphonium chloride. Results were evaluated using a quantitative evaluation method of the gamma evaluation technique. Results showed that the best-fit RI for the non-irradiated NIPAM gel ranges from 1.340 to 1.346 for various NIPAM recipes with sensitivities ranging from 0.0113 to 0.0227. The greatest pass rate of 88.00% is achieved using best-fit RI=1.346 of the matching liquid. The adoption of mismatching RI decreases the gamma pass rate by 2.63% to 16.75% for all three recipes of NIPAM gel dosimeters. In addition, the maximum average deviation is less than 0.1% for the red and transparent matching liquids. Thus, the color of the matching liquid does not affect the measurement accuracy of the NIPAM gel dosimeter, as measured by optical CT.

Chin-Hsing Chen; Jay Wu; Bor-Tsung Hsieh; De-Shiou Chen; Tzu-Hwei Wang; Sou-Hsin Chien; Yuan-Jen Chang

2014-01-01T23:59:59.000Z

86

DOE - Office of Legacy Management -- Union Mines Development Corp - NY 0-22  

Office of Legacy Management (LM)

Mines Development Corp - NY Mines Development Corp - NY 0-22 FUSRAP Considered Sites Site: UNION MINES DEVELOPMENT CORP. (NY.0-22) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Union Carbide NY.0-22-1 Location: New York , New York NY.0-22-1 Evaluation Year: 1987 NY.0-22-1 Site Operations: The company owned uranium mines or reserves located in the western U.S. NY.0-22-1 Site Disposition: Eliminated - No reason to believe radioactive material was used at this site NY.0-22-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated NY.0-22-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNION MINES DEVELOPMENT CORP.

87

DOE - Office of Legacy Management -- Fordham University - NY 0-12  

Office of Legacy Management (LM)

Fordham University - NY 0-12 Fordham University - NY 0-12 FUSRAP Considered Sites Site: Fordham University (NY.0-12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-12-1 Evaluation Year: 1987 NY.0-12-1 Site Operations: Research and development involving small quantities of radioactive material in a controlled environment NY.0-12-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-12-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.0-12-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Fordham University NY.0-12-1 - Aerospace Letter; Young to Wallo; Subject: Elimination

88

DOE - Office of Legacy Management -- Floyd Bennett Field - NY 0-11  

Office of Legacy Management (LM)

Floyd Bennett Field - NY 0-11 Floyd Bennett Field - NY 0-11 FUSRAP Considered Sites Site: Floyd Bennett Field (NY.0-11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Naval Air Station NY.0-11-1 Location: Buildings 67 and 69 , Brooklyn , New York NY.0-11-1 Evaluation Year: 1987 NY.0-11-1 Site Operations: The Air station was considered by the AEC but was not used. NY.0-11-1 Site Disposition: Eliminated - No involvement with MED/AEC operations NY.0-11-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Floyd Bennett Field NY.0-11-1 - Memorandum/Checklist; Wallo to the File; Subject: Elimination of Floyd Bennett Field; December 7, 1987

89

DOE - Office of Legacy Management -- Wolff-Alport and Co - NY 30  

Office of Legacy Management (LM)

Wolff-Alport and Co - NY 30 Wolff-Alport and Co - NY 30 FUSRAP Considered Sites Site: Wolff-Alport and Co (NY.30) Eliminated from consideration under FUSRAP - Referred to US EPA Region II and New York City Department of Health Designated Name: Not Designated Alternate Name: None Location: 1127 Irving Avenue , Brooklyn , New York NY.30-1 Evaluation Year: 1987 NY.30-1 Site Operations: Commercial operation -- sold thorium residues to the AEC, which in turn shipped the residues to Maywood for storage. NY.30-2 Site Disposition: Eliminated - No Authority NY.30-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium NY.30-2 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP - Referred to US EPA Region II and New York City Department of Health NY.30-1

90

DOE - Office of Legacy Management -- Frederick Flader Inc - NY 0-13  

NLE Websites -- All DOE Office Websites (Extended Search)

Frederick Flader Inc - NY 0-13 Frederick Flader Inc - NY 0-13 FUSRAP Considered Sites Site: Frederick Flader, Inc. (NY.0-13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Frederick Flader Division of Eaton Manufacturing Co. NY.0-13-1 Location: 583 Division Street , N. Tonawanda , New York NY.0-13-1 Evaluation Year: 1987 NY.0-13-1 Site Operations: Provided consulting services and supported development of auxiliary equipment related to nuclear power NY.0-13-1 Site Disposition: Eliminated NY.0-13-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated NY.0-13-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Frederick Flader, Inc.

91

DOE Challenge Home Case Study, Caldwell and Johnson, Exeter, RI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caldwell and Caldwell and Johnson Exeter, RI BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-e cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

92

RECIPIENT:Town of Brookhaven STATE: NY PROJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Brookhaven STATE: NY Town of Brookhaven STATE: NY PROJECT EECBG (S) - Brookhaven (NY): Henrietta Acampora Recreation Center TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-0000013 DE-EE0000688 GFO-0000688-002 Based on my review of the information concerning tbe proposed action, as NEPA Compliance Officer (autborized under DOE Order 4St.tA), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy. demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

93

Consolidated Edison Co-NY Inc | Open Energy Information  

Open Energy Info (EERE)

NY Inc NY Inc Jump to: navigation, search Name Consolidated Edison Co-NY Inc Place New York, New York Service Territory New York Website www.coned.com Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 4226 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Consolidated Edison Company of New York, Inc. Smart Grid Demonstration

94

DOE - Office of Legacy Management -- Wilson Warehouse - NY 64  

Office of Legacy Management (LM)

Wilson Warehouse - NY 64 Wilson Warehouse - NY 64 FUSRAP Considered Sites Site: Wilson Warehouse (NY.64) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

95

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

96

Consolidated Edison Co-NY Inc | Open Energy Information  

Open Energy Info (EERE)

Consolidated Edison Co-NY Inc Consolidated Edison Co-NY Inc (Redirected from ConEdison) Jump to: navigation, search Name Consolidated Edison Co-NY Inc Place New York, New York Service Territory New York Website www.coned.com Green Button Landing Page www.coned.com/customercen Green Button Reference Page www.whitehouse.gov/blog/2 Green Button Implemented Yes Utility Id 4226 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

97

Business Council of Westchester County (NY) | Open Energy Information  

Open Energy Info (EERE)

of Westchester County (NY) of Westchester County (NY) Jump to: navigation, search Name Business Council of Westchester County (NY) Address 108 Corporate Park Drive, Suite 101 Place White Plains, New York Zip 10604 Sector Services Product Green Power Marketer Website http://www.westchesterny.org/ Coordinates 41.0200884°, -73.7206631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0200884,"lon":-73.7206631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

DOE - Office of Legacy Management -- Linde Air Products Div - Buffalo - NY  

Office of Legacy Management (LM)

Linde Air Products Div - Buffalo - Linde Air Products Div - Buffalo - NY 65 FUSRAP Considered Sites Site: LINDE AIR PRODUCTS DIV. BUFFALO (NY.65 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Linde Chandler Street Plant NY.65-1 Location: Buffalo , New York NY.65-1 Evaluation Year: 1987 NY.65-1 Site Operations: Developed and produced non-radioactive material for the Oak Ridge Gaseous Diffusion Plant under contract with the AEC. NY.65-2 Site Disposition: Eliminated - No indication that radioactive materials were used at the site NY.65-3 Radioactive Materials Handled: No NY.65-1 Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

99

DOE - Office of Legacy Management -- Long Island College of Medicine - NY  

Office of Legacy Management (LM)

Long Island College of Medicine - Long Island College of Medicine - NY 0-14 FUSRAP Considered Sites Site: Long Island College of Medicine (NY.0-14 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-14-1 Evaluation Year: 1987 NY.0-14-1 Site Operations: Performed research utilizing small quantities of radioactive materials in a controlled environment. NY.0-14-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-14-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.0-14-1 Radiological Survey(s): None Indicated NY.0-14-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Long Island College of Medicine

100

DOE - Office of Legacy Management -- Colorado Fuel and Iron - NY 0-08  

Office of Legacy Management (LM)

Fuel and Iron - NY 0-08 Fuel and Iron - NY 0-08 FUSRAP Considered Sites Site: Colorado Fuel and Iron (NY.0-08 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Watervliet , New York NY.0-08-1 Evaluation Year: 1987 NY.0-08-1 Site Operations: Site was a contractor to DuPont. Exact nature of operations is not clear. No records to indicate that radioactive materials were handled at the site. NY.0-08-1 Site Disposition: Eliminated NY.0-08-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Colorado Fuel and Iron NY.0-08-1 - DOE Memorandum/Checklist; S.Jones to the File; Subject:

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Interoperability of Demand Response Resources Demonstration in NY  

SciTech Connect

The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

Wellington, Andre

2014-03-31T23:59:59.000Z

102

203 Day Hall Ithaca, NY 14853-2602  

E-Print Network (OSTI)

203 Day Hall Ithaca, NY 14853-2602 Page 1 of 2 WILLIAM D. FORD FEDERAL DIRECT LOAN APPLICATION Form F4 BEFORE YOU BEGIN The Direct Loan Program makes federal loan funds available to students directly is not an additional loan source; it replaced the Federal Stafford and SLS Loan programs at Cornell. APPLICATION

Keinan, Alon

103

NETL CT Imaging Facility  

SciTech Connect

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2013-09-04T23:59:59.000Z

104

NETL CT Imaging Facility  

ScienceCinema (OSTI)

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2014-05-21T23:59:59.000Z

105

Nuclear Medicine CT Angiography  

E-Print Network (OSTI)

Nuclear Medicine CT Angiography Stress Testing Rotation The Nuclear Medicine/CT angiography. Understand the indications for exercise treadmill testing and specific nuclear cardiology tests, safe use Level 2 proficiency in performing and interpreting cardiac nuclear imaging tests. Progression

Ford, James

106

A New Path Forward for WTP AL Boldt and RI Smith  

NLE Websites -- All DOE Office Websites (Extended Search)

Dick Smith and Al Boldt - thoughts to share with the Tank Waste Committee Not a committee work product A New Path Forward for WTP AL Boldt and RI Smith February 3, 2014...

107

LBNL-4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI  

NLE Websites -- All DOE Office Websites (Extended Search)

4183E-rev1 4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI IA AB BI IL LI IT TY Y I IN N C CA AL LI IF FO OR RN NI IA A: : E EN NV VI IR RO ON NM ME EN NT TA AL L I IM MP PA AC CT TS S A AN ND D D DE EV VI IC CE E P PE ER RF FO OR RM MA AN NC CE E E EX XP PE ER RI IM ME EN NT TA AL L E EV VA AL LU UA AT TI IO ON N O OF F I IN NS ST TA AL LL LE ED D C CO OO OK KI IN NG G E EX XH HA AU US ST T F FA AN N P PE ER RF FO OR RM MA AN NC CE E Brett C. Singer, William W. Delp and Michael G. Apte Indoor Environment Department Atmospheric Sciences Department Environmental Energy Technologies Division July 2011 (Revised February 2012) Disclaimer 1 This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

108

BuildSmart NY Innovators Summit Offers Sneak Peek at Better Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

prisons, mental health hospitals, office buildings, and facilities that house its trains, buses, and equipment. The New York Power Authority's BuildSmart NY program is...

109

CUT FLOWER VARIETY TRIALS, ITHACA, NY, 2005 H. C. Wien, Department of Horticulture, Cornell University  

E-Print Network (OSTI)

CUT FLOWER VARIETY TRIALS, ITHACA, NY, 2005 H. C. Wien, Department of Horticulture, Cornell is somewhat transparent to infrared radiation, but prevents transmission of visible light, and thus

Pawlowski, Wojtek

110

E-Print Network 3.0 - area ny hovedflyplass Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Benefits of Summary: . Conclusions and Areas for Improvement 12;Environmental Energy Technologies Division Energy Analysis... AZ: 15% by 2025 NY: 24% by 2013 CO: 10%...

111

-CT CT)Computed Tomography(. ,. , -100 ,  

E-Print Network (OSTI)

· . · , , , , . · , " , , . · , . , . : · . ·2-4 . ·2-3 -. ·) D,DMAIC, SPC, FMEA, Control Plan, Lean) 8(-. · -. ·. ·. NPI ·. · , , .' , ·" . " * . : ·) B.A ,(-. ·4-6. ·) QFD, CtQ breakdown, DfSS, SPC, AQP, FMEA, Control Plan.( ·Six Sigma GB

Pinsky, Ross

112

DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready affordable home in Charlestown, RI, that achieved a HERS Index of 47 without PV. The 2,244-ft2 two-story home with basement has 2x6 walls filled with 5.5 in. ...

113

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda  

E-Print Network (OSTI)

The Disciplined Flood Protocol in Sensor Networks Young-ri Choi and Mohamed G. Gouda Department of Computing Science University of Alberta, Canada ehab@cs.ualberta.ca Abstract-- Flood is a communication to every sensor in the network. When a flood of some message is initiated, the message is forwarded

Gouda, Mohamed G.

114

Energy-degraded RI beam for low-energy nuclear reactions  

Science Journals Connector (OSTI)

......Energy-degraded RI beam for low-energy nuclear reactions Eiji Ideguchi * * E-mail...beams are produced by intermediate energy nuclear reactions such as projectile fragmentation...various experiments using low-energy nuclear reactions can be performed and......

Eiji Ideguchi

2012-01-01T23:59:59.000Z

115

CT Solar Loan  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

116

Renewable Energy Network of Entrepreneurs in Western New York RENEW NY |  

Open Energy Info (EERE)

Network of Entrepreneurs in Western New York RENEW NY Network of Entrepreneurs in Western New York RENEW NY Jump to: navigation, search Name Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) Place Rochester, New York Zip 14623 Sector Renewable Energy Product US-based incubator fund, Renewable Energy Network of Entrepreneurs in Western New York, helps early stage renewable energy companies to start and grow in Western New York. References Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) is a company located in Rochester, New York . References ↑ "Renewable Energy Network of Entrepreneurs in Western New York

117

Uncertainties in NDE Reliability and Assessing the Impact on RI-ISI  

SciTech Connect

A major thrust in the past 20 years has been to upgrade nondestructive examinations (NDE) for use in inservice inspection (ISI) programs to more effectively manage degradation at operating nuclear power plants. Risk-informed ISI (RI-ISI) is one of the outcomes of this work, and this approach relies heavily on the reliability of NDE, when properly applied, to detect sources of expected degradation. There have been a number of improvements in the reliability of NDE, specifically in ultrasonic testing (UT), through training of examiners, and improved equipment and procedure development. However, the most significant improvements in UT were derived by moving from prescriptive requirements to performance based requirements. Even with these substantial improvements, NDE contains significant uncertainties and RI-ISI programs need to address and accommodate this factor. As part of the work that PNNL is conducting for the U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, we are examining the impact of these uncertainties on the effectiveness of RI-ISI programs.

Doctor, Steven R.; Anderson, Michael T.

2010-08-01T23:59:59.000Z

118

CUT FLOWER VARIETY TRIALS, ITHACA, NY, 2004 H. C. Wien, Department of Horticulture, Cornell University  

E-Print Network (OSTI)

CUT FLOWER VARIETY TRIALS, ITHACA, NY, 2004 H. C. Wien, Department of Horticulture, Cornell light and thus discourages weed growth underneath. In the rest of the field not covered by the high

Pawlowski, Wojtek

119

Integrys Energy Services of N.Y., Inc. | Open Energy Information  

Open Energy Info (EERE)

Services of N.Y., Inc. Services of N.Y., Inc. (Redirected from Integrys) Jump to: navigation, search Name Integrys Energy Services of N.Y., Inc. Place New York Utility Id 21258 Utility Location Yes Ownership R ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0625/kWh Commercial: $0.0809/kWh Industrial: $0.0631/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Integrys_Energy_Services_of_N.Y.,_Inc.&oldid=410875

120

Contributors Marsha Berger, Courant Institute, New York University, New York, NY, USA  

E-Print Network (OSTI)

Contributors Marsha Berger, Courant Institute, New York University, New York, NY, USA Gyan Bhanot, Piscataway, NJ, USA Erik G. Boman, Discrete Algorithms and Mathematics Department, Sandia National Laboratories, Albuquerque, NM, USA Doruk Bozdag, Department of Biomedical Informatics, The Ohio State

Li, Xiaolin "Andy"

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sediment chemistries and chironomid deformities in the Buffalo River (NY)  

SciTech Connect

The authors examined the surficial sediment chemistry (heavy metals) and the frequency of chironomid (Diptera) larvae mouthpart deformities from multiple PONAR grabs samples at each of 20 sites along the Buffalo River (NY) area of concern (AOC). Because of the potential for patchy invertebrate distribution and high variance in sediment chemistry, repeated spatial and temporal sampling is important to obtain a better integrated picture of contamination in rivers. The findings suggest that the Buffalo River has one of the highest percentages of deformed chironomids in AOC`s of the Great Lakes basin. One river site that was traditionally thought to be a chemical hot spot was less contaminated than another downstream section. At another site, sediment concentrations for V., Mn and AS appeared to be strongly associated with the proximity of combined sewer overflows from a region which is primarily residential. Interestingly, a demonstration project of the US Army Corps of Engineers, during which three types of dredges were used to carefully remove upper sediments from two different short reaches along the river, seemed to have no significant impact on proximate sediment chemistries or biota.

Stewart, K.M.; Diggins, T.P. [State Univ. of New York, Buffalo, NY (United States). Dept. of Biological Science

1994-12-31T23:59:59.000Z

122

Built waterfront through edge, connection, and exchange : reclaiming a waterfront for Greenpoint, a project in Brooklyn, N.Y.  

E-Print Network (OSTI)

??Currently the waterfront of Brooklyn N.Y. between the Gowanus Canal of Redhook and the Newton Creek of Greenpoint is predominantly lined with various types of (more)

Ziesemann, Rodney P. (Rodney Paul), 1967-

1998-01-01T23:59:59.000Z

123

The distribution of depleted uranium contamination in Colonie, NY, USA  

Science Journals Connector (OSTI)

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.72.1?gg?1, with a weighted geometric mean of 1.05?gg?1; the contaminated soil samples comprise uranium up to 50040?gg?1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.050.06)נ10?3 235U/238U, (3.20.1)נ10?5 236U/238U, and (7.10.3)נ10?6 234U/238U. The analytical method is sensitive to as little as 50ngg?1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5cm, collected 5.1km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8tonnes.

N.S. Lloyd; S.R.N. Chenery; R.R. Parrish

2009-01-01T23:59:59.000Z

124

Submit Your Ideas for the NY Energy Data Jam | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Submit Your Ideas for the NY Energy Data Jam Submit Your Ideas for the NY Energy Data Jam Submit Your Ideas for the NY Energy Data Jam June 19, 2013 - 11:03am Q&A What idea would you present at the Data Jam? Join the Conversation Addthis Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Alex Cohen Alex Cohen Senior Digital Information Strategist How can I participate? Even if you cannot attend in person, we still want you to participate. Help us by starting the conversation. Email us at newmedia@hq.doe.gov and tell us your idea. Tweet questions to @ENERGY with the hashtag #EnergyJam.

125

New York Battery and Energy Storage Technology Consortium NY BEST | Open  

Open Energy Info (EERE)

Storage Technology Consortium NY BEST Storage Technology Consortium NY BEST Jump to: navigation, search Name New York Battery and Energy Storage Technology Consortium (NY-BEST) Place Albany, New York Zip 12203 Product Albany-based project of NYSERDA promoting battery and energy storage in New York. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

DOE - Office of Legacy Management -- Pier 38 - NY 0-18  

Office of Legacy Management (LM)

Pier 38 - NY 0-18 Pier 38 - NY 0-18 FUSRAP Considered Sites Site: Pier 38 (NY.0-18 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

127

DOE Awards Small Business Contract for West Valley NY Services | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract for West Valley NY Services Contract for West Valley NY Services DOE Awards Small Business Contract for West Valley NY Services September 26, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 CINCINNATI - The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration. The West Valley Demonstration Project is a former commercial nuclear fuel

128

Weatherization Subgrantees Reach More N.Y. Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subgrantees Reach More N.Y. Homes Subgrantees Reach More N.Y. Homes Weatherization Subgrantees Reach More N.Y. Homes April 22, 2010 - 4:37pm Addthis Lindsay Gsell Thanks to funds from the Recovery Act, New York expanded its network of weatherization subgrantees. The state has added nine additional subgrantees to its network of 66 community-based organizations that provide energy conservation services on a local level. New York's Division of Housing and Community Renewal received slightly more than $100 million for Weatherization Assistance Program in 2009, a significant increase from its previous annual allotment of approximately $60 million. In addition to this increase in annual funding, DHCR also received $394 million in WAP stimulus funding from the Recovery Act. "New York's success has been built on a network of sub grantees and

129

DOE - Office of Legacy Management -- West Milton Reactor Site - NY 21  

Office of Legacy Management (LM)

Milton Reactor Site - NY 21 Milton Reactor Site - NY 21 FUSRAP Considered Sites Site: West Milton Reactor Site (NY.21) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

130

Submit Your Ideas for the NY Energy Data Jam | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Submit Your Ideas for the NY Energy Data Jam Submit Your Ideas for the NY Energy Data Jam Submit Your Ideas for the NY Energy Data Jam June 19, 2013 - 11:03am Q&A What idea would you present at the Data Jam? Join the Conversation Addthis Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Alex Cohen Alex Cohen Senior Digital Information Strategist How can I participate? Even if you cannot attend in person, we still want you to participate. Help us by starting the conversation. Email us at newmedia@hq.doe.gov and tell us your idea. Tweet questions to @ENERGY with the hashtag #EnergyJam.

131

Sediment Decontamination For Navigational And Environmental Restoration In NY/NJ Harbor Case Study: Passaic River, New Jersey  

E-Print Network (OSTI)

Sediment Decontamination For Navigational And Environmental Restoration In NY/NJ Harbor ­ Case, Arlington, VA 22230 Sediments in the NY/NJ Harbor are widely contaminated with toxic organic and inorganic compounds. Decontamination of these sediments is one tool that can be used to cope with the problems posed

Brookhaven National Laboratory

132

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

133

F-7 U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

2014 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

134

F-5 U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA VT...

135

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI...

136

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

2013 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

137

padd map  

U.S. Energy Information Administration (EIA) Indexed Site

for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI...

138

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

2012 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI...

139

Microsoft Word - figure_99.doc  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL MS LA MO AR TX NM OK CO KS UT AZ WY NE IL IA MN WI ND SD ID MT WA OR NV CA HI AK MI Gulf...

140

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

AZ OR CA HI V MT WY ID UT CO IV OK IA KS MO IL IN KY TN WI MI OH NE SD MN ND II NM TX MS AL AR LA III NJ CT VT ME RI MA NH FL GA SC NC WV MD DE VA NY PA I PAD District I - East...

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

XNYGR/2795 SLF EBG Customizable Enrollment Form (NY) Page 1 of 3 Sun Life Insurance and Annuity Company of New York and  

E-Print Network (OSTI)

XNYGR/2795 SLF EBG Customizable Enrollment Form (NY) Page 1 of 3 Sun Life Insurance and Annuity% of the Basic Weekly Earnings #12;XNYGR/2795 SLF EBG Customizable Enrollment Form (NY) Page 2 of 3 Evidence

Suzuki, Masatsugu

142

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible  

E-Print Network (OSTI)

Plant Physiol. (1995) 107: 1343-1 353 The Tomato Never-ri'e Locus Regulates Ethylene-lnducible Gene regulator ethylene (M.B. Lanahan, H.-C. Yen, J.J. Ciovannoni, H.J. Klee I19941 Plant Cell 6: 521-530). We report here ethylene sensi- tivity over a range of concentrations in normal and Nr tomato seedlingsand

Klee, Harry J.

143

DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Ithaca, NY, that achieves a HERS 56 without PV or HERS 15 with 4-kW of PV. The two-story, 1,664-ft2 home is one of 17 single-family and 4 duplex homes...

144

May 21-22, 2012 Oncenter Complex Syracuse, NY Call for Posters  

E-Print Network (OSTI)

May 21-22, 2012 Oncenter Complex Syracuse, NY Call for Posters Present at the 2012 Biotechnology Symposium Poster Session Showcase your research to colleagues and professionals Network: Please submit your abstract and direct all questions to Advisory Council member and Poster Session Chair

Mather, Patrick T.

