Naval Research Laboratory Technology Marketing Summaries - Energy...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Naval Research Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Naval Research Laboratory (NRL). The...
Naval Reactors | Y-12 National Security Complex
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Naval Reactors Naval Reactors Y-12 processes the feedstock to power the nation's submarines and aircraft carriers. Y-12 processes highly enriched uranium for use by the Naval Reactors Program for Naval Nuclear Propulsion. Our support of the Naval Reactors program began in Fiscal Year 2002 and is currently planned through FY 2050 and beyond. We use dismantled weapons to provide feedstock, moving the material off-site and reducing Y-12's storage footprint and risk. The United States stopped
Categorical Exclusion Determinations: Naval Nuclear Propulsion Program |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Naval Nuclear Propulsion Program Categorical Exclusion Determinations: Naval Nuclear Propulsion Program Categorical Exclusion Determinations issued by Naval Nuclear Propulsion Program. DOCUMENTS AVAILABLE FOR DOWNLOAD April 14, 2014 CX-012099: Categorical Exclusion Determination Kesselring Site Crafts Facility Building 118 CX(s) Applied: B1.15, B1.31, B1.33 Date: 04/14/2014 Location(s): New York Offices(s): Naval Nuclear Propulsion Program April 1, 2014 CX-012098:
Naval Petroleum Reserves | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Naval Petroleum Reserves Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that changed in 1998 when Naval Petroleum Reserve No. 1, known as Elk Hills, was privatized, the first of a series of major organizational changes that leave only one of the original six Federal properties in the program. Set aside in a series of Executive Orders in the early 1900s, the government-owned
Higgins, C.T.; Chapman, R.H.
1984-01-01
The purpose of this project was to determine and evaluate sources of geothermal energy at two military bases in southern California, the Long Beach Naval Shipyard and Naval Station and the Seal Beach Naval Weapons Station. One part of the project focused on the natural geothermal characteristics beneath the naval bases. Another part focused on the geothermal energy produced by oilfield operations on and adjacent to each base. Results of the study are presented here for the US Department of the Navy to use in its program to reduce its reliance on petrolem by the development of different sources of energy. The study was accomplished under a cooperative agreement between the US Department of Energy's San Francisco Operations Office and the Department of the Navy's Naval Weapons Center, China Lake, California, for joint research and development of geothermal energy at military installations.
Naval Waste Package Design Report
M.M. Lewis
2004-03-15
A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.
Fuel Cell Power Plant Experience Naval Applications | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Power Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon...
Development Wells At Fallon Naval Air Station Area (Sabin, Et...
Fallon Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station...
Naval Nuclear Propulsion Plants | National Nuclear Security Administra...
National Nuclear Security Administration (NNSA)
Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...
Management of Naval Reactors' Cyber Security Program, OIG-0884
Broader source: Energy.gov (indexed) [DOE]
FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Naval Reactors' Cyber Security Program" INTRODUCTION AND OBJECTIVE The Naval...
Special Analysis: Naval Reactor Waste Disposal Pad
Cook, J.R.
2003-03-31
This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.
Nuclear Naval Propulsion: A Feasible Proliferation Pathway?
Swift, Alicia L.
2014-01-31
There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.
Fuel Cell Power Plant Experience Naval Applications
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop
Naval Nuclear Propulsion Plants | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
About Us / Our Programs / Powering the Nuclear Navy / Naval Nuclear Propulsion Plants Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces radiation, shielding is placed around the reactor to protect the crew. Despite close proximity to a reactor core, a typical crewmember receives less exposure to radiation than one who remains ashore and works in an office building. In naval
Naval Nuclear Propulsion Plants | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Our Mission / Powering the Nuclear Navy / Naval Nuclear Propulsion Plants Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces radiation, shielding is placed around the reactor to protect the crew. Despite close proximity to a reactor core, a typical crewmember receives less exposure to radiation than one who remains ashore and works in an office building. U.S. naval nuclear
Naval Spent Fuel Rail Shipment Accident Exercise Objectives | Department of
Office of Environmental Management (EM)
Energy Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives PDF icon Naval Spent Fuel Rail Shipment Accident Exercise Objectives More Documents & Publications TEC Meeting Summaries - April 2005 Presentations TEC Meeting Summaries - January - February 2007 Presentations NTSF 2014 Meeting Agenda
About Naval Reactors | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Naval Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA
Naval Nuclear Propulsion | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
| National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / Naval
naval reactors | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
naval reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA
2012 Annual Planning Summary for Naval Reactors | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Naval Reactors 2012 Annual Planning Summary for Naval Reactors The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Naval Reactors. PDF icon APS-2012-NA-30.pdf More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Los Alamos Site Office 2012 Annual Planning Summary for Sandia
2013 Annual Planning Summary for the Naval Nuclear Propulsion Program |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Naval Nuclear Propulsion Program 2013 Annual Planning Summary for the Naval Nuclear Propulsion Program The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Naval Nuclear Propulsion Program. PDF icon NNSA_NR_NEPA-APS-2013.pdf More Documents & Publications 2014 Annual Planning Summary for the West Valley Demonstration Project 2014 Annual Planning Summary for the Nevada Field Office 2012
Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. PDF icon RMOTC Report to Congress.pdf More Documents & Publications EIS-0158-S2: Record of Decision EA-1236: Finding of No
DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE
T.L. Mitchell
2000-05-31
The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).
