National Library of Energy BETA

Sample records for nv ne sd

  1. https://ndwis.ndep.nv.gov/DWW/

    National Nuclear Security Administration (NNSA)

    Sheet C A MINERAL NV0000076 HENDERSON CITY OF Fact Sheet C A CLARK NV0003006 HOOVER DAM Fact Sheet NTNC A CLARK NV0000158 INCLINE VILLAGE GID Fact Sheet C A WASHOE NV0002070 ...

  2. NV Energy RFP

    Broader source: Energy.gov [DOE]

    NV Energy request for proposals (RFP) is seeking proposals that would allow the company to acquire or partner to construct a renewable energy resource that would satisfy a 54-MW of planning capacity. The company is also looking for proposals for a build-transfer option for a 140-MW single axis tracking solar PV facility at a location provided by the bidder.

  3. Photovoltech NV | Open Energy Information

    Open Energy Info (EERE)

    search Name: Photovoltech NV Place: Tienen, Belgium Zip: 3300 Product: Manufactures PV cells. Coordinates: 50.809673, 4.930054 Show Map Loading map... "minzoom":false,"mappin...

  4. ICOS Vision Systems NV | Open Energy Information

    Open Energy Info (EERE)

    ICOS Vision Systems NV Jump to: navigation, search Name: ICOS Vision Systems NV Place: Leuvan, Belgium Zip: 3001 Product: Provides inspection products for the manufacturing...

  5. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  6. DOE - Office of Legacy Management -- Shoal Test Site - NV 03

    Office of Legacy Management (LM)

    Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand Springs Range NV.03-1 Location: Near U.S. Highway 50 , Fallon , Nevada NV.03-2 Evaluation Year: 1987 NV.03-2 Site Operations: Underground nuclear detonation site. NV.03-1 Site Disposition: Eliminated - Potential for contamination remote NV.03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: None

  7. DOE/NV/OOQlO-60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : ..;. .- DOE/NV/OOQlO-60 f 68107 ENVIRONMENTAL SURVEILLANCE REPORI FOR THE: G 1 . '6 . . . NEVADA TEST SITE " J. ;.:..r - . i: - ,;y:- .a.. I *(JANUARY 1979 THROUGH DECEMBER 1979) JUNE 1980 WORK PERFORMED UNDER CONTRACT NO. DE-AC08-76NV00410 .:I 1; '-. . ..,' ,, tff- 3'. 'y. . . i, . '. REYNOLDS ELECTRICAL & ENGINEERING CO., INC. .POST OFFICE BOX 14400 - _ LAS VEGAS, NV 89114 '! DOE/NV/00410-60 ENVIRONMENTAL SURVEILLANCE REPORT FOR THE NEVADA TEST SiTE (JANUARY 1979 THROUGH DECEMBER

  8. NV Bekaert SA | Open Energy Information

    Open Energy Info (EERE)

    NV Bekaert SA Place: Kortrijk, Belgium Zip: B-8500 Product: Belgian metal and metal coating company; develops components to improve the functionality of PEMFC and provider of...

  9. ASM International NV | Open Energy Information

    Open Energy Info (EERE)

    back-end markets, including production technology for wafer processing, assembly and packaging of semiconductor devices. References: ASM International NV1 This article is a...

  10. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  11. DOE - Office of Legacy Management -- University of Nevada - NV 01

    Office of Legacy Management (LM)

    Nevada - NV 01 FUSRAP Considered Sites Site: UNIVERSITY OF NEVADA (NV.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mackay School of Mines NV.01-1 Location: Reno , Nevada NV.01-2 Evaluation Year: 1985 NV.01-2 Site Operations: Conducted process development studies on various types of uranium ores (AEC contract AT (49-1)-624); in 1980's, work with uranium ore was still being performed under NRC license. NV.01-1 NV.01-2 NV.01-3 Site Disposition:

  12. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  13. DOE/NV/10327-19 DOE/NV/10327-19

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10327-19 DOE/NV/10327-19 0 0 i _i ' I RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE (JANUARY 1984 THROUGH DECEMBER 1984) DAVID N. FAUVER JULY 1985 WORK PERFORMED UNDER CONTRACT NO. DE-AC08-84NV10327 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. POST OFFICE BOX 14400 LAS VEGAS, NV 89114 k. QB DOE/NV/10327-19 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE (JANUARY 1984 THROUGH DECEMBER 1984) July 1985 David N. Fauver Reynolds

  14. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  15. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays

  16. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  17. DOE/NV/00410-64 DOE/NV/00410-64 L. ENVIRONMENTAL SURVEILLANCE REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0-64 DOE/NV/00410-64 L. ENVIRONMENTAL SURVEILLANCE REPORT FORTHE _ .. : . ' NEVADATEST SITE ,i (JANUARY 1980 'THROUGH DECEMBER 3980) - _ _. '- . .._ .- _ .-..:- . . . ,--.. . . : _ '- ',' .I981 ,_ :.: . . .- _- _ _-: . .' ._ '-. . : ; ,. WORK PERFORMED UNDER CoNTRACT NO. DE-AC08-76NV00410 Y- 0 -. -- _ i L _- : _ -_ z. _ _ +,q: ., . _. 'I : - ,.. - - ._ ." ::. .;. , _ ., ._ . '. -._ .._ -. : . . -. . _, ..'- :- ..: ,- ,. . . _' ,. . - REYN~~LD~ ELE~R~CAL & ENGINEERING co., INC. .. I,

  18. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  19. Category:Las Vegas, NV | Open Energy Information

    Open Energy Info (EERE)

    Vegas... 69 KB SVLargeOffice Las Vegas NV Nevada Power Co.png SVLargeOffice Las Vega... 68 KB SVMediumOffice Las Vegas NV Nevada Power Co.png SVMediumOffice Las Veg... 70 KB...

  20. File:EnergyResourcePermittingNV.pdf | Open Energy Information

    Open Energy Info (EERE)

    EnergyResourcePermittingNV.pdf Jump to: navigation, search File File history File usage File:EnergyResourcePermittingNV.pdf Size of this preview: 463 599 pixels. Other...

  1. Category:Pierre, SD | Open Energy Information

    Open Energy Info (EERE)

    SVFullServiceRestaurant Pierre SD Black Hills Power Inc.png SVFullServiceRestauran... 68 KB SVHospital Pierre SD Black Hills Power Inc.png SVHospital Pierre SD B... 67 KB...

  2. DOE/NV Radioactive Waste Acceptance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Proper Characterization and Disposal of Sealed Radioactive Sources Revision 2, October 1997 Revised by: DOE/NV Radioactive Waste Acceptance Program and The NTSWAC Working Group EXECUTIVE SUMMARY The "Position Paper on the Proper Characterization and Disposal of Sealed Radioactive Sources" was originally developed by the NVO-325 Work Group, Sealed Source Waste Characterization Subgroup. The NVO-325 Workgroup, now called the NTSWAC Working Group, is comprised of representatives

  3. DOE/NV/11718-594

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    594 ECOLOGY OF THE NEVADA TEST SITE: AN ANNOTATED BIBLIOGRAPHY WITH NARRATIVE SUMMARY, KEYWORD INDEX, AND SPECIES LISTS December 2001 Ecological Services P.O. Box 98521 Las Vegas, NV 89193-8521 DISCLAIMER STATEMENT Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof or its contractors or

  4. DOE/NV/11718-985

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    985 ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM FISCAL/CALENDAR YEAR 2004 REPORT March 2005 Prepared by Bechtel Nevada Ecological Services P.O. Box 98521 Las Vegas, NV 89193-8521 DISCLAIMER STATEMENT Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof or its contractors or subcontractors.

  5. DOE/NV/0041 O-67 DOE/NV/00410-67

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O-67 DOE/NV/00410-67 l ENVIRONMENTAL SURVEILLANCE REPORT FORTHE NEVADA TEST SITE (JANUARY 1981 THROUGH DECEMBER 1981) l MAY 1982 0 l WAYNE A. SCOGGINS REYNOLDS ELECTRICAL 8i ENGINEERING CO., INC. POST OFFICE BOX 14400 LAS VEGAS, NV 89114 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY NEVAdA OPEFIATIONS OFFICE UNDER CONTRACT DE-AC08=76NVOO410 Reynolds Electrical 8 Engineering Co., Inc. P.O. Box 14400 l Las Vegas, Nevada 89114-4400 IN REPLY REFER TO: ERRATA ENVIRONMENTAL SURVEILLANCE REPORT FOR THE

  6. RAPID/Roadmap/18-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Underground Storage Tank Permit (18-NV-a) The Nevada Division of Environmental Protection (NDEP)...

  7. RAPID/Roadmap/20-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Well Abandonment Process (20-NV-a) This flowchart...

  8. RAPID/Roadmap/4-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Exploration Process (4-NV-a) ...

  9. RAPID/Roadmap/14-NV-e | Open Energy Information

    Open Energy Info (EERE)

    Tools Contribute Contact Us Groundwater Discharge Permit (14-NV-e) The Nevada Division of Environmental Protection (NDEP) Bureau of Water Pollution Control (BWQC) is responsible...

  10. RAPID/Roadmap/15-NV-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Operating Permit (15-NV-a) The federal Clean Air Act is administered...

  11. RAPID/Roadmap/7-NV-c | Open Energy Information

    Open Energy Info (EERE)

    NV-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. RAPID/Roadmap/3-NV-e | Open Energy Information

    Open Energy Info (EERE)

    NV-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. RAPID/Roadmap/6-NV-b | Open Energy Information

    Open Energy Info (EERE)

    NV-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/6-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/12-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  16. RAPID/Roadmap/1-NV-a | Open Energy Information

    Open Energy Info (EERE)

    -NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/11-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. RAPID/Roadmap/14-NV-b | Open Energy Information

    Open Energy Info (EERE)

    14-NV-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  19. RAPID/Roadmap/14-NV-c | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Underground Injection Control Permit (14-NV-c) The Nevada Division of Environmental Protection (NDEP) has the...

  20. NV Energy (Southern)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: As of January 2016, programs for pool pump rebates, refrigerator recycling, and LED lighting discounts are unavailable in NV Energy's southern territory. See website for more information.

  1. RAPID/Roadmap/8-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us to delete after saving contact info (8-NV-a) to delete after saving contact info...

  2. RAPID/Roadmap/17-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Contact Us Aesthetic Resource Assessment (17-NV-a) 17NVAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  3. RAPID/Roadmap/19-NV-b | Open Energy Information

    Open Energy Info (EERE)

    to 19-NV-b.16 - Conduct Required Studies The State Engineer may require hydrological, environmental, or other studies to be conducted before approving an application. The party...

  4. NV0/0410-47 NV0/0410-47 ENVIRONMENTAL SURVEILLANCE REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV0/0410-47 NV0/0410-47 ENVIRONMENTAL SURVEILLANCE REPORT FOR THE NEVADA TEST SITE JULY 1975 THROUGH DECEMBER 1977 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. LAS VEGAS, NEVADA '89114 JULY 1978 . PREPARED FOR THE U.S. DEPARTMENT OF ENERGY NEVADA OPERATIONS OFFICE UNDER CONTRACT NO. EY-76-C-08-0410 NV0/0410-47 NV0/0410-47 ENVIRONNIENTAL SURVEILLANCE. REPORT FOR THE NEVADA TEST SITE JULY 1975 THROUGH DECEMBER 1977 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. LAS VEGAS, NEVADA 89114 JULY

  5. DOElNV/10327-39

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE_Technology_TF_Final-Jun.pdf DOE_Technology_TF_Final-Jun.pdf (125.49 KB) More Documents & Publications 1703 Process Letter QER - Comment of Canadian Hydropower Association Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment

    DOElNV/10327-39 0 , i l ONSITE ENVIRONMENTAL REPORT FOR THE NEVADA TEST SITE (JANUARY 1987 THROUGH DECEMBER 1987) BY Daniel A. Gonzalez l 0 e Contributors Orin L. Haworth; Frank R. Markwell; Robert J. Straight Submitted August

  6. len Jr. Bl!ukr.'.lrd NV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IViJ lI /\l len Jr. Bl!ukr.'.lrd NV * v }\ II,ml;!. tiumU Iil 30JOB VIA ELECTRONIC MAIL November I, 20 I 0 Oftiee of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Avenue, S. W. Washington, D.C. 20585 smartgridpoliey@hg.doe.gov SOUTHER . \ C MPANY Re: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company Services, Inc., on behalf of itself and its operating affiliates (collectively, "Southern"), is pleased to have this

  7. HAER No. NV-32-A Nevada Test Site, Pluto Facility, Disassembly...

    National Nuclear Security Administration (NNSA)

    NV-32-A Richard Smith, Photographer January, 1996 (Photographs NV-32-A-1 to NV-32-A-37) ... historic architect; and the photographer was Richard Smith of Bechtel Nevada, Las Vegas.

  8. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ž. Pavlović Los Alamos National Laboratory Fermilab Users' Meeting, 2012 SciBooNE/MiniBooNE 2 Outline * Booster Neutrino Beamline * SciBooNE & MiniBooNE experiments * New results - MB Updated neutrino appearance analysis - MB Antineutrino appearance analysis - MB Joint Neutrino & Antineutrino appearance analysis - Joint SciBooNE/MiniBooNE numubar disappearance analysis * Future prospects 3 Booster Neutrino Beam * Horn focused beam/8GeV protons from Booster * Horn polarity → neutrino

  9. DOE - Office of Legacy Management -- Titanium Metals Corp Div of NLO - NV

    Office of Legacy Management (LM)

    07 Metals Corp Div of NLO - NV 07 FUSRAP Considered Sites Site: TITANIUM METALS CORP., DIV. OF NLO (NV.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Henderson , Nevada NV.07-1 Evaluation Year: 1994 NV.07-1 Site Operations: Experimental work on electrolyzing uranium contaminated magnesium fluoride. NV.07-2 Site Disposition: Eliminated - Potential for contamination considered remote NV.07-1 Radioactive Materials Handled: Yes

  10. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  11. DOE - Office of Legacy Management -- U S Bureau of Mines Reno Station - NV

    Office of Legacy Management (LM)

    06 Reno Station - NV 06 FUSRAP Considered Sites Site: U.S. BUREAU OF MINES RENO STATION (NV.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. BOM Metallurgy Research Center, Dept of the Interior NV.06-1 Location: 1605 Evans Avenue , Reno , Nevada NV.06-1 NV.06-2 Evaluation Year: 1987 NV.06-1 Site Operations: Research and development activities involving uranium. NV.06-2 Site Disposition: Eliminated - Potential for contamination remote NV.06-3

  12. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  13. DOE/NV/11718-594

    National Nuclear Security Administration (NNSA)

    ... 231 FRENCH, N.R., C.D. JORGENSEN, M.H. SMITH, and B.G. MAZA. 1971. Comparison of Some ... E.P., T.E. HUXMAN, M.E. LOIK, and S.D. SMITH. 2000. Effects of extreme high ...

  14. RAPID/Roadmap/14-NV-d | Open Energy Information

    Open Energy Info (EERE)

    Tools Contribute Contact Us 401 Water Quality Certification (14-NV-d) Section 401 of the Clean Water Act (CWA) requires activities in Nevada that require a federal license or...

  15. RAPID/Roadmap/19-NV-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Water Access and Water Rights (19-NV-a) Water law in Nevada is based on two principles:...

  16. NV-020-08-CX-65 | Open Energy Information

    Open Energy Info (EERE)

    Document Date 20080911 Relevant Numbers Lead Agency Doc Number NV-020-08-CX-65 Serial Number NVN-085777 CX Authorization 516 DM 11.9 Proposed Action Ormat Nevada has...

  17. NV Energy (Northern Nevada)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: NV Energy's Second Refrigerator or Freezer Recycling program is currently unavailable. Check the website or contact the program at recycle@nvenergy.com for updates and more information.

  18. DOI-BLM-NV-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    ????-????-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-????-????-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Thermal...

  19. DOI-BLM-NV-B020-????-???-EA | Open Energy Information

    Open Energy Info (EERE)

    ????-???-EA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-????-???-EA EA at Grass Valley Geothermal Area for GeothermalExploration EA for Observation...

  20. NV Energy (Northern Nevada)- SolarGenerations Solar Heating

    Broader source: Energy.gov [DOE]

    As of March 2014, NV Energy residential electric customers in northern Nevada who own their homes are eligible for a rebate of 50% of the installed cost of the system up to $2,250. Additionally,...