145

Concrete as a Green Building Material Columbia University, New York, NY 10027, USA  

E-Print Network (OSTI)

that influence resource utilization. Keywords: sustainable development, green buildings, supplementaryConcrete as a Green Building Material C. Meyer Columbia University, New York, NY 10027, USA to make it suitable as a "Green Building" material. Foremost and most successful in this regard is the use

Meyer, Christian

146

Physics of Nuclear Medicine Polytechnic Institute of NYU, Brooklyn, NY 11201  

E-Print Network (OSTI)

Physics of Nuclear Medicine Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Based on J. L are from the textbook. #12;EL5823 Nuclear Physics Yao Wang, Polytechnic U., Brooklyn 2 Lecture Outline of decay · Radiotracers #12;EL5823 Nuclear Physics Yao Wang, Polytechnic U., Brooklyn 3 What is Nuclear

Suel, Torsten

147

SoMAS alumni have gone on to careers as: Acting Director, NY Sea Grant  

E-Print Network (OSTI)

· Environmental Affairs Officer on Marine & Coastal Biodiversity, UNEP Secretariat of Convention on Biological & Facilities Specialist, NY Sea Grant Extension · Director, Center for Marine & Wetland Studies, Conway, SC, Dewberry, Fairfax, VA · Marine Conservation Project Director, The Nature Conservancy · Marine Ecologist

Zhang, Minghua

148

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments  

E-Print Network (OSTI)

Abstract No. jone0514 Elemental Distributions for NY/NJ Harbor Sediments K. Jones (BNL), H. Feng (Montclair State U.) and A. Lanzirotti (U. of Chicago) Beamline(s): X26A Sediments in the New York/New Jersey Waterways Sediments, is a useful material for use in investigation of the spatial variability. This standard

Brookhaven National Laboratory

149

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments  

E-Print Network (OSTI)

Abstract No. jone0499 FTIR Measurement of Organic Functional Groups in NY/NJ Harbor Sediments H. Jones (BNL) Beamline(s): U2B Sediments in urban rivers and estuaries are usually contaminated contaminated sediments cause to the environment and human health is now widely recognized and has stimulated

Brookhaven National Laboratory

150

DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of the...

151

Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY  

E-Print Network (OSTI)

Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY in western New York, were invading burrknots on dwarf apple trees. About the same time, Dick Straub seemed to be becoming more common in dwarf apple plantings, as well. Based on Deb's alert, we decided

Agnello, Arthur M.

152

Dating the Glass Lake Dugout by Dendrochronology (NY State Museum #CN-37516)  

E-Print Network (OSTI)

Dating the Glass Lake Dugout by Dendrochronology (NY State Museum #CN-37516) Carol Griggs, Dendrochronology Lab, Cornell University, cbg4@cornell.edu The Glass Lake Dugout was found at the bottom of Glass for the Glass Lake Dugout (Figure 2B). The series was compared with other site and regional white pine

Manning, Sturt

153

DOE Zero Energy Ready Home Case Study, Ithaca Neighborhood Housing Services, Ithaca, NY  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready Home in Ithaca, NY, that scored HERS 50 without PV. These 1,160 ft2 affordable town houses have R-20 advance framed walls, R-52 blown cellulose in attic, radiant heat with 92.5 AFUE boiler, and triple-pane windows.

154

CT NC0  

Office of Legacy Management (LM)

x-L* d! x-L* d! CT NC0 - i , ,. i, .' i :.:(e.!' ,A\~, L.,t, - (iI :i' , . y- 2 .L i ._ 1 c\ :- i;! Ii $ 4. Ci:lc:i.nnati. 39, t>:::i.f> (J&l3 q-1 -3 sui3 Jrn T3 FRCM .I iirz 1 ?j ~ 1.3 bL1 T:' IP !REFOI?T TC 5YC?CZCiC~ :EWllIFl;j",tsSS L' I"JIsIc:;. .:;xli3;. iCAN !fA(=;-fL,yg-j L' sc,, E. $.iCLX:i?, -iIJ,x:q()Is. ON hL4X 24 - 25 ) 1.9tic ;i. A. Quiglel;, A.3, 3, M. ChenauEt gpxrIvB OF TP.~ The purpose of t3is trip was tc observe a proposed method for the dchy- dratim of green salt md to determine that all health and safety measures were being xrried out, SurveiU.ance of this nature provided protection against excessi3z personnel exposure, insured compliance with ICC shipping regulaticns, tion of the equ'~ and determined when adequate decontamira-

155

Category:Bridgeport, CT | Open Energy Information  

Open Energy Info (EERE)

Bridgeport, CT Bridgeport, CT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Bridgeport, CT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Bridgeport CT Connecticut Light & Power Co.png SVFullServiceRestauran... 64 KB SVQuickServiceRestaurant Bridgeport CT Connecticut Light & Power Co.png SVQuickServiceRestaura... 63 KB SVHospital Bridgeport CT Connecticut Light & Power Co.png SVHospital Bridgeport ... 71 KB SVLargeHotel Bridgeport CT Connecticut Light & Power Co.png SVLargeHotel Bridgepor... 67 KB SVLargeOffice Bridgeport CT Connecticut Light & Power Co.png SVLargeOffice Bridgepo... 72 KB SVMediumOffice Bridgeport CT Connecticut Light & Power Co.png SVMediumOffice Bridgep...

156

DOE - Office of Legacy Management -- Torrington Co - CT 09  

Office of Legacy Management (LM)

Alternate Name: Torrington Co. - Specialties Division CT.09-1 Location: Torrington , Connecticut CT.09-1 Evaluation Year: 1987 CT.09-1 Site Operations: Performed swaging...

157

File:USDA-CE-Production-GIFmaps-NY.pdf | Open Energy Information  

Open Energy Info (EERE)

NY.pdf NY.pdf Jump to: navigation, search File File history File usage New York Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 324 KB, MIME type: application/pdf) Description New York Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States New York External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:19, 27 December 2010 Thumbnail for version as of 16:19, 27 December 2010 1,650 × 1,275 (324 KB) MapBot (Talk | contribs) Automated bot upload

158

MHK Projects/GCK Technology Shelter Island NY US | Open Energy Information  

Open Energy Info (EERE)

Shelter Island NY US Shelter Island NY US < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0682,"lon":-72.3387,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

159

DOE - Office of Legacy Management -- Pfaltz and Bauer Inc - New York - NY  

Office of Legacy Management (LM)

New York - New York - NY 45 FUSRAP Considered Sites Site: Pfaltz and Bauer Inc - New York (NY.45) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

160

File:EIA-Appalach1-NY-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

EIA-Appalach1-NY-BOE.pdf EIA-Appalach1-NY-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, New York Area Oil and Gas Fields By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 12.75 MB, MIME type: application/pdf) Description Appalachian Basin, New York Area Oil and Gas Fields By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States New York File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Affirmatively furthering fair housing : overcoming barriers to implementation of the Westchester County, NY false claims case settlement  

E-Print Network (OSTI)

Westchester County, NY was sued by the Anti-Discrimination Center of Metro New York, Inc. (ADC) under the False Claims Act for allegedly failing to meet its Affirmatively Further Fair Housing obligation for Community ...

Stein, Julie Iris

2010-01-01T23:59:59.000Z

162

CUT FLOWER CULTURAL PRACTICE STUDIES AND VARIETY TRIALS, 2013 H. C. Wien, Department of Horticulture, Cornell University, Ithaca NY  

E-Print Network (OSTI)

of Horticulture, Cornell University, Ithaca NY EXECUTIVE SUMMARY: ANEMONE/RANUNCULUS TUNNEL TRIAL. Page 5 lights, or to use a shorter duration of artificial light during the middle of the night

Pawlowski, Wojtek

163

Built waterfront through edge, connection, and exchange : reclaiming a waterfront for Greenpoint, a project in Brooklyn, N.Y.  

E-Print Network (OSTI)

Currently the waterfront of Brooklyn N.Y. between the Gowanus Canal of Redhook and the Newton Creek of Greenpoint is predominantly lined with various types of industrial and manufacturing uses. Scattered throughout are ...

Ziesemann, Rodney P. (Rodney Paul), 1967-

1998-01-01T23:59:59.000Z

164

DOE Zero Energy Ready Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY, Custom Home  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready Home in Long Island, NY, that scored HERS 43 without PV. This 5,088 ft2 custom home has R-25 double-stud walls, a vaulted roof with R-40 blown cellulose, R-10 XPS under slab, a hydro air system with 91% efficient boiler for forced air and radiant floor heat, and 100% LED lights.

165

The binary properties of the pulsating subdwarf B eclipsing binary PG 1336-018 (NY Vir)  

E-Print Network (OSTI)

We present an unbiased orbit solution and mass determination of the components of the eclipsing binary NY Vir as a critical test for the formation scenarios of subdwarf B stars. We obtained high-resolution time series VLT/UVES spectra and high-speed multicolour VLT/ULTRACAM photometric observations of NY Vir, a rapidly pulsating subdwarf B star in a short period eclipsing binary. Combining the radial velocity curve obtained from the VLT/UVES spectra with the VLT/ULTRACAM multicolour lightcurves, we determined numerical orbital solutions for this eclipsing binary. Due to the large number of free parameters and their strong correlations, no unique solution could be found, only families of solutions. We present three solutions of equal statistical significance, two of which are compatible with the primary having gone through a core He-flash and a common-envelope phase described by the $\\alpha$-formalism. These two models have an sdB primary of 0.466 \\msol and 0.389 \\msol, respectively. Finally, we report the detection of the Rossiter-McLaughlin effect for NY Vir.

M. Vu?kovi?; C. Aerts; R. stensen; G. Nelemans; H. Hu; C. S. Jeffery; V. S. Dhillon; T. R. Marsh

2007-06-22T23:59:59.000Z

166

Radiation Exposure from CT Examinations in Japan  

Science Journals Connector (OSTI)

Computed tomography (CT) is the largest source of medical radiation exposure to the general population, and is ... assess the current situation of CT use in Japan, and to investigate variations in radiation expos...

Yoshito Tsushima; Ayako Taketomi-Takahashi; Hiroyuki Takei

2010-11-01T23:59:59.000Z

167

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Khang Lhamo, Yandol & Pema Dolma Music: Ri di ngak me ri la, 'The belt on the boots'  

E-Print Network (OSTI)

di ngak me ri la Translation of title The belt on the boots Description (to be used in archive entry) A song about festive dress and customs. Genre or type (i.e. epic, song, ritual) khro glu (festive song) Medium (i.e. reel to reel, web... objects used in performance Level of public access (fully closed, fully open) Fully open for web streaming Notes and context (include reference to any related documentation, such as photographs) "This belt is really long on the boots. If we use...

Blumenthal, Katey

168

Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A  

E-Print Network (OSTI)

Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A

Graves, Michael V.

169

Contribution of the Reaction Ny-]Nnk to Antikaon Production in Relativistic Heavy-Ion Collisions  

E-Print Network (OSTI)

, such as Fermi motions, coherent productions, and multiple collisions. Shor et aI. showed that the simple nucleon-nucleon collision model with Fermi motions underestimates the number of K by more than an order of magnitude. Muller' suggested that the decay... of the product o(NY~NNK)vNpN over the normalized nucleon momentum distribution f( p ), i.e., NA~NNK ?3.3)& 10 s1 19 ?1 NNK ?1.6)& 10 s (15) In the simplified kinetic model of Ref. 11, the number of antikaons NK is related to the initial number of hyperons...

Ko, Che Ming.

1984-01-01T23:59:59.000Z

170

CT Offshore | Open Energy Information  

Open Energy Info (EERE)

CT Offshore CT Offshore Place Otterup, Denmark Zip 5450 Sector Wind energy Product Denmark-based consultancy which provides assistance for project management, damage assessment and stabilization as well as other activities related to wind farms and subsea maintenance. Coordinates 55.543228°, 10.40294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.543228,"lon":10.40294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus  

SciTech Connect

Substitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence. The L107F mutation also abolished binding of a non-neutralizing MAb, 3D9, whose epitope had not been previously identified. MAb 3D9 was subsequently shown to be broadly cross-reactive with other flaviviruses, consistent with binding near the highly conserved fusion loop.

Zhang Shuliu [Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States); Li Li; Woodson, Sara E. [Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States); Huang, Claire Y.-H.; Kinney, Richard M. [Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Fort Collins, CO (United States); Barrett, Alan D.T. [Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States); Beasley, David W.C. [Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]|[Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555 (United States)]. E-mail: d.beasley@utmb.edu

2006-09-15T23:59:59.000Z

172

The Pulsating sdB+M Eclipsing System NY Virginis and its Circumbinary Planets  

E-Print Network (OSTI)

We searched for circumbinary planets orbiting NY Vir in historical eclipse times including our long-term CCD data. Sixty-eight times of minimum light with accuracies better than 10 s were used for the ephemeris computations. The best fit to those timings indicated that the orbital period of NY Vir has varied due to a combination of two sinusoids with periods of $P_3$=8.2 yr and $P_4$=27.0 yr and semi-amplitudes of $K_3$=6.9 s and $K_4$=27.3 s, respectively. The periodic variations most likely arise from a pair of light-time effects due to the presence of third and fourth bodies that are gravitationally bound to the eclipsing pair. We have derived the orbital parameters and the minimum masses, $M_3 \\sin i_3$ = 2.8 M$\\rm_{Jup}$ and $M_4 \\sin i_4$ = 4.5 M$\\rm_{Jup}$, of both objects. A dynamical analysis suggests that the outer companion is less likely to orbit the binary on a circular orbit. Instead we show that future timing data might push its eccentricity to moderate values for which the system exhibits long...

Lee, Jae Woo; Youn, Jae-Hyuck; Han, Wonyong

2014-01-01T23:59:59.000Z

173

Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect

Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

Mohamed, Sodky H.; Anders, Andre

2006-06-05T23:59:59.000Z

174

Dental CT: A New Diagnostic Tool in Dental Radiology Based on Double Spiral CT  

Science Journals Connector (OSTI)

In the beginning of 1990, dental computed tomography (CT) software program was developed which offers the possibility of reconstructing panoramic and transaxial images of the maxilla and the mandible from CT d...

U. Hirschfelder; H. Hirschfelder; J. Regn

1994-01-01T23:59:59.000Z

175

Masato R. Nakamura, Eng.Sc.D. 420 Central Park West #1C New York, NY 10025  

E-Print Network (OSTI)

Project · Designed reactors for gasification of solid waste using Computer Aided Design (CAD) software.Sc.D), Earth and Environmental Engineering, May 2008 Stochastic simulation and integrated modeling of waste, NY Research Associate, May 2008 ­ August 2010 Solid Waste Modeling Project · Developed a 2

176

Highland Hospital Archives, Williams Health Sciences Library 1000 South Ave, Rochester, NY 14620 Finding Aid for the Highland Hospital Archives  

E-Print Network (OSTI)

Highland Hospital Archives, Williams Health Sciences Library 1000 South Ave, Rochester, NY 14620 Finding Aid for the Highland Hospital Archives John R. Williams Sr. Collection Box 1 Correspondence Photographs Box 2 Articles, Memos, Pamphlets Book: Writings Hahnemann Hospital Collection Box 1 Hahnemann

Goldman, Steven A.

177

Hindawi Publishing Corporation 410 Park Avenue,15th Floor,#287 pmb,New York,NY 10022,USA  

E-Print Network (OSTI)

Corporation 410 Park Avenue,15th Floor,#287 pmb,New York,NY 10022,USA http. Bona USA J. R. Cannon USA S.-N. Chow USA B. S. Dandapat India E. DiBenedetto USA R. Finn USA R. L. Fosdick USA J. Frehse Germany A. Friedman USA R. Grimshaw UK J. Malek Czech Republic J. T. Oden USA R

Shen, Xuemin "Sherman"

178

DOE Challenge Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY, Custom Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ferguson Design & Ferguson Design & Construction, Inc. Sagaponack, NY BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

179

CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL  

Office of Legacy Management (LM)

? ? z _ - c 0-e . CRANE CO. 757 THIRD AVENUE NEW YORK. N.Y. THOMAS UNGERLAND ASSOCIATE GENERAL COUNSEL December 14, 1987 James J. Fiore Director Office of Nuclear Energy Department of Energy Washington, D.C. Re: Crane - Indian Orchard Dear M r. Fiore: W e acknowledge receipt of your letter to Paul Hundt, dated September 29, 1987, which requests certain information about Crane's plant site in Indian Orchard, Massachusetts. The plant is not currently operating. Crane was unable to locate any records concerning the machining of uranium in the 1947-48 period for a customer, Brookhaven Labs, at the Indian Orchard, facility. It is believed that the records, which were kept on the second floor at 305 Hamshire Street, Indian Orchard, Massachusetts were moved ten or fifteen years ago

180

Limited View Angle Iterative CT Reconstruction  

E-Print Network (OSTI)

;Some Prior Literature in Limited View Tomography CT with limited-angle data and few views IRR algorithm Iterative Reconstruction-Reprojection (IRR) : An Algorithm for Limited Data Cardiac- Computed-views and limited-angle data in divergent-beam CT by E. Y. Sidky, CM Kao, and X. Pan (2006) Few-View Projection

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CT Solar Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CT Solar Loan CT Solar Loan CT Solar Loan < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Connecticut Program Type State Loan Program Provider Sungage, Inc. The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered through Sungage. Interested residents must apply online to be pre-qualified for the loan. Once the loan is in place, an approved installer files permits, order equipment, and installs the system on behalf of the resident. See the program web site for application materials. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CT101F

182

DOE - Office of Legacy Management -- New England Lime Co - CT...  

Office of Legacy Management (LM)

consideration under FUSRAP Designated Name: Not Designated Alternate Name: NELCO (Magnesium Division) CT.10-1 Location: Canaan , Connecticut CT.10-2 Evaluation Year: 1987...

183

2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interoperability of Demand Response Interoperability of Demand Response Resources in NY Andre Wellington Con Edison June 8, 2012 December 2008 Interoperability of Demand Resource Resources in NY Objective Life-cycle Funding ($M) FY08 - FY13 $6.8 million Technical Scope (Insert graphic here) Develop and demonstrate technology required to integrate customer owned resources into the electrical distribution system * Evaluate interconnection designs * Design and install thermal storage plant with enhanced capabilities * Develop AutoDR application for targeted distributed resources 2 December 2008 Needs and Project Targets Develop the technology required to integrate customer owned distributed resources into the distribution system to enable the of deferment capital investments. * Remote dispatch of customer resources

184

STATE OF NEW YORK DEPARTMENT OF PUBLIC SERVICE THREE EMPIRE STATE PLAZA, ALBANY, NY 12223-1350  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEW YORK DEPARTMENT OF PUBLIC SERVICE NEW YORK DEPARTMENT OF PUBLIC SERVICE THREE EMPIRE STATE PLAZA, ALBANY, NY 12223-1350 www.dps.ny.gov PUBLIC SERVICE COMMISSIO~ PETER McGOWAN GARRY A. BROWN General Counsel Chairman PATRICIA L. ACAMPORA MAUREEN F. HARRIS JACLYN A, BRILLING ROBERT E. CURRY JR. Secretary JAMES L. LAROCCA Commissioners January 31, 2012 FILED ELECTRONICALLY @ http://energy.gov/oelcongestion-study-2012 Office of Electricity Delivery and Energy Reliability, OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. i0585 Re: Preparation ofthe 2012 Congestion Study Dear Sir or Madam: I am writing in response to the Notice of Regional Workshops and Request For Written Comments, 76 Federal Register No. 218, 70122 (November 10,2011). Enclosed please find the comments of

185

DOE - Office of Legacy Management -- American Brass Co - CT 01  

Office of Legacy Management (LM)

Brass Co - CT 01 Brass Co - CT 01 FUSRAP Considered Sites Site: American Brass Co (CT.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Anaconda Company Brass Division CT.01-1 Location: 414 Meadow Street , Waterbury , Connecticut CT.01-1 Evaluation Year: 1986 CT.01-2 Site Operations: Limited work with copper clad uranium billets during the 1950s. CT.01-1 Site Disposition: Eliminated - Potential for contamination considered remote based upon the limited scope of activities at the site CT.01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.01-3 Radiological Survey(s): Yes - health and safety monitoring during operations only CT.01-3 Site Status: Eliminated from consideration under FUSRAP

186

DOE - Office of Legacy Management -- Fenn Machinery Co - CT 11  

Office of Legacy Management (LM)

Fenn Machinery Co - CT 11 Fenn Machinery Co - CT 11 FUSRAP Considered Sites Site: Fenn Machinery Co. (CT.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Britain , Connecticut CT.11-1 Evaluation Year: 1987 CT.11-1 Site Operations: Performed short-term tests on small quantities of uranium metal to explore potential for swaging, circa mid-1950 CT.11-1 CT.11-3 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities and relatively small quantities of radioactive material used CT.11-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.11-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP CT.11-2

187

Hindawi Publishing Corporation 410 Park Avenue,15th Floor,#287 pmb,New York,NY 10022,USA  

E-Print Network (OSTI)

,15th Floor,#287 pmb,New York,NY 10022,USA http://www.hindawi.com/journals/denm/ Differential is not possible, you can contact denm.support@hindawi.com. Associate Editors N. Bellomo Italy J. L. Bona USA J. R. Cannon USA S.-N. Chow USA B. S. Dandapat India E. DiBenedetto USA R. Finn USA R. L. Fosdick USA J. Frehse

Plataniotis, Konstantinos N.

188

Hindawi Publishing Corporation 410 Park Avenue,15th Floor,#287 pmb,New York,NY 10022,USA  

E-Print Network (OSTI)

,NY 10022,USA http://www.hindawi.com/journals/denm/ Differential Equations & Nonlinear Mechanics Website.support@hindawi.com. Associate Editors N. Bellomo Italy J. L. Bona USA J. R. Cannon USA S.-N. Chow USA B. S. Dandapat India E. DiBenedetto USA R. Finn USA R. L. Fosdick USA J. Frehse Germany A. Friedman USA R. Grimshaw UK J. Malek Czech

Lim, Jong-Tae

189

OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY  

Office of Legacy Management (LM)

OH42 -7 OH42 -7 / i3-y OAiC RiDGE NATIONAL LABORAl-ORY LKCKKBSP HAITI MANA%ED AND OPERATED BY vxKHEEpyARluEwERoY fEsEARcHcxHtPoM~RN R3RmEuMYED~Am DEPMl' MEU?#bBgKiY . ORNL/TpvI-12968 Results of the Independent Radiological Verification Survey of the Remedial Action l?erformed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Carrier - This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Techni- cal Information, P.O. 60x 62, Oak Ridge, TN 37631; prices available from (615) 576-640 1, FTS 626-640 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd.. Springfield, VA 22161.

190

DOE - Office of Legacy Management -- Sperry Products Inc - CT 07  

NLE Websites -- All DOE Office Websites (Extended Search)

Sperry Products Inc - CT 07 Sperry Products Inc - CT 07 FUSRAP Considered Sites Site: SPERRY PRODUCTS, INC. (CT.07) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Danbury , Connecticut CT.07-1 Evaluation Year: 1994 CT.07-2 Site Operations: Performed tests involving non-destructive inspection techniques in the 1950s. CT.07-3 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited scope of activities performed at the site CT.07-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.07-3 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SPERRY PRODUCTS, INC. CT.07-1 - Sperry Products Letter; VanValkenburg to DeRenzis;

191

DOE - Office of Legacy Management -- American Cyanamid Co - CT 13  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyanamid Co - CT 13 Cyanamid Co - CT 13 FUSRAP Considered Sites Site: American Cyanamid Co (CT.13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Stamford , Connecticut CT.13-1 Evaluation Year: 1987 CT.13-1 Site Operations: Produced boron and possibly handled small amounts of refined radioactive source material circa 1940's. Also possibly performed research work on irradiated "J" slugs in 1952 and 1953. CT.13-1 CT.13-3 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited scope of activities involving radioactive material performed at this site CT.13-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.13-1 Radiological Survey(s): No

192

Secondhand Smoke and the Family Courts: The Role of Smoke Exposure in Custody and Visitation Decisions  

E-Print Network (OSTI)

640 (N.Y. Supreme Ct. , Oneida County 2002). Id. The Court12 (N.Y. Supreme Ct. , Oneida County 2002). See Grusendorf

Dachille, Kathleen H; Callahan, Kristine

2005-01-01T23:59:59.000Z

193

Gasoline and Diesel Fuel Update  

NLE Websites -- All DOE Office Websites (Extended Search)

County, NY Essex County, NJ Fairfield County, CT Hudson County, NJ Hunterdon County, NJ Kings County, NY Litchfield County (partial), CT Middlesex County, NJ Monmouth County, NJ...