More About NNSA's Naval Reactors Office | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration About Us / Our Programs / Powering the Nuclear Navy / More About NNSA's Naval Reactors Office More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. Leadership Budget PDF
More About NNSA's Naval Reactors Office | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration Our Mission / Powering the Nuclear Navy / More About NNSA's Naval Reactors Office More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. Leadership Budget Executive Order 12344
Naval Spent Fuel Rail Shipment Accident Exercise Objectives
Office of Environmental Management (EM)
NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the Naval spent fuel shipping container characteristics and shipping practices * Gain understanding of how the NNPP escorts who accompany the spent fuel shipments will interact with civilian emergency services representatives g y p * Allow civilian emergency services agencies the opportunity to evaluate their response to a pp
United States Naval Surface Warfare Center | Open Energy Information
Warfare Center Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Naval Surface Warfare Center Address Carderock, 9500 MacArthur Boulevard...
U.S. Naval Station, Guantanamo Bay, Cuba
Broader source: Energy.gov [DOE]
Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba.
NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...
National Nuclear Security Administration (NNSA)
Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...
DOE - Office of Legacy Management -- Naval Supply Depot AEC Warehouse...
Office of Legacy Management (LM)
Supply Depot AEC Warehouse - NY 36 FUSRAP Considered Sites Site: NAVAL SUPPLY DEPOT, AEC WAREHOUSE (NY.36) Eliminated from further consideration under FUSRAP - Referred to DOD...
Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. CITE: 10USC7420 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7421 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7422 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7423 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7424 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7425 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE:
Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...
Broader source: Energy.gov (indexed) [DOE]
a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. RMOTC...
DOE - Office of Legacy Management -- Norfolk Naval Station - VA 05
Office of Legacy Management (LM)
Norfolk Naval Station - VA 05 FUSRAP Considered Sites Site: NORFOLK NAVAL STATION (VA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium fire at the Fire Fighters School for AEC contractors. VA.05-3 VA.05-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials
DOE - Office of Legacy Management -- Westinghouse Naval Ordnance - MI 02
Office of Legacy Management (LM)
Naval Ordnance - MI 02 FUSRAP Considered Sites Site: WESTINGHOUSE NAVAL ORDNANCE (MI.02 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Detroit , Michigan MI.02-1 Evaluation Year: 1987 MI.02-2 Site Operations: Worked under contract with the Albuquerque Operations Office. No indication that radioactive material was involved under the contract. MI.02-2 Site Disposition: Eliminated - No indication radioactive
Naval Spent Nuclear Fuel disposal Container System Description Document
N. E. Pettit
2001-07-13
The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.
Thermal Evaluation for the Naval SNF Waste Package
T.L. Mitchell
2000-04-25
The purpose of this calculation is to evaluate the thermal performance of the naval long spent nuclear fuel (SNF) waste package (WP) under multiple disposal conditions in a monitored geologic repository (MGR). The scope of this calculation is limited to determination of thermal temperature profiles upon the surface of, and within, the naval long SNF WP. The objective is to develop a temperature profile history within the WP, at time increments up to 10,000 years of emplacement. The results of this calculation are intended to support the Naval SNF WP Analysis and Model Report (AMR) for Site Recommendation (SR). This calculation was performed to the specifications within its Technical Development Plan (TDP) (Ref. 8.16). This calculation is developed and documented in accordance with the AP-3.12Q/REV. 0IICN. 0 procedure, Calculations.
Reactor Safety Planning for Prometheus Project, for Naval Reactors Information
P. Delmolino
2005-05-06
The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.
DOE - Office of Legacy Management -- U S Naval Radiological Defense
Office of Legacy Management (LM)
Laboratory - CA 0-06 Naval Radiological Defense Laboratory - CA 0-06 FUSRAP Considered Sites Site: U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (CA.0-06) Eliminated from consideration under FUSRAP - Referred to the DoD Designated Name: Not Designated Alternate Name: None Location: San Francisco , California CA.0-06-1 Evaluation Year: 1987 CA.0-06-1 Site Operations: NRC licensed DoD facility which used small quantities of nuclear materials for R&D purposes and decontaminated ships.