  1. NV-020-08-DNA-52 | Open Energy Information

    Open Energy Info (EERE)

    DNA-52 Jump to: navigation, search NEPA Document Collection for: NV-020-08-DNA-52 DNA for GeothermalExploration, DNA for Thermal Gradient Hole at Gavvs Valley for Geothermal...

  2. RAPID/Roadmap/3-NV-d | Open Energy Information

    Open Energy Info (EERE)

    Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Land Lease (3-NV-d) Leasing of state land in Nevada is controlled by the...

  3. RAPID/Roadmap/7-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Contact Us Permit to Construct and Permit to Operate (7-NV-a) Delete 2|page1|border|820px|link2|page2|border|820px|link2|page3|border|820px|link...

  4. http://ndep.nv.gov/bwm/hazard01.htm

    National Nuclear Security Administration (NNSA)

    David Huntsman, General Manager 4582 Donovan Way N. Las Vegas, NV 89081 (702) 657-2300 Regulatory Contact: Mr. Neil Smith E-mail: neil.smith@safety-kleen.com EPA ID: NVR000066837 ...

  5. RAPID/Roadmap/5-NV-b | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Sundry Notice (5-NV-b) 05NVBSundryNotice (2).pdf Error creating thumbnail: Page number not in range....

  6. RAPID/Roadmap/5-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Hydropower Solar Tools Contribute Contact Us Drilling and Well Development (5-NV-a) A person may not drill or operate a geothermal well or drill an exploratory well...

  7. RAPID/Roadmap/13-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Contribute Contact Us State Land Use Assessment (13-NV-a) 13NVALandUseAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  8. RAPID/Roadmap/3-NV-a | Open Energy Information

    Open Energy Info (EERE)

    Us State Land Leasing Process and Land Access (3-NV-a) 03NVAStateLandLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number...

  9. https://sweis.nv.doe.gov/References/Szymanski%202010.txt

    National Nuclear Security Administration (NNSA)

    TIMOTHY R. SZYMANSKI PEIO PUBLIC EDUCATIONINFORMATION OFFICER LAS VEGAS FIRE & RESCUE 500 N. Casino Center Blvd. Las Vegas, NV 89101 Cell: 702-303-2993 Office: 702-229-0145 Fax: ...

  10. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well

  11. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that ... R. Dharmapalan et al. MiniBooNE Collaboration, arXiv:1211.2258 hep-ex (2012).

  12. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration...

  13. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  14. DOI-BLM-NV-C010-2012--044-DNA | Open Energy Information

    Open Energy Info (EERE)

    DOI-BLM-NV-C010-2012--044-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012--044-DNA DNA for GeothermalPower Plant, DNA for Ormatt Nevada Sundry...

  15. DOI-LM-NV-W010-2012-0061-CX | Open Energy Information

    Open Energy Info (EERE)

    LM-NV-W010-2012-0061-CX Jump to: navigation, search NEPA Document Collection for: DOI-LM-NV-W010-2012-0061-CX CX at Desert Queen Geothermal Area for GeothermalExploration, CX for...

  16. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  17. OPTIONAL I-""... ..o SD

    Office of Legacy Management (LM)

    OPTIONAL I-""... ..o SD , * ' y)IP-lW ' a * UNITED S T A T E S COVEKNMENT TO : Files DATE: September 25, 1962 M o m 4' Materials Branch; Division of Licensing & Regulation SUBJECT: PRE-LICENSING VISIT TO THE CONTEMPORARY METALS CORPORATION PROPOSED FACILITY AT HAZELWOOD, M ISSOURI, AND RESIDUE STOCKPILES AT ROBERTSON, M ISSOURI, DOCKET NO, 40-6811 The Contemporary Metals Corporation was awarded a contract by the AEC for the removal of uranium -bearing residues from stock- pile

  18. DOE/NV/11718--514 Nevada Test Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    514 Nevada Test Site / 2000 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site February 2001 Post Office Box 98521 Las Vegas, NV 89193-8521 Prepared by: Bechtel Nevada 95 U.S. Department of Energy Nevada Operations Office Prepared for: DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

  19. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The MiniBooNE Detector Tracking the traces of neutrino interactions. Of Neutrino Mass, and Oscillation What oscillates in neutrino oscillations, and why it matters

  20. DOUNVll0327-28 DOEiNV/l0327-28

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOUNVll0327-28 DOEiNV/l0327-28 8 0 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT , ?", FOR THE l NEVADA TEST SITE (JANUARY 1985 THROUGH DECEMBER 1965) l l DANIEL A. GONZALEZ SEPTEMBER 1986 WORK PERFORMED UNDER CONTRACT NO. DE-AC08-84NV10327 REYNOLDS ELECTRICAL & ENGINEERING CO..s INC. POST OFFICE BOX 14400 * LAS VEGAS, NV 89114 DOE/NV/10327-28 RADIOLOGICAL EFFLUENT AND ONSITE AREA MONITORING REPORT FOR THE NEVADA TEST SITE ((IANUARY 1985 THROUGH DECEMBER 1985) Daniel A.

  1. DOI-BLM-NV-E030-20??-????-?? | Open Energy Information

    Open Energy Info (EERE)

    ??-????-?? Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-E030-20??-????-?? EA for GeothermalExploration Exploration EA at ?? Geothermal Area General NEPA...

  2. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  3. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  4. MiniBooNE

    SciTech Connect (OSTI)

    Mahn, Kendall Brianna Mcconnel; /Columbia U.

    2007-03-01

    MiniBooNE is a short baseline neutrino experiment designed to confirm or refute the LSND observed excess of electron anti neutrinos in a muon anti neutrino beam. The experimental setup, data samples, and oscillation fit method are discussed. Although the result was not public at the time of the talk, MiniBooNE has since published results, which are discussed briefly as well.

  5. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  6. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  7. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  10. head_sd_logo.gif | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information head_sd_logo.gif

  11. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  12. US NE MA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE MA Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 3,000 US NE MA ... 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours 0 250 500 750 1,000 ...

  13. DOI-BLM-NV-W010-2010-0041-CX | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2010-0041-CX CX at Brady Hot Springs Geothermal Area for GeothermalExploration CX for Seismic Reflection Noise...

  14. GRR workshop at GRC scheduled for 10/2 in Reno, NV | OpenEI Community

    Open Energy Info (EERE)

    GRR workshop at GRC scheduled for 102 in Reno, NV Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 6 September, 2012 - 09:05 GRC + workshop + GRR...

  15. DOI-BLM-NV-C010-2009-0006-EA | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2009-0006-EA EA at Salt Wells Geothermal Area for GeothermalExploration Salt Wells Geothermal Exploratory...

  16. DOI-BLM-NV-C010-2012-0019-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0019-DNA.pdf Retrieved from "http:...

  17. DOI-BLM-NV-C010-2012-0068-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0068-DNA.pdf Retrieved from "http:...

  18. DOI-BLM-NV-C010-2012-0016-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0016-DNA.pdf Retrieved from "http:...

  19. DOI-BLM-NV-C010-2012-0048-DNA | Open Energy Information

    Open Energy Info (EERE)

    Notes GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0048-DNA.pdf Retrieved from "http:...

  20. DOI-BLM-NV-C010-2012-0058-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0058-DNA.pdf Retrieved from "http:...

  1. DOI-BLM-NV-C010-2012-0046-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0046-DNA.pdf Retrieved from "http:...

  2. DOI-BLM-NV-W030-2012-0011-DNA | Open Energy Information

    Open Energy Info (EERE)

    Notes GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DNA R&C Doc FINAL DOI-BLM-NV-W030-2012-0011-DNA.pdf...

  3. DOI-BLM-NV-C010-2013-0023-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2013-0023-DNA.pdf Retrieved from "http:...

  4. DOI-BLM-NV-C010-2013-0007-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. 942013: DNA file uploaded Documents DNA Worksheet: DOI-BLM-NV-C010-2013-0007-DNA....

  5. DOI-BLM-NV-C010-2013-0020-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. Documents DNA Worksheet: DOI-BLM-NV-C010-2013-0020-DNA.pdf Retrieved from "http:...

  6. DOI-BLM-NV-C010-2012-0020-DNA | Open Energy Information

    Open Energy Info (EERE)

    GDP from BLM's Grass Wells Database, LR2000 SRPs, or State Mineral Commissions Databases. 8292013: DNA uploaded Documents DNA Worksheet: DOI-BLM-NV-C010-2012-0020-DNA.pdf...

  7. NV Energy (Northern Nevada Gas)- SureBet Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial, industrial and institutional natural gas customers of NV Energy can take advantage of a wide variety of incentives for retrofit projects. Only customers in Northern Nevada (Reno-Spark...

  8. USDA-FS-EA-NV-030-06-025 2007 | Open Energy Information

    Open Energy Info (EERE)

    Document Date 20070417 Relevant Numbers Lead Agency Doc Number EA-NV-030-06-025 Serial Number NVN-088208 Proposed Action See US Department of Agriculture Forest Service...

  9. USDA-FS-EA-NV-030-06-025 2012 | Open Energy Information

    Open Energy Info (EERE)

    Document Date 20120216 Relevant Numbers Lead Agency Doc Number EA-NV-030-06-025 Serial Number NVN-088208 Proposed Action See US Department of Agriculture Forest Service...

  10. DOI-BLM-NV-W030-2012-0020-CX | Open Energy Information

    Open Energy Info (EERE)

    20-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W030-2012-0020-CX CX at Pinto Hot Springs Geothermal Area for GeothermalExploration, CX for Thermal...

  11. DOI-BLM-NV-C010-2010-0052-CX | Open Energy Information

    Open Energy Info (EERE)

    52-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2010-0052-CX CX at Soda Lake Geothermal Area for GeothermalExploration, CX for Thermal Gradient...

  12. DOI-BLM-NV-CO1000-2010-0022-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0022-CX CX at Coyote Canyon Geothermal Area for GeothermalExploration, CX for Electromagnetic...

  13. DOI-BLM-NV-W010-2010-0039-CX | Open Energy Information

    Open Energy Info (EERE)

    9-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2010-0039-CX CX for GeothermalExploration CX for Micro-Earthquake Survey at ?? Geothermal Area...

  14. DOI-BLM-NV-C010-2010-0008-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for Seismic Survey at...

  15. DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    4-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for GeothermalExploration, CX for Seismic Survey at...

  16. DOI-BLM-NV-C010-2012-0057-CX | Open Energy Information

    Open Energy Info (EERE)

    7-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0057-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for Thermal Gradient...

  17. DOI-BLM-NV-W010-2010-0043-CX-2 | Open Energy Information

    Open Energy Info (EERE)

    CX-2 Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX-2 CX at McGee Mountain Geothermal Area for GeothermalExploration CX for Geophysical...

  18. DOI-BLM-NV-C010-2009-0030-CX | Open Energy Information

    Open Energy Info (EERE)

    30-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2009-0030-CX CX at Carson Lake Corral Geothermal Area for GeothermalExploration, CX for Thermal...

  19. DOI-BLM-NV-B020-2008-????-?? | Open Energy Information

    Open Energy Info (EERE)

    ?? Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-?? Environmental Analysis at Reese River Geothermal Area for GeothermalExploration EA? for...

  20. DOI-BLM-NV-C010-2011-0514-EA | Open Energy Information

    Open Energy Info (EERE)

    4-EA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0514-EA EA at McCoy Geothermal Area for GeothermalWell Field McCoy II Geothermal Exploration...

  1. DOI-BLM-NV-B020-2010-????-CX | Open Energy Information

    Open Energy Info (EERE)

    B020-2010-????-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2010-????-CX CX for GeothermalExploration CX for Thermal Gradient Holes at ??...

  2. DOI-BLM-NV-B020-2011-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    17-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2011-0017-CX CX at Silver Peak Geothermal Area for GeothermalExploration CX at Silver Peak...

  3. DOI-BLM-NV-B020-2009-0030-CX | Open Energy Information

    Open Energy Info (EERE)

    9-0030-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2009-0030-CX CX at Alum Geothermal Area for GeothermalExploration CX at Alum Geothermal Area...

  4. DOI-BLM-NV-CO1000-2010-0010-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0010-CX CX at Coyote Canyon Geothermal Area for GeothermalExploration CX for Seismic Survey at...

  5. DOI-BLM-NV-W010-2010-0040-CX | Open Energy Information

    Open Energy Info (EERE)

    0-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2010-0040-CX CX for GeothermalExploration CX for Seismic Reflection Survey at Humbolt House...

  6. DOI-BLM-NV-C010-2011-0527-CX | Open Energy Information

    Open Energy Info (EERE)

    27-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0527-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Passive Seismic...

  7. DOI-BLM-NV-C010-2013-0037-DNA | Open Energy Information

    Open Energy Info (EERE)

    37-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2013-0037-DNA DNA at Gabbs Valley Geothermal Area for GeothermalWell Field, DNA for Wild Rose Unit...

  8. DOI-BLM-NV-C010-2010-0006-DNA | Open Energy Information

    Open Energy Info (EERE)

    DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2010-0006-DNA DNA at Gabbs Valley Geothermal Area for GeothermalExploration, DNA for Thermal Gradient...

  9. DOI-BLM-NV-W010-2011-0100-CX | Open Energy Information

    Open Energy Info (EERE)

    0100-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2011-0100-CX CX for GeothermalExploration CX at ?? Geothermal Area for GeothermalExploration...

  10. DOI-BLM-NV-W030-2010-0021-CX | Open Energy Information

    Open Energy Info (EERE)

    21-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W030-2010-0021-CX CX at San Emidio Desert Geothermal Area for GeothermalExploration CX for Seismic...

  11. DOI-BLM-NV-B020-2011-0048-CX | Open Energy Information

    Open Energy Info (EERE)

    48-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2011-0048-CX CX at Silver Peak Geothermal Area for GeothermalExploration CX at Silver Peak...

  12. DOI-BLM-NV-C010-2011-0019-CX | Open Energy Information

    Open Energy Info (EERE)

    19-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0019-CX CX at Gabbs Valley Geothermal Area for GeothermalExploration CX at Gabbs Valley...

  13. DOI-BLM-NV-C010-2011-0015-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0015-CX CX at Patua Geothermal Area for GeothermalExploration CX at Patua Geothermal Area for...

  14. DOI-BLM-NV-W010-2010-0043-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX CX at Hot Pot Geothermal Area for GeothermalExploration CX for Seismic Survey at Hot Pot...

  15. DOI-BLM-NV-C010-2009-0051-CX | Open Energy Information

    Open Energy Info (EERE)

    51-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2009-0051-CX CX at Soda Lake Geothermal Area for GeothermalExploration, CX for Magnetotelluric...

  16. DOI-BLM-NV-C010-2012-0005-DNA | Open Energy Information

    Open Energy Info (EERE)

    05-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0005-DNA DNA at McCoy Geothermal Area for GeothermalWell Field DNA for Observation Wells 62-8...

  17. DOI-BLM-NV-B020-2010-0106-CX | Open Energy Information

    Open Energy Info (EERE)

    0-0106-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2010-0106-CX CX at Alum Geothermal Area for GeothermalExploration CX for Hyperspectral Imaging,...

  18. DOI-BLM-NV-E030-2011-0017-CX | Open Energy Information

    Open Energy Info (EERE)

    0017-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-E030-2011-0017-CX CX for GeothermalExploration CX for Thermal Gradient Holes at ?? Geothermal Area...

  19. DOI-BLM-NV-0063-EA06-100 | Open Energy Information

    Open Energy Info (EERE)

    063-EA06-100 Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-0063-EA06-100 EA at Jersey Valley Geothermal Area for GeothermalExploration Jersey Valley...

  20. DOI-BLM-NV-W030-20??-????-CX | Open Energy Information

    Open Energy Info (EERE)

    ??-????-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W030-20??-????-CX CX at Mcgee Mountain Geothermal Area for GeothermalExploration CX for Gravity...

  1. DOI-BLM-NV-C010-2011-0517-DNA | Open Energy Information

    Open Energy Info (EERE)

    7-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0517-DNA DNA at Dead Horse Wells Geothermal Area for GeothermalExploration DNA at Dead Horse...

  2. DOI-BLM-NV-C010-2012-0070-CX | Open Energy Information

    Open Energy Info (EERE)

    0-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0070-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Magnetotelluric...

  3. DOI-BLM-NV-W030-2011-0007-CX | Open Energy Information

    Open Energy Info (EERE)

    1-0007-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W030-2011-0007-CX CX at San Emidio Desert Geothermal Area for GeothermalExploration CX for Seismic...