194

Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold  

SciTech Connect

Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of ?950 Hu in inspiration and ?950 to ?890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below ?950 Hu in the inspiratory phase was compared and correlated with lung function.Results: Mean Vtrap% was similar under ?930 Hu in the expiratory phase and below ?950 Hu in the inspiratory phase, being 13.18 9.66 and 13.95 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under ?950 Hu in the inspiratory phase and below the ?950 to ?890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.

Wang, Xiaohua; Yuan, Huishu [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China)] [Department of Radiology, Peking University Third Hospital, Beijing 100191 (China); Duan, Jianghui [Medical School, Peking University, Beijing 100191 (China)] [Medical School, Peking University, Beijing 100191 (China); Du, Yipeng; Shen, Ning; He, Bei [Department of Respiration Internal Medicine, Peking University Third Hospital, Beijing 100191 (China)] [Department of Respiration Internal Medicine, Peking University Third Hospital, Beijing 100191 (China)

2013-08-15T23:59:59.000Z

195

DOE - Office of Legacy Management -- Wesleyan University - CT 12  

NLE Websites -- All DOE Office Websites (Extended Search)

Wesleyan University - CT 12 Wesleyan University - CT 12 FUSRAP Considered Sites Site: Wesleyan University (CT.12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Middletown , Connecticut CT.12-1 Evaluation Year: 1995 CT.12-2 Site Operations: Spectrographic research on small quantities of uranium wire (several inches in length) in Physics Department circa late 1950. CT.12-1 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited scope of activities performed CT.12-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.12-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Wesleyan University

196

Effect of magnetic reconnection on CT penetration into magnetized plasmas  

Science Journals Connector (OSTI)

To understand the fuelling process in a fusion device by a compact toroid (CT) injection method, three dimensional MHD numerical simulations, where a spheromak-like CT (SCT) is injected into...

Yoshio Suzuki; Takaya Hayashi; Yasuaki Kishimoto

2001-06-01T23:59:59.000Z

197

DOE - Office of Legacy Management -- New Canaan Site - CT 08  

Office of Legacy Management (LM)

FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Canaan , Connecticut CT.08-1 Evaluation Year: 1985 CT.08-2 Site Operations: None; Investigation of area...

198

General Geometry CT Reconstruction Alexei Ramotar  

E-Print Network (OSTI)

, reconstruction, Filtered Back Projection Submitted to IPCV'06 Abstract We present an efficient and accurate acquired by a parallel-beam CT scanner. Once in that form, Filtered Back Projection can be used to perform technology that uses many small x-ray images to reconstruct a view of the internal structures of an object

Orchard, Jeffery J.

199

RADIATION EXPOSURE DURING PAEDIATRIC CT IN SUDAN: CT DOSE, ORGAN AND EFFECTIVE DOSES  

Science Journals Connector (OSTI)

......research-article Paper RADIATION EXPOSURE DURING PAEDIATRIC...Energy Commission, Radiation Safety Institute, PO Box 3001...assess the magnitude of radiation exposure during paediatric...CT-Expo 2.1 dosimetry software. Doses were evaluated......

I. I. Suliman; H. M. Khamis; T. H. Ombada; K. Alzimami; M. Alkhorayef; A. Sulieman

2014-11-01T23:59:59.000Z

200

Implications of CT noise and artifacts for quantitative {sup 99m}Tc SPECT/CT imaging  

SciTech Connect

Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI{sub vol} = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (?) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (? ? 200400 HU) resulted in low ?-maps noise (? ? 1%3%). Noise levels greater than ?10% in 140 keV ?-maps were required to produce visibly perceptible increases of ?15% in {sup 99m}Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI{sub vol} = 4 ?Gy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected ? values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in ?. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ?100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in ?{sub 140} {sub keV} on the order of 10%, that in turn, could introduce errors on the order of ?10% into the reconstructed {sup 99m}Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect SPECT quantification is low (CTDI{sub vol} ? 4 ?Gy), the low dose limit for the CT exam as part of SPECT/CT will be guided by CT image quality requirements for anatomical localization and artifact reduction. A CT technique with higher kVp in combination with lower mAs is recommended when low-dose CT images are used for AC to minimize beam-hardening artifacts.

Hulme, K. W.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 (United States)

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CT volumetry of the skeletal tissues  

SciTech Connect

Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was explored and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.

Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.; Myers, Scott L.; Shah, Amish P.; Bolch, Wesley E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Statistics, University of Florida, Gainesville, Florida 32611 (United States); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida 32611 (United States); MD Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Nuclear and Radiological and Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2006-10-15T23:59:59.000Z

202

420 West 118th St, New York, NY 10027 | http://energypolicy.columbia.edu | @ColumbiaUEnergy 1 June 14, 2014  

E-Print Network (OSTI)

West 118th St, New York, NY 10027 | http://energypolicy.columbia.edu | @ColumbiaUEnergy 1 June 14, 2014 the oil producing area around the giant Kirkuk field. ISIS forces occupied Mosul and reportedly control. Proven Oil Reserves billion barrels BP EIA Venezuela 298 298 Saudi Arabia 266 268 Canada 174 173 Iran 157

Qian, Ning

203

Presented at the 13 National Conference on Building Commissioning, May 4-6, 2005, New York, NY, and published in the Proceedings.  

E-Print Network (OSTI)

LBNL-58648 th Presented at the 13 National Conference on Building Commissioning, May 4-6, 2005, New York, NY, and published in the Proceedings. This work was supported by the State Technologies, Moosung Kim Lawrence Berkeley National Laboratory May 2005 #12;National Conference on Building

204

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Nuclear Physics  

E-Print Network (OSTI)

the Office of Nuclear Physics within the U.S. Department of Energy's Office of Science, RHIC gives physicists of Nuclear Physics within the U.S. Department of Energy's Office of Science Total Upgrade Cost: $ 700 millionThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

205

2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY PROBABILISTIC MODEL BASED SIMILARITY MEASURES FOR AUDIO  

E-Print Network (OSTI)

2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY PROBABILISTIC MODEL BASED SIMILARITY MEASURES FOR AUDIO QUERY-BY-EXAMPLE Tuomas Virtanen This paper proposes measures for estimating the similarity of two audio signals, the objective being in query

Virtanen, Tuomas

206

Multiscale optimization models for powerintensive processes  

E-Print Network (OSTI)

Collaborators: Jose M. Pinto, Praxair Inc., Danbury, CT Nikhil Arora, Praxair Inc., Tonawanda, NY #12;Demand

Grossmann, Ignacio E.

207

Wei Xu and Klaus Mueller are with the Computer Science Department, Stony Brook University, Stony Brook, NY 11790 USA (phone  

E-Print Network (OSTI)

cope well with limited projection sets and noisy data. These scenarios occur most often in low-dose CT--Iterative Reconstruction, Ordered Subsets, Computed Tomography, GPU, Bilateral Filter, Total Variation Minimization I, where one seeks to either limit the dose per projection, or the number of projections overall, or both

Mueller, Klaus

208

DOE - Office of Legacy Management -- Dorr Corp - CT 14  

Office of Legacy Management (LM)

Site Operations: Conducted heat treatment tests of source material using depleted uranium in an enclosed calciner CT.14-2 Site Disposition: Eliminated - No Authority - AEC...

209

Computed Tomography (CT) Scanning For Petrophysical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Fac R&D Fac ts Carbon Sequestration ContaCtS David Wildman Division Director Geosciences Division National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4913 david.wildman@netl.doe.gov T. Robert McLendon Geosciences Division National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2008 t.mclen@netl.doe.gov Duane H. Smith Geosciences Division

210

CT-121_cover.p65  

NLE Websites -- All DOE Office Websites (Extended Search)

INNOVATIVE APPLICATIONS INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS PROJECT PERFORMANCE SUMMARY CLEAN COAL TECHNOLOGY DEMONSTRATION PROGRAM AUGUST 2002 SOUTHERN COMPANY SERVICES, INC. DOE/FE-0449 Disclaimer This report was prepared using publicly available information, including the Final Technical Report and other reports prepared pursuant to a cooperative agreement partially funded by the U.S. Department of Energy. Neither the United States Government nor any agency, employee, contractor, or representative thereof, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately

211

Explosive Detection in Aviation Applications Using CT  

SciTech Connect

CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

Martz, H E; Crawford, C R

2011-02-15T23:59:59.000Z

212

I.T. Chapman, R.J. La Haye, R.J. Buttery, W.W. Heidbrink, G.L. Jackson, C.M. Muscatello, C.C. Petty, R.I. Pinsker, B.J. Tobias, and F. Turco  

E-Print Network (OSTI)

seeding deleterious NTMs. When electron cyclotron resonance heating (ECRH) is applied to the plasma, R.I. Pinsker, B.J. Tobias, and F. Turco CCFE-PR(12)21 Sawtooth control using electron cyclotron Atomic Energy Authority is the copyright holder. #12;Sawtooth control using electron cyclotron current

213

Trends of CT Utilization in North America Over the Last Decade  

Science Journals Connector (OSTI)

Given the improvements in technology and usefulness of CT for diagnosis and therapeutic-planning, the growth in CT utilization is not surprising. Current estimates are that more than 85 million CT scans are pe...

Lauren M. B. Burke; Richard C. Semelka; Rebecca Smith-Bindman

2014-11-01T23:59:59.000Z

214

Radiation Protection in Newer Medical Imaging Technologies: PET/CT  

Science Journals Connector (OSTI)

......58 timely. Safety Report Series...challenging topic of Radiation Exposure of...of various software packages is...and age. To Safety Report Series...CT dosimetry software site impactscan...its June 2006 software version fade...Management of Radiation Dose in CT...Section 5 of Safety Report Series......

Dawn Banghart

2009-07-01T23:59:59.000Z

215

CT Poison Control Center 2014 Video Contest Rules  

E-Print Network (OSTI)

entry form (found on posioncontrol.uchc.edu) b. Include a link to your video from your You Tube account and community partners. Judges will consider: length of video, appropriate format, accuracy of information poison center means to you, value of the CT Poison Control Center · Programming your phone with the CT

Kim, Duck O.

216

On recent claims concerning the Rh=ct Universe  

Science Journals Connector (OSTI)

......density rho. One-on-one comparative tests between R h-=-ct and lambdaCDM have...corollary (see also Weinberg 1972). To test whether in fact the EOS p-=-rho/3...carried out an extensive suite of comparative tests using lambdaCDM and R h-=-ct, together......

Fulvio Melia

2015-01-01T23:59:59.000Z

217

Measuring and segmentation in CT data using deformable Vclav Krajcek  

E-Print Network (OSTI)

tomography (CT). We take advantage of long-time research in the area of deformable models. We have developed Snakes, CT, Medical Segmentation, Volume Measurement. 1 INTRODUCTION Computed tomography is a common tool, that temperature of healthy body is about 36,5 C. Higher temperature means that body is fighting with an illness

Pelikan, Josef

218

MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI  

SciTech Connect

This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

2011-09-22T23:59:59.000Z

219

MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI  

SciTech Connect

This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

2011-09-22T23:59:59.000Z

220

Pediatric CT scan usage in Japan: results of a hospital survey  

Science Journals Connector (OSTI)

CT radiation dose settings are adjusted for children based on guidelines issued by the Japan Radiological Society, with few limitations. CT...

Nader Ghotbi; Akira Ohtsuru; Yoji Ogawa; Mariko Morishita

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - angiographic cone-beam ct Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: medical multi-slicecone-beam CT scanners typically use equiangular projection data, our new formula may... : Computed tomography (CT), cone-beam geometry, Feldkamp-type...

222

DOE/EA-1631: Final Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, NY (February 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 31 Environmental Assessment for DEPARTMENT OF ENERGY LOAN GUARANTEE FOR BEACON POWER CORPORATION FREQUENCY REGULATION FACILITY IN STEPHENTOWN, N.Y. U.S. Department of Energy Loan Guarantee Program Office Washington, DC 20585 February 2009 FINAL ENVIRONMENTAL ASSESSMENT Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, N.Y. DOE/EA-1631 TABLE OF CONTENTS LIST OF ACRONYMS iii 1.0 PURPOSE AND NEED 1 1.1 Introduction 1 1.2 Purpose and Need for Agency Action 1 2.0 DESCRIPTION OF PROPOSED ACTION AND NO ACTION ALTERNATIVE 3 2.1 Location 3 2.2 Proposed Action 3 2.2.1 Flywheel 3 2.2.2 Project Elements 4 2.2.3 Project Systems 5 2.2.4 Construction

223

Microsoft Word - Ct121R1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Applications Innovative Applications of Technology for the CT-121 FGD Process A DOE Assessment DOE/NETL-2002/1177 September 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 West Third Street, Suite 1400 Tulsa, OK 74103-3519 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

224

CT113-53 Cape Wind Report_  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M M Report of the Effect on Radar Performance of the Proposed Cape Wind Project and Advance Copy of USCG Findings and Mitigation U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix M Report of the Effect on Radar Performance of the Proposed Cape Wind Project and Advance Copy of USCG Findings and Mitigation Technology Service Corporation an employee-owned company 55 Corporate Drive 3rd Floor, Trumbull, Connecticut 06611 Phone: (203) 268-1249 Fax: (203) 452-0260 www.tsc.com Ref: TSC-CT113-53 Report of the Effect on Radar Performance of the Proposed Cape Wind Project Submitted to the United States Coast Guard December 16, 2008 USCG Order #HSCG24-08-F-16A248

225

CT Solar Loan | Open Energy Information  

Open Energy Info (EERE)

Solar Loan Solar Loan No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on March 29, 2013. Financial Incentive Program Place Connecticut Name CT Solar Loan Incentive Type State Loan Program Applicable Sector Multi-Family Residential, Residential Eligible Technologies Photovoltaics Active Incentive Yes Implementing Sector State/Territory Energy Category Renewable Energy Incentive Programs Terms 15 years Program Administrator The Clean Energy Finance and Investment Authority Website http://www.energizect.com/residents/programs/ctsolarloan Last DSIRE Review 03/29/2013 References Database of State Incentives for Renewables and Efficiency[1] Summary The Clean Energy Finance and Investment Authority is offering a pilot loan

226

Multi-atlas segmentation in head and neck CT scans  

E-Print Network (OSTI)

We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate ...

Arbisser, Amelia M

2012-01-01T23:59:59.000Z

227

Obscure pulmonary masses: bronchial impaction revealed by CT  

SciTech Connect

Dilated bronchi impacted with mucus or tumor are recognized on standard chest radiographs because they are surrounded by aerated pulmonary parenchyma. When imaged in different projections, these lesions produce a variety of appearances that are generally familiar. This report characterizes less familiar computed tomographic (CT) findings in eight patients with pathologic bronchial distension of congenital, neoplastic, or infectious etiologies and correlates them with chest films. In seven patients, CT readily revealed dilated bronchi and/or regional lung hypodensity. In four of these cases, CT led to the initial suspicion of dilated bronchi. CT should be used early in the evaluation of atypical pulmonary mass lesions or to confirm suspected bronchial impaction because of the high probability it will reveal diagnostic features.

Pugatch, R.D.; Gale, M.E.

1983-11-01T23:59:59.000Z

228

DOE - Office of Legacy Management -- Olin Mathieson - CT 0-02  

Office of Legacy Management (LM)

Olin Mathieson - CT 0-02 Olin Mathieson - CT 0-02 FUSRAP Considered Sites Site: OLIN MATHIESON (CT.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: United Nuclear Corporation CT.0-02-1 Location: New Haven , Connecticut CT.0-02-1 Evaluation Year: 1987 CT.0-02-1 Site Operations: Began fabrication of nuclear reactor fuel elements for AEC circa late-1950s. Later became part of a group forming United Nuclear Corp. and were then licensed by AEC. Performed work for U.S. Navy and commercial applications. CT.0-02-1 Site Disposition: Eliminated - No Authority - AEC licensed CT.0-02-1 Radioactive Materials Handled: Yes CT.0-02-1 Primary Radioactive Materials Handled: Uranium CT.0-02-1 Radiological Survey(s): None Indicated

229

X-ray MicroCT Training Presentation  

E-Print Network (OSTI)

X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

230

A Compact Torus Fusion Reactor Utilizing a Continuously Generated String of CTs. The CT String Reactor, CTSR  

Science Journals Connector (OSTI)

A fusion reactor is described in which a moving string ... conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produce...

Charles W. Hartman; David B. Reisman; Harry S. McLean

2008-06-01T23:59:59.000Z

231

TITLE OF PRESENTATION HERE  

NLE Websites -- All DOE Office Websites (Extended Search)

Claiming Savings from Claiming Savings from Building Codes Activities Presented by Carolyn Sarno April 4, 2012 DOE Code Compliance Meeting FOR TODAY'S DISCUSSION * Background * Claimed Savings Report * Best Practice - Rhode Island 1 RECENT TRENDS 2 Aggressive new goals directing capture of all cost- effective efficiency * CT, MA, NY, RI VT * $2.5 billion committed to efficiency programs in New England, New York and Mid-Atlantic in 2012 * Multiple funding sources: SBC, RGGI, FCM, rate factors * Next generation of efficiency plans going broader & deeper ATTRIBUTING ENERGY CODE SAVINGS ENERGY EFFICIENCY PROGRAMS * Convene stakeholder advisory group * Identify issues related to PA support for codes (and standards) * Provide procedural guidance for

232

Radiation Dose Metrics in CT: Assessing Dose Using the National Quality Forum CT Patient Safety Measure  

Science Journals Connector (OSTI)

Purpose The National Quality Forum (NQF) is a nonprofit consensus organization that recently endorsed a measure focused on CT radiation doses. To comply, facilities must summarize the doses from consecutive scans within age and anatomic area strata and report the data in the medical record. Our purpose was to assess the time needed to assemble the data and to demonstrate how review of such data permits a facility to understand doses. Methods and Materials To assemble the data we used for analysis, we used the dose monitoring softwareeXposure to automatically export dose metrics from consecutive scans in 2010 and 2012. For a subset of 50exams, we also collected dose metrics manually, copying data directly from the PACS into an excel spreadsheet. Results Manual data collection for 50 scans required 2 hours and 15 minutes. eXposure compiled the data in under an hour. All dose metrics demonstrated a 30% to 50% reduction between 2010 and 2012. There was also a significant decline and a reduction in the variability of the doses over time. Conclusion The NQF measure facilitates an institution's capacity to assess the doses they are using for CT as part of routine practice. The necessary data can be collected within a reasonable amount of time either with automatic software or manually. The collection and review of these data will allow facilities to compare their radiation dose distributions with national distributions and allow assessment of temporal trends in the doses they are using.

Jillian Keegan; Diana L. Miglioretti; Robert Gould; Lane F. Donnelly; Nicole D. Wilson; Rebecca Smith-Bindman

2014-01-01T23:59:59.000Z

233

Low-Dose Spiral CT Scans for Early Lung Cancer Detection | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Dose Spiral CT Scans for Early Lung Cancer Detection Low-Dose Spiral CT Scans for Early Lung Cancer Detection Low-Dose Spiral CT Scans for Early Lung Cancer Detection Low-dose spiral computed tomography (CT) scanning is a noninvasive medical imaging test that has been used for the early detection of lung cancer for over 16 years (Sone et al. 1998; Henschke et.al. 1999). A low-dose spiral chest CT differs from a full-dose conventional chest CT scan primarily in the amount of radiation emitted during CT scans. Chest CT, in general, requires less radiation exposure than other CT procedures because the air-filled tissues of the lungs are not as dense as the tissues of other organs (i.e., less x-ray radiation is needed to penetrate the lung). Radiation dose can be further reduced with lung cancer screening due to the

234

Characteristics of modified CT injector for JFT-2M  

Science Journals Connector (OSTI)

The HIT-CTI mark II compact toroid (CT) injector employed for the JFT-2M tokamak facility at the Japan Atomic Energy Research Institute (JAERI) has been upgraded to improve injection performance. The nozzle of the mark III injector now has a linear tube in place of the original focus cone to avoid rapid focus and deceleration, and the tapered outer electrode has been replaced with more gentle taper in the compression section in order to facilitate gradual compression. The dependence of CT velocity and electron density on poloidal bias flux and trigger time of CT acceleration have been investigated in the operable range of 70230km/s average CT velocity and electron density of 0.11.0 1022m?3 at an accelerator bank voltage of 25kV. The operation window is broader than that of the mark II injector. Emission of a CT plasmoid from the injector, and transport to the flux conserver as a high-density spheromak magnetic structure have also been confirmed.

N. Fukumoto; H. Ogawa; M. Nagata; T. Uyama; T. Shibata; Y. Kashiwa; Y. Kusama

2004-01-01T23:59:59.000Z

235

A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.  

SciTech Connect

A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal field opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.

Hartman, C W; Reisman, D B; McLean, H S; Thomas, J

2007-05-30T23:59:59.000Z

236

PET/CT-guided Interventions: Personnel Radiation Dose  

SciTech Connect

PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

2013-08-01T23:59:59.000Z

237

On Recent Claims Concerning the R_h=ct Universe  

E-Print Network (OSTI)

The R_h=ct Universe is a Friedmann-Robertson-Walker (FRW) cosmology which, like LCDM, assumes the presence of dark energy in addition to (baryonic and non-luminous) matter and radiation. Unlike LCDM, however, it is also constrained by the equation of state (EOS) p=-rho/3, in terms of the total pressure p and energy density rho. One-on-one comparative tests between R_h=ct and LCDM have been carried out using over 14 different cosmological measurements and observations. In every case, the data have favoured R_h=ct over the standard model, with model selection tools yielding a likelihood ~90-95% that the former is correct, versus only ~5-10% for the latter. In other words, the standard model without the EOS p=-rho/3 does not appear to be the optimal description of nature. Yet in spite of these successes---or perhaps because of them---several concerns have been published recently regarding the fundamental basis of the theory itself. The latest paper on this subject even claims---quite remarkably---that R_h=ct is a vacuum solution, though quite evidently rho is not 0. Here, we address these concerns and demonstrate that all criticisms leveled thus far against R_h=ct, including the supposed vacuum condition, are unwarranted. They all appear to be based on incorrect assumptions or basic theoretical errors. Nevertheless, continued scrutiny such as this will be critical to establishing R_h=ct as the correct description of nature.

Fulvio Melia

2014-10-17T23:59:59.000Z

238

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation SpatialReferenceInformation EntityandAttributeI...

239

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

,833 ,833 35 Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2009 (Million Cubic Feet) Norway Trinidad/ Tobago Trinidad/ Tobago Egypt Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 111,144 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates

240

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 (Million Cubic Feet) Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 42,411 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2006 253,214 690,780 634,185 658,523 134,764 63,063 526,726 121,049 34,531 492,655 101,101 23,154 40,113 1,496,283 68,601

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE/EIA-0131(96) Distribution Category/UC-960 Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

ID ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Interstate Movements of Natural Gas in the United States, 1996 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL KY (T) MA ME (T) AL LA MA NH (T) AL MO (T) MA NJ (T) AL SC MD DC CT RI RI MA DE MD VA DC MA CT (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 906,407 355,260 243,866 220 384,311 576,420 823,799 842,114 27,271 126,012 133 602,841 266 579,598 16,837 268,138 48,442 182,511 219,242 86,897 643,401 619,703 8,157 937,806 292,711 869,951 12,316 590,493 118,256

242

Microsoft Word - figure_14.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 14. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2010 (Million Cubic Feet) Norway India Trinidad/ Tobago Egypt Yemen Japan Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 53,122 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada Gulf of Mexico Canada Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates based on historical data. Energy Information

243

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Canada United Arab Emirates Australia Australia Trinidad Qatar Malaysia Canada Mexico Interstate Movements of Natural Gas in the United States, 1999 (Volumes Reported in Million Cubic Feet) Supplemental Data From Volume To From Volume To (T) AL TX MA NH CT RI MD DC DE MD RI MA MA CT VA DC (T) Trucked Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." E I A NERGY NFORMATION DMINISTRATION 837,902 415,636 225,138 232 308,214 805,614 803,034 800,345 685 147 628,589 9,786 790,088 17,369 278,302 40,727 214,076 275,629 51,935 843,280 826,638 9,988 998,603 553,440 896,187 11,817 629,551 98,423

244

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Mexico Trinidad Canada Canada Nigeria Oman Qatar Trinidad Gulf of Mexico Gulf of Mexico Gulf of Mexico Canada Trinidad Trinidad Gulf of Mexico Malaysia 13,623 Figure 8. Interstate Movements of Natural Gas in the United States, 2003 (Million Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Energy Information Administration / Natural Gas Annual 2003 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 366,224 655,731 666,614 633,960 144,284 43,869 536,776 63,133 36,848

245

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2008 (Million Cubic Feet) Norway Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 45,772 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates.