2014 Annual Planning Summary for the NNSA Naval Reactors | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Naval Reactors 2014 Annual Planning Summary for the NNSA Naval Reactors The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Naval Reactors. PDF icon NNSA-NavalReactors-NEPA-APS-2014.pdf More Documents & Publications 2014 Annual Planning Summary for the NNSA Global Threat Reduction Initiative Office 2014 Annual Planning Summary for the NNSA Sandia Field Office 2014 Annual Planning Summary for the NNSA Savannah
FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval
National Nuclear Security Administration (NNSA)
Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our
Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities
National Nuclear Security Administration (NNSA)
before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our
Congressional Delegation visits Naval Reactors Facility | National Nuclear
National Nuclear Security Administration (NNSA)
Security Administration Delegation visits Naval Reactors Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo
NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security
National Nuclear Security Administration (NNSA)
Administration 30 - Deputy Administrator for Naval Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery
H. Marr
2006-10-25
The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.
DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02
Office of Legacy Management (LM)
Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive
1996 environmental monitoring report for the Naval Reactors Facility
1996-12-31
The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).
Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Hills Naval Petroleum Reserve Sale of the Elk Hills Naval Petroleum Reserve Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia
Broader source: Energy.gov [DOE]
The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.
DOE - Office of Legacy Management -- Naval Ordnance Test Station - CA 06
Office of Legacy Management (LM)
Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: China Lake Naval Weapons Center Salt Wells Pilot Plant CA.06-1 Location: Inyokern , California CA.06-1 Evaluation Year: 1987 CA.06-1 Site Operations: Naval facility; experimental development work on shape charges and quality castings on a pilot plant scale. CA.06-1 Site Disposition: Eliminated - No indication that
SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVII
Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil
2011-08-15
The results of 3362 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1970 mean relative positions and range in separation from 0.''78 to 72.''17, with a mean separation of 14.''76. This is the 17th in this series of papers and covers the period 2010 January 6 through December 20. Also presented are 10 pairs that are resolved for the first time.
Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26
Office of Legacy Management (LM)
.J>?j 1.2 1990 Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26 Code N 9 E Norfolk, Virginia 23511-6002 Dear Ms. Barnett: I enjoyed speaking with you on the phone. The Department of Energy (DOE) has established its Formerly Utilized Sites Remedial Action Program (FUSRAP) to identify sites formerly utilized by its predecessor agencies in the early days of the nation's atomic energy program and to determine the potential for these sites to contain radiological contamination, related
2013 Federal Energy and Water Management Award Winner Naval Sea Systems
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Command | Department of Energy Naval Sea Systems Command 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command PDF icon fewm13_nswcphiladelphia_highres.pdf PDF icon fewm13_nswcphiladelphia.pdf More Documents & Publications CX-005670: Categorical Exclusion Determination U.S. Navy Marine Diesel Engines and the Environment - Part 1 EIS-0259: Record of Decision
Not Available
1994-02-01
Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.
SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVIII
Mason, Brian D.; Hartkopf, William I.; Friedman, Elizabeth A. E-mail: wih@usno.navy.mil
2012-05-15
The results of 2490 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1462 mean relative positions and range in separation from 0.''56 to 71.''80, with a mean separation of 14.''81. This is the 18th in this series of papers and covers the period 2011 January 3 through 2011 December 18. Also presented are four pairs which are resolved for the first time, thirteen other pairs which appear to be lost, and linear elements for four additional pairs.
SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XIX
Mason, Brian D.; Hartkopf, William I.; Hurowitz, Haley M. E-mail: wih@usno.navy.mil
2013-09-15
The results of 2916 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 1584 mean relative positions and range in separation from 0.''54 to 98.''09, with a median separation of 11.''73. This is the 19th in this series of papers and covers the period 2012 January 5 through 2012 December 18. Also presented are 10 pairs that are reported for the first time, 17 pairs that appear to be lost, linear elements for 18 pairs, and orbital elements for 2 additional pairs.
Naval Reactors Facility environmental monitoring report, calendar year 1999
2000-12-01
The results of the radiological and nonradiological environmental monitoring programs for 1999 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE).
1997 environmental monitoring report for the Naval Reactors Facility
1997-12-31
The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).
Naval Reactors Facility environmental monitoring report, calendar year 2000
2001-12-01
The results of the radiological and nonradiological environmental monitoring programs for 2000 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE).
Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003
2003-12-31
The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.
Naval Reactors Facility environmental monitoring report, calendar year 2001
2002-12-31
The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy.
Cronk, T.A.; Smuin, D.R. ); Schlosser, R.M. )
1991-11-01
This technical memorandum develops process options which are appropriate for environmental restoration activities at Naval Air Station Fallon (NAS Fallon), Nevada. Introduction of contaminants to the environment has resulted from deliberate disposal activities (both through dumping and landfilling) and accidental spills and leaks associated with normal activities at NAS Fallon over its lifetime of operation. Environmental sampling results indicate that the vast majority of contaminants of concern are petroleum hydrocarbon related. These contaminants include JP-4, JP-5, leaded and unleaded gasoline, waste oils and lubricants, hydraulic fluids, and numerous solvents and cleaners. The principal exposure pathways of concern associated with NAS Fallon contaminants appear to be the surface flows and shallow drainage systems to which the base contributes. Available data indicate NAS Fallon IR Program sites are not contributing excessive contamination to surface flows emanating from the base. Contaminants appear to be contained in a relatively immobile state in the shallow subsurface with little or no contaminant migration off site.
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.
EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY
Broader source: Energy.gov [DOE]
Final Sitewide Environmental Assessment (EA) This Sitewide EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation.
EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming
Broader source: Energy.gov [DOE]
This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...
Audit Report - Naval Reactors Information Technology System Development Efforts, IG-0879
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Naval Reactors Information Technology System Development Efforts DOE/IG-0879 December 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 December 21, 2012 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on the "Naval Reactors Information Technology System Development Efforts" INTRODUCTION AND
EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado
Broader source: Energy.gov [DOE]
The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.
DOE - Office of Legacy Management -- Naval Ordnance Laboratory - MD 0-03
Office of Legacy Management (LM)
Laboratory - MD 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE LABORATORY (MD.0-03 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: Naval Ordnance Laboratory - White Oak Location: White Oak Area , Silver Spring , Maryland MD.0-03-1 MD.0-03-2 Evaluation Year: 1987 MD.0-03-2 Site Operations: Research and development - may have involved radioactive materials because the site was identified on a 1955 Accountability Station
DOE - Office of Legacy Management -- Naval Petroleum Reserve No 3 - 046
Office of Legacy Management (LM)
Petroleum Reserve No 3 - 046 FUSRAP Considered Sites Site: Naval Petroleum Reserve No. 3 (046) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Naval Petroleum Reserve No. 3 is located in Natrona County, Wyoming. The site is a small oil field and covers approximately 9400 acres. Environmental remediation efforts are underway and a portion of
SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVI
Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil
2011-05-15
The results of 1031 speckle-interferometric observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each speckle-interferometric observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 457 mean relative positions and range in separation from 0.''15 to 16.''94, with a median separation of 3.''03. The range in V-band magnitudes for the primary (secondary) of observed targets is 3.1-12.9 (3.2-13.3). This is the sixteenth in a series of papers presenting measurements obtained with this system and covers the period 2009 January 12 through 2009 December 17. Included in these data are 12 older measurements whose positions were previously deemed possibly aberrant, but are no longer classified this way following a confirming observation. Also, 10 pairs with a single observation are herein confirmed. This paper also includes the first data obtained using a new ICCD with fiber optic cables.
Renewable Energy Optimization Report for Naval Station Newport
Robichaud, R.; Mosey, G.; Olis, D.
2012-02-01
In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).
THE FOURTH US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC4)
Zacharias, N.; Finch, C. T.; Bartlett, J. L.; Girard, T. M.; Henden, A.; Monet, D. G.; Zacharias, M. I.
2013-02-01
The fourth United States Naval Observatory (USNO) CCD Astrograph Catalog, UCAC4, was released in 2012 August (double-sided DVD and CDS data center Vizier catalog I/322). It is the final release in this series and contains over 113 million objects; over 105 million of them with proper motions (PMs). UCAC4 is an updated version of UCAC3 with about the same number of stars also covering all-sky. Bugs were fixed, Schmidt plate survey data were avoided, and precise five-band photometry was added for about half the stars. Astrograph observations have been supplemented for bright stars by FK6, Hipparcos, and Tycho-2 data to compile a UCAC4 star catalog complete from the brightest stars to about magnitude R = 16. Epoch 1998-2004 positions are obtained from observations with the 20 cm aperture USNO Astrograph's 'red lens', equipped with a 4k by 4k CCD. Mean positions and PMs are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the southern hemisphere, the first epoch plates from the Southern Proper Motion program form the basis for PMs, while the Northern Proper Motion first epoch plates serve the same purpose for the rest of the sky. These data are supplemented by 2MASS near-IR photometry for about 110 million stars and five-band (B, V, g, r, i) APASS data for over 51 million stars. Thus the published UCAC4, as were UCAC3 and UCAC2, is a compiled catalog with the UCAC observational program being a major component. The positional accuracy of stars in UCAC4 at mean epoch is about 15-100 mas per coordinate, depending on magnitude, while the formal errors in PMs range from about 1 to 10 mas yr{sup -1} depending on magnitude and observing history. Systematic errors in PMs are estimated to be about 1-4 mas yr{sup -1}.