  4. DOI-BLM-NV-B020-2008-????-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-CX CX at Silver Peak Geothermal Area for GeothermalExploration CX at Silver Peak Geothermal...

  5. DOI-BLM-NV-W010-2009-0018-CX | Open Energy Information

    Open Energy Info (EERE)

    18-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2009-0018-CX CX at Aurora Geothermal Area for GeothermalExploration CX for Geophysical Survey at...

  6. DOI-BLM-NV-C010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    04-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0004-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Seismic Survey at...

  7. DOI-BLM-NV-B020-2008-0071-DNA | Open Energy Information

    Open Energy Info (EERE)

    0071-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-B020-2008-0071-DNA DNA at Reese River Geothermal Area for GeothermalExploration DNA at Reese River...

  8. DOI-BLM-NV-CO1000-2010-0009-CX | Open Energy Information

    Open Energy Info (EERE)

    CO1000-2010-0009-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0009-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for...

  9. DOI-BLM-NV-C010-2012-0069-CX | Open Energy Information

    Open Energy Info (EERE)

    9-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0069-CX CX at Aqua Quieta Geothermal Area for GeothermalExploration CX for Thermal Gradient...

  10. DOI-BLM-NV-030-06-025-EA | Open Energy Information

    Open Energy Info (EERE)

    30-06-025-EA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-030-06-025-EA EA at Aurora Geothermal Area for GeothermalLeasing, GeothermalExploration,...

  11. DOI-BLM-NV-C010-2013-0026-DNA | Open Energy Information

    Open Energy Info (EERE)

    6-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2013-0026-DNA DNA at Dixie Valley Geothermal Area for GeothermalWell Field, DNA for Production...

  12. DOI-BLM-NV-C010-2013-0022-DNA | Open Energy Information

    Open Energy Info (EERE)

    Tiered Doc DOI-BLM-NV-C010-2011-0516-EA Proposed Action Proposed drilling of core holetemperature gradient hole. The proposed drill site was not analyized with the Dixis...

  13. http://www.sord.nv.doe.gov/meda_wind_roses_by_station_numbe.htm

    National Nuclear Security Administration (NNSA)

    Phone: Contact - (702) 295-1232 Fax - (702) 295-3068 http:www.sord.nv.doe.gov Report web page problems to: SORD Webmaster Page 1 of 2 SORD MEDA Wind Roses 5162011 http:...

  14. http://www.sord.nv.doe.gov/MEDAStationInfo-tng.htm

    National Nuclear Security Administration (NNSA)

    ... Phone: Contact - (702) 295-1232 Fax - (702) 295-3068 http:www.sord.nv.doe.gov Report web page problems to: SORD Webmaster Date Modified: 031208 ||Home | Privacy Policy | ...

  15. Microsoft Word - SD 351-1 FINAL.doc

    National Nuclear Security Administration (NNSA)

    Supply Management NNSA SUPPLEMENTAL DIRECTIVE Approved: 02-05-09 MANAGEMENT AND OPERATING CONTRACTOR SERVICE CREDIT RECOGNITION NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Acquisition & Supply Management NA SD O 350.1 NA SD-1 O 350.1 1 02-05-09 MANAGEMENT AND OPERATING CONTRACTOR SERVICE CREDIT RECOGNITION 1. PURPOSE. The objective of this Supplemental Directive is to address Management and Operating (M&O) contractor service credit recognition for employees transferring to a

  16. DOE - Office of Legacy Management -- Edgemont Mill Site - SD 01

    Office of Legacy Management (LM)

    Edgemont Mill Site - SD 01 FUSRAP Considered Sites Site: Edgemont Mill Site (SD.01) Licensed to DOE for long-term custody and managed by the Office of Legacy Management Designated Name: Edgemont, South Dakota, Disposal Site Alternate Name: Edgemont Mill Site Ore Buying Station at Edgemont Location: Edgemont, South Dakota Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II site Radioactive Materials Handled: Primary Radioactive

  17. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 042916 MicroBooNE Project ...

  18. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  1. EA-1849: Ormat Nevada Geothermal Projects in Northern NV | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9: Ormat Nevada Geothermal Projects in Northern NV EA-1849: Ormat Nevada Geothermal Projects in Northern NV August 22, 2011 EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada August 22, 2011 EA-1849: Finding of No Significant Impact Ormat Nevada Northern Nevada Geothermal Power Plant Projects: Loan Guarantee for ORMAT

  2. DOE - Office of Legacy Management -- Central Nevada Test Site - NV 02

    Office of Legacy Management (LM)

    Central Nevada Test Site - NV 02 FUSRAP Considered Sites Site: Central Nevada Test Site (NV.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Central Nevada Test Area (CNTA), Nevada, Site Documents Related to Central Nevada Test Site Public Involvement Plan Post-Closure Inspection and Monitoring Report for Corrective Action Unit

  3. Production and Injection data for NV Binary facilities (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: Production and Injection data for NV Binary facilities Citation Details In-Document Search Title: Production and Injection data for NV Binary facilities Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web

  4. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  5. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  6. NV/YMP radiological control manual, Revision 2

    SciTech Connect (OSTI)

    Gile, A.L.

    1996-11-01

    The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

  7. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  8. NNSA Supplemental Guidance: NA-1 SD G 1027 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Guidance: NA-1 SD G 1027 NNSA Supplemental Guidance: NA-1 SD G 1027 Guidance on using Release Fraction and Modern Dosimetric information consistently with DOE STD ...

  9. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  10. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  12. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) ...

  13. HNF-SD-WM-TI-740, Rev. OA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84045. HNF-SD-WM-TI-740, Rev. OA Standard Inventories of Chemicals and Radionuclides in Hanford Site Ta nk Wastes M. J. Kupfer, A. L. Boldt, B. A. Higley, K. M. Hodgson, L. W. Shelton, B. C. Simpson, and R. A. Watrous (LMHC); M. 0. LeClair (SAIC); G. 1. Borsheim (BA); R. T. Winward (MA); R. M. Orme (NHC); N. 6. Colton (PNNL); S. 1. Lambert and D. E. Place (SESC); and W. W. SchulZ (W 2 S) Lockheed Martin Hanford Corporation, Richland, WA 99352 U.S. Department of Energy Contract DE-AC06-96RL13200

  14. HNF-SD-WM-TI-740, Rev. OC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84047 HNF-SD-WM-TI-740, Rev. OC Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes M. J. Kupfer, A. L. Boldt, K. N. Hodgson, L. W. Shelton, B. C. Simpson, and R. A. Watrous (LMHC); M. D. LeClair (SAIC); G. 1. Borsheim (BA); R. T. Winward (MA); B. A. Higley and R. M. Orme (NHC); N. G. Colton (PNNL); S. L. Lambert and D. E. Place (Cogema); and W. W. Schulz (112S) Lockheed Martin Hanford Corporation, Richland, WA 99352 U.S. Department of Energy Contract

  15. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  16. Migration of Nuclear Shell Gaps Studied in the d({sup 24}Ne,p{gamma}){sup 25}Ne Reaction

    SciTech Connect (OSTI)

    Catford, W. N.; Timis, C. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Labiche, M.; Orr, N. A.; Achouri, N. L.; Chapman, R.; Amzal, N.; Burns, M.; Liang, X.; Spohr, K.; Freer, M.; Ashwood, N. I.

    2010-05-14

    The transfer of neutrons onto {sup 24}Ne has been measured using a reaccelerated radioactive beam of {sup 24}Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2{sup +} level in {sup 25}Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2{sup +} level is observed simultaneously with the intruder negative parity 7/2{sup -} and 3/2{sup -} levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2{sup +} state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

  17. DOE/NV--471 UC-700 U.S. Department of Energy Nevada Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    471 UC-700 U.S. Department of Energy Nevada Operations Office on on on on : ed : 2 Approved for public release; further distribution is authorized. E nv i r onm ent a l R es t or a t i D i v i s i N ev ada E nv i r onm ent al R es t or at i P r oj ect C or r ect i v e A ct i on D eci s i D ocu m ent , S econd Ga s S t a t i on, Tonopa h Tes t R a nge, N ev a da ( C or r ect i v e A ct i on U ni t N o. 403) C ont r ol l ed C opy N o.U ncont r ol l R ev i s i on N o. N ov em ber 1997 This report

  18. Coherent manipulation of an NV center and one carbon nuclear spin

    SciTech Connect (OSTI)

    Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.

    2014-12-04

    We study a three-qubit system formed by the NV centers electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  20. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  1. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  5. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  6. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  9. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  10. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Collaboration Photos Click on image to view larger version April 2016 October 2014

  12. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  13. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  14. Nevada Environmental Restoration Project DOE/NV-368 Project Chariot S

    Office of Legacy Management (LM)

    Environmental Restoration Project DOE/NV-368 Project Chariot S i t e Assessment and Remedial Action Final Report Environmental Restoration August 1994 This report has been reproduced from the best available copy. Available in paper copy and microfiche. Number of pages in this report: 226 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. (61 5) 576-8401. This report is publicly available from the

  15. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m er of 2002, the cross sections for an 8 GeV proton beam on Be were m easured by the HARP ex perim ent at CERN. Harp Setup Intro ductio n Im po rtant s te ps s ince las t re v...

  16. Elastic-plastic deformations of a beam with the SD-effect

    SciTech Connect (OSTI)

    Pavilaynen, Galina V.

    2015-03-10

    The results for the bending of a cantilever beam with the SD-effect under a concentrated load are discussed. To solve this problem, the standard Bernoulli-Euler hypotheses for beams and the Ilyushin model of perfect plasticity are used. The problem is solved analytically for structural steel A40X. The SD-effect for elastic-plastic deformations is studied. The solutions for beam made of isotropic material and material with the SD-effect are compared.

  17. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Andrzej Szelc Yale University 2 Outline ● The LArTPC. ● Physics with MicroBooNE. ● The MicroBooNE detector. 3 LArTPC Operation ● Charged particles in argon create electron-ion pairs and scintillation light. ● Electrons are drifted towards the anode wires. ● Multiple anode planes together with drift time allow 3D reconstruction. ● Collected charge allows calorimetric reconstruction. time 4 US LAr R&D Program 5 MicroBooNE Physics Goals 6 MiniBooNE

  18. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  19. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  20. shaleoil1.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... USA CANADA SD ND MT Saskatchewan Manitoba Dunn Wa rd Dawson McL ea n McK en zie Morton ... SIGNIFICANT BAKKEN OIL FIELDS Bakken Shale Extent Canada MT ID IL IA WY NV NE SD MN ND WI ...

  1. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  2. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  4. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01, 1973DE13, 1977BU05). Electromagnetic transitions: (1972EN03, 1972LE06, 1973HA53, 1973PE09, 1977BU05). Special states: (1972EN03, 1972GA14, 1972HI17, 1972NE1B, 1972WE01, 1977BU05, 1977SC08). Complex reactions involving 19Ne: (1976HI05, 1977BU05). Astrophsyical questions: (1973CL1E). Muon capture: (1972MI11). Pion capture and

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE publications. Other MiniBooNE Data Releases: Data Released with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Antineutrino Double-Differential Charged-Current Quasielastic Cross section",

  6. Mineralogic variation in drill holes USW NRG-6, NRG-7/7a, SD-7, SD-9, SD-12, and UZ{number_sign}14: New data from 1996--1997 analyses

    SciTech Connect (OSTI)

    Chipera, S.J.; Vaniman, D.T.; Bish, D.L.; Carey, J.W.

    1997-05-30

    New quantitative X-ray diffraction (QXRD) mineralogic data have been obtained for samples from drill holes NRG-6, NRG-7/7A, SD-7, SD-9, SD- 12, and UZ{number_sign}14. In addition, new QXRD analyses were obtained on samples located in a strategic portion of drill hole USW H-3. These data improve our understanding of the mineral stratigraphy at Yucca Mountain, and they further constrain the 3-D Mineralogic Model of Yucca Mountain. Some of the unexpected findings include the occurrence of the zeolite chabazite in the vitric zone of USW SD-7, broad overlap of vitric and zeolitic horizons (over vertical ranges up to 70 m), and the previously unrecognized importance of the bedded tuft beneath the Calico Hills Formation as a subunit with generally more extensive zeolitization than the Calico Hills Formation in the southern part of the potential repository area. Reassessment of data from drill hole USW H-5 suggests that the zeolitization of this bedded unit occurs in the northwestern part of the repository exploration block as well. Further analyses of the same interval in USW H-3, however, have not permitted the same conclusion to be reached for the southwestern part of the repository block because of the much poorer quality of the cuttings in H-3 compared with those from H-5. X-ray fluorescence (XRF) chemical data for drill holes USW SD-7, 9, and 12 show that the zeolitic horizons provide a >10 million year record of retardation of Sr transport, although the data also show that simplistic models of one-dimensional downward flow in the unsaturated zone (UZ) are inadequate. Complex interstratification of zeolites and glass, with highly variable profiles between drill cores, point to remaining problems in constructing detailed mineral stratigraphies. However, the new data in this report provide important information for constructing bounding models of zeolite stratigraphy for transport calculations.

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  8. Survey of lands held for uranium exploration, development, and production in fourteen western states for the six-month period ending December 31, 1982. [AZ, CA, CO, ID, MT, NV, NM, ND, OR, SD, TX, UT, WA, WY

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    Tables are presented showing the land held (in thousands of acres) for uranium exploration and development according to: (1) distribution by ownership for 14 western states; (2) distribution by state; distribution by land category. A graph is presented showing land held by uranium industry from January 1966 to January 1983. Land controlled by counties for each of the 14 states are also tabulated according to land category. (ATT)

  9. Survey of lands held for uranium exploration, development, and production in fourteen western states for the six-month period ending June 30, 1982. [AZ, CA, CO, ID, MT, NV, NM, ND, OR, SD, TX, UT, WA, WY

    SciTech Connect (OSTI)

    Not Available

    1982-10-01

    Tables are presented showing the land held (in thousands of acres) for uranium exploration according to: (1) distribution by ownership for 14 western states (state, claim, federally acquired, Indian and fee); (2) distribution by state (1976 to 1982); (3) distribution by land category (1976 to 1982). A graph is presented showing land held by uranium industry from January 1966 to January 1982. Land controlled by counties for each of the 14 states are also tabulated according to land category. (ATT)

  10. EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV

    Broader source: Energy.gov [DOE]

    Ormat Technologies, Inc. (Ormat) proposes to use DOE and cost share funding to study the Brady Hot Springs geothermal Field 15-12RD well. This is an EGS Demonstration project divided into three phases. During Phase 1, Ormat characterized the target well to prepare for stimulation activities in Phase 2, Phase 2: Well Stimulation and Collection/Analysis of Stimulation Monitoring Data and Phase 3: Long-term testing of the system. Phase 2 and 3 activities would occur at Ormat's Brady Hot Springs geothermal field in Churchill County, NV on public lands managed by the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR). Since Phases 2 and 3 have the potential to impact subsurface resources, DOE must analyze the impacts associated with Phases 2 and 3. The BLM will be the lead agency for completion of the EA with BOR and DOE as cooperating agencies.

  11. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  12. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  13. FY16 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget ...

  14. ADMINISTRATIVE CHANGE TO SD 251.1, Policy Letters: NNSA Policies, Supplemental Directives, and Business Operating

    National Nuclear Security Administration (NNSA)

    NA SD 251.1 Admin Chg 1 1 10-7-13 ADMINISTRATIVE CHANGE TO SD 251.1, Policy Letters: NNSA Policies, Supplemental Directives, and Business Operating Procedures Locations of Changes: Page Paragraph Changed To Cover Footer Office of Management and Budget Office of Business Operations 1, 2, A1-1 multiple locations the Administration NNSA 2 6.a.(1) (1) Concurred in by the NNSA Management Council Deleted 3 7.b. Once a NAP, SD, or BOP has been reviewed and comments addressed by the originating

  15. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 ...

  16. File:USDA-CE-Production-GIFmaps-SD.pdf | Open Energy Information

    Open Energy Info (EERE)

    SD.pdf Jump to: navigation, search File File history File usage South Dakota Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  17. Session Name: Data Transfer (session D2SD) Co-Chairs: Andrew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer (session D2SD) Co-Chairs: Andrew Cherry, Eli Dart 1 Contributors * Curt ... monitoring o Most sites run perfSONAR * Dedicated data paths for some programs (e.g. ...