246

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 (Million Cubic Feet) 24,891 2,895 Nigeria WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico Algeria C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada N i g e r i a O m a n Qatar Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Malaysia 2,986 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2005 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 335,380 634,982 664,318 612,297 125,202 33,223 531,868 103,624

247

Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations  

SciTech Connect

Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique was developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.

Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung; Lee, Jong Min [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Kim, Kil Joong [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Tae Ki [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)] [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

2013-10-15T23:59:59.000Z

248

DOE - Office of Legacy Management -- Metals Selling Corp - CT 0-01  

Office of Legacy Management (LM)

Selling Corp - CT 0-01 Selling Corp - CT 0-01 FUSRAP Considered Sites Site: METALS SELLING CORP. (CT.0-01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Putnam , Connecticut CT.0-01-1 Evaluation Year: 1986 CT.0-01-1 Site Operations: Performed grinding of (non-radioactive) magnesium circa 1950 -1952 as a sub-contractor to Mallinckrodt Corp. CT.0-01-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at this location CT.0-01-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to METALS SELLING CORP. CT.0-01-1 - DOE Memorandum/Checklist D. Levine to File; Subject -

249

DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT  

NLE Websites -- All DOE Office Websites (Extended Search)

Yale Heavy Ion Linear Accelerator - Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Radium CT.05-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Yale Heavy Ion Linear Accelerator CT.05-1 - MED Memorandum; To the Files, Thru Ruhoff, et. al.;

250

Patient-size-dependent radiation dose optimisation technique for abdominal CT examinations  

Science Journals Connector (OSTI)

......CT dosimetry and radiation safety. Radiol. Soc...Notification. Reducing radiation risk from computed...gov/cdrh/safety/110201-ct...McCollough C. H. Radiation dose in computed...region of interest software available in both......

J. E. Ngaile; P. Msaki; R. Kazema

2012-01-01T23:59:59.000Z

251

E-Print Network 3.0 - abnormal brain ct Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: abnormal brain ct Page: << < 1 2 3 4 5 > >> 1 Hemorrhage Slices Detection in Brain CT Images Ruizhe...

252

VACT: Visualization-Aware CT Reconstruction Ziyi Zheng and Klaus Mueller, Senior Member, IEEE  

E-Print Network (OSTI)

Abstract-- Computed tomography (CT) reconstruction methods are often unaware of the requirements Medical routine frequently utilizes 3D visualization tools for diagnosis. Computed tomography (CT between the raw projection data and their visualization via vol- ume rendering. Our framework can

Mueller, Klaus

253

Detektion von Phochromozytomen und rekurrenten medullren Schilddrsenkarzinomen mit F18 DOPA PET/CT.  

E-Print Network (OSTI)

??Evaluating [18F]dihydroxyphenylalanine (DOPA) in patients with clinical suspicion for a primary or recurrent pheochromocytoma (pheo) by means of whole body PET/CT. In pheos PET/CT detects (more)

Zeich, Katrin

2009-01-01T23:59:59.000Z

254

Assessment of paediatric CT exposure in a Portuguese hospital  

Science Journals Connector (OSTI)

......paediatric CT exposure in a Portuguese hospital A. Neves 1 * A. Nunes 1 M. Rufino...2 Centro Hospitalar Lisboa Central, Hospital de S. Jose, Rua Jose Antonio Serrano...procedures was performed for a Portuguese hospital. Dosimetric data and technical parameters......

A. Neves; A. Nunes; M. Rufino; P. Madeira; P. Vaz; A. Pascoal

2012-09-01T23:59:59.000Z

255

Status and Promise CT's and Magnetized Target Fusion  

E-Print Network (OSTI)

. Hill (LLNL) #12;CT's: Spheromaks & Field Reversed Configurations At LLNL, the SSPX experiment is investigating spheromak formation, sustainment, and confinement issues. (Hill, Mclean, Wood, Ryutov). At UC-Davis, formation and acceleration of spheromaks. (Hwang) At the U of Washington, field reversed configuration

256

A geometric calibration method for cone beam CT systems  

SciTech Connect

Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4701 X Street, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616 (United States); Department of Radiology, University of California, Davis Medical Center, 4701 X Street, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4701 X Street, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616 (United States)

2006-06-15T23:59:59.000Z

257

On Recent Claims Concerning the R_h=ct Universe  

E-Print Network (OSTI)

The R_h=ct Universe is a Friedmann-Robertson-Walker (FRW) cosmology which, like LCDM, assumes the presence of dark energy in addition to (baryonic and non-luminous) matter and radiation. Unlike LCDM, however, it is also constrained by the equation of state (EOS) p=-rho/3, in terms of the total pressure p and energy density rho. One-on-one comparative tests between R_h=ct and LCDM have been carried out using over 14 different cosmological measurements and observations. In every case, the data have favoured R_h=ct over the standard model, with model selection tools yielding a likelihood ~90-95% that the former is correct, versus only ~5-10% for the latter. In other words, the standard model without the EOS p=-rho/3 does not appear to be the optimal description of nature. Yet in spite of these successes---or perhaps because of them---several concerns have been published recently regarding the fundamental basis of the theory itself. The latest paper on this subject even claims---quite remarkably---that R_h=ct is ...

Melia, Fulvio

2014-01-01T23:59:59.000Z

258

AUTOCORRECTING RECONSTRUCTION FOR FLEXIBLE CT SCANNERS Jeff Orchard  

E-Print Network (OSTI)

revolutionize the world of computed tomography (CT). Tiny x-ray emitters and detectors could be embedded scanners. Index Terms: computed tomography, image reconstruction, entropy, nanotechnology, autofocus 1. An automatic (data-driven) motion-correction method for SPECT (single photon emission computed tomog- raphy

Orchard, Jeffery J.

259

Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly  

E-Print Network (OSTI)

Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook page 1 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook page 2 Table of Contents Standards 22 #12;Saturday Workshop 2/7/2009 RS: Molly Burke CT's: Roy Center & Lee Kelly Drosophila Handbook

Rose, Michael R.

260

X-Ray CT Image Reconstruction via Wavelet Frame Based Regularization and Radon Domain  

E-Print Network (OSTI)

to reconstruct high quality CT images from limited and noisy projection data. One of the common CT systems Bin Dong Jia Li Zuowei Shen December 22, 2011 Abstract X-ray computed tomography (CT) has been,8]. Numerical simulations and comparisons will be presented at the end. Keywords: Computed tomography, wavelet

Zakharov, Vladimir

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov The Relativistic Heavy Ion Collider  

E-Print Network (OSTI)

The U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973 RHIC colli- sions -- including photons, electrons, muons, and quark- containing particles -- using large steel magnets that surround the collision zone. · Photons, electrons, and muons are not affected

262

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2  

E-Print Network (OSTI)

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

Suzuki, Masatsugu

263

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov National Synchrotron Light Source II  

E-Print Network (OSTI)

The U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973 · 631 344-2345 · www.bnl.gov FACTS (04-14) National Synchrotron Light Source II NSLS-II by the Numbers World's Premier SynchrotronWill Light theWay to New Discoveries Like all synchrotrons, the National

Ohta, Shigemi

264

2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY A PROTOTYPE SYSTEM FOR OBJECT CODING OF MUSICAL AUDIO  

E-Print Network (OSTI)

2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2005, New Paltz, NY A PROTOTYPE SYSTEM FOR OBJECT CODING OF MUSICAL AUDIO Emmanuel Vincent and Mark D coding of musical audio, and more precisely with the extraction of pitched sound objects in polyphonic

Paris-Sud XI, Université de

265

Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: First patient studies  

SciTech Connect

Purpose: Quantitative cone-beam CT (CBCT) imaging is on increasing demand for high-performance image guided radiation therapy (IGRT). However, the current CBCT has poor image qualities mainly due to scatter contamination. Its current clinical application is therefore limited to patient setup based on only bony structures. To improve CBCT imaging for quantitative use, we recently proposed a correction method using planning CT (pCT) as the prior knowledge. Promising phantom results have been obtained on a tabletop CBCT system, using a correction scheme with rigid registration and without iterations. More challenges arise in clinical implementations of our method, especially because patients have large organ deformation in different scans. In this paper, we propose an improved framework to extend our method from bench to bedside by including several new components. Methods: The basic principle of our correction algorithm is to estimate the primary signals of CBCT projections via forward projection on the pCT image, and then to obtain the low-frequency errors in CBCT raw projections by subtracting the estimated primary signals and low-pass filtering. We improve the algorithm by using deformable registration to minimize the geometry difference between the pCT and the CBCT images. Since the registration performance relies on the accuracy of the CBCT image, we design an optional iterative scheme to update the CBCT image used in the registration. Large correction errors result from the mismatched objects in the pCT and the CBCT scans. Another optional step of gas pocket and couch matching is added into the framework to reduce these effects. Results: The proposed method is evaluated on four prostate patients, of which two cases are presented in detail to investigate the method performance for a large variety of patient geometry in clinical practice. The first patient has small anatomical changes from the planning to the treatment room. Our algorithm works well even without the optional iterations and the gas pocket and couch matching. The image correction on the second patient is more challenging due to the effects of gas pockets and attenuating couch. The improved framework with all new components is used to fully evaluate the correction performance. The enhanced image quality has been evaluated using mean CT number and spatial nonuniformity (SNU) error as well as contrast improvement factor. If the pCT image is considered as the ground truth, on the four patients, the overall mean CT number error is reduced from over 300 HU to below 16 HU in the selected regions of interest (ROIs), and the SNU error is suppressed from over 18% to below 2%. The average soft-tissue contrast is improved by an average factor of 2.6. Conclusions: We further improve our pCT-based CBCT correction algorithm for clinical use. Superior correction performance has been demonstrated on four patient studies. By providing quantitative CBCT images, our approach significantly increases the accuracy of advanced CBCT-based clinical applications for IGRT.

Niu Tianye; Al-Basheer, Ahmad; Zhu Lei [Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Radiation Therapy Center, Department of Radiology, Georgia Health Sciences University, Augusta, Georgia 30912 (United States); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2012-04-15T23:59:59.000Z

266

Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose  

Science Journals Connector (OSTI)

To assess image quality of virtual monochromatic spectral (VMS) images, compared to single-energy (SE) CT, and to evaluate the...

Daniella F. Pinho; Naveen M. Kulkarni; Arun Krishnaraj

2013-02-01T23:59:59.000Z

267

(12) United States Patent Grier et al.  

E-Print Network (OSTI)

IN POTENTIAL ENERGY LANDSCAPES Inventors: David G. Grier, New York, NY (US); Marco Polin, New York, NY (US); Sang-Hyuk Lee, Rego Park, NY (US); Yael Roichman, NeW York, NY (US); Kosta Ladavac, Ridge?eld, CT (US) Assignee: New York University, NeW York, NY (Us) Notice: Subject to any disclaimer, the term ofthis patent

Grier, David

268

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

269

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

270

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2002 2002 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA 910, "Monthly Natural Gas Marketer Survey." 17. Average Price of Natural Gas Delivered to U.S. Commercial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration

271

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

272

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

273

C:\Annual\VENTCHAP.V8\NGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2002 (Dollars per Thousand Cubic Feet) Figure Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2002 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost

274

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

275

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

276

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 28. Average Price of Natural Gas Delivered to U.S. Onsystem Residential Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition."

277

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

278

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 30. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2001 (Dollars per Thousand Cubic Feet) Figure 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 31. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of

279

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

280

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Effective dose estimation during conventional and CT urography  

Science Journals Connector (OSTI)

Abstract Intravenous urography (IVU) and CT urography (CTU) are efficient radiological examinations for the evaluation of the urinary system disorders. However patients are exposed to a significant radiation dose. The objectives of this study are to: (i) measure and compare patient radiation dose by computed tomography urography (CTU) and conventional intravenous urography (IVU) and (ii) evaluate organ equivalent dose and cancer risks from CTU and IVU imaging procedures. A total of 141 patients were investigated. A calibrated CT machine (Siemens-Somatom Emotion duo) was used for CTU, while a Shimadzu X ray machine was used for IVU. Thermoluminescence dosimeters (TLD-GR200A) were used to measure patients' entrance surface doses (ESD). \\{TLDs\\} were calibrated under reproducible reference conditions. Patients radiation dose values (DLP) for CTU were 17261mGycm, \\{CTDIvol\\} 4.752mGy and effective dose 2.581mSv. Patient cancer probabilities were estimated to be 1.4 per million per CTU examination. Patients \\{ESDs\\} values for IVU were 21.625mGy, effective dose 1.791mSv. CT involves a higher effective dose than IVU. In this study the radiation dose is considered low compared to previous studies. The effective dose from CTU procedures was 30% higher compared to IVU procedures. Wide dose variation between patient doses suggests that optimization is not fulfilled yet.

K. Alzimami; A. Sulieman; E. Omer; I.I. Suliman; K. Alsafi

2014-01-01T23:59:59.000Z

282

Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-medical Uses of Computed Tomography (CT) Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Computed Tomography (CT) Scanner CT Scanner - Courtesy Stanford University Department of Energy Resources Engineering Computed tomography (CT) and Nuclear Magnetic Resonance (NMR) have been used to resolve industrial problems, for materials characterizations, and to provide non-destructive evaluations for discovering flaws in parts before their use, resulting in greater reliability and greater safety for workers; to identify the presence and facilitate the recovery/extraction of oil, water, coal, and/or gas; and to provide non-destructive testing and quality control of fresh fruits and vegetables, enhancing the safety of food. These benefits of non-medical uses of CT and NMR contribute to the economy and improve people's lives.

283

A Fossilized Opal A To Opal C-T Transformation On The Northeast...  

Open Energy Info (EERE)

Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Jump to:...

284

Quantification of liver iron content with CTadded value of dual-energy  

Science Journals Connector (OSTI)

To evaluate the value of dual-energy CT (DECT) with use of an ... decomposition algorithm for the quantification of liver iron content (LIC).

Michael A. Fischer; Caecilia S. Reiner; Dimitri Raptis; Olivio Donati

2011-08-01T23:59:59.000Z

285

MIEDER, WOLFGANG. Proverbs: A Handbook. Westport, CT: Greenwood, 2004. 304 pp.  

E-Print Network (OSTI)

selecta bibliografa, Proverbs: A Handbook interesado en unWOLFGANG. Proverbs: A Handbook. Westport, CT: Greenwood,libros de referencia de Handbooks" publicado en el nueva la

Lee, Alejandro

2005-01-01T23:59:59.000Z

286

E-Print Network 3.0 - aided ct image Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

10 ARTICLE IN PRESS Computer-Aided Design ( ) Summary: a limited number of computed tomography (CT) images. The three-dimensional template geometry of a healthy... contour shown...

287

Table 2 -Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN MO NE NY NC ND OH PA SD TX WI Area  

E-Print Network (OSTI)

Table 2 - Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN.7 Table 2 - Lime use and practices on Corn, major producing states, 2000 CO IL IN IA KS KY MI MN MO NE NY use and practices on Corn, major producing states, 1999 CO IL IN IA KS KY MI MN MO NE NC OH SD TX WI

Kammen, Daniel M.

288

Simultaneous CT and SPECT tomography using CZT detectors  

DOE Patents (OSTI)

A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Lubbock, TX); Simpson, Michael L. (Knoxville, TN); Britton, Jr., Charles L. (Alcoa, TN)

2002-01-01T23:59:59.000Z

289

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis  

E-Print Network (OSTI)

Validation of Plaster Endocast Morphology Through 3D CT Image Analysis P. Thomas Schoenemann,1 by creating endo- casts out of rubber latex shells filled with plaster. The extent to which the method questions. Pairs of virtual endocasts (VEs) created from high-resolution CT scans of corresponding latex/plaster

Schoenemann, P. Thomas

290

Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1)  

E-Print Network (OSTI)

Bone Surface Reconstruction From CT/MR Images Using Fast Marching and Level Set Methods1) Istv surfaces reconstructed from MR volumes are shown. 1 Outline of the project One of our current projects steps of bone surface reconstruction from CT/MR slice images. 2 Main steps of reconstruction 2.1

Chetverikov, Dmitry

291

Multi-atlas Segmentation in Head and Neck CT Scans Amelia M. Arbisser  

E-Print Network (OSTI)

Multi-atlas Segmentation in Head and Neck CT Scans by Amelia M. Arbisser B.S., Computer Science of Engineering Thesis Committee #12;2 #12;Multi-atlas Segmentation in Head and Neck CT Scans by Amelia M, we employ an atlas of labeled training images. We register each of these images to the unlabeled

Golland, Polina

292

Accurate model-based high resolution cardiac image reconstruction in dual source CT  

Science Journals Connector (OSTI)

Cardiac imaging represents one of the most challenging imaging problems, requiring high spatial and temporal resolutions along with good tissue contrast. One of the newest clinical cardiac CT scanners incorporates two source-detector pairs in order to ... Keywords: cardiac, dual source CT, iterative method, model-based imaging

Synho Do; Sanghee Cho; W. Clem Karl; Mannudeep K. Kalra; Thomas J. Brady; Homer Pien

2009-06-01T23:59:59.000Z

293

Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong  

E-Print Network (OSTI)

Hemorrhage Slices Detection in Brain CT Images Ruizhe Liu, Chew Lim Tan, Tze Yun Leong Department) scans are widely used in today's diagnosis of head traumas. It is effective to disclose the bleeding Tomography (CT) scans are widely used in today's diagnosis of head traumas. It is effective to disclose

Tan, Chew Lim

294

AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING G. Funka-Lea1  

E-Print Network (OSTI)

AUTOMATIC HEART ISOLATION FOR CT CORONARY VISUALIZATION USING GRAPH-CUTS G. Funka-Lea1 , Y. Boykov3 isolate the outer surface of the entire heart in Computer Tomogra- phy (CT) cardiac scans. Isolating the entire heart allows the coronary vessels on the surface of the heart to be easily visu- alized despite

Boykov, Yuri

295

GPU IMPLEMENTATION OF A 3D BAYESIAN CT ALGORITHM AND ITS APPLICATION ON REAL FOAM RECONSTRUCTION  

E-Print Network (OSTI)

Tomography (CT) [1, 3]. The limits of these meth- ods appear when the number of projections is small, and as well as any iterative algebraic meth- ods is the computation time and especially for projection solve is to reconstruct the object f from the projection data g collected by a cone beam 3D CT. The link

Paris-Sud XI, Université de

296

Searching Effective Parameters for Low-Dose CT Reconstruction by Ant Colony Optimization  

E-Print Network (OSTI)

, Eric Papenhausen and Klaus Mueller Abstract-- Low-dose Computed Tomography (CT) has been gaining. To cope with the limited data collected at 30% of standard radiation, low-dose CT reconstruction algorithms generally require several iterations of forward projection, back-projection and regularization

Mueller, Klaus

297

Locating the Eyes in CT Brain Scan Data Kostis Kaggelides, Peter J. Elliott  

E-Print Network (OSTI)

, a technique for locating the eyes in Computed Tomography brain scan data, is described. The objective and implemented an algorithm which automaticallyidenti es and locates the eyes in a Computed Tomography(CT) brainLocating the Eyes in CT Brain Scan Data Kostis Kaggelides, Peter J. Elliott IBM UK Scienti c Centre

Fisher, Bob

298

A direct method for air kermalength product measurement in CT for verification of dose display calibrations  

Science Journals Connector (OSTI)

......kerma-length product measurement in CT for verification of dose display calibrations...kerma-length product measurement in CT for verification of dose display calibrations...practice, this means doing measurements in the standard phantoms......

Katja Merimaa; Hannu Jrvinen; Mika Kortesniemi; Juhani Karppinen

2010-08-01T23:59:59.000Z

299

Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance  

Office of Scientific and Technical Information (OSTI)

Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Computed Tomography (CT) Scanner CT Scanner - Courtesy Stanford University Department of Energy Resources Engineering Computed tomography (CT) and Nuclear Magnetic Resonance (NMR) have been used to resolve industrial problems, for materials characterizations, and to provide non-destructive evaluations for discovering flaws in parts before their use, resulting in greater reliability and greater safety for workers; to identify the presence and facilitate the recovery/extraction of oil, water, coal, and/or gas; and to provide non-destructive testing and quality control of fresh fruits and vegetables, enhancing the safety of food. These benefits of non-medical uses of CT and NMR contribute to the economy and improve people's lives.

300

CT effective dose per dose length product using ICRP 103 weighting factors  

SciTech Connect

Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

Huda, Walter; Magill, Dennise; He Wenjun [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina 29425 (United States); Department of Bioengineering, Clemson-MUSC Bioengineering Program, Clemson University, Charleston, South Carolina 29425 (United States)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ZERH Training Session: Syracuse, NY  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Zero Energy Ready Home is a high performance home which is so energy efficient, that a renewable energy system can offset all or most of its annual energy Consumption.US DOE Zero Energy...

302

ny_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Metadata also available as Metadata: IdentificationInformation DataQualityInformation SpatialDataOrganizationInformation SpatialReferenceInformation EntityandAttributeI...

303

Ny teknik fr smskalig kraftvrme.  

E-Print Network (OSTI)

?? As a part of the fight against the global warming the energy production needs to be more efficient and redirected towards sustainable options. One (more)

Eriksson, sa

2009-01-01T23:59:59.000Z

304

10 A.M. CT TODAY: On-the Record Conference Call for Obama Administration to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A.M. CT TODAY: On-the Record Conference Call for Obama A.M. CT TODAY: On-the Record Conference Call for Obama Administration to Announce Major Initiative to Enhance America's Energy Security 10 A.M. CT TODAY: On-the Record Conference Call for Obama Administration to Announce Major Initiative to Enhance America's Energy Security August 16, 2011 - 9:52am Addthis White House Rural Economic Council Promotes Production of Next Generation Biofuels, Job Creation and Economic Opportunity WASHINGTON, Aug. 16, 2011 - Today at 10 a.m. CT (11 a.m. ET), the Obama Administration will advance a major initiative to produce next generation aviation and marine biofuels to power military and commercial transportation. The initiative responds to a directive from President Obama issued in March as part of his Blueprint for a Secure Energy Future, the

305

A Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic  

Open Energy Info (EERE)

Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Details Activities (0) Areas (0) Regions (0) Abstract: Rock samples-collected from a recent deep-water exploration well drilled in the Faeroe-Shetland Channel, northwest of the UK-confirm that a distinctive high-amplitude seismic reflector that crosscuts the Upper Palaeogene and Neogene succession and covers an area of 10 000 km(2) is an example of a fossilized Opal A to Opal C/T (Cristobalite/Tridymite)

306

American Ref-Fuel of SE CT Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of SE CT Biomass Facility American Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type Municipal Solid Waste Location New London County, Connecticut Coordinates 41.5185189°, -72.0468164° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5185189,"lon":-72.0468164,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Low-Dose Spiral CT Scans for Early Lung Cancer Detection  

Energy.gov (U.S. Department of Energy (DOE))

Low-dose spiral computed tomography (CT) scanning is a noninvasive medical imaging test that has been used for the early detection of lung cancer for over 16 years (Sone et al. 1998; Henschke et.al. 1999).

308

DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS 35 without PV. This 2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House...

309

RIS-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN  

E-Print Network (OSTI)

RIS?-M-2586 ELASTIC-PLASTIC FRACTURE MECHANICS ANALYSIS OF A CT-SPECIMEN - A TWO-DIMENSIONAL APPROACH Gunner C. Larsen Abstract. This report documents the results obtained from an elastic-plastic

310

Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws  

Science Journals Connector (OSTI)

In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high- ... resolution imaging techni...

Andr Gahleitner; G. Watzek; H. Imhof

2003-02-01T23:59:59.000Z

311

Finite Element Analysis of Ballistic Penetration of Plain Weave Twaron CT709 Fabrics: A Parametric Study  

E-Print Network (OSTI)

The ballistic impact of Twaron CT709 plain weave fabrics is studied using an explicit finite element method. Many existing approximations pertaining to woven fabrics cannot adequately represent strain rate-dependent behavior exhibited by the Twaron...