Broader source: Energy.gov [DOE]
This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...
Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991
Not Available
1990-09-01
The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.
Investigation of waste rag generation at Naval Station Mayport. Project report, May 1990-July 1993
1995-08-01
The report presents the results of an investigation examining pollution prevention alternatives for reducing the volume of waste rags generated at Naval Station Mayport, located near Jacksonville Beach, Florida. The report recommends five specific pollution prevention alternatives: better operating practices, installation of equipment cleaning stations to remove contaminants normally removed with rags; replacement of SERVE MART rags with disposable wipers; use of recyclable rats for oil and great removal; and confirmation that used rags are fully contaminated prior to disposal.
Major General Harold Holesinger The Adjutant General Illinois Kilitary and Naval Dept.
Office of Legacy Management (LM)
General Harold Holesinger The Adjutant General Illinois Kilitary and Naval Dept. 1301 North MacArthur Boulevard Springfield, Illinois 62702-2399 Dear General Holesinger: I am enclosing a copy of the radiological survey report for the National Guard Armory, Chicago, Illinois. Although the data ncted in the report indicate levels of radioactivity in excess of current guidelines, the radioactive residues presently there do not pose a health hazard provided they were not disturbed in the past and
DOE - Office of Legacy Management -- Naval Oil Shale Reserves Site - 013
Office of Legacy Management (LM)
Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is located in Anvil Points, Colorado. From the early 1940's through the early 1980's, the U.S. Department of Energy (DOE) conducted oil shale retort experiments in the Green River geologic
NONE
1997-03-01
The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.
Broader source: Energy.gov [DOE]
This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.
Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993
Not Available
1993-12-31
During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.
DOE - Office of Legacy Management -- Naval Gun Factory and Bureau of
Office of Legacy Management (LM)
Ordnance - DC 0-01 Gun Factory and Bureau of Ordnance - DC 0-01 FUSRAP Considered Sites Site: NAVAL GUN FACTORY AND BUREAU OF ORDNANCE (DC.0-01) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.0-01-1 Evaluation Year: 1987 DC.0-01-1 Site Operations: Designed guns and nuclear projectiles. DC.0-01-1 Site Disposition: Eliminated - No Authority DC.0-01-1 Radioactive Materials Handled: None Indicated
DOE - Office of Legacy Management -- Naval Office at the University of New
Office of Legacy Management (LM)
Mexico - NM 0-03 Office at the University of New Mexico - NM 0-03 FUSRAP Considered Sites Site: NAVAL OFFICE AT THE UNIVERSITY OF NEW MEXICO (NM.0-03) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Albuquerque , New Mexico NM.0-03-1 Evaluation Year: 1987 NM.0-03-1 Site Operations: Site was a transshipment station for equipment to the Los Alamos site. NM.0-03-1 Site Disposition: Eliminated - Referred to DOD
DOE - Office of Legacy Management -- Naval Ordnance Plant - MI 0-03
Office of Legacy Management (LM)
Plant - MI 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE PLANT (MI.0-03) Eliminated from further consideration under FUSRAP - Referred to DoD for action Designated Name: Not Designated Alternate Name: None Location: Centerline , Michigan MI.0-03-1 Evaluation Year: 1987 MI.0-03-1 Site Operations: Assembled bomb components. MI.0-03-1 Site Disposition: Eliminated - No Authority - Referred to DoD MI.0-03-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None
DOE - Office of Legacy Management -- Naval Proving Ground - VA 0-01
Office of Legacy Management (LM)
Proving Ground - VA 0-01 FUSRAP Considered Sites Site: NAVAL PROVING GROUND (VA.0-01 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Dahlgren , Virginia VA.0-01-1 Evaluation Year: 1987 VA.0-01-1 Site Operations: Site operations were not specified; this site was identified on the 1954 Accountable Station Lists. VA.0-01-1 VA.0-01-2 Site Disposition: Eliminated - Referred to DOD VA.0-01-1 Radioactive Materials
National Nuclear Security Administration (NNSA)
6%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy
National Nuclear Security Administration (NNSA)
6%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy
Broader source: Energy.gov [DOE]
The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.