  18. NE - Nuclear Energy - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible.

  19. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  20. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents and Publications Public Notes See the Public Notes Page for a list of notes with results made public by the MicroBooNE collaboration. Presentations See the Talks Page for copies of slides and posters presented at conferences and workshops. MicroBooNE DocDB Like most experiments at Fermilab, MicroBooNE uses DocDB - a documents database. Much of the contents of the DocDB are restricted to members of the collaboration, but some items are public. Use the link below to enter the public

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and...

  3. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on how to use MiniBooNE public data or for enquiries about additional data not linked from this page, please contact: Steve Brice or Richard Van de Water Acknowledgments If...

  4. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  5. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles,...

  6. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  7. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  8. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  9. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  10. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  11. UCB-NE-107 user's manual

    SciTech Connect (OSTI)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as /sup 135/Cs, /sup 137/Cs, and /sup 129/I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs.

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  14. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  15. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  16. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 18Ne) GENERAL: See Table Prev. Table 18.35 preview 18.35 [General Table] (in PDF or PS) and Table Prev. Table 18.36 preview 18.36 [Table of Energy Levels] (in PDF or PS). For B(E2) of 18Ne*(1.89) and other parameters see (1987RA01) and Table Prev. Table 2 preview 2 in the Introduction. 1. 18Ne(β+)18F Qm = 4.446 The half-life of 18Ne is 1672 ± 8 ms: see (1978AJ03) and (1983AD03). The decay is primarily to 18F*(0, 1.04, 1.70 MeV). In addition there is an

  17. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 20Ne) GENERAL: See also Table 20.6 [Table of Energy Levels] (in PDF or PS). Theory: See (GA55B, HE55F, MO56, BA57, RA57). 1. 9Be(14N, t)20Ne Qm = 6.323 See (GO58E). 2. 16O(α, γ)20Ne Qm = 4.753 An unsuccessful attempt has been made to observe the isobaric spin-forbidden transition between the T = 0 states at 7.19 MeV (J = 3-) and 1.63 MeV (J = 2+). The radiative width is < 6 x 10-3 eV, indicating an admixture of T = 1 of < 1.3 x 10-3 in 20Ne*(7.19)

  18. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0704.1500 hep-ex, Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in...

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastic cross-section paper is on the archive (arXiv:1309.7257) and has been published in Phys. Rev. D91, 012004 (2015). MiniBooNE's antineutrino charged current quasi-elastic...

  20. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Anti-Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0904.1958 hep-ex, Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009...

  1. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  2. {beta} decay of {sup 26}Ne

    SciTech Connect (OSTI)

    Weissman, L.; Lisetskiy, A.F.; Arndt, O.; Dillmann, I.; Hallmann, O.; Kratz, K.L.; Pfeiffer, B.; Bergmann, U.; Cederkall, J.; Fraile, L.; Koester, U.; Franchoo, S.; Gaudefroy, L.; Sorlin, O.; Tabor, S.

    2004-11-01

    A pure neutron-rich {sup 26}Ne beam was obtained at the ISOLDE facility using isobaric selectivity. This was achieved by a combination of a plasma ion source with a cooled transfer line and subsequent mass separation. The high quality of the beam and good statistics allowed us to obtain new experimental information on the {sup 26}Ne {beta}-decay properties and resolve a contradiction between earlier experimental data and prediction of shell-model calculations.

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost Particles": Interview with Janet Conrad Columbia Magazine "The Nature of the Neutrino": MiniBooNE and neutrinos The Los Angeles Times "It's No Small Matter": K. C. Cole's article detailing her summer 2003 stint at Fermilab working on MiniBooNE [text only]

  4. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS July 6, 2016 Energy Department To Fund Radiochemistry Traineeship Program The Energy Department's offices of Nuclear Energy (NE) and Environmental Management (EM) are co-funding a new traineeship program in radiochemistry at Washington State University (WSU) in Pullman. June 14, 2016 Energy Department Invests $82 Million to Advanced Nuclear Technology In total, 93 projects were selected to receive funding that will help push innovative nuclear technologies

  5. MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE Collaboration June 30, 2016 Abstract The Micro Booster Neutrino Experiment (MicroBooNE) is designed to explore the low- energy excess in the ν e event spectrum reported by the MiniBooNE experiment [1] and to measure ν-Ar cross sections in the 1 GeV energy range. The detector is a liquid argon time projection chamber with wire readout, supplemented with a light detection system based on photo-multiplier tubes (PMTs). The

  6. Origin State>> CA CA ID ID ID IL KY MD NM NM NV NY NY OH TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM NM NV NY NY OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory General Atomics Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Ground Los Alamos National Laboratory Sandia National Laboratory National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant

  7. Origin State>> CA ID ID ID IL KY NV NY NY OH TN TN TN, WA, CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant Materials & Energy Corporation

  8. Origin State>> CA ID ID ID IL MD NM NM NV NY NY OH SC TN TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY OH SC TN TN TN, WA, CA TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Aberdeen Proving Ground Sandia National Laboratory Los Alamos National Laboratory National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Savannah River Site Duratek/Energy Solutions Babcox & Wilcox

  9. Origin State>> CA ID ID IL IL KY NM NM NV NY OH TN TN TN, WA,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL IL KY NM NM NV NY OH TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Energx Argonne National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Sandia National Laboratory Los Alamos National Laboratory National Security Technologies West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant

  10. Corrective Action Decision Document/Corrective Action Plan for CAU 443: Central Nevada Test Area-Subsurface CNTA, NV

    Office of Legacy Management (LM)

    Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada Controlled Copy No.: Revision No.: 0 November 2004 Approved for public release; further dissemination unlimited. DOE/NV--977 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering:

  11. FY17 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation (2.07 MB) More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

  12. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100807 MiniBooNE Status Report R.G. Van de Water 100107 MiniBooNE Status Report R.G. Van de Water 080607 MiniBooNE Status Report Steve Brice 073007 MiniBooNE Status...

  13. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  14. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  15. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 19Ne) GENERAL: See Table Prev. Table 19.26 preview 19.26 [General Table] (in PDF or PS) and Table Prev. Table 19.27 preview 19.27 [Table of Energy Levels] (in PDF or PS) here. μg.s. = -1.88542 (8) nm (1982MA39) μ0.239 = -0.740 (8) nm (1978LEZA) 1. 19Ne(β+)19F Qm = 3.238 We adopt the half-life of 19Ne suggested by (1983AD03): 17.34 ± 0.09 s. See also (1978AJ03). The decay is principally to 19Fg.s.: see Table Prev. Table 19.29 preview 19.29 (in PDF or

  16. Canister storage building compliance assessment SNF project NRC equivalency criteria - HNF-SD-SNF-DB-003

    SciTech Connect (OSTI)

    BLACK, D.M.

    1999-08-11

    This document presents the Project's position on compliance with the SNF Project NRC Equivalency Criteria--HNF-SD-SNF-DE-003, Spent Nuclear Fuel Project Path Forward Additional NRC Requirements. No non-compliances are shown The compliance statements have been reviewed and approved by DOE. Open items are scheduled to be closed prior to project completion.

  17. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  18. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  19. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Results and Implications Michael H. Shaevitz for the MiniBooNE Collaboration Abstract. The MiniBooNE Collaboration has reported ...rst results of a search for e appearance in a beam. With two largely independent analyses, no signi...cant excess was observed of events above background for reconstructed neutrino energies above 475 MeV and the data are consistent with no oscillations within a two neutrino appearance-only oscillation model. An excess of events (186 27 33 events) is

  20. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 May 2006 1 MiniBooNE Steve Brice Fermilab * Oscillation Analysis * Issues of the Past Year - Normalization - Optical Model -  0 MisIDs * Summary * Future DOE Review 17 May 2006 2 MiniBooNE Goal * Search for  e appearance in a   beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND DOE Review 17 May 2006 3 Particle ID * Identify electrons (and thus candidate  e events) from characteristic hit topology * Non-neutrino background easily removed     n p W

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  4. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  5. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979DA15, 1979SA31, 1980ZH01). Electromagnetic transitions: (1977HA1Z, 1979SA31, 1982LA26). Special states: (1977HE18, 1978KR1G, 1979DA15, 1979SA31, 1980OK01, 1982ZH1D). Astrophysical questions: (1978WO1E). Complex reactions involving 18Ne: (1979HE1D). Pion-induced capture and reactions (See also reaction 6.): (1977PE12, 1977SP1B, 1978BU09,

  6. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37, 1985RO1G). Special states:(1982ZH01, 1983BI1C, 1983BR29, 1984SA37, 1985RO1G, 1986AN10, 1986AN07). Electromagnetic transitions:(1982BR24, 1982RI04, 1983BR29, 1985AL21, 1986AN10). Astrophysical questions:(1982WI1B, 1987WI11). Complex reactions involving 18Ne:(1986HA1B). Pion capture and reactions (See also reaction

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  8. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J....

  9. UCB-NE-108 user's manual

    SciTech Connect (OSTI)

    Kang, C.H.; Lee, W.W.L.

    1989-04-01

    The purpose of this manual is to provide users of UCB-NE-108 with the information necessary to use UCB-NE-108 effectively. UCB-NE-108 is a computer code for calculating the fractional release rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media, and transported through layers of porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. In a spent-fuel waste package the soluble cesium and iodine accumulated in fuel-cladding gaps, voids, and grain boundaries of spent fuel rods are expected to dissolve rapidly when groundwater penetrates the fuel cladding. UCB-NE-108 is a code for calculating the release rate at the interface of two layers of porous material, such as the backfill around a high-level waste package and natural rock, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 6 refs., 2 figs.

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project was started on October 15, 1999. The 8-GeV Beamline and Target Hall: This project started on June 7, 2000.

  11. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagram for 17Ne) GENERAL: See also Table 17.22 Table of Energy Levels (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L,...

  12. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  13. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  14. Errata Sheet for Nevada National Security Site Environmental Report Summary 2011, DOE/NV/25946--1604-SUM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernie Tucker Ernie Tucker Ernie Tucker - Editor, National Renewable Energy Laboratory Ernie Tucker is editor of the weekly EERE Network News newsletter, and a member of NREL's Communication Office. Most Recent Meet a 91-Year-Old Wind Energy Pioneer July 10 What Happens After Your Home Energy Audit? January 29 Sinking a Pet's Teeth into Energy Saving August

    Errata Sheet for Nevada National Security Site Environmental Report Summary 2011, DOE/NV/25946--1604-SUM Errata issued July 2013 ERRATA

  15. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trigger ReconstructionpID: LArSoft LAr fill w.o. evacuation Surface Running UV Laser Calibration System Spring-Summer, 2014 16 February 22, 2014 MicroBooNE ...

  16. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 hep-ex, Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu...

  17. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz Columbia University Los Alamos National Lab Fermilab 31 Aug 2012 Friday, August 31, 2012 Acknowledgements * Teppei Katori * Joe Grange * Zarko Pavlovic * Kendall Mahn and Yasuhiro Nakajima 2 * Muon Neutrino CCQE Cross Section Analysis (Phys. Rev. D81, 092005 (2010)) * Neutrino Contamination in Antineutrino Mode (Phys. Rev. D84, 072005 (2011) and arXiv: 1107.5327) * Electron Neutrino (Antineutrino) Appearance (Phys. Rev. Lett.

  18. ADMINISTRATIVE CHANGE TO NNSA SD G-1027, "GUIDANCE ON USING RELEASE FRACTION AND MODERN

    National Nuclear Security Administration (NNSA)

    G 1027 Admin Change 1 1 5-13-14 ADMINISTRATIVE CHANGE TO NNSA SD G-1027, "GUIDANCE ON USING RELEASE FRACTION AND MODERN DOSIMETRIC INFORMATION CONSISTENTLY WITH DOE STD 1027-92, HAZARD CATEGORIZATION AND ACCIDENT ANALYSIS TECHNIQUES FOR COMPLIANCE WITH DOE ORDER 5480.23, NUCLEAR SAFETY ANALYSIS REPORTS, CHANGE NOTICE NO. 1" Locations of Changes: Page Paragraph Changed To 2 / 3 Added Revision History Table 3 2 CANCELLATION. None. When implemented for a nuclear facility, the methodology

  19. Inversion for Eigenvalues and Modes Using Sierra-SD and ROL.

    SciTech Connect (OSTI)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis; Kouri, Drew Philip

    2015-12-01

    In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

  20. Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-11-01

    Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

  1. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  2. A=18Ne (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations: (1957WI1E, 1969BE1T, 1970BA2E, 1970EL08, 1970HA49, 1972KA01). Electromagnetic transitions: (1970EL08, 1970HA49). Special levels: (1966MI1G, 1969KA29, 1972KA01). Pion reactions: (1965PA1F). Other theoretical calculations: (1965GO1F, 1966KE16, 1968BA2H, 1968BE1V, 1968MU1B, 1968NE1C, 1968VA1J, 1968VA24, 1969BA1Z, 1969GA1G, 1969KA29, 1969MU09, 1969RA28,

  3. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06, 1979DA15, 1979MA27, 1979PE16, 1982KI02). Electromagnetic transitions: (1978PE09, 1978SC19, 1979MA27, 1979PE16). Special states: (1978MA2H, 1978PE09, 1978PI06, 1978SC19, 1979DA15, 1980OK01, 1982KI02). Astrophysical questions: (1977SI1D, 1978WO1E, 1979RA1C). Applied topics: (1979AL1Q). Complex reactions involving 19Ne:

  4. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 [Table of Energy Levels] (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states: (1983BI1C, 1983BR29, 1983PO02, 1986AN07). Electromagnetic transitions: (1982BR24, 1983BR29, 1985AL21). Astrophysical questions: (1981WA1Q, 1982WI1B, 1986LA07). Applications:(1982BO1N). Complex reactions involving 19Ne:(1981DE1P, 1983JA05, 1984GR08, 1985BE40, 1986GR1A, 1986HA1B, 1987RI03). Pion capture and reactions (See

  5. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Results Zelimir Djurcic Zelimir Djurcic Argonne National Laboratory Argonne National Laboratory NuFact2010: 12th International Workshop on Neutrino Factories, NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams Superbeams and and Beta Beams Beta Beams October 20-25, 2010. Mumbai, India October 20-25, 2010. Mumbai, India Outline Outline * * MiniBooNE MiniBooNE Experiment Description Experiment Description * * MiniBooNE MiniBooNE ' ' s s Neutrino Results Neutrino

  6. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Identification (PID) We use hit topology and timing to identify events. Particles produce Cherenkov light in our tank, as well as some scintillation light, dependent on particle type. Two independent methods to identify electron neutrinos in MiniBooNE: Boosted Decision Trees, and Track Based. The two methods use different event reconstruction fitters. Boosted Decision Trees (BDT) Decision trees are similar to neural nets, but don't suffer from the same pathologies. To form a decision

  9. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  10. NA-SD 243.1B NNSA Records Management Suplemental Directive

    National Nuclear Security Administration (NNSA)

    243.1 Admin Change 1 1 3-21-16 ADMINISTRATIVE CHANGE TO NA SD 243.1, Records Management Program Locations of Changes: Page Paragraph From To Throughout Document * NNSA Records Management (Update name and hyperlink to new SharePoint site.) * NNSA Records Program Office (Update name and hyperlink to new SharePoint site.) 2 5.a.(1) * Office of the Administrator (NA-1) * Office of Defense Programs (NA- 10) * Office of Defense Nuclear Nonproliferation (NA-20) * Office of Naval Reactors (NA-30) *

  11. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02

  12. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and

  13. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Proton beam 8.89 GeV/c protons from the Fermilab Booster are incident on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and different focus points of the beam. The typical proton beam contains 4 x 10¹² protons delivered in a spill approximately 1.6 µs in duration. The absolute number of protons on target (p.o.t) is measured by two toroids upstream of the target.