Gogineni, Sireesha

2011-10-21T23:59:59.000Z

312

The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy  

SciTech Connect

Purpose: Monte Carlo simulations of radiation therapy require conversion from Hounsfield units (HU) in CT images to an exact tissue composition and density. The number of discrete densities (or density bins) used in this mapping affects the simulation accuracy, execution time, and memory usage in GEANT4 and other Monte Carlo code. The relationship between the number of density bins and CT noise was examined in general for all simulations that use HU conversion to density. Additionally, the effect of this on simulation accuracy was examined for proton radiation. Methods: Relative uncertainty from CT noise was compared with uncertainty from density binning to determine an upper limit on the number of density bins required in the presence of CT noise. Error propagation analysis was also performed on continuously slowing down approximation range calculations to determine the proton range uncertainty caused by density binning. These results were verified with Monte Carlo simulations. Results: In the presence of even modest CT noise (5 HU or 0.5%) 450 density bins were found to only cause a 5% increase in the density uncertainty (i.e., 95% of density uncertainty from CT noise, 5% from binning). Larger numbers of density bins are not required as CT noise will prevent increased density accuracy; this applies across all types of Monte Carlo simulations. Examining uncertainty in proton range, only 127 density bins are required for a proton range error of <0.1 mm in most tissue and <0.5 mm in low density tissue (e.g., lung). Conclusions: By considering CT noise and actual range uncertainty, the number of required density bins can be restricted to a very modest 127 depending on the application. Reducing the number of density bins provides large memory and execution time savings in GEANT4 and other Monte Carlo packages.

Barnes, Samuel; McAuley, Grant; Slater, James [Department of Radiation Medicine, Loma Linda University, Loma Linda, California 92350 (United States); Wroe, Andrew [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92350 (United States)

2013-04-15T23:59:59.000Z

313

AEOSup ltr to Dear Customer  

Gasoline and Diesel Fuel Update (EIA)

WA WA OR CA ID NV UT AZ NM CO WY MT ND SD NE KS OK TX MN IA MO AR LA WI IL KY IN OH WV TN MS AL GA SC NC VA PA NY VT ME NH MA RI CT NJ DE MD D.C. FL MI Electricity Supply Regions 1 ECAR 2 ERCOT 3 MAAC 4 MAIN 5 MAPP 6 NY 7 NE 8 FL 9 STV 10 SPP 11 NWP 12 RA 13 CNV 13 11 12 2 10 5 9 8 1 6 7 3 AK 15 14 H I 14 AK 15 H I Figure 2. Electricity Market Module (EMM) Regions 1. ECAR = East Central Area Reliability Coordination Agreement 2. ERCOT = Electric Reliability Council of Texas 3. MACC = Mid-Atlantic Area Council 4. MAIN = Mid-America Interconnected Network 5. MAPP = Mid-Continent Area Power Pool 6. NY = Northeast Power Coordinating Council/ New York 7. NE = Northeast Power Coordinating Council/ New England 8. FL = Southeastern Electric Reliability Council/ Florida 9. STV = Southeastern Electric Reliability Council /excluding Florida 10. SPP

314

Auto calibration of a cone-beam-CT  

SciTech Connect

Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the achievable spatial resolution of their calibration procedure. Results: Compared to the results published in the most closely related work [K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)], the simulation proved the greater accuracy of their method, as well as a lower standard deviation of roughly 1 order of magnitude. When compared to another similar approach [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004)], their results were roughly of the same order of accuracy. Their analysis revealed that the method is capable of sufficiently calibrating out-of-plane angles in cases of larger cone angles when neglecting these angles negatively affects the reconstruction. Fine details in the 3D reconstruction of the spine segment and an electronic device indicate a high geometric calibration accuracy and the capability to produce state-of-the-art reconstructions. Conclusions: The method introduced here makes no requirements on the accuracy of the test object. In contrast to many previous autocalibration methods their approach also includes out-of-plane rotations of the detector. Although assuming a perfect rotation, the method seems to be sufficiently accurate for a commercial CBCT scanner. For devices which require higher dimensional geometry models, the method could be used as a initial calibration procedure.

Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich [Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden, Germany and Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Oral Surgery (and Oral Radiology), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz (Germany); Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden (Germany)

2012-10-15T23:59:59.000Z

315

Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner  

Science Journals Connector (OSTI)

In radiotherapy treatment planning, the conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations. However, in general, the CT number and electron density of tissues cannot be interrelated using a simple one-to-one correspondence. This study aims to experimentally verify the clinical feasibility of an existing novel conversion method proposed by the author of this note, which converts the energy-subtracted CT number (?HU) to the relative electron density (?e) via a single linear relationship by using a dual-energy CT (DECT). The ?HU?econversion was performed using a clinical second-generation dual-source CT scanner operated in the dual-energy mode with tube potentials of 80kV and 140kV with and without an additional tin filter. The ?HU?ecalibration line was obtained from the DECT image acquisition for tissue substitutes in an electron density phantom. In addition, the effect of object size on ?HU?econversion was also experimentally investigated. The plot of the measured ?HU versus nominal ?evalues exhibited a single linear relationship over a wide ?erange from 0.00 (air) to 2.35 (aluminum). The ?HU?econversion performed with the tin filter yielded a lower dose and more reliable ?evalues that were less affected by the object-size variation when compared to the corresponding values obtained for the case without the tin filter.

Masayoshi Tsukihara; Yoshiyuki Noto; Takahide Hayakawa; Masatoshi Saito

2013-01-01T23:59:59.000Z

316

DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...  

Energy Savers (EERE)

Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

317

DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland...  

Office of Environmental Management (EM)

Old Greenwich, CT, Custom DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit Lake, Iowa DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

318

&RQFHSWXDO 0RGHOLQJ DQG &RPSRVLWLRQ RI  

E-Print Network (OSTI)

efficiently. Organizational processes cover business processes and work processes. Organizational resources providing organizational UHVRXUFHV to organizational SURFHVVHV in order to have them performed more comprise human beings as organizational actors, but also information, tools and representations

319

PCCF RI 1101 Geant4 simulations of +  

E-Print Network (OSTI)

profile from 12 6 C6+ at 200 MeV/u in water equivalent material for different densities. Even a small)] . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Diagram of the nuclear radiative transition. . . . . . . . . . . . . . . . . . . . . 29 3 to handle the deexcitation chain

Paris-Sud XI, Université de

320

Ya ri a bsod Collection 4  

E-Print Network (OSTI)

????????????????????????? Genre or type (i.e. epic, song, ritual) Persuade Song ??? ??????????????? Name of recorder (if different from collector) Date of recording February 2007 ????? ?????????????????????????? Place of recording A skyid Village, A skyid Township... of performer(s) E kho, 72, female, A skyid Township, Mdzo dge County, Rnga ba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. ??,?????????????????????????? ?? ?????? ???? ??? ??????????????????????????????????...

Sha bo don 'grub rdo rje; Skal dbang skyid

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ya ri a bsod Collection 6  

E-Print Network (OSTI)

?????????????????????????????????? ?????????? Genre or type (i.e. epic, song, ritual) Paean ?? ?????? Name of recorder (if different from collector) Date of recording February 2007 ????? ?????????????????????????? Place of recording...

Sha bo don 'grub rdo rje; Skal dbang skyid

322

Ya ri a bsod Collection 7  

E-Print Network (OSTI)

??????????????? ???????????? ????????????????????????????????????????????????????????????????????????? ?????????????????????????????????????????????????????? Genre or type (i.e. epic, song, ritual) Paean ?? ?????? Name...

Sha bo don 'grub rdo rje; Skal dbang skyid

323

First pass cable artefact correction for cardiac C-arm CT imaging  

Science Journals Connector (OSTI)

Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without cables served as a ground truth. The 3D root mean square deviation between the simulated data set with and without cables could be reduced for 96% of the simulated cases by an average of 37% (min ?9%, max 73%) when using the first pass correction method. In addition, image quality improvement is demonstrated for clinical whole heart C-arm CT data sets when the cable removal algorithm was applied.

C Haase; D Schfer; M Kim; S J Chen; J D Carroll; P Eshuis; O Dssel; M Grass

2014-01-01T23:59:59.000Z

324

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Fuels Used and End Uses in Homes in Northeast Region, Divisions, and States, 2009" 8 Fuels Used and End Uses in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Fuels Used and End Uses",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Fuels Used for Any Use" "Electricity",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Natural Gas",69.2,13.8,2.9,1.7,1.1,10.9,5.7,2.3,2.8

325

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" 8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Computers and Other Electronics",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Computers" "Number of Computers" 0,27.4,4.7,1,0.5,0.5,3.7,1.7,1.4,0.5 1,46.9,8.7,2.3,1,1.3,6.4,3.2,2,1.2 2,24.3,4.3,1.2,0.5,0.7,3.1,1.4,0.9,0.8

326

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" 8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Televisions",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Televisions" "Number of Televisions" 0,1.5,0.4,0.1,0.1,"Q",0.2,"Q","Q","Q" 1,24.2,4.6,1.2,0.6,0.6,3.5,2,1,0.4

327

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

328

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" 8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Space Heating",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Space Heating Equipment" "Use Space Heating Equipment",110.1,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Have Space Heating Equipment But Do "

329

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" 8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Household Demographics",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Number of Household Members" "1 Person",31.3,6,1.5,0.7,0.8,4.5,2.1,1.6,0.8 "2 Persons",35.8,6.3,1.8,0.8,1,4.5,2,1.5,0.9

330

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" 8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT" ,,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Urban and Rural2" "Urban",88.1,18,4.4,2.2,2.2,13.6,6.6,3.9,3.1 "Rural",25.5,2.8,1.1,0.3,0.8,1.7,0.6,1,"Q"

331

New England Wind Forum: Past Webinars  

Wind Powering America (EERE)

Connecticut Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Past Webinars Quick Links to States CT MA ME NH RI VT Bookmark and Share Past Webinars Here you will find audio visual files and transcripts of webinars hosted by the New England Wind Energy Project (NEWEEP). You can also learn about upcoming NEWEEP webinars. Title: Wind Power as a Neighbor: Experience with Techniques for Mitigating Public Impacts: A NEWEEP Webinar Speaker(s): Charles Newcomb, National Renewable Energy Laboratory; John Knab, Sheldon, NY; Nils Bolgen, Massachusetts Clean Energy Center Date: 12/7/2011 Running time: 2 hour, 20 minutes Title: Understanding the Current Science, Regulation, and Mitigation of Shadow Flicker: A NEWEEP Webinar

332

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

333

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

334

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" 8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Air Conditioning",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Air Conditioning Equipment" "Use Air Conditioning Equipment",94,16.5,3.9,1.9,2,12.6,5.3,4.4,2.9 "Have Air Conditioning Equipment But"

335

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

336

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2007 (Million Cubic Feet) Nigeria Algeria 37,483 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports.

337

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" 8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home Appliances",,,,"MA",,,"NY","PA","NJ" "Total Homes",113.6,20.8,5.5,2.5,3,15.3,7.2,4.9,3.2 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,5.2,2.3,2.8,14.1,6.8,4.6,2.7

338

Adaptive mean filtering for noise reduction in CT polymer gel dosimetry  

SciTech Connect

X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

Hilts, Michelle; Jirasek, Andrew [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia, V8R6V5 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8W2Y2 (Canada)

2008-01-15T23:59:59.000Z

339

Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability  

SciTech Connect

OBJECTIVE. The objective was to determine if CT or MR imaging findings could be used to accurately predict resectability in patients with biopsy-proved malignant pleural mesotheliomas. SUBJECTS AND METHODS. CT and MR findings in 41 consecutive patients with malignant mesotheliomas who were referred to the thoracic surgery clinic for extrapleural pneumonectomy were studied by thoracic radiologists before surgery. Review of radiologic studies focused on local invasion of three separate regions: the diaphragm, chest wall, and mediastinum. Results of all imaging examinations were carefully correlated with intraoperative, gross, and microscopic pathologic findings. RESULTS. After radiologic and clinical evaluation, 34 patients (83%) had thoracotomy; 24 of these had tumors that were resectable. The sensitivity was high (> 90%) for both CT and MR in each region. Specificity, however, was low, probably because of the small number of patients with unresectable tumors. CONCLUSION. CT and MR provided similar information on resectability in most cases. Sensitivity was high for both procedures. Because CT is more widely available and used, the authors suggest it as the initial study when determining resectability. In difficult cases, important complementary anatomic information can be derived from MR images obtained before surgical intervention.

Patz, E.F. Jr.; Shaffer, K.; Piwnica-Worms, D.R.; Jochelson, M.; Sarin, M.; Sugarbaker, D.J.; Pugatch, R.D. (Department of Radiology, Brigham and Women's Hospital, Boston, MA (United States))

1992-11-01T23:59:59.000Z

340

3D Dose Verification Using Tomotherapy CT Detector Array  

SciTech Connect

Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

Sheng Ke, E-mail: ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Chen Quan; Sobering, Geoff; Olivera, Gustavo [TomoTherapy, Inc., Madison, WI (United States); Read, Paul [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging  

SciTech Connect

Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 2.1 and 110.7 3.0 mGy for the rat-like phantom and between 169.3 4.6 and 203.6 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse-like phantom. OSLDs exhibited a reproducibility of 2.4% and good linearity was found between 60 and 450 mGy. The energy scaling factor was calculated to be between 1.80 0.16 and 1.86 0.16, depending on protocol used. In phantoms, mean doses to tissue over a whole-body CT examination were ranging from 186.4 7.6 to 234.9 7.1 mGy. In mice, mean doses to tissue in the mouse trunk (thorax, abdomen, pelvis, and flanks) were between 213.0 17.0 and 251.2 13.4 mGy. Skin doses (3 OSLDs) were much higher with average doses between 350.6 25.3 and 432.5 34.1 mGy. The dose delivered during a topogram was found to be below 10 mGy. Use of the multimouse bed of the system gave a significantly 20%40% lower dose per animal (p < 0.05).Conclusions: Absorbed doses in micro-CT were found to be relatively high. In micro-SPECT/CT imaging, the micro-CT unit is mainly used to produce a localization frame. As a result, users should pay attention to adjustable CT parameters so as to minimize the radiation dose and avoid any adverse radiation effects which may interfere with biological parameters studied.

Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France)] [Landauer Europe, 33 avenue du Gnral Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France)] [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, Franois [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [Department of Nuclear Medicine, Centre Georges-Franois Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

2013-12-15T23:59:59.000Z

342

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

343

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 4 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

344

Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model  

SciTech Connect

Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People's Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

2012-01-15T23:59:59.000Z

345

Correction of CT artifacts and its influence on Monte Carlo dose calculations  

SciTech Connect

Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts.

Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank [Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G1A4 (Canada); Department de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec City, Quebec, G1K7P4 (Canada) and Department de Radio-Oncologie, Hotel Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec, G1R2J6 (Canada); Medical Physics Department, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G1A4 (Canada)

2007-06-15T23:59:59.000Z

346

Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means  

SciTech Connect

Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms the conventional interpolation-based approaches by producing images with the markedly improved structural clarity and greatly reduced artifacts.

Zhang Yu [School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China and Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Yap, Pew-Thian; Wu Guorong [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Feng Qianjin; Chen Wufan [School of Biomedical Engineering, Southern Medical University, Guangzhou 510515 (China); Lian Jun [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Shen Dinggang [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2013-05-15T23:59:59.000Z

347

Resolution enhancement of lung 4D-CT via group-sparsity  

SciTech Connect

Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets, Phys. Med. Biol. 54, 18491870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as quantitatively, the ability of their approach to achieve more accurate and better localized results over bicubic interpolation as well as a related state-of-the-art approach. The authors also show results on some datasets with tumor, to further emphasize the clinical importance of their method.Conclusions: The authors have proposed to improve the superior-inferior resolution of 4D-CT by estimating intermediate slices. The authors approach exploits neighboring constraints in the group-sparsity framework, toward the goal of achieving better localization and noise robustness. The authors results are encouraging, and positively demonstrate the role of group-sparsity for 4D-CT resolution enhancement.

Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Lian, Jun [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2013-12-15T23:59:59.000Z

348

Phase I and Pharmacokinetic Study of CT-322 (BMS-844203), a Targeted Adnectin Inhibitor of VEGFR-2 Based on a Domain of Human Fibronectin  

Science Journals Connector (OSTI)

...Bristol-Myers Squibb, Princeton, New Jersey Note: Supplementary...or biweekly (q2w). Plasma samples were assayed for CT-322 concentrations, plasma VEGF-A concentrations...kg qw or q2w. CT-322 plasma concentrations increased...

Anthony W. Tolcher; Christopher J. Sweeney; Kyri Papadopoulos; Amita Patnaik; Elena G. Chiorean; Alain C. Mita; Kamalesh Sankhala; Eric Furfine; Jochem Gokemeijer; Lisa Iacono; Cheryl Eaton; Bruce A. Silver; and Monica Mita

2011-01-15T23:59:59.000Z

349

Patterns of Colorectal Cancer Test Use, Including CT Colonography, in the 2010 National Health Interview Survey  

Science Journals Connector (OSTI)

...Trial of the American College of Radiology Imaging Network (ACRIN), CT...for one type of service such as dental care, vision care, or prescriptions...Cancer, and American College of Radiology.Radiology 2008;248:717-20. 9. Johnson...

Jean A. Shapiro; Carrie N. Klabunde; Trevor D. Thompson; Marion R. Nadel; Laura C. Seeff; and Arica White

2012-06-01T23:59:59.000Z

350

DOE Zero Energy Ready Home Case Study: Brookside Development, Derby, CT  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story, 4,000+-ft2...

351

A semi-automatic semantic method for mapping SNOMED CT concepts to VCM icons  

E-Print Network (OSTI)

A semi-automatic semantic method for mapping SNOMED CT concepts to VCM icons Jean-Baptiste Lamya of Concept in Medicine) is an iconic lan- guage for representing key medical concepts by icons. How- ever icons to the terms of these terminologies. Here, we present and evaluate a semi-automatic semantic

Paris-Sud XI, Université de

352

DAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1)  

E-Print Network (OSTI)

-ray/neutron spectrometer, a magnetometer and a gravity investigation. Dawn uses solar arrays to power its xenon ion engine solar panels roughly 21 m tip-to-tip, a 5 m magnetometer boom and three ion thrusters, one of whichDAWN: A JOURNEY TO THE BEGINNING OF THE SOLAR SYSTEM C.T. Russell(1) , A. Coradini(2) , W

Zuber, Maria

353

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM)  

E-Print Network (OSTI)

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM) Hao Gao1 , Hengyong Yu2 spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base

Soatto, Stefano

354

Investigation of energy weighting using an energy discriminating photon counting detector for breast CT  

SciTech Connect

Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%63% and 4%34%, for HA and IDC lesions and 12%30% (with Al filtration) and 32%38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver operating characteristic curve (AUC) for detection of microcalcifications was higher by greater than 19% (for the different energy weighting methods tested) as compared to the AUC obtained with an energy integrating detector.Conclusions: This study showed that breast CT with a CZT photon counting detector using energy weighting can provide improvements in pixel SNR, and detectability of microcalcifications as compared to that with a conventional energy integrating detector. Since a number of degrading physical factors were not modeled into the photon counting detector, this improvement should be considered as an upper bound on achievable performance.

Kalluri, Kesava S. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States)] [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Mahd, Mufeed [Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States)] [Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)] [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

2013-08-15T23:59:59.000Z

355

Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT  

Science Journals Connector (OSTI)

Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3ml (min g)?1, cardiac output = 3, 5, 8 L min?1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

Michael Bindschadler; Dimple Modgil; Kelley R Branch; Patrick J La Riviere; Adam M Alessio

2014-01-01T23:59:59.000Z

356

E2SOL LLC | Open Energy Information  

Open Energy Info (EERE)

Zip: 02818 Region: Northeast - NY NJ CT PA Area Sector: Renewable Energy Product: Solar, Wind, Hydropower Systems Number of Employees: >10 Year Founded: 2009 Phone Number:...

357

Lack of Correlation Between External Fiducial Positions and Internal Tumor Positions During Breath-Hold CT  

SciTech Connect

Purpose: For thoracic tumors, if four-dimensional computed tomography (4DCT) is unavailable, the internal margin can be estimated by use of breath-hold (BH) CT scans acquired at end inspiration (EI) and end expiration (EE). By use of external surrogates for tumor position, BH accuracy is estimated by minimizing the difference between respiratory extrema BH and mean equivalent-phase free breathing (FB) positions. We tested the assumption that an external surrogate for BH accuracy correlates with internal tumor positional accuracy during BH CT. Methods and Materials: In 16 lung cancer patients, 4DCT images, as well as BH CT images at EI and EE, were acquired. Absolute differences between BH and mean equivalent-phase (FB) positions were calculated for both external fiducials and gross tumor volume (GTV) centroids as metrics of external and internal BH accuracy, respectively, and the results were correlated. Results: At EI, the absolute difference between mean FB and BH fiducial displacement correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.11). Similarly, at EE, the absolute difference between mean FB and BH fiducial displacements correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R{sup 2} = 0.18). Conclusions: External surrogates for tumor position are not an accurate metric of BH accuracy for lung cancer patients. This implies that care should be taken when using such an approach because an incorrect internal margin could be generated.

Hunjan, Sandeep, E-mail: shunjan@mdanderson.or [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Starkschall, George; Prado, Karl; Dong Lei; Balter, Peter [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

2010-04-15T23:59:59.000Z

358

Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained During Image-Guided Radiotherapy Using CT-on-Rails for the Treatment of Prostate Cancer  

SciTech Connect

Purpose: To review 1870 CT scans of interfractional prostate shift obtained during image-guided radiotherapy. Methods and Materials: A total of 1870 pretreatment CT scans were acquired with CT-on-rails, and the corresponding shift data for 329 patients with prostate cancer were analyzed. Results: Of the 1870 scans reviewed, 44% required no setup adjustments in the anterior-posterior (AP) direction, 14% had shifts of 3-5 mm, 29% had shifts of 6-10 mm, and 13% had shifts of >10 mm. In the superior-inferior direction, 81% had no adjustments, 2% had shifts of 3-5 mm, 15% had shifts of 6-10 mm, and 2% had shifts of >10 mm. In the left-right direction, 65% had no adjustment, 13% had shifts of 3-5 mm, 17% had shifts of 6-10 mm, and 5% had shifts of >10 mm. Further analysis of the first 66 consecutive patients divided into three groups according to body mass index indicates that the shift in the AP direction for the overweight subgroup was statistically larger than those for the control and obese subgroups (p < 0.05). The interfractional shift in the lateral direction for the obese group (1 SD, 5.5 mm) was significantly larger than those for the overweight and control groups (4.1 and 2.9 mm, respectively) (p < 0.001). Conclusions: These data demonstrate that there is a significantly greater shift in the AP direction than in the lateral and superior-inferior directions for the entire patient group. Overweight and obese patient groups show a significant difference from the control group in terms of prostate shift.

Wong, James R. [Department of Radiation Oncology, Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States)], E-mail: james.wong@atlantichealth.org; Gao Zhanrong [Department of Radiation Oncology, Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States); Uematsu, Minoru [Department of Radiation Oncology, UAS Oncology Center, Kagoshima (Japan); Merrick, Scott; Machernis, Nolan P.; Chen, Timothy; Cheng, C.W. [Department of Radiation Oncology, The Carol G. Simon Cancer Center, Morristown Memorial Hospital, Morristown, NJ (United States)

2008-12-01T23:59:59.000Z

359

Reference dosimetry during diagnostic CT examination using XR-QA radiochromic film model  

SciTech Connect

Purpose: The authors applied 2D reference dosimetry protocol for dose measurements using XR-QA radiochromic film model during diagnostic computed tomography (CT) examinations carried out on patients and humanoid Rando phantom. Methods: Response of XR-QA model GAFCHROMIC film reference dosimetry system was calibrated in terms of Air-Kerma in air. Four most commonly used CT protocols were selected on their CT scanner (GE Lightspeed VCT 64), covering three anatomical sites (head, chest, and abdomen). For each protocol, 25 patients ongoing planned diagnostic CT examination were recruited. Surface dose was measured using four or eight film strips taped on patients' skin and on Rando phantom. Film pieces were scanned prior to and after irradiation using Epson Expression 10000XL document scanner. Optical reflectance of the unexposed film piece was subtracted from exposed one to obtain final net reflectance change, which is subsequently converted to dose using previously established calibration curves. Results: The authors' measurements show that body skin dose variation has a sinusoidal pattern along the scanning axis due to the helical movement of the x-ray tube, and a comb pattern for head dose measurements due to its axial movement. Results show that the mean skin dose at anterior position for patients is (51 {+-} 6) mGy, (29 {+-} 11) mGy, (45 {+-} 13) mGy and (38 {+-} 20) mGy for head, abdomen, angio Abdomen, and chest and abdomen protocol (UP position), respectively. The obtained experimental dose length products (DLP) show higher values than CT based DLP taken from the scanner console for body protocols, but lower values for the head protocol. Internal dose measurements inside the phantom's head indicate nonuniformity of dose distribution within scanned volume. Conclusions: In this work, the authors applied an Air-Kerma in air based radiochromic film reference dosimetry protocol for in vivo skin dose measurements. In this work, they employed green channel extracted from the scanned RGB image for dose measurements in the range from 0 to 200 mGy. Measured skin doses and corresponding DLPs were higher than DLPs provided by the CT scanner manufacturer as they were measured on patients' skin.