Broader source: Energy.gov [DOE]
The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.
Broader source: Energy.gov [DOE]
This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.
Assessment of Fleet Inventory for Naval Air Station Whidbey Island. Task 1
Schey, Stephen; Francfort, Jim
2015-06-01
Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicles mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.
Eissler, A.W.; Ferrel, T.W.; Bloom, T.F.; Fajen, J.M.
1985-06-24
Breathing-zone samples were analyzed for organotin compounds, copper, and xylene during spray application of organotin containing marine antifouling paint at Norfolk Naval Shipyard, Portsmouth, Virginia, March, 1984. The survey was part of a NIOSH study of occupational exposures to organotin compounds, conducted as a component of an assessment to determine the feasibility of conducting a study of reproductive effects. Company personnel records were reviewed. Work practices were observed. The authors conclude that a potential exists for exposures to organotins and copper. As all employees were wearing respiratory protective equipment, actual exposures may be less than that indicated by the analytical data. The facility could contribute 16 potentially exposed workers to the reproductive effects study.
Not Available
1989-02-01
This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.
Not Available
1994-06-01
This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.
Broader source: Energy.gov [DOE]
DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)
Huffman, S.
2011-10-01
A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.
Not Available
1989-02-01
This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.
Not Available
1994-08-01
The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.
Sukhoruchkin, V.; Yurasov, N.; Goncharenko, Y.; Mullen, M.; McConnell, D.
1996-12-31
In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.
Memory, S.B.
1991-12-01
An evaluation has been made of two different techniques which could prove valuable for Naval refrigeration needs in the future. The first is electrohydrodynamic (EHD) enhancement of pool boiling and condensation heat transfer; this has been shown to provide significant enhancements for both modes of heat transfer under certain conditions and could provide increases in efficiency of present vapor-compression systems. EHD techniques are quite advanced and prototype condenser and evaporator bundles are currently being tested. The second technique is an alternative refrigeration technology called thermoacoustic refrigeration; alternative technologies have become increasingly attractive over recent years due to environmental concerns over CFCs. Thermoacoustic refrigeration uses acoustic power to pump heat from a low temperature source to a high temperature sink. It is still in the early stages of development and can presently accommodate only small thermal loads. However, its general principles of operation have been proven and its resent capacity and efficiency limitations are not seen as a problem in the long term. Electrohydrodynamic Enhancement, Boiling and Condensation, Thermoacoustic Refrigeration.
Naval Petroleum Reserves in California site environmental report for calendar year 1989
Not Available
1989-01-01
This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.
Report of endangered species studies on Naval Petroleum Reserve No. 2, Kern County, California
O'Farrell, T.P.; Warrick, G.D.; Mathews, N.E.; Kato, T.T.
1987-09-01
Between 1983 and 1986 the size of the population of San Joaquin kit foxes (Vulpes macrotis mutica) on Naval Petroleum Reserve No. 2 (NPR-2), Kern County, California, was estimated semiannually using capture-recapture techniques. Although summer population estimates varied between 222 in 1983 and 121 in 1986, and winter estimates varies between 258 in 1984 and 91 in 1983, the population appeared to remain relatively stable at an apparent norm of 165. Kit foxes were abundant even in the intensely developed areas, and numbers and densities (1.12 to 2.49/sq mile) were consistently higher on NPR-2 than on neighboring NPR-1. The percentage of adult vixens that successfully raised pups was 55%, average litter size was 4.0 +- 0.0, and the sex ratio (M:F) of 25 pups was 1:1.5. Most (45.2%) foxes were killed by coyotes (Canis latrans), vehicles killed 6.4%, and 6.5% died of other causes. A cause could not be determined for 41.9% of the deaths. There was a general increase in coyote visitation rates at scent stations, but kit fox visitation rates generally decreased. Kit fox indices were consistently higher on NPR-2 than on NPR-1. Approximately 15% of the kit foxes on NPR-2 dispersed an average of 2.2 +- 0.2 miles. Average dispersal distance did not differ between the sexes. The longest dispersal was 6.9 miles. Proportionately more male than female pups dispersed. Remains of lagomorphs (jackrabbits and cottontails) and kangaroo rats had the highest frequency of occurrence in scats. Frequency of occurrence of lagomorph remains was greater in developed than in undeveloped habitats. Proportions of lagomorph remains increased and kangaroo rat remains decreased between 1983 and 1984. 62 refs., 9 figs., 24 tabs.
1996-04-01
In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.
Not Available
1994-06-01
Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &
Hillesheim, M.; Mosey, G.
2014-11-01
The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.