  15. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations: (1972EN03, 1974LO04). Electromagnetic transitions: (1970SI1J, 1972EN03, 1974LO04, 1976SH04, 1977BR03, 1977SA13). Special states: (1972EN03, 1972RA08). Muon- and pion-induced capture and reactions (See also reaction 5.): (1972MI11, 1974LI1N, 1975LI04, 1976HE1G, 1977MA2Q, 1977RO1U). Other theoretical calculations: (1970SI1J, 1972CA37, 1972RA08,

  16. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Resources The following is a randomly ordered set of useful resources for people writing MiniBooNE publications:- Have a journal in mind when first putting together the paper. Each journal has LaTeX style files that can be downloaded from their web pages. There is a nice little LaTeX macro that will put line numbers by each line of your document. This makes it much easier for people to feedback comments on the paper. To use it just put \RequirePackage{lineno} just before the

  18. Prospects for antineutrino running at MiniBooNE

    SciTech Connect (OSTI)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  19. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  20. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F) indicates

  1. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Step One First, make sure the PI of your institution has sent an email to the MicroBooNE spokespeople letting them know that

  2. Microsoft Word - HQ-#465026-v1-NNSA_SD_350_2_-_FINAL_9-6-CLEAN

    National Nuclear Security Administration (NNSA)

    and Project Management NNSA SUPPLEMENTAL DIRECTIVE Approved: 10-18-12 USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES FOR SERVICES TO THE NATIONAL NUCLEAR SECURITY ADMINISTRATION IN THE WASHINGTON, DC, AREA NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Acquisition and Project Management NA SD 350.2 Rev 1 NA SD 350.2 Rev 1 1 10-18-12 USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES FOR SERVICES TO THE NATIONAL NUCLEAR SECURITY ADMINISTRATION IN THE WASHINGTON, DC, AREA 1. PURPOSE.

  3. Source identification in acoustics and structural mechanics using Sierra/SD.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Aquino, Wilkins; Ross, Michael

    2013-03-01

    In this report we derive both time and frequency-domain methods for inverse identification of sources in elastodynamics and acoustics. The inverse/design problem is cast in a PDE-constrained optimization framework with efficient computation of gradients using the adjoint method. The implementation of source inversion in Sierra/SD is described, and results from both time and frequency domain source inversion are compared to actual experimental data for a weapon store used in captive carry on a military aircraft. The inverse methodology is advantageous in that it provides a method for creating ground based acoustic and vibration tests that can reduce the actual number of flight tests, and thus, saving costs and time for the program.

  4. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 20Ne) GENERAL: See also (1972AJ02) and Table 20.18 [Table of Energy Levels] (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13, 1972BO38, 1972BR1G, 1972JA24, 1972KA39, 1972KA67, 1972KH08, 1972KR1D, 1972KU1F, 1972LE13, 1972LE38, 1972MA07, 1972NI14, 1972RE03, 1972SA1B, 1972VO09, 1972WH04, 1973CO03, 1973DH1A, 1973EL04, 1973EN1C, 1973GI09, 1973HA05, 1973HE1F, 1973IC01, 1973IR01, 1973MA1K, 1973MC06, 1973MC1E,

  5. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  6. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT workshop Trento, Italy, 1211 Outline: introduction, motivation MiniBooNE experiment MiniBooNE ...

  7. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    An accumulatorcompressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulatorcompressor ring for Ne+ ions The primary goal of the High Energy Density ...

  8. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Zelimir Djurcic Argonne National Laboratory NuFact2011: 13th International Workshop on Neutrino Factories, Super Beams and Beta Beams August 1-6, 2011. Geneva, Switzerland 1 Outline * MiniBooNE Experiment Description * MiniBooNE s Neutrino Results * (New) MiniBooNE s Anti-neutrino Results * Summary 2 This signal looks very different from the others... * Much higher !m 2 = 0.1 - 10 eV 2 * Much smaller mixing angle * Only one experiment! In SM there are only 3 neutrinos !m 13 !m 12 !m 23 2

  9. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  10. DOE-NE-STD-1004-92 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE-STD-1004-92 DOE-NE-STD-1004-92 July 27, 2005 Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A. DOE-NE-STD-1004-92, Root Cause Analysis Guidance Document (689.62 KB) More

  11. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    SciTech Connect (OSTI)

    Latour, M.; Fontaine, G.; Brassard, P.; Green, E. M.; Chayer, P.

    2014-06-10

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 to 8.7 , and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are: T {sub eff} = 29,850 60 K, log g = 5.46 0.01, and log N(He)/N(H) = 2.88 0.02. We also modeled, for the first time, the He II line at 1640 from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.

  12. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  13. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic e 20 Background prediction Intrinsic nue External measurements - HARP p+Be for - Sanford-Wang fits to world K + K 0 data MiniBooNE data...

  14. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  15. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. ... Password access to these pages is necessary, user-name is reviewer, password on request. ...

  16. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 hep-ex, Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009...

  17. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Quasielastic Double Differential Cross section", arXiv:1002:2680 hep-ex, Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross...

  18. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  19. NE NEET-Reactor Materials Award Summaries May 2016.pdf

    Office of Environmental Management (EM)

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  20. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE MiniBooNE Oscillation Results Oscillation Results and Future and Future Prospects Prospects Mike Mike Shaevitz Shaevitz - Columbia University - Columbia University 6th International Workshop on Low Energy Neutrino Physics 6th International Workshop on Low Energy Neutrino Physics Seoul National University Seoul National University ( ( Nov. 9 - 12, 2011) Nov. 9 - 12, 2011) 2 Neutrino Oscillation Summary Confirmed by K2K and Minos accelerator neutrino exps Confirmed by Kamland reactor

  1. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  2. Neutral Current Elastic Interactions in MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

  3. DOE/NV - - 538

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jordan | National Nuclear Security Administration | (NNSA) Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Friday, November 28, 2014 - 9:05am Experts from U.S. Department of Energy National Laboratories, including Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory, are participating in the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014 (IFE14), a

  4. DOE/NV - - 538

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    928 3 rd QUARTER TRANSPORTATION REPORT FY2016 Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex This report was prepared for: U.S. Department of Energy National Nuclear Security Administration Nevada Field Office By: National Security Technologies, LLC Las Vegas, Nevada July 2016 Work performed under contract number: DE-AC52-06NA25946 Reference herein to any specific commercial product, process, or service by trade name, trademark,

  5. DOE/NV--1032

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    032 ANNUAL REPORT - FY 2004 Radioactive Waste Shipments To and From the Nevada Test Site (NTS) January 2005 United States Department of Energy National Nuclear Security Administration Nevada Site Office Las Vegas, Nevada Available for sale to the public from- U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available

  6. DOE/NV--1032

    National Nuclear Security Administration (NNSA)

    ... DIFFUSION PLANT, OH PO SANDIA NATIONAL LAB-CA, CA SL SANDIA NATIONAL LAB-NM, NM SA TT FOSTER WHEELER, TN FW WESTINGHOUSE SAVANNAH RIVER, SC SR WEST VALLEY DEMONSTRATION ...

  7. DOE/NV--808

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... degree (e.g., the routes used by the FEMP, Earthline, and MEMP, all three located in ... States Environmental Protection Agency FEMP Fernald Environmental Management Project ...

  8. DOE/NV--1521

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .........5 3.0 INCIDENTACCIDENT DATA ......used by carriers; and Incidentaccident data applicable to LLW and MLLW shipments. ...

  9. NV PFA Regional Data

    SciTech Connect (OSTI)

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  10. NV PFA - Steptoe Valley

    SciTech Connect (OSTI)

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  11. DOE/NV--612

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of waste from waste generators on and off the NTS. ... from the tower or atmospheric nuclear test activity ... and meteorological and water balance monitoring. * ...

  12. DOE/NV--798

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The screen plant would be converted to a generator... The front section of the unit is 21 diesel-powered; the auger system is mounted ... are generated in the HWMWTRU current project, ...

  13. NV-TAL

    Energy Science and Technology Software Center (OSTI)

    003408MLTPL00 Tensor Algebra Library for NVidia Graphics Processing Units github.com/DmitryLyakh/TAL_SH

  14. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc

  15. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  16. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Detector Cryostat delivered Assembly Photos The MicroBooNE time projection chamber (TPC) was assembled at Fermilab in 2012-2013, sealed in the cryostat at the end of 2013, and installed in the Liquid Argon Test Facilty (LArTF) in the Booster neutrino beamline in June 2014. Watch a video of the MicroBooNE detector move! Please check Assembly Photos for a slide-show of the effort These same photos are posted here in a simpler format Photos of Wires Taken from inside the cryostat in April 2015

  17. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE at Work At Work Now The Getting Started Page holds links to help find your way around Fermilab services and prepare for working on the experiment. The MicroBooNE Contact List contains contact information for collaboration members. The Working Groups Page is a portal to these sub-sites. The Operations Page is a portal to the running detector. The Meetings Page lists the current regular meeting time slots, and also lists the collaboration meeting dates with links to the DocDB for past

  18. The MicroBooNE Experiment - Conference Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Posters Once you have given a MicroBooNE presentation, please send your talk to Sam Zeller so it can be archived. If you have written proceedings to accompany your talk, please upload them to the MicroBooNE DocDB and send the document number to Sam. Also, remember that conference proceedings are required by Fermilab policy to be submitted to the Fermilab Technical Publications archive. Instructions for doing that are here. Click here for Future talks. Conference Presentations Speaker

  19. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Notes Page Back to the Publications Page 7/4/16 MICROBOONE-NOTE-1019-PUB Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber 7/4/16 MICROBOONE-NOTE-1017-PUB A Method to Extract the Charge Distribution Arriving at the TPC Wire Planes in MicroBooNE 7/4/16 MICROBOONE-NOTE-1016-PUB Noise Characterization and Filtering in the MicroBooNE TPC 7/4/16 MICROBOONE-NOTE-1015-PUB The Pandora multi-algorithm approach to automated pattern recognition in LAr

  20. Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University WIN'11 - Cape Town, South Africa 2 Outline of this talk: -- The LSND excess signal: Evidence for high-Δm 2 oscillations -- The MiniBooNE experiment -- MiniBooNE neutrino mode oscillation results: LSND signature refuted -- MiniBooNE antineutrino mode oscillation results: LSND signature confrmed ? -- Light sterile neutrino oscillations: Where we stand today -- Future searches: MiniBooNE, MicroBooNE 1993 -1998 1998 2001

  1. DOE-NE Small Business Voucher Program Launched

    Broader source: Energy.gov [DOE]

    As part of the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, the NE Voucher program will provide up to $2 million in this pilot year for access to expertise, knowledge, and facilities of the National Laboratories and our partner facilities to help advance nuclear energy technologies.

  2. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Most importantly, not a region of LE where LSND observed a significant signal Energy in MiniBooNE MeV 1250 475 333 MB Neutrino mode LE (mMeV) "LSND sweet spot" LSND * 6.5E20 ...

  3. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  4. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  5. Morgan Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result Morgan Wascko CalTech Physics Research Conference 26 April, 2007 Outline * A short course in the physics of ν oscillations * What are neutrinos? Oscillations? * ν oscillation landscape * MiniBooNE * Experiment description * MiniBooNE's First Results * Neutrino Physics Big Picture * Next Steps for the Field * What has MiniBooNE told us? 2 Morgan Wascko CalTech Physics Research Conference 26 April, 2007 * Particle

  6. RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman University of Colorado American Physical Society Meeting Jacksonville, April 16, 2007 Results of the MiniBooNE Neutrino Oscillation Search * Introduction to MiniBooNE * The oscillation analysis * The initial results and their implications * The next steps MiniBooNE: E898 at Fermilab * Purpose is to test LSND with: * Higher energy * Different beam * Different oscillation signature * Different systematics * L=500 meters, E=0.5-1

  7. Activation of c-myb by 5' retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD') in gag

    SciTech Connect (OSTI)

    Ramirez, Jean Marie; Houzet, Laurent; Koller, Richard; Bies, Juraj; Wolff, Linda; Mougel, Marylene . E-mail: mmougel@univ-montp1.fr

    2004-12-20

    Alternative splicing in Mo-MuLV recruits a splice donor site, SD', within the gag that is required for optimal replication in vitro. Remarkably, this SD' site was also found to be utilized for production of oncogenic gag-myb fusion RNA in 100% of murine-induced myeloid leukemia (MML) in pristane-treated BALB/c mice. Therefore, we investigated the influence of silent mutations of SD' in this model. Although there was no decrease in the overall incidence of disease, there was a decrease in the incidence of myeloid leukemia with a concomitant increase in lymphoid leukemia. Importantly, there was a complete lack of myeloid tumors associated with 5' insertional mutagenic activation of c-myb, suggesting the specific requirement of the SD' site in this mechanism.

  8. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  9. Microsoft PowerPoint - TAUP_07_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MinibooNE Oscillation Results and Implications Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * MiniBooNE Experiment and Analysis Techniques * MiniBooNE First Oscillation Result * Going Beyond the First Result * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν μ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was Prompted by the Positive LSND Result Oscillation Probability: ( ) (0.264 0.067 0.045)% e P μ ν ν → = ± ± The

  10. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the MiniBooNE low energy excess * Low energy neutrino cross sections * Non-accelerator topics - Supernova neutrino detection - Proton decay backgrounds 2 B. Carls, Fermilab MicroBooNE Physics MicroBooNE Detector * 60 ton fiducial volume (of 170 tons total) liquid Argon TPC * TPC consists of 3 planes of wires; vertical Y, ±60°

  11. PNM Resources 2401 Aztec NE, MS-Z100

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects,

  12. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation Result - π 0 Rate Measurement - Combining Analyses - Compatibility of High ∆m 2 Measurements - Low Energy Electron Candidate Excess - Data from NuMI Beam * Muon Neutrino Disappearance * Anti-Electron Neutrino Appearance * Summary Neutrino 2008 Steve Brice (FNAL) 3 2 National Laboratories, 14 Universities, 80

  13. fileiSdHKL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  14. NE-24 Unlverslty of Chicayo Remedial Action Plan

    Office of Legacy Management (LM)

    (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the

  15. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009 updated nue oscillation paper is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) 1D array of bin boundaries in electron neutrino reconstructed neutrino energy 1D array of observed electron neutrino candidate events per reconstructed

  16. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5[BOPW -PVJTJBOB 4UBUF 6OJWFSTJUZ /V'BDU 8PSLTIPQ 8JMMJBNTCVSH +VMZ -BUFTU $SPTT 4FDUJPO 3FTVMUT GSPN .JOJ#PP/& Test of LSND within the context of e appearance only is an essential first step: Keep the same L/E w )JHIFS FOFSHZ BOE MPOHFS CBTFMJOF r & r (F7 L=500m w %JGGFSFOU CFBN w %JGGFSFOU PTDJMMBUJPO TJHOBUVSF F w %JGGFSFOU TZTUFNBUJDT w "OUJOFVUSJOP DBQBCMF CFBN MiniBooNE Experiment ± E898 at Fermilab Booster K + target and horn detector dirt decay region absorber primary beam

  17. Office of Nuclear Energy Doe/ne-0143

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy Office of Nuclear Energy Doe/ne-0143 Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room,

  18. CA CAIOlf Mr. Andrew Wallo. III, NE-23

    Office of Legacy Management (LM)

    kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your

  19. CA M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    i900,9SS L%nfam Phm, S. W.. Washington. D.C. 20024.2174, Tlkphme: (20.7) 4S.S-M)o 7117-03.87.cdy.43 23 September 1987 CA M r. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES I - The attached elimination recommendation was prepared in accordance M1.oS with your suggestion during our meeting on 22 September. The recommendation nO.O-02

  20. CA M r. Andrew Wallo, III. NE-23

    Office of Legacy Management (LM)

    i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The

  1. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where

  2. Princeton graduate student Imène Goumiri creates computer program that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps stabilize fusion plasmas | Princeton Plasma Physics Lab Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas By John Greenwald and Raphael Rosen April 14, 2016 Tweet Widget Google Plus One Share on Facebook Imène Goumiri led the design of a controller. (Photo by Elle Starkman/Office of Communications) Imène Goumiri led the design of a controller. Imène Goumiri, a Princeton University graduate student, has worked with physicists at

  3. Demonstration Assessment of LED Roadway Lighting: NE Cully Blvd., Portland, OR

    SciTech Connect (OSTI)

    Royer, M. P.; Poplawski, M. E.; Tuenge, J. R.

    2012-08-01

    GATEWAY program report on a demonstration of LED roadway lighting on NE Cully Boulevard in Portland, OR, a residential collector road.

  4. MiniBooNE's First Oscillation Result Morgan Wascko Imperial College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 July, 2007 Meson Production 9 MiniBooNE Overview * External meson production data * HARP data (CERN) * Parametrisation of cross- sections * Sanford-Wang for pions * Feynman...

  5. High-energy physics detector MicroBooNE sees first accelerator-born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrinos MicroBooNE sees first accelerator-born neutrinos High-energy physics detector MicroBooNE sees first accelerator-born neutrinos The principal purpose of the detector is to confirm or deny the existence of a hypothetical particle known as the sterile neutrino. November 2, 2015 An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab. An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab.