Boivin, Jonathan; Tomic, Nada; Fadlallah, Bassam; DeBlois, Francois; Devic, Slobodan [Institut de Genie Biomedical, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Medical Physics Unit, McGill University, Montral, Quebec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, 3755 chemin de la Cote-Sainte-Catherine, Montreal, Quebec H3T 1E2 (Canada); Department of Biomedical Engineering, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada); Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4, Canada and Department of Radiation Oncology, SMBD Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2 (Canada)

2011-09-15T23:59:59.000Z

360

Graystone Group Advertising, 2710 North Ave, Suite 200 Bridgeport, CT 06604 Phone: 8005440005 or 2035490060 Fax: 2035490061  

E-Print Network (OSTI)

Graystone Group Advertising, 2710 North Ave, Suite 200 Bridgeport, CT 06604 Phone: 8005440005 or 2035490060 Fax: 2035490061 Email: ads@graystoneadv.com Placing Recruitment Advertising To assist University departments with all recruitment and advertising needs, Clemson is now partnered

Bolding, M. Chad

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supplementary testing is not required on the cobas 4800 CT/NG test for Neisseria gonorrhoeae weak positive urogenital samples.  

Science Journals Connector (OSTI)

...not required on the cobas 4800 CT/NG test for Neisseria gonorrhoeae weak positive...gonorrhoeae (NG) nucleic acid amplification test (NAAT) results are difficult to interpret...treatment should be based on clinical pre-test probability.

Collette Bromhead; Nadika Liyanarachchy; Julia Mayes; Arlo Upton; Michelle Balm

2014-11-12T23:59:59.000Z

362

A method for measuring joint kinematics designed for accurate registration of kinematic data to models constructed from CT data  

E-Print Network (OSTI)

A method for measuring three-dimensional kinematics that incorporates the direct cross-registration of experimental kinematics with anatomic geometry from Computed Tomography (CT) data has been developed. Plexiglas ...

Fischer, Kenneth J.; Manson, T. T.; Pfaeffle, H. J.; Tomaino, M. M.; Woo, S. L-Y

2001-03-01T23:59:59.000Z

363

PET/CT com FDG-18 F em pacientes com suspeita de recidiva de carcinoma de ovrio.  

E-Print Network (OSTI)

??O exame PET/CT com FDG-18F um mtodo de diagnstico por imagem, til em oncologia. O cncer de ovrio o cncer ginecolgico de maior (more)

Sanja Dragosavac

2011-01-01T23:59:59.000Z

364

Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)  

SciTech Connect

The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han (NIH)

2012-05-10T23:59:59.000Z

365

CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience  

SciTech Connect

PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targeting precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.

Schubert, Tilman, E-mail: TSchubert@uhbs.ch; Jacob, Augustinus L.; Pansini, Michele [University Hospital Basel, Department of Radiology and Nuclear Medicine (Switzerland); Liu, David [Vancouver General Hospital, University of British Columbia, Department of Radiology (Canada); Gutzeit, Andreas [Winterthur Cantonal Hospital, Department of Radiology (Switzerland); Kos, Sebastian [University Hospital Basel, Department of Radiology and Nuclear Medicine (Switzerland)

2013-08-01T23:59:59.000Z

366

0% 10% 20% 30% Employment Agency (2)  

E-Print Network (OSTI)

Sales Engineer Monessen PA Fuel Cell Energy Advanced Technologies Chemical Engineer Danbury CT OSIsoft Binghamton NY Kiewit Engineer Denver CO McLaren Engineering Group Marine Structural Engineer Nyack NY MTA Associate Engineer New York NY National Fuel Gas Company Associate Engineer Erie PA National Fuel Gas

Doyle, Robert

367

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Brookhaven National Laboratory William Brookhaven National Laboratory William Floyd Parkway Upton New York http www bnl gov Northeast NY NJ CT PA Area Calverton Business Incubator Calverton Business Incubator Middle Country Rd Calverton New York http www sunysb edu research calverton Northeast NY NJ CT PA Area Consultative Group on International Agricultural Research Consultative Group on International Agricultural Research H Street NW Washington District of Columbia http www cgiar org Northeast NY NJ CT PA Area Knowledge Strategies Knowledge Strategies Atwell Ct Potomac Maryland Northeast NY NJ CT PA Area Passport to Knowledge Passport to Knowledge Morristown New Jersey http passporttoknowledge com Northeast NY NJ CT PA Area Rutgers EcoComplex Rutgers EcoComplex Florence Columbus Rd Bordentown

368

Development of a dynamic quality assurance testing protocol for multisite clinical trial DCE-CT accreditation  

SciTech Connect

Purpose: Credentialing can have an impact on whether or not a clinical trial produces useful quality data that is comparable between various institutions and scanners. With the recent increase of dynamic contrast enhanced-computed tomography (DCE-CT) usage as a companion biomarker in clinical trials, effective quality assurance, and control methods are required to ensure there is minimal deviation in the results between different scanners and protocols at various institutions. This paper attempts to address this problem by utilizing a dynamic flow imaging phantom to develop and evaluate a DCE-CT quality assurance (QA) protocol.Methods: A previously designed flow phantom, capable of producing predictable and reproducible time concentration curves from contrast injection was fully validated and then utilized to design a DCE-CT QA protocol. The QA protocol involved a set of quantitative metrics including injected and total mass error, as well as goodness of fit comparison to the known truth concentration curves. An additional region of interest (ROI) sensitivity analysis was also developed to provide additional details on intrascanner variability and determine appropriate ROI sizes for quantitative analysis. Both the QA protocol and ROI sensitivity analysis were utilized to test variations in DCE-CT results using different imaging parameters (tube voltage and current) as well as alternate reconstruction methods and imaging techniques. The developed QA protocol and ROI sensitivity analysis was then applied at three institutions that were part of clinical trial involving DCE-CT and results were compared.Results: The inherent specificity of robustness of the phantom was determined through calculation of the total intraday variability and determined to be less than 2.2 1.1% (total calculated output contrast mass error) with a goodness of fit (R{sup 2}) of greater than 0.99 0.0035 (n= 10). The DCE-CT QA protocol was capable of detecting significant deviations from the expected phantom result when scanning at low mAs and low kVp in terms of quantitative metrics (Injected Mass Error 15.4%), goodness of fit (R{sup 2}) of 0.91, and ROI sensitivity (increase in minimum input function ROI radius by 146 86%). These tests also confirmed that the ASIR reconstruction process was beneficial in reducing noise without substantially increasing partial volume effects and that vendor specific modes (e.g., axial shuttle) did not significantly affect the phantom results. The phantom and QA protocol were finally able to quickly (<90 min) and successfully validate the DCE-CT imaging protocol utilized at the three separate institutions of a multicenter clinical trial; thereby enhancing the confidence in the patient data collected.Conclusions: A DCE QA protocol was developed that, in combination with a dynamic multimodality flow phantom, allows the intrascanner variability to be separated from other sources of variability such as the impact of injection protocol and ROI selection. This provides a valuable resource that can be utilized at various clinical trial institutions to test conformance with imaging protocols and accuracy requirements as well as ensure that the scanners are performing as expected for dynamic scans.

Driscoll, B. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)] [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Keller, H. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2 (Canada)] [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2 (Canada); Jaffray, D.; Coolens, C. [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada) [Department of Radiation Physics, Princess Margaret Cancer Center, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1L5 (Canada)

2013-08-15T23:59:59.000Z

369

PET/CT for Radiotherapy Treatment Planning in Patients With Soft Tissue Sarcomas  

SciTech Connect

Purpose: To study the possibility of incorporating positron emission tomography/computed tomography (PET/CT) information into radiotherapy treatment planning in patients with high-grade soft tissue sarcomas (STS). Methods and Materials: We studied 17 patients treated with preoperative radiotherapy at our institution from 2005 to 2007. All patients had a high-grade STS and had had a staging PET/CT scan. For each patient, an MRI-based gross tumor volume (GTV), considered to be the contemporary standard for radiotherapy treatment planning, was outlined on a T1-gadolinium enhanced axial MRI (GTV{sub MRI}), and a second set of GTVs were outlined using different threshold values on PET images (GTV{sub PET}). PET-based target volumes were compared with the MRI-based GTV. Threshold values for target contouring were determined as a multiple (from 2 to 10 times) of the background soft tissue uptake values (B) sampled over healthy tissue. Results: PET-based GTVs contoured using a threshold value of 2 or 2.5 most closely resembled the GTV{sub MRI} volumes. Higher threshold values lead to PET volumes much smaller than the GTV{sub MRI}. The standard deviations between the average volumes of GTV{sub PET} and GTV{sub MRI} ratios for all thresholds were large, ranging from 36% for 2 xB up to 93% for 10 xB. Maximum uptake-to-background ratio correlated poorly with the maximum standardized uptake values. Conclusions: It is unlikely that PET/CT will make a significant contribution in GTV definition for radiotherapy treatment planning in patients with STS using threshold methods on PET images. Future studies will focus on molecular imaging and tumor physiology.

Karam, Irene [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Devic, Slobodan [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec (Canada); Hickeson, Marc [Department of Nuclear Medicine, McGill University Health Centre, Montreal, Quebec (Canada); Roberge, David [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Turcotte, Robert E. [Department of Orthopedic Surgery, McGill University Health Centre, Montreal, Quebec (Canada); Freeman, Carolyn R., E-mail: carolyn.freeman@muhc.mcgill.c [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)

2009-11-01T23:59:59.000Z

370

Reference-free ground truth metric for metal artifact evaluation in CT images  

SciTech Connect

Purpose: In computed tomography (CT), metal objects in the region of interest introduce data inconsistencies during acquisition. Reconstructing these data results in an image with star shaped artifacts induced by the metal inconsistencies. To enhance image quality, the influence of the metal objects can be reduced by different metal artifact reduction (MAR) strategies. For an adequate evaluation of new MAR approaches a ground truth reference data set is needed. In technical evaluations, where phantoms can be measured with and without metal inserts, ground truth data can easily be obtained by a second reference data acquisition. Obviously, this is not possible for clinical data. Here, an alternative evaluation method is presented without the need of an additionally acquired reference data set. Methods: The proposed metric is based on an inherent ground truth for metal artifacts as well as MAR methods comparison, where no reference information in terms of a second acquisition is needed. The method is based on the forward projection of a reconstructed image, which is compared to the actually measured projection data. Results: The new evaluation technique is performed on phantom and on clinical CT data with and without MAR. The metric results are then compared with methods using a reference data set as well as an expert-based classification. It is shown that the new approach is an adequate quantification technique for artifact strength in reconstructed metal or MAR CT images. Conclusions: The presented method works solely on the original projection data itself, which yields some advantages compared to distance measures in image domain using two data sets. Beside this, no parameters have to be manually chosen. The new metric is a useful evaluation alternative when no reference data are available.

Kratz, Baerbel; Ens, Svitlana; Mueller, Jan; Buzug, Thorsten M. [Institute of Medical Engineering, University of Luebeck, 23538 Luebeck (Germany)

2011-07-15T23:59:59.000Z

371

Cost-Effectiveness of CT Screening in the National Lung Screening Trial  

Science Journals Connector (OSTI)

Lung cancer is the leading cause of cancer-related deaths in the United States; however, until recently, no method of screening had been shown to reduce mortality from lung cancer. The National Lung Screening Trial (NLST) showed that screening with low-dose helical computed tomography (CT) of the... The screening of persons at risk for lung cancer may reduce lung-cancer mortality by 20%. Although cost-effectiveness estimates vary widely depending on assumptions, a careful analysis indicates that the cost is $81,000 per quality-adjusted life-year.

Black W.C.; Gareen I.F.; Soneji S.S.

2014-11-06T23:59:59.000Z

372

Probability of Cancer in Pulmonary Nodules Detected on First Screening CT  

Science Journals Connector (OSTI)

...nodules; one-sided 97.5% CI, 0 to 0.006). The location of a nodule was evaluated according to lobar distribution. A larger number of nodules and a larger number of cancers were observed in the left upper and right upper lobes than in the left or right lower lobes or the right middle lobe (Table 1). For... Using data from two large data sets of lung-cancer screening by CT, the authors identified factors that increased the likelihood that a nodule was malignant, including older age, female sex, nodule location in the upper lobe, lower nodule count, and certain nodule features.

McWilliams A.; Tammemagi M.C.; Mayo J.R.

2013-09-05T23:59:59.000Z

373

Improving best-phase image quality in cardiac CT by motion correction with MAM optimization  

SciTech Connect

Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.

Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

2013-03-15T23:59:59.000Z

374

DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT, Custom  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready Home in Old Greenwich CT, that scored HERS 42 without PV or HERS 20 with PV. This 2,700 ft2 custom home has advanced framed walls with R-24 blown cellulose plus R-7.5 EPS rigid foam, membrane-coated OSB, a close-cell spray foamed attic, R-13 closed-cell spray foam under the slab and on basement walls, an ERV, and a gas boiler for forced air and radiant floor heat.

375

MRI- Versus CT-Based Volume Delineation of Lumpectomy Cavity in Supine Position in Breast-Conserving Therapy: An Exploratory Study  

SciTech Connect

Purpose: To examine magnetic resonance imaging (MRI) and computed tomography (CT) for lumpectomy cavity (LC) volume delineation in supine radiotherapy treatment position and to assess the interobserver variability. Methods and Materials: A total of 15 breast cancer patients underwent a planning CT and directly afterward MRI in supine radiotherapy treatment position. Then, 4 observers (2 radiation oncologists and 2 radiologists) delineated the LC on the CT and MRI scans and assessed the cavity visualization score (CVS). The CVS, LC volume, conformity index (CI), mean shift of the center of mass (COM), with the standard deviation, were quantified for both CT and MRI. Results: The CVS showed that MRI and CT provide about equal optimal visibility of the LC. If the CVS was high, magnetic resonance imaging provided more detail of the interfaces of the LC seroma with the unaffected GBT. MRI also pictured in more detail the interfaces of axillary seromas (if present) with their surroundings and their relationship to the LC. Three observers delineated smaller, and one observer larger, LC volumes comparing the MRI- and CT-derived delineations. The mean {+-} standard deviation CI was 32% {+-} 25% for MRI and 52% {+-} 21% for CT. The mean {+-} standard deviation COM shift was 11 {+-} 10 mm (range 1-36) for MRI and 4 {+-} 3 mm (range 1-10) for CT. Conclusions: MRI does not add additional information to CT in cases in which the CVS is assessed as low. The conformity (CI) is lower for MRI than for CT, especially at a low CVS owing to greater COM shifts for MRI, probably caused by inadequate visibility of the surgical clips on magnetic resonance (MR) images. The COM shifts seriously dictate a decline in the CI more than the variability of the LC volumes does. In cases in which MRI provides additional information, MRI must be combined with the CT/surgical clip data.

Giezen, Marina, E-mail: marinagiezen@zonnet.nl [Radiotherapy Center West, Medical Center Haaglanden, The Hague (Netherlands); Kouwenhoven, Erik [Radiotherapy Center West, Medical Center Haaglanden, The Hague (Netherlands); Scholten, Astrid N. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Coerkamp, Emile G.; Heijenbrok, Mark [Department of Radiology, Medical Center Haaglanden, The Hague (Netherlands); Jansen, Wim P.A. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Mast, Mirjam E.; Petoukhova, Anna L. [Radiotherapy Center West, Medical Center Haaglanden, The Hague (Netherlands); Struikmans, Henk [Radiotherapy Center West, Medical Center Haaglanden, The Hague (Netherlands); Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands)

2012-03-15T23:59:59.000Z

376

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Partners Inc Advanced Materials Partners Inc Pine Partners Inc Advanced Materials Partners Inc Pine Street New Canaan Connecticut Venture investor http www amplink com Northeast NY NJ CT PA Area Akeida Capital Management Akeida Capital Management New York New York Financing Environmental Projects http www akeidacapital com Northeast NY NJ CT PA Area Ardour Capital Ardour Capital th ave New York New York http www ardourcapital com Northeast NY NJ CT PA Area Asia West LLC Asia West LLC One East Weaver Street Greenwich Connecticut Strategic investor in environmental technologies http www asiawestfunds com Northeast NY NJ CT PA Area BEV Capital BEV Capital Tresser Blvd th Floor Stamford Connecticut Venture capital firm http www bevcapital com Northeast NY NJ CT PA Area Battelle Ventures Battelle Ventures Carnegie Center Suite Princeton

377

MRI and CT image indexing and retrieval using local mesh peak valley edge patterns  

Science Journals Connector (OSTI)

Abstract In this paper, a new pattern based feature, local mesh peak valley edge pattern (LMePVEP) is proposed for biomedical image indexing and retrieval. The standard LBP extracts the gray scale relationship between the center pixel and its surrounding neighbors in an image. Whereas the proposed method extracts the gray scale relationship among the neighbors for a given center pixel in an image. The relations among the neighbors are peak/valley edges which are obtained by performing the first-order derivative. The performance of the proposed method (LMePVEP) is tested by conducting two experiments on two benchmark biomedical databases. Further, it is mentioned that the databases used for experiments are OASIS?MRI database which is the magnetic resonance imaging (MRI) database and VIA/IELCAP-CT database which includes region of interest computer tomography (CT) images. The results after being investigated show a significant improvement in terms average retrieval precision (ARP) and average retrieval rate (ARR) as compared to LBP and LBP variant features.

Subrahmanyam Murala; Q.M. Jonathan Wu

2014-01-01T23:59:59.000Z

378

Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology  

Science Journals Connector (OSTI)

Objectives This study compares 2 measures of effective dose, E1990 and E2007, for 8 dentoalveolar and maxillofacial cone-beam computerized tomography (CBCT) units and a 64-slice multidetector CT (MDCT) unit. Study design Average tissue-absorbed dose, equivalent dose, and effective dose were calculated using thermoluminescent dosimeter chips in a radiation analog dosimetry phantom. Effective doses were derived using 1990 and the superseding 2007 International Commission on Radiological Protection (ICRP) recommendations. Results Large-field of view (FOV) CBCT E2007 ranged from 68 to 1,073 ?Sv. Medium-FOV CBCT E2007 ranged from 69 to 560 ?Sv, whereas a similar-FOV MDCT produced 860 ?Sv. The E2007 calculations were 23% to 224% greater than E1990. Conclusions The 2007 recommendations of the ICRP, which include salivary glands, extrathoracic region, and oral mucosa in the calculation of effective dose, result in an upward reassessment of fatal cancer risk from oral and maxillofacial radiographic examinations. Dental CBCT can be recommended as a dose-sparing technique in comparison with alternative medical CT scans for common oral and maxillofacial radiographic imaging tasks.

John B. Ludlow; Marija Ivanovic

2008-01-01T23:59:59.000Z

379

Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube  

SciTech Connect

Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom measurements for some patients. The software has potential to be used in any application where one wishes to model changes to patient conditions.

Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie [Medical Physics Department, Addenbrooke's Hospital, Cambridge CB2 0QQ (United Kingdom)

2012-01-15T23:59:59.000Z

380

Microsoft Word - FUSRAP Colonie NY.rtf  

Office of Legacy Management (LM)

Colonie Interim Storage Site Colonie Interim Storage Site (CISS) Colonie, New York FACT SHEET Jan 2004 DESCRIPTION: The site consists of a total area of 11.2 acres plus 56 vicinity properties. The site was owned and operated by National Lead Industries (NL) from 1937-1984. The facility was used for electroplating and manufacturing various components from uranium and thorium. Radioactive materials released from the plant exhaust stacks spread to site buildings, portions of the grounds, and 56 commercial and residential vicinity properties (VPs). NL also dumped contaminated casting sand into the former Patroon Lake. The New York State Supreme Court shut down the NL plant in 1984. AUTHORIZATION/PROJECT DESCRIPTION: Responsibility for the Colonie site was assigned to the U.S. Department of Energy (DOE) as a decontamination research and development project by the U.S.

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - NY.17-16.doc  

Office of Legacy Management (LM)

Printed with soy ink on recycled paper Printed with soy ink on recycled paper Department of Energy Washington, DC 20585 Ms. Judith Leithner Project Manager, Buffalo District U.S. Army Corps of Engineers Department of the Army 1776 Niagara Street Buffalo, New York 14207-3199 Dear Ms. Leithner: This is in reference to the Niagara Falls Storage Site (NFSS) Vicinity Properties E', E, and G located in Lewiston, New York. In accordance with the terms of the March 1999 Memorandum of Understanding (MOU) between the Department of Energy (DOE) and the U.S. Army Corps of Engineers (U.S. ACE), DOE is in the process of completing closure documentation for several sites remediated by DOE prior to assignment of the Formerly Utilized Sites Remedial Action Program (FUSRAP) to the U.S. ACE. Under contract to the U.S. ACE (U.S. ACE Contract

382

Acceleration Of Wound Healing Ny Photodynamic Therapy  

DOE Patents (OSTI)

Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

Hasan, Tayyaba (Arlington, MA); Hamblin, Michael R. (Revere, MA); Trauner, Kenneth (Sacramento, CA)

2000-08-22T23:59:59.000Z

383

Offshore Wind in NY State (New York)  

Energy.gov (U.S. Department of Energy (DOE))

NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

384

Projection Radiography Polytechnic University, Brooklyn, NY 11201  

E-Print Network (OSTI)

­ Compensation and Scatter control ­ Film screen detector · Image formation ­ Geometric effect ­ Extended source: · The produced x-ray power Px (in[W]) is given by: ­ Material constant k = 1.1?10-9 for Tungsten (Z=74). 2 tube P kZ V = = = = = Electrical power consumption of tube: Ptube = Itube ? Vtube [W] [From Graber

Suel, Torsten

385

PO Box 5786 Ithaca, NY 148525786  

E-Print Network (OSTI)

a case of "kennel cough", a single serum sample can determine whether the animal has been infected that cough are not infected with canine influenza virus. The standard respirato ry pathogens of dogs have

Keinan, Alon

386

Caldwell Hall Ithaca, NY 14853-2602  

E-Print Network (OSTI)

graphics building technology and environmental science Architecture [M.Arch. professional] architecture applied econometrics and quantitative analysis economics of development environmental management (M Resource Economics [M.S., Ph.D., M.P.S.(A.L.S.)] environmental economics resource economics APPLIED

Angenent, Lars T.

387

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

388

Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information  

SciTech Connect

Purpose: To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images. Methods: Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable. Results: The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0.86, 0.95) and 0.92 (0.87, 0.96), respectively. The correlation coefficients of the MLR and ANN predictions with the number of radiologists who responded as distinguishable were 0.76 (0.69, 0.82, p < 0.001) and 0.78 (0.71, 0.83, p < 0.001), respectively. Conclusions: The MLR and ANN models constructed using the DICOM header information offer promise in predicting the fidelity of JPEG2000 compressed abdomen CT images.