Walker, J.F. Jr.; Villiers-Fisher, J.F.; Brown, C.H. Jr.
1987-01-01
Oak Ridge National Laboratory (ORNL) was contracted by the Naval Energy and Environmental Support Activity (NEESA) to analyze the wastewater problems at a Naval Ordnance Station (NOS) plating shop in the eastern United States to recommend innovative wastewater treatment technologies for handling those problems and to implement the recommended treatment technology. Hexavalent chromium was identified as the major problem area at NOS. Water conservation measures were recommended which would reduce the volume of chromium-contaminated wastewater from approximately 300 L/min to approximately 20 L/min. A treatment scheme consisting of RO followed by evaporation of the RO concentrate steam was recommended. Paint-stripping operations at NOS potentially contaminate the wastewater with phenol, trichloroethane, and possibly other organics. However, the need for a treatment unit for removal of organics could not be established due to a lack of organic analytical data. A characterization study was therefore recommended for the NOS plating shop. If treatment for organics is necessary, the treatment unit might include two-stage filtration for removal of paint flakes or other solids, air stripping for removal of volatile organics, and carbon adsorption for removal of residual organics. 7 refs., 6 figs., 3 tabs.
Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.
1992-06-24
With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.
Confidence in Numerical Simulations
Hemez, Francois M.
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Rythmos Numerical Integration Package
Energy Science and Technology Software Center (OSTI)
2006-09-01
Rythmos numerically integrates transient differential equations. The differential equations can be explicit or implicit ordinary differential equations ofr formulated as fully implicit differential-algebraic equations. Methods include backward Euler, forward Euler, explicit Runge-Kutta, and implicit BDF at this time. Native support for operator split methods and strict modularity are strong design goals. Forward sensitivity computations will be included in the first release with adjoint sensitivities coming in the near future. Rythmos heavily relies on Thyra formore » linear algebra and nonlinear solver interfaces to AztecOO, Amesos, IFPack, and NOX in Tilinos. Rythmos is specially suited for stiff differential equations and thos applictions where operator split methods have a big advantage, e.g. Computational fluid dynamics, convection-diffusion equations, etc.« less
Broader source: Energy.gov [DOE]
The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258. This EIS supplements DOE/EIS-0012.
Armstrong, P.R.; Schmelzer, J.R.
1997-01-01
DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.
Armstrong, P.R.; Conover, D.R.
1993-05-01
In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.
Broader source: Energy.gov [DOE]
This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...
Not Available
1991-08-01
As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.
Rohrer, W.L.; Vita, C.L.; Schrock, W.; Leicht, G.
1996-12-31
Dredge spoils, industrial fill, and liquid wastes from the 1940s to 1970s have resulted in inorganic and organic contamination of soils, groundwater, and marine sediments near the U.S.S. Missouri and Charleston Beach parking lots at Puget Sound Naval Shipyard (PSNS), in Bremerton, Washington. Extensive collection of environmental data from several studies including the recently completed Remedial Investigation conducted under CERCLA have confirmed contaminant levels above federal risk screening levels and state regulatory criteria for several heavy metals and organic compounds, including pesticides and PCBs. Although the correlation between contamination in marine sediments and those in on-shore fill appears to be strong, there is little evidence that a viable transport pathway currently exists from soils to groundwater and thence to sediments. Several methods used to estimate chemical mass flux from soil to groundwater to sediments and marine waters of Sinclair Inlet are corroborative in this regard. Nonetheless, this result is vexing because present groundwater concentrations exceed ARARs, yet are below levels of concern in terms of mass flux to marine waters. Despite the marginal risks posed by groundwater, various remedial alternatives, including perimeter containment using a subsurface waste-stabilized containment wall, were evaluated to determine whether chemical flux could be reduced to levels below those observed at the present time. Three-dimensional flow modelling and transport modelling also confirmed that chemical fluxes were limited in magnitude and could be addressed with more conventional remedial approaches.
Not Available
1990-09-28
The 82.6-acre Naval Industrial Reserve Ordnance Plant (NIROP) site is a weapons system manufacturing facility in Fridley, Minnesota, which began operations in 1940. The site is a government-owned, contractor-operated, plant located just north of the FMC Corp. During the 1970s, paint sludge and chlorinated solvents were disposed of onsite in pits and trenches. In 1981, State investigations identified TCE in onsite water supply wells drawing from the Prairie DuChien/Jordan aquifer, and the wells were shut down. In 1983, EPA found drummed waste in the trenches or pits at the northern portion of the site, and as a result, during 1983 and 1984, the Navy authorized an installation restoration program, during which approximately 1,200 cubic yards of contaminated soil and 42 drums were excavated and landfilled offsite. The Record of Decision (ROD) addresses the remediation of a shallow ground water operable unit. The primary contaminants of concern affecting the ground water are VOCs including PCE, TCE, toluene, and xylene.