  6. Microsoft PowerPoint - TAUP_09_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Results from the MiniBooNE Booster Neutrino Experiment Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * Overview of MiniBooNE Beam and Detector * Brief Presentation of New Cross Section Results * Recent Oscillation Results - ν e and⎯ν e appearance - ν µ and⎯ν µ disappearance - Offaxis results from NuMI beam * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν µ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was

  7. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator...

  8. 2014 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting The 2014 Annual Face-to-Face Meeting of the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) was held May 6-8, 2014. This meeting was hosted by the Office of Safeguards, Security and Emergency Services (OSSES) at the Savannah River Site (SRS). The Chief of Nuclear Safety (CNS) sponsors

  9. 2015 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting The Chief of Nuclear Safety (CNS) formed the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) in March 2007. The first Annual Meeting was held August 2008. The 8th Annual Meeting will be held May 11-14, 2015. This year the Annual Meeting will be hosted by EM's Office of River Protection in

  10. Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman University of Colorado NBI 2003 KEK, Tsukuba November 10, 2003 Kaon Monitoring at MiniBooNE 1) K-decay ν e background at BooNE K production estimates 2) Decay kinematics 3) The "Little Muon Counter" (LMC) Concept/Placement Civil construction/infrastructure Collimator Fiber Tracker Temporary detector Status K-decay ν e background MiniBooNE will see ~200-400 ν e from K + and K 0 L decays each year -- comparable to the

  11. Analysis of Neutral Current 0 Events at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutral Current π 0 Events at MiniBooNE Colin Anderson April 14, 2008 The Experiment Analysis Outline Experiment MiniBooNE Description NC π 0 Overview Analysis Selection and Reconstruction of Events Rate Measurement Correcting Monte Carlo w/ Data Coherent Fraction Measurement C.E. Anderson MiniBooNE NC π 0 Analysis 2/22 The Experiment Analysis MiniBooNE ν e appearance search designed to confirm or refute the LSND result The Beam 8 GeV p's from Booster beam directed at a Be target Produced π

  12. Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM), for the MiniBooNE collaboration SILAFAE 2010 10 December 2010, Valparaíso, Chile 2 Outlook MiniBooNE Motivation MiniBooNE Description Summary of past Results New Antineutrino Result Future outlook Conclusions A. Aguilar-Arévalo (ICN-UNAM) SILAFAE 2010, Valparaíso, Chile December 6-12, 2010 MiniBooNE Collaboration 3 MiniBooNE motivation ● LSND experiment (Los Alamos) ● Excess of  e in a  

  13. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  14. The MiniBooNE detector technical design report

    SciTech Connect (OSTI)

    I. Stancu et al.

    2003-04-18

    The MiniBooNE experiment [1] is motivated by the LSND observation, [2] which has been interpreted as {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, and by the atmospheric neutrino deficit, [3,4,5] which may be ascribed to {nu}{sub {mu}} oscillations into another type of neutrino. MiniBooNE is a single-detector experiment designed to: obtain {approx} 1000 {nu}{sub {mu}} {yields} {nu}{sub e} events if the LSND signal is due to {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, establishing the oscillation signal at the > 5{sigma} level as shown in Fig. 1.1; extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations significantly beyond what has been studied previously if no signal is observed; search for {nu}{sub {mu}} disappearance to address the atmospheric neutrino deficit with a signal that is a suppression of the rate of {nu}{sub {mu}}C {yields} {mu}N events from the expected 600,000 per year; measure the oscillation parameters as shown in Fig. 1.2 if oscillations are observed; and test CP conservation in the lepton sector if oscillations are observed by running with separate {nu}{sub {mu}} and {bar {nu}}{sub {mu}} beams. The detector will consist of a spherical tank 6.1 m (20 feet) in radius, as shown in Fig. 1.3, that stands in a 45-foot diameter cylindrical vault. An inner tank structure at 5.75 m radius will support 1280 8-inch phototubes (10% coverage) pointed inward and optically isolated from the outer region of the tank. The tank will be filled with 807 t of mineral oil, resulting in a 445 t fiducial volume. The outer tank volume will serve as a veto shield for identifying particles both entering and leaving the detector with 240 phototubes mounted on the tank wall. Above the detector tank will be an electronics enclosure that houses the fast electronics and data acquisition system and a utilities enclosure that houses the plumbing, overflow tank, and calibration laser. The detector will be located {approx} 550 m from the Booster neutrino

  15. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect (OSTI)

    Park, J.; Kucharek, H.; Möbius, E.; Leonard, T.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  16. Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}

    SciTech Connect (OSTI)

    Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.

    2011-08-15

    Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

  17. 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2015 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Although each program has unique materials issues, there are opportunities to enhance coordination and collaboration. Other departmental programs such as the Offices of Science (Basic Energy Sciences and Fusion Energy), Energy Efficiency and Renewable Energy, Fossil Energy, and other agencies such as the National Aeronautics and Space Administration (NASA) also sponsor research in nuclear materials. Engagement with these organizations fosters new research partnerships, enhanced collaboration, and shared investment in research facilities. The presentations from this two part webinar series are available here. Data, images, and conclusions should be considered preliminary and should not be reproduced or reused without written permission of the authors.

  18. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ICHEP Paris, France XXV Juillet, MMX New Observations from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Neutrino Oscillations The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: SNO, Kamland Super-K, K2K, MINOS Armed with that knowledge, measurements of neutrino behavior outside the standard 3

  19. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC XXIV August MMX New Observations from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Neutrino Oscillations " The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: " SNO, Kamland " Super-K, K2K, MINOS " Armed with that knowledge, measurements of neutrino behavior outside the standard

  20. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NeuTel2011 Venezia, Italia Results from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Mesdames et Mes Neutrino Oscillations " The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: " SNO, Kamland " Super-K, K2K, MINOS " Armed with that knowledge, measurements of neutrino behavior outside

  1. /Users/jzennamo/Desktop/ObsLimit_MiniSciBooNE_SBN_numuDis.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    µ θ 2 2 sin 3 - 10 2 - 10 1 - 10 1 ] 2 [eV 2 m ∆ 1 - 10 1 10 2 10 POT) 20 10 × POT) and T600 (6.6 21 10 × MicroBooNE (1.3 POT) 20 10 × LAr1-ND (6.6 mode, CC Events ν Stat, Flux, Cross Section Uncerts. Reconstructed Energy Efficiency µ ν 80% Shape and Rate 90% CL CL σ 3 CL σ 5 MiniBooNE + SciBooNE 90% CL

  2. MiniBooNE Anti-Neutrino CCQE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section", arXiv:1301.7067 [hep-ex] The following MiniBooNE information from the anti-neutrino CCQE cross section paper is made available to the public: νμ CCQE data: MiniBooNE flux table of MiniBooNE anti-neutrino mode flux by neutrino species (Figure 1 and Tables XI-XII). Note that, based on the constraints of the in situ measurements, the muon neutrino flux spectrum given here should be scaled by 0.77. flux-integrated

  3. Presentation V: Joe Grange, University of Florida Experiments I: MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentation V: Joe Grange, University of Florida Experiments I: MiniBooNE West Wing (WH10W) 5:30 PM Thursday July 15 Refreshments at 5 PM Neutrino University (NeutU) is a series of informal, informative, and interactive presentations for summer students in the Fermilab Neutrino Program (Minerva, MiniBooNE, Minos, MicroBooNE, and Nova). These presentations are intended to introduce students to some of the important ideas and experiments of neutrino physics, particularly those that are running or

  4. Performance Assessment Institute-NV

    SciTech Connect (OSTI)

    Lombardo, Joesph

    2012-12-31

    The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical national and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.

  5. DOE/NV442 Environmental

    Office of Legacy Management (LM)

    ... analytical laboratory Tracks analytical invoice and processing coordination for payment Interfaces and resolves problems between the field and the laboratory Conducts quality ...

  6. Invictus NV | Open Energy Information

    Open Energy Info (EERE)

    Zip: 2610 Product: Invictus is a green project development company specialized in photovoltaic installations. The company has evolved into a total solution provider for PV...

  7. NV-04-1.book

    National Nuclear Security Administration (NNSA)

    ... CA 391402120122100 CH, TE 1991-92 Campbell Creek, Smith Creek Valley 391426117394601 CH, TE 1982 Peterson Creek, Smith Creek Valley 391430117313801 CH, TE 1982 Cleve Creek ...

  8. File:USDA-CE-Production-GIFmaps-NE.pdf | Open Energy Information

    Open Energy Info (EERE)

    NE.pdf Jump to: navigation, search File File history File usage Nebraska Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  9. MiniBooNE H. A. Tanaka Princeton University Neutrino Factory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan The MiniBooNE ... J.L.Raaf University of Colorado: T.Hart, R.H.Nelson, M.Wilking, E.D.Zimmerman Columbia ...

  10. Application for Presidential Permit PP-400 TDI-NE - New England...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-400 TDI-NE - New England Clean Power Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 Application for Presidential ...

  11. REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial...

    Office of Legacy Management (LM)

    Government '--Department of Energy | memorandum 4 ' It) |1 e0i78 DATE: OCT 9 1984 REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial Action at Vicinity...

  12. Microsoft Word - MicroBooNE CD-2-3a appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Integration and commissioning of the detector components with liquid argon will be handled as operating R&D outside of the MicroBooNE Project; the R&D program will study the ...

  13. Microsoft Word - MicroBooNE CD-3b appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration and commissioning of the detector components with liquid argon will be handled as operating R&D outside of the MicroBooNE Project; the R&D program will study the ...

  14. MiniBooNE NC 1?0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 production cross sections on mineral oil at EO(1 GeV)", arXiv:0911.2063 hep-ex, Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 10...

  15. Fermilab | Newsroom | Press Releases | June 24, 2014: MicroBooNE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jpeg images. When using these images, please credit each photo as indicated. Med Res | Hi Res The 30-ton MicroBooNE neutrino detector was transported across the Fermilab site on...

  16. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 | Department of Energy - New England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 Application from TDI-NE to construct, operate and maintain electric transmission facilities at the U.S. - Canada

  17. Introduction to MiniBooNE and Charged Current Quasi-Elastic (CCQE) Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE and ν μ Charged Current Quasi-Elastic (CCQE) Results Byron P. Roe University of Michigan For the MiniBooNE collaboration 2 University of Alabama Los Alamos National Laboratory Bucknell University Louisiana State University University of Cincinnati University of Michigan University of Colorado Princeton University Columbia University Saint Mary's University of Minnesota Embry Riddle University Virginia Polytechnic Institute Fermi National Accelerator Laboratory Western Illinois

  18. DOE - Office of Legacy Management -- Hallam Nuclear Power Facility - NE 01

    Office of Legacy Management (LM)

    Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Hallam, Nebraska, Decommissioned Reactor Site Documents Related to Hallam Nuclear Power Facility U.S. Department of Energy 2009 Annual Inspection - Hallam, Nebraska June 2009 Page 1

  19. Princeton graduate student Imène Goumiri creates computer program that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps stabilize fusion plasmas | Princeton Plasma Physics Lab Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas By John Greenwald and Raphael Rosen April 14, 2016 Tweet Widget Google Plus One Share on Facebook Imène Goumiri, a Princeton University graduate student, has worked with physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) to simulate a method for limiting instabilities that reduce the

  20. WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf (486.67 KB) More Documents & Publications Class_Waiver_W_C-2000-001.pdf WC_1994_010__CLASS_WAIVER_of_the_Governments_Patent_Rights_.pdf WC_1994_001_CLASS_WAIVER_OF_THE_Governments_Patent_Rights_i

  1. Nevada Operations Office

    Office of Legacy Management (LM)

    HPDROB:TAG-80 Health Physics Divjsion J. Whitman, RAP, DOE-HQ (NE-24) GTN can Daily, Envir. Engr., (DE'SEP 4287), Nellis AFB, NV. Col. R. W. Smith, USAF Liaison Off., co DOE-NV

  2. References for HNF-SD-WM-TRD-007, ``System specification for the double-shell tank system: HNF-PROs, CFRs, DOE Orders, WACs``

    SciTech Connect (OSTI)

    Shaw, C.P.

    1998-07-30

    HNF-SD-WM-TRD-O07, System Specification for the Double-Shell Tank System, (hereafter referred to as DST Specification), defines the requirements of the double-shell tank system at the Hanford Site for Phase 1 privatization. Many of the sections in this document reference other documents for design guidance and requirements. Referenced documents include Project Hanford Management Contract (PHMC) procedures (HNF-PROS), Codes of Federal Regulation (CFRs), DOE Orders, and Washington Administrative Codes (WACs). This document provides rationale for the selection and inclusion of HNF-PROS, CFRs, DOE Orders and WACs.

  3. Antineutrino Neutral Current Interactions in MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan

    2012-01-01

    This dissertation reports the antineutrino-nucleus neutral current elastic scattering cross section on CH2 measured by the MiniBooNE experiment located in Batavia, IL. The data set consists of 60,605 events passing the selection cuts corresponding to 10.1×1020 POT, which represents the world’s largest sample of antineutrino neutral current elastic scattering events. The final sample is more than one order of magnitude lager that the previous antineutrino NCE scattering cross section measurement reported by the BNL E734 experiment. The measurement presented in this dissertation also spans a wider range in Q2, including the low-Q2 regime where the cross section rollover is clearly visible. A X2-based minimization was performed to determine the best value of the axial mass, MA and the Pauli blocking scaling function, that matches the antineutrino NCE scattering data. However, the best fit values of MA=1.29 GeV and K=1.026 still give a relatively poor X2, which suggests that the underlying nuclear model (based largely on the relativistic Fermi gas model) may not be an accurate representation for this particular interaction. Additionally, we present a measurement of the antineutrino/neutrino-nucleus NCE scattering cross section ratio. The neutrino mode NCE sample used in this study, corresponding to 6.4 × 1020 POT, is also the world’s largest sample (also by an order of magnitude). We have demonstrated that the ratio measurement is robust, as most of the correlated errors cancel, as expected. Furthermore, this ratio also proves to be rather insensitive to variations in the axial mass and the Pauli blocking parameter. This is the first time that this ratio has been experimentally reported. We believe this measurement will aid the theoretical physics community to test various model predictions of neutrino-nucleon/nucleus interactions.