Kim, Kil Joong; Kim, Bohyoung; Lee, Hyunna; Choi, Hosik; Jeon, Jong-June; Ahn, Jeong-Hwan; Lee, Kyoung Ho [Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 (Korea, Republic of); School of Computer Science and Engineering, Seoul National University, 599 Kwanak-Ro, Kwanak-Gu, Seoul, 151-742 (Korea, Republic of); Department of Informational Statistics, Hoseo University, 165, Sechul-ri, Baebang-myeon, Asan-si, Chungcheongnam-do, 336-795 (Korea, Republic of); Department of Statistics, Seoul National University, 599 Kwanak-Ro, Kwanak-Gu, Seoul, 151-742 (Korea, Republic of); Korean Intellectual Property Office, Government Complex-Daejeon, 139 Seonsa-ro, Seo-gu, Daejeon, 302-701 (Korea, Republic of); Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine, and Seoul National University Medical Research Center, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707 (Korea, Republic of)

2011-12-15T23:59:59.000Z

389

A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space  

SciTech Connect

Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

Kouznetsov, Alexei; Tambasco, Mauro [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Physics and Astronomy and Department of Oncology, University of Calgary and Tom Baker Cancer Centre, 1331-29 Street NW Calgary, Alberta T2N 4N2 (Canada)

2011-03-15T23:59:59.000Z

390

A Backprojection-Filtration Algorithm for Nonstandard Spiral Cone-beam CT with an N-PI Window  

E-Print Network (OSTI)

triangulation. Then, they proposed a quasi-exact FBP reconstruction algorithm [9] using three sets of filter1 A Backprojection-Filtration Algorithm for Nonstandard Spiral Cone-beam CT with an N-PI Window in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report

Ye, Yangbo

391

Methods for reduced platen compression (RPC) test specimen cutting locations using micro-CT and planar radiographs  

E-Print Network (OSTI)

to complete an RPC analysis and improving the quality of the obtained results. High-resolution micro-CT scans are used to gain a better understanding of rat long bone anatomy by quantifying the location, shape, and orientation of the growth plate, primary...

Lemmon, Heber

2004-09-30T23:59:59.000Z

392

Abstract-Proton Computed Tomography (CT) has important implications for both image-guided diagnosis and radiation  

E-Print Network (OSTI)

-guided diagnosis and radiation therapy. For diagnosis, the fact that the patient dose committed by proton CT only render approximate stopping power estimates, limiting the power of proton radiation therapy radiation therapy is one of the most precise forms of image-guided cancer therapy since the sharp dose peak

California at Santa Cruz, University of

393

Model-based image reconstruction for dual-energy X-ray CT with fast KVP switching  

Science Journals Connector (OSTI)

The most recent generation of X-ray CT systems can collect dual energy (DE) sinograms by rapidly switching the X-ray tube voltage between two levels for alternate projection views. This reduces motion artifacts in DE imaging, but yields sinograms that ... Keywords: dualenergy X-ray computed tomography, model-based image reconstruction, penalized likelihood

Wonseok Huh; Jeffrey A. Fessler

2009-06-01T23:59:59.000Z

394

A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom  

Science Journals Connector (OSTI)

A number of interrelated factors can affect the precision and accuracy of lung nodule size estimation. To quantify the effect of these factors, we have been conducting phantom CT... Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Gavrielides, Marios A; Kinnard, Lisa M; Myers, Kyle J; Peregoy, Jennifer; Pritchard, William F; Zeng, Rongping; Esparza, Juan; Karanian, John; Petrick, Nicholas

2010-01-01T23:59:59.000Z

395

Multi-GPU parallelization of a 3D Bayesian CT algorithm and its application on real foam reconstruction with incomplete  

E-Print Network (OSTI)

Tomography (CT) [1,2]. The limits of these methods appear when the number of projections is small, and for example, the data set are not complete due to the limited acquistion time. In this specific context is the computation time and especially for projection and backprojection steps. In this study, first we show how we

Paris-Sud XI, Université de

396

DOE Challenge Home Case Study, Preferred Builders, Old Greenwhich, CT, Custom  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preferred Preferred Builders, Inc. Old Greenwich, CT BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

397

DOE Challenge Home Case Study, BPC Green Builders, Custom Home, New Fairfield, CT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPC Green BPC Green Builders New Fairfi eld, CT BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

398

Dynamic Multiscale Boundary Conditions for 4D CT Images of Healthy and Emphysematous Rat  

SciTech Connect

Changes in the shape of the lung during breathing determine the movement of airways and alveoli, and thus impact airflow dynamics. Modeling airflow dynamics in health and disease is a key goal for predictive multiscale models of respiration. Past efforts to model changes in lung shape during breathing have measured shape at multiple breath-holds. However, breath-holds do not capture hysteretic differences between inspiration and expiration resulting from the additional energy required for inspiration. Alternatively, imaging dynamically without breath-holds allows measurement of hysteretic differences. In this study, we acquire multiple micro-CT images per breath (4DCT) in live rats, and from these images we develop, for the first time, dynamic volume maps. These maps show changes in local volume across the entire lung throughout the breathing cycle and accurately predict the global pressure-volume (PV) hysteresis.

Jacob, Rick E.; Carson, James P.; Thomas, Mathew; Einstein, Daniel R.

2013-06-14T23:59:59.000Z

399

Simulation of Cone Beam CT System Based on Monte Carlo Method  

E-Print Network (OSTI)

Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

2014-01-01T23:59:59.000Z

400

Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan  

E-Print Network (OSTI)

We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

Zhao, Wei; Wang, Luyao

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Contouring Variability of the Penile Bulb on CT Images: Quantitative Assessment Using a Generalized Concordance Index  

SciTech Connect

Purpose: Within a multicenter study (DUE-01) focused on the search of predictors of erectile dysfunction and urinary toxicity after radiotherapy for prostate cancer, a dummy run exercise on penile bulb (PB) contouring on computed tomography (CT) images was carried out. The aim of this study was to quantitatively assess interobserver contouring variability by the application of the generalized DICE index. Methods and Materials: Fifteen physicians from different Institutes drew the PB on CT images of 10 patients. The spread of DICE values was used to objectively select those observers who significantly disagreed with the others. The analyses were performed with a dedicated module in the VODCA software package. Results: DICE values were found to significantly change among observers and patients. The mean DICE value was 0.67, ranging between 0.43 and 0.80. The statistics of DICE coefficients identified 4 of 15 observers who systematically showed a value below the average (p value range, 0.013 - 0.059): Mean DICE values were 0.62 for the 4 'bad' observers compared to 0.69 of the 11 'good' observers. For all bad observers, the main cause of the disagreement was identified. Average DICE values were significantly worse from the average in 2 of 10 patients (0.60 vs. 0.70, p < 0.05) because of the limited visibility of the PB. Excluding the bad observers and the 'bad' patients,' the mean DICE value increased from 0.67 to 0.70; interobserver variability, expressed in terms of standard deviation of DICE spread, was also reduced. Conclusions: The obtained values of DICE around 0.7 shows an acceptable agreement, considered the small dimension of the PB. Additional strategies to improve this agreement are under consideration and include an additional tutorial of the so-called bad observers with a recontouring procedure, or the recontouring by a single observer of the PB for all patients included in the DUE-01 study.

Carillo, Viviana [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Cozzarini, Cesare [Department of Radiotherapy, San Raffaele Scientific Institute, Milano (Italy)] [Department of Radiotherapy, San Raffaele Scientific Institute, Milano (Italy); Perna, Lucia; Calandra, Mauro [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Gianolini, Stefano [Medical Software Solutions GmbH, Hagendorn (Switzerland)] [Medical Software Solutions GmbH, Hagendorn (Switzerland); Rancati, Tiziana [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy)] [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy); Spinelli, Antonello Enrico [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Vavassori, Vittorio [Department of Radiotherapy, Cliniche Gavazzeni Humanitas, Bergamo (Italy)] [Department of Radiotherapy, Cliniche Gavazzeni Humanitas, Bergamo (Italy); Villa, Sergio [Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy)] [Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy); Valdagni, Riccardo [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy) [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy); Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy); Fiorino, Claudio, E-mail: fiorino.claudio@hsr.it [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)

2012-11-01T23:59:59.000Z

402

Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain  

SciTech Connect

Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.

Tang Shaojie; Tang Xiangyang [Imaging and Medical Physics, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, Georgia 30322 (United States); School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121 (China); Imaging and Medical Physics, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, Georgia 30322 (United States)

2012-09-15T23:59:59.000Z

403

Supercritical CO2 core flooding and imbibition in Berea sandstone CT imaging and numerical simulation  

Science Journals Connector (OSTI)

This paper reports a numerical simulation study of a full CO2 core flooding and imbibition cycle on a Berea sandstone core (measured 14.45cm long and 3.67cm in diameter). During the test, supercritical CO2 (at 10MPa and 40C) and CO2-saturated brine was injected into one end of the horizontal core and a X-ray CT scanner (with a resolution of 0.35mmנ0.35mm) was employed to monitor and record changes in the fluid saturations, which enabled 3D mapping of the saturation profiles throughout the core during the course of core flooding test. From the digital CT saturation data, mean saturation profiles along the core length were plotted with time. A 1D model of the core was constructed to simulate the core flooding test and attempt was made to history match core test results, particularly the evolution of the mean CO2 saturation profiles during CO2 injection. Curve-fitting of the centrifugal air-water capillary pressure data (drainage) for the Berea core showed that the core test data could be adequately described by the Van Genuchten equation. The matched set of parameters ( S l r , P 0 , m ) were 0.09, 20KPa, 0.425 respectively. In the absence of the relative permeability for the Berea core, it was decided to use the parameters obtained from matching the air-water capillary pressure data as a first approximation for the CO2-brine system in the model.

Ji-Quan Shi; Ziqiu Xue; Sevket Durucan

2011-01-01T23:59:59.000Z

404

Reducing metal artifacts in cone-beam CT images by preprocessing projection data  

SciTech Connect

Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images.

Zhang Yongbin [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Zhang Lifei [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Lee, Andrew K. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Chambers, Mark [Department of Dental Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong Lei [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)]. E-mail: ldong@mdanderson.org

2007-03-01T23:59:59.000Z

405

Automatic tracking of implanted fiducial markers in cone beam CT projection images  

SciTech Connect

Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

Marchant, T. E.; Skalski, A.; Matuszewski, B. J. [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom and Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX (United Kingdom); AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow 30-059 (Poland); School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

2012-03-15T23:59:59.000Z

406

Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner  

SciTech Connect

Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo [Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan) and Department of Medical Technology, Nagoya Daini Red Cross Hospital, Myouken-chou, Showa-ku, Nagoya 466-8650 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan); Section of Radiological Protection, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Medicine, Nagoya University, Daikominami, Higashi-ku, Nagoya 461-8673 (Japan)

2010-11-15T23:59:59.000Z

407

Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences  

SciTech Connect

Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., the first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.

Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R. [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Salmanpour, Aryan; Rahnamayan, Shahryar [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)] [Department of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rodrigues, George [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)] [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario N6C 2R6, Canada and Department of Epidemiology/Biostatistics, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

2013-12-15T23:59:59.000Z

408

Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement  

SciTech Connect

Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image-guided radiation therapy procedure.

Matsubara, Kana, E-mail: matsubara-kana@hs.tmu.ac.jp [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan); Kohno, Ryosuke [National Cancer Center Hospital East, Chiba (Japan); National Cancer Center Research Institute, Chiba (Japan); Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo [National Cancer Center Hospital East, Chiba (Japan); Saitoh, Hidetoshi [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan)

2013-07-01T23:59:59.000Z

409

Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship  

SciTech Connect

Purpose: The conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations in radiotherapy treatment planning. However, the CT number and electron density of tissues cannot be generally interrelated via a simple one-to-one correspondence because the CT number depends on the effective atomic number as well as the electron density. The purpose of this study is to present a simple conversion from the energy-subtracted CT number ({Delta}HU) by means of dual-energy CT (DECT) to the relative electron density ({rho}{sub e}) via a single linear relationship. Methods: The {Delta}HU-{rho}{sub e} conversion method was demonstrated by performing analytical DECT image simulations that were intended to imitate a second-generation dual-source CT (DSCT) scanner with an additional tin filtration for the high-kV tube. The {Delta}HU-{rho}{sub e} calibration line was obtained from the image simulation with a 33 cm-diameter electron density calibration phantom equipped with 16 inserts including polytetrafluoroethylene, polyvinyl chloride, and aluminum; the elemental compositions of these three inserts were quite different to those of body tissues. The {Delta}HU-{rho}{sub e} conversion method was also applied to previously published experimental CT data, which were measured using two different CT scanners, to validate the clinical feasibility of the present approach. In addition, the effect of object size on {rho}{sub e}-calibrated images was investigated by image simulations using a 25 cm-diameter virtual phantom for two different filtrations: with and without the tin filter for the high-kV tube. Results: The simulated {Delta}HU-{rho}{sub e} plot exhibited a predictable linear relationship over a wide range of {rho}{sub e} from 0.00 (air) to 2.35 (aluminum). Resultant values of the coefficient of determination, slope, and intercept of the linear function fitted to the data were close to those of the ideal case. The maximum difference between the ideal and simulated {rho}{sub e} values was -0.7%. The satisfactory linearity of {Delta}HU-{rho}{sub e} was also confirmed from analyses of the experimental CT data. In the experimental cases, the maximum difference between the nominal and simulated {rho}{sub e} values was found to be 2.5% after two outliers were excluded. When compared with the case without the tin filter, the {Delta}HU-{rho}{sub e} conversion performed with the tin filter yielded a lower dose and more reliable {rho}{sub e} values that were less affected by the object-size variation. Conclusions: The {Delta}HU-{rho}{sub e} calibration line with a simple one-to-one correspondence would facilitate the construction of a well-calibrated {rho}{sub e} image from acquired dual-kV images, and currently, second generation DSCT may be a feasible modality for the clinical use of the {Delta}HU-{rho}{sub e} conversion method.

Saito, Masatoshi [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

2012-04-15T23:59:59.000Z

410

A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation  

SciTech Connect

Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam CT-enabled palliative treatment process is feasible and is ready for clinical implementation for the treatment of bone metastases using simple beam geometry, providing a streamlined one-step process toward palliative radiotherapy.

Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada) [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada)] [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada) [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada)] [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada) [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada) [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

2012-11-01T23:59:59.000Z

411

Effects of ray profile modeling on resolution recovery in clinical CT  

SciTech Connect

Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. However, among vendors and researchers, there is no consensus of how to best achieve these goals. The authors are focusing on the aspect of geometric ray profile modeling, which is realized by some algorithms, while others model the ray as a straight line. The authors incorporate ray-modeling (RM) in nonregularized iterative reconstruction. That means, instead of using one simple single needle beam to represent the x-ray, the authors evaluate the double integral of attenuation path length over the finite source distribution and the finite detector element size in the numerical forward projection. Our investigations aim at analyzing the resolution recovery (RR) effects of RM. Resolution recovery means that frequencies can be recovered beyond the resolution limit of the imaging system. In order to evaluate, whether clinical CT images can benefit from modeling the geometrical properties of each x-ray, the authors performed a 2D simulation study of a clinical CT fan-beam geometry that includes the precise modeling of these geometrical properties. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and a Forbild thorax phantom with circular resolution patterns representing calcifications in the heart region are simulated. An FBP reconstruction with a RamLak kernel is used as a reference reconstruction. The FBP is compared to iterative reconstruction techniques with and without RM: An ordered subsets convex (OSC) algorithm without any RM (OSC), an OSC where the forward projection is modeled concerning the finite focal spot and detector size (OSC-RM) and an OSC with RM and with a matched forward and backprojection pair (OSC-T-RM, T for transpose). In all cases, noise was matched to be able to focus on comparing spatial resolution. The authors use two different simulation settings. Both are based on the geometry of a typical clinical CT system (0.7 mm detector element size at isocenter, 1024 projections per rotation). Setting one has an exaggerated source width of 5.0 mm. Setting two has a realistically small source width of 0.5 mm. The authors also investigate the transition from setting one to two. To quantify image quality, the authors analyze line profiles through the resolution patterns to define a contrast factor (CF) for contrast-resolution plots, and the authors compare the normalized cross-correlation (NCC) with respect to the ground truth of the circular resolution patterns. To independently analyze whether RM is of advantage, the authors implemented several iterative reconstruction algorithms: The statistical iterative reconstruction algorithm OSC, the ordered subsets simultaneous algebraic reconstruction technique (OSSART) and another statistical iterative reconstruction algorithm, denoted with ordered subsets maximum likelihood (OSML) algorithm. All algorithms were implemented both without RM (denoted as OSC, OSSART, and OSML) and with RM (denoted as OSC-RM, OSSART-RM, and OSML-RM). Results: For the unrealistic case of a 5.0 mm focal spot the CF can be improved by a factor of two due to RM: the 4.2 LP/cm bar pattern, which is the first bar pattern that cannot be resolved without RM, can be easily resolved with RM. For the realistic case of a 0.5 mm focus, all results show approximately the same CF. The NCC shows no significant dependency on RM when the source width is smaller than 2.0 mm (as in clinical CT). From 2.0 mm to 5.0 mm focal spot size increasing improvements can be observed with RM. Conclusions: Geometric RM in iterative reconstruction helps improving spatial resolution, if the ray cross-section is significantly larger than the ray sampling distance. In clinical CT, however, the ray is not much thicker than the distance between neighboring ray centers, as the focal spot size is small and detector crosstalk is negligi

Hofmann, Christian [Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)] [Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany); Knaup, Michael [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Kachelrie, Marc, E-mail: marc.kachelriess@dkfz-heidelberg.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany and Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany and Institute of Medical Physics, FriedrichAlexander University (FAU), Erlangen, Bavaria 91052 (Germany)

2014-02-15T23:59:59.000Z

412

Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT  

SciTech Connect

Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

2011-11-15T23:59:59.000Z

413

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

SciTech Connect

To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

2010-07-01T23:59:59.000Z

414

Fusion of Immunoscintigraphy Single Photon Emission Computed Tomography (SPECT) with CT of the Chest in Patients with Non-Small Cell Lung Cancer  

Science Journals Connector (OSTI)

...the eighth patient, fusion demonstrated the absence...image registration or fusion of oefunctional studies...were acquired with dual energy windows to provide anatomic and landmark...the other. The 5761s FUSION OF CHEST SPECT AND CT...

Sanjeev Katyal; Elissa Lipcon Kramer; Marilyn E. Noz; Dorothy McCauley; Abraham Chachoua; and Alan Steinfeld

1995-12-01T23:59:59.000Z

415

Bone scintigraphy (BS) may no longer be relevant in the era of integrated PET/CT for women undergoing evaluation for suspected metastatic breast cancer (MBC).  

Science Journals Connector (OSTI)

...women undergoing extent-of-disease (EOD) evaluation for suspected MBC. Methods: Women undergoing EOD evaluation for suspected MBC with integrated...CT in detecting osseous metastases when EOD evaluation for suspected MBC is considered...

HL McArthur; C Lynch; P Morris; S Larson; K Grabski; J Howard; S Patil; CA Hudis; MN Dickler

2009-02-19T23:59:59.000Z

416

PREFECTURE-WIDE MULTI-CENTRE RADIATION DOSE SURVEY AS A USEFUL TOOL FOR CT DOSE OPTIMISATION: REPORT OF GUNMA RADIATION DOSE STUDY  

Science Journals Connector (OSTI)

......as two or more different patients with each undergoing a single CT session. The anatomical regions were divided into head (brain), face, neck, chest, upper abdomen, pelvis (lower abdomen) and coronary. When a patient was scanned in two or more......

Yasuhiro Fukushima; Ayako Taketomi-Takahashi; Takahito Nakajima; Yoshito Tsushima

2014-10-01T23:59:59.000Z

417

Application of X-ray CT for investigating fluid flow and conformance control during CO2 injection in highly heterogeneous media  

E-Print Network (OSTI)

were performed using homogeneous and heterogeneous cores and a 4th generation X-Ray CT scanner was used to visualize heterogeneity and fluid flow in the core. Porosity and saturation measurements were made during the course of the experiment...

Chakravarthy, Deepak

2005-08-29T23:59:59.000Z

418

Effects of ceftriaxone on ethanol intake: a possible role for xCT and GLT-1 isoforms modulation of glutamate levels in P rats  

Science Journals Connector (OSTI)

Evidence suggests that glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger transporter(xCT) are critical in maintaining glutamate homeostasis. We have recently demonstrated that ceftriaxone treatment...

Hasan Alhaddad; Sujan C. Das; Youssef Sari

2014-10-01T23:59:59.000Z

419

PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation  

SciTech Connect

Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV{sub max}) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV{sub max} up to 25% and reduce the diameter of the 50% SUV{sub max} volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions.

Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, Jos S.A.; Herk, Marcel van, E-mail: m.v.herk@nki.nl

2013-10-01T23:59:59.000Z

420

Exposure to Ionizing Radiation and Estimate of Secondary Cancers in the Era of High-Speed CT Scanning: Projections From the Medicare Population  

Science Journals Connector (OSTI)

Purpose The aims of this study were to analyze the distribution and amount of ionizing radiation delivered by CT scans in the modern era of high-speed CT and to estimate cancer risk in the elderly, the patient group most frequently imaged using CT scanning. Methods A retrospective cohort study was conducted using Medicare claims spanning 8 years (1998-2005) to assess CT use. The data were analyzed in two 4-year cohorts, 1998 to 2001 (n = 5,267,230) and 2002 to 2005 (n = 5,555,345). The number and types of CT scans each patient received over the 4-year periods were analyzed to determine the percentage of patients exposed to threshold radiation of 50 to 100 mSv (defined as low) and >100 mSv (defined as high). The National Research Council's Biological Effects of Ionizing Radiation VII models were used to estimate the number of radiation-induced cancers. Results CT scans of the head were the most common examinations in both Medicare cohorts, but abdominal imaging delivered the greatest proportion (43% in the first cohort and 40% in the second cohort) of radiation. In the 1998 to 2001 cohort, 42% of Medicare patients underwent CT scans, with 2.2% and 0.5% receiving radiation doses in the low and high ranges, respectively. In the 2002 to 2005 cohort, 50% of Medicare patients received CT scans, with 4.2% and 1.2% receiving doses in the low and high ranges. In the two populations, 1,659 (0.03%) and 2,185 (0.04%) cancers related to ionizing radiation were estimated, respectively. Conclusions Although radiation doses have been increasing along with the increasing reliance on CT scans for diagnosis and therapy, using conservative estimates with worst-case scenario methodology, the authors found that the risk for secondary cancers is low in older adults, the group subjected to the most frequent CT scanning. Trends showing increasing use, however, underscore the importance of monitoring CT utilization and its consequences.

Aabed B. Meer; Pat A. Basu; Laurence C. Baker; Scott W. Atlas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CT Scan Not Only a Medical Technique NETL Wins Two 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y * N a t i o n a l E n e r g y Te c h n o l o g y L a b o r a t o r y S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y * N a t i o n a l E n e r g y Te c h n o l o g y L a b o r a t o r y CT Scan Not Only a Medical Technique NETL Wins Two 2008 R&D 100 Awards First Measurements at Oxy-Fuel Flame Test Facility NETL's R&D newsletter January 2008 / issue 8 October 2008, Issue 11 CONTENTS Medical Technique Adopted to Study Mobility of CO 2 in Coal ____________________________________________ 2 Two Technologies Chosen for 2008 R&D 100 Awards _____ 3 Computer Code for Geologic Sequestration Modified for Parallel Computers ________________________________

422

Introduction of heat map to fidelity assessment of compressed CT images  

SciTech Connect

Purpose: This study aimed to introduce heat map, a graphical data presentation method widely used in gene expression experiments, to the presentation and interpretation of image fidelity assessment data of compressed computed tomography (CT) images. Methods: The authors used actual assessment data that consisted of five radiologists' responses to 720 computed tomography images compressed using both Joint Photographic Experts Group 2000 (JPEG2000) 2D and JPEG2000 3D compressions. They additionally created data of two artificial radiologists, which were generated by partly modifying the data from two human radiologists. Results: For each compression, the entire data set, including the variations among radiologists and among images, could be compacted into a small color-coded grid matrix of the heat map. A difference heat map depicted the advantage of 3D compression over 2D compression. Dendrograms showing hierarchical agglomerative clustering results were added to the heat maps to illustrate the similarities in the data patterns among radiologists and among images. The dendrograms were used to identify two artificial radiologists as outliers, whose data were created by partly modifying the responses of two human radiologists. Conclusions: The heat map can illustrate a quick visual extract of the overall data as well as the entirety of large complex data in a compact space while visualizing the variations among observers and among images. The heat map with the dendrograms can be used to identify outliers or to classify observers and images based on the degree of similarity in the response patterns.

Lee, Hyunna; Kim, Bohyoung; Seo, Jinwook; Park, Seongjin; Shin, Yeong-Gil [School of Computer Science and Engineering, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kil Joong [Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine and Seoul National University Medical Research Center, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

2011-08-15T23:59:59.000Z

423

Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization  

SciTech Connect

Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-05-15T23:59:59.000Z

424

,"Housing Units1","Average Square Footage Per Housing Unit",...  