  4. Beyond standard model searches in the MiniBooNE experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    Tmore » he MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. he experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. o date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. he results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.« less

  5. Application for Presidential Permit OE Docket No. PP-400 TDI- NE New England Clean Power Link Project

    Broader source: Energy.gov [DOE]

    Response to TDI - NE application from State Department to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

  6. Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England Clean Power Link Project

    Broader source: Energy.gov [DOE]

    Response for TDI-NE from Department of Defense to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

  7. MicroBooNE Matthias Lüthi Universität Bern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of MicroBooNE Matthias Lüthi Universität Bern Laboratorium für Hochenergiephysik 1 Friday 27 June 14 1. LSND and MiniBooNE Anomaly * 3-Neutrino Mixing is well determined * Still LSND & MiniBooNE regions remain 2 40 13. Neutrino mixing Cl 95% Ga 95% ν µ ↔ν τ ν e ↔ν X 10 0 10 -3 ∆m 2 [eV 2 ] 10 -12 10 -9 10 -6 10 2 10 0 10 -2 10 -4 tan 2 θ C H O O Z B u g e y C H O R U S NOMAD CHORUS KARMEN2 ν e ↔ν τ N O M A D ν e ↔ν µ CDHSW N O M A D KamLAND 95% SNO 95%

  8. paper-LSPP16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FL PADD 4: Rocky Mountain PADD 5: West Coast PADD 2: Midwest PADD 1: East Coast PADD 3: Gulf Coast PADD1A: New England PADD1B: Central Atlantic PADD1C: Lower Atlantic Petroleum Administration for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI

    pantex On Womens Equality Day, we celebrate NNSA's talented Women in STEM NNSA's systems administrators keep the computers running

  9. padd map

    U.S. Energy Information Administration (EIA) Indexed Site

    FL PADD 4: Rocky Mountain PADD 5: West Coast PADD 2: Midwest PADD 1: East Coast PADD 3: Gulf Coast PADD1A: New England PADD1B: Central Atlantic PADD1C: Lower Atlantic Petroleum Administration for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI

  10. printer_friendly_org_chart

    Gasoline and Diesel Fuel Update (EIA)

    FL PADD 4: Rocky Mountain PADD 5: West Coast PADD 2: Midwest PADD 1: East Coast PADD 3: Gulf Coast PADD1A: New England PADD1B: Central Atlantic PADD1C: Lower Atlantic Petroleum Administration for Defense Districts AK HI WA OR CA NV AZ MT WY CO UT ID ND SD NE KS OK MO MN WI MI IL IN OH KY TN IA NM TX AR LA AL MS WV VA NC SC GA FL ME NH VT NY PA NJ MD DE MA CT RI

    Administrator U.S. Energy Information Administration Adam Sieminski Deputy Administrator Howard Gruenspecht Assistant Administrator

  11. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning

  12. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells Webinar December 14, 2010 2 Examples of DOE-funded Partners and Locations - Fuel Cell Technologies Program TX NM AZ NC AR CA CO HI WA IL KY MA MN MO MS AL NV TN UT WV ID FL MI ND OR OH IN MT WY IO NE KS OK AK LA GA WI SC VA PA DE MD DC NJ NY RI CT VT NH ME SD Source: US DOE 12/2010 2 3 Fuel Cells: Addressing Energy Challenges 4

  13. Print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 5k 0 < 50k < 100k < 250k < 500k < 1M > 1M > 5M > 10M DE MD DC MA RI NJ AZ UT WY ID OR WA CA TX OK KS CO NE SD ND MN WI IL IA MO AR LA MS AL FL GA TN KY IN OH MI ME NH CT VT NY PA WV VA NC SC MT AK HI NV NM Princeton Plasma Physics Laboratory Procured Materials and Services 2015 (> $35M) Small business procurements in US: $14.73M

  14. Department of Energy (DOE) OpenNet documents

    Office of Scientific and Technical Information (OSTI)

    Account Request *First Name: *Last Name: *Organization: *Phone: *Email: Fax: *Address: *City: *State: Select AL AK AZ AR CA CO CT DE DC FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY Zip Code: *Affiliation: Select Federal Contractor *Access Level: Select View Release Official Releasing Official: release *Site Input Code: Select A2EDAP - Atmosphere to Electrons (A2e) Data Archive and Portal, Pacific Northwest National

  15. Numerical Analysis of Parasitic Crossing Compensation with Wires in DA$\\Phi$NE

    SciTech Connect (OSTI)

    Valishev, A.; Shatilov, D.; Milardi, C.; Zobov, M.

    2015-06-24

    Current-bearing wire compensators were successfully used in the 2005-2006 run of the DAΦNE collider to mitigate the detrimental effects of parasitic beam-beam interactions. A marked improvement of the positron beam lifetime was observed in machine operation with the KLOE detector. In view of the possible application of wire beam-beam compensators for the High Luminosity LHC upgrade, we revisit the DAΦNE experiments. We use an improved model of the accelerator with the goal to validate the modern simulation tools and provide valuable input for the LHC upgrade project.

  16. ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 NARSTO Northeast Field Study (NARSTO-NE) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Abstract The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the

  17. ARM - Field Campaign - 2001 Philadelphia NE-OPS Air Quality Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Philadelphia NE-OPS Air Quality Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2001 Philadelphia NE-OPS Air Quality Experiment 2001.07.14 - 2001.07.30 Lead Scientist : C Philbrick For data sets, see below. Abstract BNL to field and operate the chemical gas analyzers (specifically the NO, NO2, NOy, NOy*, O3, SO2, CO and PILS instruments) to collect 15-s, 60-s, 15-min, and 1-h data from the BNL

  18. Microsoft PowerPoint - Oxford_MiniBooNE_and_SterileNus.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxford Seminar June 23, 2004 * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Theoretical Prejudices before 1995 * Natural scale for ∆m 2 ~ 10 - 100 eV 2 since needed to explain dark matter * Oscillation mixing angles must be small like the quark mixing angles * Solar neutrino oscillations must be small mixing angle MSW solution because it is "cool" * Atmospheric neutrino anomaly must

  19. MiniBooNE Charged Current Charged Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at Enu~1 GeV", arXiv:1011.3572 [hep-ex], submitted to Phys. Rev. D. The following MiniBooNE information for the 2010 CC π+ cross section paper is made available to the public. Tables A root file containing histograms of all of the cross section results in the paper can be found here. A text file of the cross section results can be found here. The MiniBooNE muon neutrino flux distribution can be

  20. MiniBooNE Neutral Current Elastic Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Neutrino Neutral-Current Elastic Differential Cross Section",arXiv:1007.4730 [hep-ex], Phys. Rev. D82, 092005 (2010) The following MiniBooNE information for the 2010 neutral current elastic cross section paper is made available to the public. MiniBooNE neutral current elastic cross-section results in the "paper" are reported in the true energy after the unsmearing of detector resolution and efficiency effects. In addition, here we present alternative results in the

  1. MiniBooNE as related to Windows on the Universe

    SciTech Connect (OSTI)

    Stefanski, Ray; /Fermilab

    2009-12-01

    The measurement of absolute neutrino and anti-neutrino cross-sections, the observation of a 'low energy anomaly' in the neutrino sector, the constraints placed on the LSND effect by a non-observation of neutrino oscillations, the search for neutrino and anti-neutrino appearance, and for the possible existence of new heavy particles makes MiniBooNE a major contributor to the current view of the Universe. This paper addresses specific model constraints set by the MiniBooNE data, and explores expectations for further remaining analysis of the data.

  2. NA SD 452.2

    National Nuclear Security Administration (NNSA)

    ... Non-NES deficiencies and problems in NEOs that are outside the scope of the ... cabinets, materials requirements planning terminal, and emergency wash. (g) General use handling and ...

  3. Simulation of Crab Waist Collisions In DA$\\Phi$NE With KLOE-2 Interaction Region

    SciTech Connect (OSTI)

    Zobov, M.; Drago, A.; Gallo, A.; Milardi, C.; Shatilov, D.; Valishev, A.

    2015-06-24

    After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DAΦNE has started routine operations for the KLOE-2 detector. The new interaction region also exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets. We have performed simulations of the beam-beam collisions in the collider taking into account the real DAΦNE nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the DAΦNE dynamical aperture and energy acceptance, and estimated the luminosity that can be potentially achieved with and without crab waist sextupoles in the present working conditions. A numerical analysis has been performed in order to propose possible steps for further luminosity increase in DAΦNE such as a better working point choice, crab sextupole strength optimization, correction of the phase advance between the sextupoles and the interaction region. The proposed change of the e- ring working point was implemented and resulted in a significant performance increase.

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Golden, CO (United States) Department of Energy's (DOE) Nuclear Energy (NE) Radioisotope Power Systems (RPS) Program Desert Research Institute, Nevada University, Reno, NV ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Institute, Nevada University, Reno, NV (United States) EERE Publication and Product Library East Tennessee Technology ... NE-75, USDOE Office of Space and Defense Power Systems ...

  6. Construction integrity assessment report (ETN-98-0005) S-Farm overground transfer (OGT) system valve pit 241-S-B to valve pit 241-S-D

    SciTech Connect (OSTI)

    HICKS, D.F.

    1999-08-12

    The S-Farm overground transfer (OGT) line will bypass the existing line(s), between valve pits 241-S-B and 241-S-D that no longer meet system requirements. The new OGT line will provide a waste transfer pipeline between these valve pits in support of saltwell pumping activities. The length of the OGT line is approximately 180 ft from pit to pit. The primary pipe is nominal 1-in. diameter stainless steel (SST) braided Ethylene-propylene Diene Monomer (EPDM) hose. The encasement pipe is a nominal 3-in., flanged, SST pipe made up of several different length pipe spool pieces (drawing H-2-829564, sh. 1 and sh. 2). The OGT line slopes from valve pit 241-S-B toward valve pit 241-S-D. At each end, the primary and encasement pipe connect to a pit entry spool piece. The pit entry spool pieces are constructed of prefabricated SST materials. These spool pieces allow for the separation of the primary and encasement pipelines after the pipes have entered the valve pits (drawing H-2-818280, sh. 2). The pit entry spool pieces also allow for leak detection of the encasement pipe at each end (drawing H-2-829564, sh. 2). The OGT encasement pipeline is supported above ground by adjustable height unistrut brackets and precast concrete bases (drawing H-2-829654, sh. 1). The pipeline is heat-traced and insulated. The heat tracing and insulation supply and retain latent heat that prevents waste solidification during transfers and provides freeze protection. The total length of the pipeline is above ground, thereby negating the need for cathodic corrosion protection. This Construction Integrity Assessment Report (CIAR) is prepared by Fluor Daniel Northwest for Numatec Hanford Corporation/Lockheed Martin Hanford Corporation, the operations contractor, and the U. S. Department of Energy, the system owner. The CIAR is intended to verify that construction was performed in accordance with the provisions of Washington Administrative Code, WAC-173-303-640 (3) (c), (e), (f) and (h).

  7. National Radon Database. Volume 4. The EPA/state residential radon surveys: CA, HI, ID, LA, NE, NV, NC, OK, SC, the Navajo Nation, and the Billings, MT IHS Area 1989-1990 (5 1/4 inch, 1. 2mb) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The National Radon Database (NRDB) was developed by the United States Environmental Protection Agency (USEPA) to distribute information in two recent radon surveys: the EPA/State Residential Radon Surveys and the National Residential Radon Survey. The National Residential Radon Surveys collected annual average radon measurements on all levels of approximately 5,700 homes nationwide. Information collected during survey includes a detailed questionnaire on house characteristics, as well as radon measurements. The radon survey data for Volume 6 is contained on two diskettes. The data diskettes are accompanied by comprehensive documentation on the design and implementation of the survey, the development and use of sampling weights, a summary of survey results, and information concerning the household questionnaire.

  8. National Radon Database. Volume 4. The EPA/state residential radon survey: CA, HI, ID, LA, NE, NV, NC, OK, SC, the Navajo Nation, and the Billings, MT IHS Area 1989-1990 (3 1/2 inch, 1. 44mb) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The National Radon Database (NRDB) was developed by the United States Environmental Protection Agency (USEPA) to distribute information in two recent radon surveys: the EPA/State Residential Radon Surveys and the National Residential Radon Survey. The National Residential Radon Surveys collected annual average radon measurements on all levels of approximately 5,700 homes nationwide. Information collected during survey includes a detailed questionnaire on house characteristics, as well as radon measurements. The radon survey data for Volume 6 is contained on two diskettes. The data diskettes are accompanied by comprehensive documentation on the design and implementation of the survey, the development and use of sampling weights, a summary of survey results, and information concerning the household questionnaire.

  9. A Combination of CDF and D0 limits on the branching ratio of B0(s)(d) ---> mu+ mu- decays

    SciTech Connect (OSTI)

    Bernhard, R.; Glenzinski, D.; Herndon, M.; Kamon, T.; Krutelyov, V.; Landsberg, G.; Lehner, F.; Lin, C.J.; Mrenna, S.; /Zurich U. /Fermilab /Wisconsin U., Madison /Texas A-M /Brown U.

    2005-08-01

    The authors combine the results of CDF and D0 searches for the rare decays B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -}. The experiments use 364 pb{sup -1} and 300 pb{sup -1} of data respectively. The limits on the branching ratios are obtained by normalizing the estimated sensitivity to the decay B{sup +} {yields} J/{psi}K{sup +} taking into account the fragmentation ratios f{sub u}/f{sub s(d)}. The combined results exclude branching ratios of BR(B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) > 1.5 x 10{sup -7} and BR(B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -}) > 4.0 x 10{sup -8} at 95% confidence level. These are the most stringent limits on these decays at the present time.

  10. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  11. Microsoft PowerPoint - NOW2004_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOW2004 Workshop * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Three Signal Regions * LSND ∆m 2 = 0.1 - 10 eV 2 , small mixing * Atmospheric ∆m 2 = 2.5×10 -3 eV 2 , large mixing * Solar ∆m 2 = 8.2×10 -5 eV 2 , large mixing ∆m 13 ∆m 12 ∆m 23 2 2 2 ( ) 1 sin 2 sin (1.27 / ) P m L E α α ν ν θ → = - ∆ 2 2 2 2 2 2 21 32 31 Three distinct neutrino oscillation signals, with For

  12. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation | Department of Energy - New England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation Conservation Law Foundation (CLF) provides the following comments and Motion to Intervene regarding

  13. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    England Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited | Department of Energy - New England Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited ALLCO Renewable Energy Limited provides the following

  14. Measuring n-N Deep Inelastic Cross Sections at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + Cross Section Results from MiniBooNE Mike Wilking TRIUMF / University of Colorado NuInt 22 May 2009 CCπ + in Oscillation Experiments  The next generation of ν oscillation experiments lie at low, mostly unexplored ν energies  CCQE is the signal process for oscillation measurements  At these energies, CCπ + is the dominant charged-current background T2K NOνA CCπ + CCQE DIS Charged Current Cross Sections Previous CCπ + Measurements  The plot shows previous absolute cross

  15. NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste

    Office of Legacy Management (LM)

    AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New

  16. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * * * * * * * * ~n~EGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER MIDDLESEX SAMPLING PLANT IN MIDDLESEX, NEW JERSEY DATE OF SURVEY: MAY 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  17. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect (OSTI)

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  18. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  19. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    SciTech Connect (OSTI)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  20. Comparison of GiBUU calculations with MiniBooNE pion production data

    SciTech Connect (OSTI)

    Lalakulich, O.; Mosel, U.

    2015-05-15

    Background: Neutrino-induced pion production can give important informationon the axial coupling to nucleon resonances. Furthermore, pion production represents a major background to quasielastic-like events. one pion production data from the MiniBooNE in charged current neutrino scattering in mineral oil appeared higher than expected within conventional theoretical approaches. Purpose: We aim to investigate which model parameters affect the calculated cross section and how they do this. Method: The Giessen Boltzmann–Uehling–Uhlenbeck (GiBUU) model is used for an investigation of neutrino-nucleus reactions. Results: Presented are integrated and differential cross sections for 1π{sup +} and 1π{sup 0} production before and after final state interactions in comparison with the MiniBooNE data. Conclusions: For the MiniBooNE flux all processes (QE, 1π-background, Δ, higher resonance production, DIS) contribute to the observed final state with one pion of a given charge. The uncertainty in elementary pion production cross sections leads to a corresponding uncertainty in the nuclear cross sections. Final state interactions change the shape of the muon-related observables only slightly, but they significantly change the shape of pion distributions.

  1. Beyond standard model searches in the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments

  2. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  3. NE-23

    Office of Legacy Management (LM)

    4:00 p.m., Monday through Friday (except Federal holidays), at the DOE Public Document Room located in Room lE-190 of the Forrestal Building, 1000 Independence Avenue, S.W.,...

  4. NE-24

    Office of Legacy Management (LM)

    the Bureau of Hines Site at Albany, Oregon, for Remedial Action Under the Formerly Utilized Sites Remedial Action Program I L@ _I' J.-La&one, Manager Oak Ridge Operations Office Based on the data in the attached draft reports, it has been determined that the subject site is contaminated with residual radioactive material ' as a result of Manhattan Engineer District/Atomic Energy Commission operations P * at this site. The contamination is in excess of the acceptable guidelines and warrants

  5. NE-23,

    Office of Legacy Management (LM)

    Joseph A. Warburton Chainnan, Radiological and Toxicological Safety Board University of Nevada System DRIASC, P.O. Box 60220 Reno, Nevada 89506 Dear Dr. Warburton: The Department ...

  6. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  7. NE-24

    Office of Legacy Management (LM)

    Sites Remedial Actlon Program (FUSRAP) ' F .- ,: ... Conference Report and the Energy and Water Appropriations ... Jersey, and Surrounding Communities," prepared by ORNL, ...

  8. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  9. 20Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  10. Corrective Action Investigation Plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfields, Nevada Test Site, Revision 0, DOE/NV--535 UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect (OSTI)

    US DOE Nevada Operations Office

    1999-04-12

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  11. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  12. Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited from TDI | Department of Energy New England Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited from TDI Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England Clean Power Link Project: Comments and Motion to Intervene Out of Time of Allco Renewable Energy Limited from TDI TDI offers their response to Allco

  13. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  14. MiniBooNE Neutrino Physics at the University of Alabama

    SciTech Connect (OSTI)

    Stancu, Ion

    2007-04-27

    This report summarizes the activities conducted by the UA group under the auspices of the DoE/EPSCoR grant number DE--FG02--04ER46112 since the date of the previous progress report, i.e., since November 2005. It also provides a final report of the accomplishments achieved during the entire period of this grant (February 2004 to January 2007). The grant has fully supported the work of Dr. Yong Liu (postdoctoral research assistant -- in residence at Fermilab) on the MiniBooNE reconstruction and particle identification (PID) algorithms.

  15. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    SciTech Connect (OSTI)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C.; DuBois, R. D.; Montanari, C. C.; Miraglia, J. E.

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  16. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect (OSTI)

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  17. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99.

    SciTech Connect (OSTI)

    KLEINMAN,L.I.; DAUM,P.H.; BRECHTEL,F.; LEE,Y.N.; NUNNERMACKER,L.J.; SPRINGSTON,S.R.; WEINSTEIN-LLOYD,J.

    2001-10-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O{sub 3} production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O{sub 3} production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O{sub 3} concentrations were observed on July 31, which we present as a case study. On that day, O{sub 3} concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city.

  18. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    SciTech Connect (OSTI)

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-04

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  19. Wave packet and statistical quantum calculations for the He + NeH{sup +} → HeH{sup +} + Ne reaction on the ground electronic state

    SciTech Connect (OSTI)

    Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  20. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    SciTech Connect (OSTI)

    Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)] [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Werk, J. K.; Prochaska, J. X. [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States)] [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jenkins, E. B. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)] [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Lehner, N.; Sembach, K. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)] [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  1. Prospective benefits analysis of the DOE Nuclear Energy portfolio: NE R&D program data assumptions, approach, & results

    SciTech Connect (OSTI)

    Bhatt, Vatsal; Friley, Paul; Lee, John; Reisman, Ann

    2006-10-31

    The Office of Nuclear Energy (NE) leads the U.S. Government’s efforts to develop new nuclear energy generation technologies to meet energy and climate goals, and to develop advanced proliferation-resistant nuclear fuel technologies that maximize energy from nuclear fuel; contributes to the R&D for a possible transition to a hydrogen economy; and maintains and enhances the national nuclear technology infrastructure. NE serves the present and future energy needs of the Nation by managing the safe operation and maintenance of the Department of Energy (DOE) critical nuclear in frastructure, providing nuclear technology goods and services, and conducting R&D.

  2. New Results from MiniBooNE Charged-Current Quasi-Elastic Anti-Neutrino Data

    SciTech Connect (OSTI)

    Grange, Joseph

    2011-07-01

    MiniBooNE anti-neutrino charged-current quasi-elastic (CCQE) data is compared to model predictions. The main background of neutrino-induced events is examined first, where three independent techniques are employed. Results indicate the neutrino flux is consistent with a uniform reduction of {approx}20% relative to the largely uncertain prediction. After background subtraction, the Q{sup 2} shape of {bar v}{sub {mu}} CCQE events is consistent with the model parameter MA = 1.35 GeV determined from MiniBooNE v{sub {mu}} CCQE data, while the normalization is {approx} 20% high compared to the same prediction.

  3. Test of ''Crab-Waist'' Collisions at the DA{Phi}NE {Phi} Factory

    SciTech Connect (OSTI)

    Zobov, M.; Alesini, D.; Biagini, M. E.; Biscari, C.; Bocci, A.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G. O.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.

    2010-04-30

    The electron-positron collider DA{Phi}NE, the Italian {Phi} factory, has been recently upgraded in order to implement an innovative collision scheme based on large crossing angle, small beam sizes at the crossing point, and compensation of beam-beam interaction by means of sextupole pairs creating a ''crab-waist'' configuration in the interaction region. Experimental tests of the novel scheme exhibited an increase by a factor of 3 in the peak luminosity of the collider with respect to the performances reached before the upgrade. In this Letter we present the new collision scheme, discuss its advantages, describe the hardware modifications realized for the upgrade, and report the results of the experimental tests carried out during commissioning of the machine in the new configuration and standard operation for the users.

  4. AmeriFlux US-Ne3 Mead - rainfed maize-soybean rotation site

    SciTech Connect (OSTI)

    Suyker, Andy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne3 Mead - rainfed maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. While the other two sites are equipped with irrigation systems, this site relies on rainfall. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since initiation of the study in 2001, this site has been under no-till management.

  5. AmeriFlux US-Ne2 Mead - irrigated maize-soybean rotation site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne2 Mead - irrigated maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since this tillage operation, the site has been under no-till management.

  6. MiniBooNE NC 1π0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    νμ and ν̅μ induced neutral current single π0 production cross sections on mineral oil at Eν~O(1 GeV)", arXiv:0911.2063 [hep-ex], Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 1π0 cross section paper is made available to the public: Neutrino Mode Running νμ NC 1π0 pπ0 Differential Cross Section 1D array of bin boundaries partitioning the momentum of the π0 1D array of the value of the differential cross section in each bin in units of 10-40

  7. Effect of supplementation on vitamin A and zinc nutriture of children in northeast (NE) Thailand

    SciTech Connect (OSTI)

    Udomkesmalee, E.; Dhanamitta, S.; Charoenklatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Kramer, T.R.; Smith, J.C. Jr. USDA, Beltsville, MD )

    1991-03-11

    Previous surveys of the nutritional status of young children in NE Thailand suggested that they may benefit from vitamin A (VA) and/or zinc (Zn) supplementation. 140 children, with low plasma retinol concentrations were entered in a double-blind study. They were randomized and supplemented with either VA, Zn, VA + Zn or placebo each weekday for 6 mos. All subjects consumed their usual diet that provided adequate protein, less than recommended calories, fat, Zn and VA. Biochemical indices of VA and Zn status increased significantly. The children had adequate VA liver stores as assessed by relative dose response. Zn supplementation resulted in improvement of vision restoration time in dim light using rapid dark adaptometry. VA and Zn synergistically normalized conjunctival epithelium after a 6 mo supplementation. Data suggest that functional improvements of populations with suboptimal VA and Zn nutriture can be accomplished by supplementation with {lt}2 times of RDA of these nutrients.

  8. NV Energy- RenewableGenerations Rebate Program

    Broader source: Energy.gov [DOE]

    Note: As of September 3, 2015, PV incentives are on Step 9. Please refer to the website above for the current rebate levels.

  9. DOE/NV-25946--2214

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25946--2214 3 rd QUARTER TRANSPORTATION REPORT FY 2014 Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS) September 2014 United States Department of Energy National Nuclear Security Administration Nevada Field Office Las Vegas, Nevada Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

  10. DOE/NV/11718--602

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    602 August 2001 REMOTE SENSING LABORATORY Operated by Bechtel Nevada for the U.S. Department of Energy National Nuclear Security Administration An Aerial Radiological Survey of Abandoned Uranium Mines in the Navajo Nation Overview of Acquisition and Processing Methods Used for Aerial Measurements of Radiation Data for the U.S. Environmental Protection Agency by the U.S. Department of Energy under IAG DW 8955235-01-5 October 1994 - October 1999 Survey conducted in Arizona, New Mexico, Utah Thane

  11. DOE/NV/25946--2449

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    449 2 nd QUARTER TRANSPORTATION REPORT FY2015 Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS) April 2015 United States Department of Energy National Nuclear Security Administration Nevada Field Office Las Vegas, Nevada Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

  12. DOE/NV/25946--2540

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    540 3 rd QUARTER TRANSPORTATION REPORT FY2015 Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS) July 2015 United States Department of Energy National Nuclear Security Administration Nevada Field Office Las Vegas, Nevada Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

  13. DOE/NV/25946--2686

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    686 4 th QUARTER / ANNUAL TRANSPORTATION REPORT FY2015 Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex This report was prepared for: U.S. Department of Energy National Nuclear Security Administration Nevada Field Office By: National Security Technologies, LLC Las Vegas, Nevada January 2016 Work performed under contract number: DE-AC52-06NA25946 Reference herein to any specific commercial product, process, or service by trade name,

  14. DOE/NV/25946--2728

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    728 1 st QUARTER TRANSPORTATION REPORT FY2016 Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex This report was prepared for: U.S. Department of Energy National Nuclear Security Administration Nevada Field Office By: National Security Technologies, LLC Las Vegas, Nevada January 2016 Work performed under contract number: DE-AC52-06NA25946 Reference herein to any specific commercial product, process, or service by trade name, trademark,

  15. DOE/NV/25946-2813

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    813 2 ND QUARTER TRANSPORTATION REPORT FY2016 Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex This report was prepared for: U.S. Department of Energy National Nuclear Security Administration Nevada Field Office By: National Security Technologies, LLC Las Vegas, Nevada April 2016 Work performed under contract number: DE-AC52-06NA25946 Reference herein to any specific commercial product, process, or service by trade name, trademark,

  16. NV/YMP RADIOLOGICAL CONTROL MANUAL

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

    2004-11-01

    This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

  17. DOE/NV/25946--2274

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 5 3.0 INCIDENTACCIDENT DATA ......used by carriers; and Incidentaccident data applicable to LLW and MLLW shipments. ...

  18. len Jr. Bl!ukr.'.lrd NV

    Broader source: Energy.gov (indexed) [DOE]

    Southen has also been extremely active in the deployment of Advanced Metering ... Other ongoing smart grid projects include the automation of its trunsmission and ...

  19. DOE/NV--209-REV15

    National Nuclear Security Administration (NNSA)

    ... United States Nuclear TestsDetonations Conducted on the Nevada Test Site - By Area . . . ... Index of Nuclear Test Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

  20. DOE/NV--209-REV15

    National Nuclear Security Administration (NNSA)

    was fired at the Nevada Test Site on July 6, 1962, displacing 12 million tons of earth. ... United States Nuclear TestsDetonations Conducted on the Nevada Test Site - By Area . . . ...

  1. NV DOE MOU signed version.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  2. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  3. Microsoft Word - 2014 nv science bowl winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 Darwin.Morgan@nnsa.doe.gov Kelly K. Snyder, 702-295-3521 Kelly.Snyder@nnsa.doe.gov THE MEADOWS SCHOOL EMERGES AS NEVADA SCIENCE BOWL CHAMPIONS 160 high school students put their minds to the test at Nevada Science Bowl The Meadows School from Las Vegas won nine straight matches to claim the championship of the Nevada Science Bowl. Thirty-two teams from 27 high schools across Nevada started the competition on Saturday morning in Las Vegas. Northwest Career Technical Academy finished

  4. DOE/NV/11718-594

    National Nuclear Security Administration (NNSA)

    ... radiation* 258 GREEN, R.A. 1996. Yucca Mountain Biological Resources Monitoring Program Progress Report, January 1995 - December 1995. U.S. Department of Energy, Civilian ...

  5. NvE Celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A considerable effort was made at the FBI and White House level to get the Department of ... The team at RSL-Andrews had to work with their FBI partners to create a new Concept of ...

  6. EIS-0354: Ivanpah Energy Center, NV

    Broader source: Energy.gov [DOE]

    Ivanpah Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric power generating station in southern Clark County, Nevada.

  7. DOE/NV/25946--2182-SUM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nevada National Security Site Environmental ... The NNSS Now 3 Environmental Compliance 3 The Legacy of NNSS Nuclear Testing 5 Cleanup ... directs the management and operation of ...

  8. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

    2012-06-29

    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areas—vehicular drive lanes, bicycle lanes, and sidewalks—or would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires

  9. Preparation of state purified beams of He, Ne, C, N, and O atoms

    SciTech Connect (OSTI)

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-14

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He({sup 3}S{sub 1}) and Ne({sup 3}P{sub 2}), and of ground state N({sup 4}S{sub 3/2}) and O({sup 3}P{sub 2}) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C({sup 3}P{sub 2}; {sup 1}D{sub 2}) and N({sup 2}D{sub 5/2}; {sup 2}P{sub 3/2}) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  10. AmeriFlux US-Ne1 Mead - irrigated continuous maize site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne1 Mead - irrigated continuous maize site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since the tillage operation, the site has been under no-till management until the harvest of 2005. Following harvest, a conservation-plow tillage operation was initiated where a small amount of N fertilizer is sprayed on the residue immediately prior to the plow operation. Approximately 1/3 of the crop residue is left on the surface. The post-harvest conservation-plow operation continues as the current practice.

  11. Influence of Mesozoic age structure on Miocene tectonic development in NE Anzoategui, Eastern Venezuela Basin

    SciTech Connect (OSTI)

    Sadler, P.; White, S.

    1996-08-01

    Structure within and surrounding the Quiamare-La Ceiba region, Eastern Venezuela Basin, is dominated by two major thrust fault systems. They were generated during Early-Middle Miocene time in response to oblique convergence of the Caribbean and South American plates. They are. respectively, the SE vergent NE-SW oriented Anaco fault system, and the SSE vergent ENE-WSW oriented Pirital fault system. The major structural feature associated with each fault system is a basement cored ramp anticline. New seismic data provides evidence that contributes to a better understanding of the sequence of tectonic development within and surrounding the Quiamare-La Ceiba region. Compressional structures in both the hanging wall and the footwall of the Pirital fault system appear to be inverted normal faults, that were previously active during Mesozoic time along the northern South America passive margin. A conjugate set of strike-slip faults is also present. They are oriented NNW-SSE, parallel to the Urica lineation, and SSW-NNE, respectively. A Mesozoic origin for these faults is suggested. Post-compressional relaxation during Plio-Pleistocene time resulted in the development of shallow, small scale normal faults. These normal faults appear to be localized by structural adjustments along the strike-slip fault sets. Existing oil and gas production within the Quiamare-La Ceiba region is from localized structural closures. Strike-slip faults dissect the prevailing structural grain, and may provide an additional hydrocarbon trapping mechanism.

  12. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  13. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    SciTech Connect (OSTI)

    Real, Diego [IFIC, Instituto de Fsica Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  14. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  15. Nus and anti-nus from MiniBooNE: searching for the shadow of the ghost

    SciTech Connect (OSTI)

    Mills, Geoffrey B

    2009-01-01

    The latest results from MiniBooNE, the short baseline neutrino experiment operating on the 8 GeV booster's neutrino beam line (the BNB) at Fermilab, are discussed. The standard three active generation model of neutrino oscillations is now grounded firmly by experimental data. Studying the properties of neutrinos at the few percent level and below may uncover new properties of neutrinos and their oscillations and provide a path to physics beyond the standard neutrino model.

  16. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    SciTech Connect (OSTI)

    Cox, David Christopher; /Indiana U.

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction {nu} N {yields} {nu} N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises {approx}18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using {approx}10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q{sup 2}. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass M{sub A} was extracted to be 1.34 {+-} 0.25 GeV consistent with previous measurements. The integrated cross section for the Q{sup 2} range 0.189 {yields} 1.13 GeV{sup 2} was calculated to be (8.8 {+-} 0.6(stat) {+-} 0.2(syst)) x 10{sup -40} cm{sup 2}.

  17. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for

  18. Microsoft Word - SD452.3 FINAL

    National Nuclear Security Administration (NNSA)

    PURPOSE. This Department of Energy (DOE), National Nuclear Security Administration (NNSA) Business Requirements and Process Manual supplements DOE O 452.3 "Management of the...

  19. F.E. S.D. Gender

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MALE 633 154 79.9% 24.33% 100.0% 0 165 FEMALE 159 52 20.1% 32.70% 74.4% 0.008 2.1523224 X X X 41 11 COMPARISON 633 154 24.33% RACEETHNICITY 792 206 26.01% WHITE(NON-HISPANIC) 733 ...

  20. F.E. S.D. Gender

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    792 206 26.01% 79.9% MALE 633 154 79.9% 24.33% 100.0% 0 165 FEMALE 159 52 20.1% 32.70% 74.4% 0.008 2.1523224 X X X 41 11 COMPARISON 633 154 24.33% RACE/ETHNICITY 792 206 26.01% WHITE(NON-HISPANIC) 733 191 92.6% 26.06% 90.3% 0.219 0.2348801 191 0 BLACK(NON-HISPANIC) 10 1 1.3% 0.295 3 AMERICAN-INDIAN (NON-HISPANIC) 17 4 2.1% 23.53% 100.0% 0.312 0 4 ASIAN (NON-HISPANIC) 4 2 0.5% 0.263 1 1 HISPANIC (ALLRACES) 28 8 3.5% 28.57% 82.4% 0.257 0.3738043 7 1 COMPARISON 17 4 23.53% AGE 792 206 26.01% UNDER