U.S. Energy Information Administration (EIA) Indexed Site

"Northeast Divisions and States" "New England",5.5,2232,1680,625,903,680,253 "Massachusetts",2.5,2076,1556,676,850,637,277 "CT, ME, NH, RI, VT",3,2360,1781,583,946,714,...

425

SUPERCONDUCTING RING CYCLOTRON FOR RIKEN RI BEAM FACTORY IN JAPAN  

SciTech Connect

Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan)

2010-04-09T23:59:59.000Z

426

Ri so-M-|fe>44 LIBRARY August 1973  

E-Print Network (OSTI)

OF * RADIOACTIVE WASTE DUMPS. EUROPEAN COMMUNITIES; F U E L REPROCESSING PLANTS; RADIOACTIVE WASTE DISPOSAL; SITE SELECTION; WASTE STORAGE; BT: INTERNATIONAL ORGANIZATIONS; WASTE DISPOSAL; WASTE MANAGEMENT; E52. EURO

427

RiS-M-2401 DOSIMETRY FOR ELECTRON BEAM APPLICATIONS  

E-Print Network (OSTI)

; ELECTRON BEAMS; HUMIDITY; IONIZING RADIATIONS; LINEAR ACCELERATORS; RADIATION DOSES; THIN FILMS. UDC 539 are developed. The wide range of energy of such accelerators (- 150 keV - 10 MeV) and their high dose rates-descriptors: ACCURACY; CALIBRATION; CALORIMETERS; CALORIMETRIC DOSEMETERS; DoSE-RESPONSE RELATIONSHIPS; DOSE RATES; DYES

428

A robust and efficient approach to detect 3D rectal tubes from CT colonography  

SciTech Connect

Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

Yang Xiaoyun; Slabaugh, Greg [Medicsight PLC, Kensington Centre, 66 Hammersmith Road, London (United Kingdom)

2011-11-15T23:59:59.000Z

429

$ 6WXG\\ RI 0DJQR[ :DVWH *ODVV 8QGHU &RQGLWLRQV RI +LJK 7HPSHUDWXUH 9HU\\ 'HHS *HRORJLFDO 'LVSRVDO  

E-Print Network (OSTI)

boreholes drilled into suitable rock (e.g. granite) to depths in excess of 4km. HLW packages are lowered repository concept for the disposal of High Level nuclear Waste (HLW) [1, 2]. This scheme uses large diameter into the borehole which is then backfilled with host rock and sealed. The composition and quantity of HLW in each

Sheffield, University of

430

Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner  

SciTech Connect

Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning systemMultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was printed using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.

Kim, Haksoo; Welford, Scott [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)] [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W., E-mail: jason.sohn@case.edu [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106 (United States); Sloan, Andrew [Department of Neurosurgery, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)] [Department of Neurosurgery, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

2014-02-15T23:59:59.000Z

431

Project Title and Principal Investigators FY 2014 Federal  

E-Print Network (OSTI)

Sea Grant Program Project Title and Principal Investigators FY 2014 Federal Funding * FY 2014, NY, RI, WHOI Buy Out or Build Back? A Comparative Assessment of Approaches to Employing Public Stewards Academies in Maryland (Dana R. Fisher) $69,999 $35,007 MI Development of Stable Open Channel

432

www.praxair.com Low Cost Hydrogen  

E-Print Network (OSTI)

www.praxair.com Low Cost Hydrogen Production Platform Cooperative Agreement: DE-FC36-01GO11004 Timothy M. Aaron Team Praxair - Tonawanda, NY Boothroyd-Dewhurst - Wakefield, RI Diversified Manufacturing (Hot Components Only) Praxair HGS Comparison 1/4 Capacity 1/6 Physical Plant Size Lower H2 Cost

433

GeneEnvironment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci  

Science Journals Connector (OSTI)

...NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: The...lung datasets were accessed from the dbGaP website ( http://www.ncbi.nlm.nih.gov...Brenner H, Buchanan D, et alGenome-wide search for gene-gene interactions in colorectal...

Elizabeth D. Kantor; Carolyn M. Hutter; Jessica Minnier; Sonja I. Berndt; Hermann Brenner; Bette J. Caan; Peter T. Campbell; Christopher S. Carlson; Graham Casey; Andrew T. Chan; Jenny Chang-Claude; Stephen J. Chanock; Michelle Cotterchio; Mengmeng Du; David Duggan; Charles S. Fuchs; Edward L. Giovannucci; Jian Gong; Tabitha A. Harrison; Richard B. Hayes; Brian E. Henderson; Michael Hoffmeister; John L. Hopper; Mark A. Jenkins; Shuo Jiao; Laurence N. Kolonel; Loic Le Marchand; Mathieu Lemire; Jing Ma; Polly A. Newcomb; Heather M. Ochs-Balcom; Bethann M. Pflugeisen; John D. Potter; Anja Rudolph; Robert E. Schoen; Daniela Seminara; Martha L. Slattery; Deanna L. Stelling; Fridtjof Thomas; Mark Thornquist; Cornelia M. Ulrich; Greg S. Warnick; Brent W. Zanke; Ulrike Peters; Li Hsu; and Emily White

2014-09-01T23:59:59.000Z

434

PAHs And Parking Lots: A Field Study on PAHs Exported From Sealed and Unsealed Parking  

E-Print Network (OSTI)

Hampshire Stormwater Center EWRI World and Water Resources Conference 2010 Providence, RI 18 May 2010 #12 #12;Why do we care? Coal tar - High PAHs (polycyclic aromatic hydrocarbons) Asphalt sealant 50 mg in Austin, TX 1,400,000 gallons annually NY/NJ watershed #12;Polycyclic Aromatic Hydrocarbons (PAHs) EPA

435

Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate  

SciTech Connect

Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based externalinternal correlation models. Although an in-room radiograph-based assessment of the reliability of the motion model is envisaged, the developed technique does not involve the estimation and continuous update of correlation parameters, thus requiring a less intense use of invasive imaging.

Fassi, Aurora, E-mail: aurora.fassi@mail.polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Schaerer, Jol; Fernandes, Mathieu [CREATIS, CNRS UMR 5220, INSERM U1044, Universit Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Lon Brard, Lyon (France); Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy); Sarrut, David [CREATIS, CNRS UMR 5220, INSERM U1044, Universit Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Lon Brard, Lyon (France); Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

2014-01-01T23:59:59.000Z

436

Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments  

SciTech Connect

A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

1993-11-01T23:59:59.000Z

437

TH?D?201C?08: Multi?Modal MRI SPECT and CT Imaging of Theranostic Nanoplatforms  

Science Journals Connector (OSTI)

Purpose: The development of non?invasive imaging techniques for the assessment of cancer treatment is rapidly becoming highly important. Magnetic Cationic Liposomes (MCL) that carry a cargo of anti?cancer drugs and magnetic nanoparticles that will selectively target primary and metastatic cancertumorsdeliver drugs to them and visualize their effects through magnetic resonance imaging(MRI)single photon emission computed tomography(SPECT) and fluorescence spectroscopy. The aim of the present study is to evaluate MCL as a versatile theranostic nanoplatform for enhanced drug deliveryimaging and monitoring of cancer treatment. Materials and Method: Poly?ethyleneglycol (PEG) coated cationic liposomes are loaded with superparamagnetic iron oxide nanoparticles (SPIONS) and tagged with the radioisotope Indium?111. MCL was administered to SCID mouse with metastatic (B16?F10) melanoma grown in the right flank. Pre?injection and post?injection MR and SPECT/CT images were used to assess response to magnetic targeting effects and tumor and organ distribution. Results:Tumor signal intensities in T2 weighted images decreased an average of 205% and T2* values decreased and average of 147ms in the absence of magnetic targeting. This compares to an average signal decrease of 5712% and a decrease in T2* relaxation times of 278ms with the aid of external magnet showing up to 2?fold greater accumulation by magnetic targeting. SPECT/CT images showed the localization and distribution of MCL in the tumor.Conclusion: MR SPECT/CT and biodistribution analyses clearly show the efficacy of MCL as MRI contrast agents prove the use of magnetic guidance and demonstrate the potential of MCL as agents for imaging guidance and therapeutic delivery.

F Reynoso; E Gultepe; A Jhaveri; P Kulkarni; B Gershman; C Ferris; R Campbell; M Harisinghani; S Sridhar

2010-01-01T23:59:59.000Z

438

Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: Prostate movements and dosimetric considerations  

SciTech Connect

Purpose: Multiple studies have indicated that the prostate is not stationary and can move as much as 2 cm. Such prostate movements are problematic for intensity-modulated radiotherapy, with its associated tight margins and dose escalation. Because of these intrinsic daily uncertainties, a relative generous 'margin' is necessary to avoid marginal misses. Using the CT-linear accelerator combination in the treatment suite (Primatom, Siemens), we found that the daily intrinsic prostate movements can be easily corrected before each radiotherapy session. Dosimetric calculations were performed to evaluate the amount of discrepancy of dose to the target if no correction was done for prostate movement. Methods and materials: The Primatom consists of a Siemens Somatom CT scanner and a Siemens Primus linear accelerator installed in the same treatment suite and sharing a common table/couch. The patient is scanned by the CT scanner, which is movable on a pair of horizontal rails. During scanning, the couch does not move. The exact location of the prostate, seminal vesicles, and rectum are identified and localized. These positions are then compared with the planned positions. The daily movement of the prostate and rectum were corrected for and a new isocenter derived. The patient was treated immediately using the new isocenter. Results: Of the 108 patients with primary prostate cancer studied, 540 consecutive daily CT scans were performed during the last part of the cone down treatment. Of the 540 scans, 46% required no isocenter adjustments for the AP-PA direction, 54% required a shift of {>=}3 mm, 44% required a shift of >5 mm, and 15% required a shift of >10 mm. In the superoinferior direction, 27% required a shift of >3 mm, 25% required a shift of >5 mm, and 4% required a shift of >10 mm. In the right-left direction, 34% required a shift of >3 mm, 24% required a shift of >5 mm, and 5% required a shift of >10 mm. Dosimetric calculations for a typical case of prostate cancer using intensity-modulated radiotherapy with 5-mm margin coverage from the clinical target volume (prostate gland) was performed. With a posterior shift of 10 mm for the prostate, the dose coverage dropped from 95-107% to 71-100% coverage. Conclusion: We have described a technique that corrects for the daily prostate motion, allowing for extremely precise prostate cancer treatment. This technique has significant implications for dose escalation and for decreasing rectal complications in the treatment of prostate cancer.

Wong, James R. [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY (United States); Grimm, Lisa [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Uematsu, Minoru [National Defense Medical College, Namiki, Tokorozawa (Japan); Oren, Reva [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Cheng, C.W. [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Merrick, Scott; Schiff, Peter [Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY (United States)

2005-02-01T23:59:59.000Z

439

A prototype fan-beam optical CT scanner for 3D dosimetry  

SciTech Connect

Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

2013-06-15T23:59:59.000Z

440

Rotational micro-CT using a clinical C-arm angiography gantry  

SciTech Connect

Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp/mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp/mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 {mu}m pixel, resolution >10 lp/mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 {mu}m pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 {mu}m diameter) are approximately 192{+-}21 and 313{+-}38 {mu}m for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA, FFOV FPD data need not be of the highest quality, and thus may be acquired at lower dose compared to a standard FPD acquisition. These results indicate that this system could provide the basis for high resolution images of regions of interest in patients with a reduction in the integral dose compared to the standard FPD approach.

Patel, V.; Hoffmann, K. R.; Ionita, C. N.; Keleshis, C.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Alliance for Clean Energy New York Alliance for Clean Energy New York Washington Ave Albany New York Coalition dedicated to promoting clean energy energy efficiency a healthy environment and a strong economy for the Empire State http www aceny org Northeast NY NJ CT PA Area Center for Clean Air Policy CCAP Center for Clean Air Policy CCAP First Street NE Suite Washington District of Columbia http www ccap org Northeast NY NJ CT PA Area Coalition for Rainforest Nations CfRN Coalition for Rainforest Nations CfRN Lexington Avenue th Floor New York New York http www rainforestcoalition org eng Northeast NY NJ CT PA Area Conservation International Conservation International Crystal Drive Suite Arlington Virginia http www conservation org Pages default aspx Northeast NY NJ CT PA Area Energy Sector Management Assistance Program of the World Bank ESMAP

442

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

boro biofuel boro biofuel maiden lane New York New York Biofuels Multi boro biofuel boro biofuel maiden lane New York New York Biofuels Multi feed stock http borobiofuel com Northeast NY NJ CT PA Area AWS Truewind AWS Truewind New Karner Road Albany New York Wind energy Energy assessment resource mapping project engineering due diligence performance evaluation and forecasting http www awstruewind com Northeast NY NJ CT PA Area Advanced Solar Power Inc Advanced Solar Power Inc New York New York Gateway Solar Solar electric systems solar hot water http solarli com index html Northeast NY NJ CT PA Area Aircuity Inc Aircuity Inc W Evergreen Avenue Philadelphia Pennsylvania Efficiency Manufacturer of integrated sensing and control solutions http www aircuity com Marketing index asp Northeast NY NJ CT PA Area Allegheny Power Allegheny Power Cabin Hill Drive Greensburg Pennsylvania

443

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

444

Optimal Production Planning under Time-sensitive Electricity Prices for  

E-Print Network (OSTI)

Mellon University, Pittsburgh, PA 15213 Corresponding author. Email address: grossmann@cmu.edu Praxair Inc., Danbury, CT 06810 § Praxair, Inc., Tonawanda, NY 14150 1 #12;intensifies the aforementioned

Grossmann, Ignacio E.

445

DOE Zero Energy Ready Home Case Study: Brookside Development...  

Energy Savers (EERE)

Preferred Builders, Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI...

446

FICE CORRESPONDENCE TO  

Office of Legacy Management (LM)

identified in the nearby communities of Stamford and Bridgeport, CT, and M t. Kisco and White Plains, NY. No sites were identified in New Canaan (based on present record holdings)....

447

MRI-based Preplanning Using CT and MRI Data Fusion in Patients With Cervical Cancer Treated With 3D-based Brachytherapy: Feasibility and Accuracy Study  

SciTech Connect

Purpose: Magnetic resonance imaging (MRI)-assisted radiation treatment planning enables enhanced target contouring. The purpose of this study is to analyze the feasibility and accuracy of computed tomography (CT) and MRI data fusion for MRI-based treatment planning in an institution where an MRI scanner is not available in the radiotherapy department. Methods and Materials: The registration inaccuracy of applicators and soft tissue was assessed in 42 applications with CT/MRI data fusion. The absolute positional difference of the center of the applicators was measured in four different planes from the top of the tandem to the cervix. Any inaccuracy of registration of soft tissue in relation to the position of applicators was determined and dose-volume parameters for MRI preplans and for CT/MRI fusion plans with or without target and organs at risk (OAR) adaptation were evaluated. Results: We performed 6,132 measurements in 42 CT/MRI image fusions. Median absolute difference of the center of tandem on CT and MRI was 1.1 mm. Median distance between the center of the right ovoid on CT and MRI was 1.7 and 1.9 mm in the laterolateral and anteroposterior direction, respectively. Corresponding values for the left ovoid were 1.6 and 1.8 mm. Rotation of applicators was 3.1 Degree-Sign . Median absolute difference in position of applicators in relation to soft tissue was 1.93, 1.50, 1.05, and 0.84 mm in the respective transverse planes, and 1.17, 1.28, 1.27, and 1.17 mm in selected angular directions. The dosimetric parameters for organs at risk on CT/MRI fusion plans without OAR adaptation were significantly impaired whereas the target coverage was not influenced. Planning without target adaptation led to overdosing of the target volume, especially high-risk clinical target volume - D{sub 90} 88.2 vs. 83.1 (p < 0.05). Conclusions: MRI-based preplanning with consecutive CT/MRI data fusion can be safe and feasible, with an acceptable inaccuracy of soft tissue registration.

Dolezel, Martin, E-mail: dolezelm@email.cz [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic) [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); First Faculty of Medicine, Charles University, Prague (Czech Republic); Odrazka, Karel [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic) [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); First Faculty of Medicine, Charles University, Prague (Czech Republic); Zizka, Jan [Department of Radiology, Charles University Teaching Hospital, Hradec Kralove (Czech Republic)] [Department of Radiology, Charles University Teaching Hospital, Hradec Kralove (Czech Republic); Vanasek, Jaroslav; Kohlova, Tereza; Kroulik, Tomas [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)] [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Spitzer, Dusan; Ryska, Pavel [Department of Radiology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)] [Department of Radiology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Tichy, Michal; Kostal, Milan [Department of Gynaecology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)] [Department of Gynaecology, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Jalcova, Lubica [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)] [Oncology Centre, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic)

2012-09-01T23:59:59.000Z

448

SU?E?I?41: Study On the CT Radiation Attenuation Characteristics of Human Body for Phantom Design Using Monte Carlo Simulations  

Science Journals Connector (OSTI)

Purpose: The CTDI values measured with standard PMMA phantoms were now being challenged due to the clinical application of new technologies such as automatic tube current modulation(TCM) the aim of this study is to simulate the CT radiation attenuation characteristics of human body along Z?axis which were the basic data of developing new phantoms used to evaluate TCM. Methods: The CT model used in this study has been modeled including the source energy spectrum the bow?tie filter as well and the beam shape. The voxel phantoms RPI Adult Male designed to match the ICRP anatomical references for average individuals were also selected in this study. MCNPX 2.5.0 was used to simulate the 120 kVp CT X?ray attenuation of voxel phantom along the z?axis. Averaged photon flux was tallied before and after it passed though the phantom separately simulations were also carried out using different thickness of PMMA plates instead of the voxel phantom. Results: The CT X?ray attenuation of PMMA and its thickness presents a significant negative exponential relationship with the r2=0.9975. The CT X?ray attenuation data of every 2cm along Z?axis direction of voxel phantom were obtained combined with characteristics of CT X?ray attenuation of PMMA the PMMA equivalent thickness of the voxel phantom torso along the Z?axis direction in terms of CT X?ray attenuation were calculated. The PMMA equivalent thickness ranges from 5.5cm to 30.1cm. The liver and spleen plane which contents substantive organs such as the liver and spleen and bone structure as ribs and the lumbar was the maximum attenuation plane. Conclusion: The trend of the overall attenuation characteristics of the human body in terms of CT X?ray was in accord with the anatomical structure these results could be used to develop new dose phantoms which were used to evaluate automatic tube current modulation with further study. This project was partially funded by National Institutes of Health (National Library of Medicine R01LM009362 and National Institute of Biomedical Imaging and Bioengineering R42EB010404)

h Liu

2013-01-01T23:59:59.000Z

449

Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM) This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM) This article has been:10.1088/0266-5611/27/11/115012 Multi-energy CT based on a prior rank, intensity and sparsity model and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we

Wang, Ge

450

3/26/13 Section of brain does more than expected, Universityof Chicago scientists find -chicagotribune.com www.chicagotribune.com/health/ct-x-monkeys-processing-visual-information-0320-20130320,0,298755.story 1/3  

E-Print Network (OSTI)

- chicagotribune.com www.chicagotribune.com/health/ct-x-monkeys-processing-visual-information-0320 of brain does more than expected, Universityof Chicago scientists find - chicagotribune.com www.chicagotribune.com/health/ct-x-monkeys-processing and troubleshooting HOME PROTECTION PLANS From foundation to fixtures FESTIVAL OF HOMES Five financial things every

Freedman, David J.

451

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

452

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2013

453

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value

454

Brookhaven Symposium Biology 32  

NLE Websites -- All DOE Office Websites (Extended Search)

Symposium Biology 32 Symposium Biology 32 Brookhaven National Laboratory, June 1-4, 1982 NEUTRONS IN BIOLOGY, B. Schoenborn, Plenum Press N Y BNL--34681 DE84 012174 NOTICE p _ THIS R£PORT IS l £ - T . l - : T = "-T-**: TO A DEGHES THAT PRECLUDES SA u^.-.iA OKV REPRODUCTION NEUTRON SCATTERING AND THE 3 0 S RI3CS0MAL SUBUNIT OF j ^ . COLI P.B. Moore, a D.M. Enselmsn, b J.A. Langer, b V.R. Ramaicrishnan,^ _.G« Schindler, 3 B.P. Schoenborn, c I-Y. Sillers, a and S. Yabuki a a Uept. of Chemistry and ^Molecular Biophysics and Biochemistry Yale University. Nev Haven, CT 06511 c BicIogy Dapc, Srookhavse National Lab., Upton, NY 11973 INTRODUCTION Siboscmes ara nueleoprotein enzyaes which catalyze the for- mation of polypeptide chains under inRNA control, using aminoacyl tENAs as substrates-for reviawo see Nomura et al. (22) and

455

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2004 Figure 15. Average City Gate Price of Natural Gas in the United States, 2004 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2004 dollars using the chain-type price indexes for Gross Domestic Product

456

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act Inventory map reflects the non-federally owned SNF and HLW covered by the Nuclear Waste Policy Act 2 Metric Tons Heavy Metal (MTHM) 3 Based on actual data through 2002 , as provided in the RW-859, and projected discharges for 2003-2010 which are rounded to two significant digits. Reflects trans-shipments as of end-2002. End of Year 2010 SNF & HLW Inventories 1 Approximately 64,000 MTHM 2 of Spent Nuclear Fuel (SNF) 3 & 275 High-Level Radioactive Waste (HLW) Canisters CT 1,900 TX 2,000 MD 1,200 VT 610 RI MT WY NE 790 SD ND OK KS 600 TX 2,000 LA 1,200 AR 1,200 IA 480 MN 1,100 WI 1,300 KY TN 1,500 MS 780 AL 3,000 GA 2,400 FL 2,900 NC 3,400 VA 2,400 WV OH 1,100 PA 5,800 ME 540 NJ 2,400 DE MI 2,500 MA 650 NH 480 IN SC 3,900 CO MO 670 IL 8,400 NY 3,300 CA 2,800 AZ 1,900 NM OR 360 NV UT WA 600 ID < 1 Commercial HLW 275 Canisters (~640 MTHM)

457

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

458

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

18 18 Energy Information Administration / Natural Gas Annual 2001 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. 0 1 2 3 4 5 6 7 T e x a s L o u i s i a n a N e w M e x i c o O k l a h o m a W y o m i n g C o l o r a d o A l a b a m a K a n s a s A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 1997 1998 1999 2000 2001 2001 16. Marketed Production of Natural Gas in Selected States, 1997-2001 Figure Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI

459

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

6 6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning & Management, 16th Annual School Construction Report, Feb. 2011 p. CR3 8,669.5 3,074.1 2,796.8 14,540.4 1,605.4 407.3 275.2 2,287.9 258.2 181.8 158.1 598.1 1,653.9 479.6 387.8 2,521.2 548.2 130.9 93.3 772.4 309.3 206.1 135.3 650.7 217.6 231.4 187.8 636.8 1,338.0 327.6 175.9 1,841.4 359.6 286.3 278.9 924.8

460

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

Note: This page contains sample records for the topic "ny ct ri" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN W VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK 27. Average City Gate Price of Natural Gas in the United States, 2001 (Dollars per Thousand Cubic Feet) Figure Sources: Energy Information Administration (EIA), Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 2001 dollars using the chain-type

462

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

463

Green Power Network: Can I Buy Green Power in My State?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can I Buy Green Power in my State? Community Renewable Energy Development Consumer Protection Large Purchasers of Green Power Can I Buy Green Power in My State? Click on your state below to find out which organizations offer green power in your state. The results will include utility green pricing programs, retail green power products offered in competitive electricity markets, and renewable energy certificate (REC) products sold separate from electricity. For additional information about these distinct products, see our Overview of Green Power Markets. Map of the United States. AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Alabama Alaska Arizona Arkansas California Colorado Connecticut Connecticut Delaware Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Maryland Massachusetts Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Hampshire New Jersey New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Vermont Virginia Washington West Virginia Wisconsin Wyoming Washington, DC

464

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

Supply Supply 17 Energy Information Administration / Natural Gas Annual 1999 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity and Value of Natural Gas Report," and the United States Minerals Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001 and over 4. Marketed Production of Natural Gas in the United States, 1999 (Million Cubic Feet) Figure 5. Marketed Production of Natural Gas in Selected States, 1995-1999 Figure T e x a s L o u i s i a n a O k l a h o m a N e w M e x i c o W y o m i n g C o l o r a d o K a n s a s A l a b a m a A l a s k a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 6 7 Trillion Cubic Feet Billion Cubic Meters 95 96 97 98 99 Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly Quantity

465