Milliken, M.D.; McJannet, G.S.; Shiflett, D.W.; Deutsch, H.A.
1996-12-31
The {open_quotes}A{close_quotes} sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the {open_quotes}N Point{close_quotes} stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.
Milliken, M.D.; McJannet, G.S. ); Shiflett, D.W. ); Deutsch, H.A. )
1996-01-01
The [open quotes]A[close quotes] sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the [open quotes]N Point[close quotes] stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A simple impeller model drives a flow that can generate a growing magnetic field, depending on ... such as thermal convection in a rotating body, for the case of the Earth, or by ...
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3? level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
1996-05-01
The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.
Robichaud, R.; Fields, J.; Roberts, J. O.
2012-02-01
The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.
Naval electrochemical corrosion reducer
Clark, Howard L. (Ballston Lake, NY)
1991-10-01
A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.
Not Available
1993-07-01
This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).
Brandenberger, Jill M.; Metallo, David; Johnston, Robert K.; Gebhardt, Christine; Hsu, Larry
2012-09-01
This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for the 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Numerical computation of Pop plot
Menikoff, Ralph
2015-03-23
The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.
1996-08-09
The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.
Armstrong, P.R.; Conover, D.R.
1993-05-01
In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.
Stephanie von Numers | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Stephanie von Numers About Us Stephanie von Numers - Communications and Web Coordinator, Education & Workforce Development Stephanie von Numers joined the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy in November 2013. She supports the Education & Workforce Development team's printed and online resource development, social media activity, website maintenance and analytics, and outreach events to promote nation-wide energy literacy and career planning in the
numerical modeling | OpenEI Community
Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...
Numerical evaluation of effective unsaturated hydraulic properties...
Office of Scientific and Technical Information (OSTI)
Title: Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, ...
1996-12-01
The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Oil Shales Reserves Nos. 1 and 3 (NOSR 1 and 3) in Garfield County, Colorado (Figure 0.1). The report that follows is the Phase II Final Report for that study. Additional details are provided in the Addendum (the Phase 1 Property Description and Fact Finding Report). The key property elements that positively affect the estimated value of NOSR 1 and 3 include the following: working interest income from producing oil and gas leases, income from grazing or leasing of grazing rights, potential income from oil and gas leasing on exploratory (or nonprospective) acreage, potential value of trading surface real estate as ranch land for livestock grazing (56,577 acres). Key elements that negatively impact the estimated value include: environmental assessment costs, gas prices, operating budgets, and lease sale expenses.
1996-12-01
The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.
Mechanical diode: Comparing numerical and experimental characterizations
Sagartz, M.J.; Segalman, D.; Simmermacher, T.
1998-02-01
In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predictions, in spite of convergence being very sensitive to numerical artifacts of the interface model, are in good agreement with experimentally measured strains and joint compliances. The joint behavior is a mechanical analogy to a diode, i.e., in compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is relatively soft, acting as a spring.
Numerical simulations of strong incompressible magnetohydrodynamic turbulence
Mason, J.; Cattaneo, F.; Perez, J. C.; Boldyrev, S.
2012-05-15
Magnetised plasma turbulence pervades the universe and is likely to play an important role in a variety of astrophysical settings. Magnetohydrodynamics (MHD) provides the simplest theoretical framework in which phenomenological models for the turbulent dynamics can be built. Numerical simulations of MHD turbulence are widely used to guide and test the theoretical predictions; however, simulating MHD turbulence and accurately measuring its scaling properties is far from straightforward. Computational power limits the calculations to moderate Reynolds numbers and often simplifying assumptions are made in order that a wider range of scales can be accessed. After describing the theoretical predictions and the numerical approaches that are often employed in studying strong incompressible MHD turbulence, we present the findings of a series of high-resolution direct numerical simulations. We discuss the effects that insufficiencies in the computational approach can have on the solution and its physical interpretation.
1998-04-01
The Secretary of Energy is authorized to produce the Naval Petroleum Reserves No. 3 (NPR-3) at its maximum efficient rate (MER) consistent with sound engineering practices, for a period extending to April 5, 2000 subject to extension. Production at NPR-3 peaked in 1981 and has declined since until it has become a mature stripper field, with the average well yielding less than 2 barrels per day. The Department of Energy (DOE) has decided to discontinue Federal operation of NPR-3 at the end of its life as an economically viable oilfield currently estimated to be 2003. Although changes in oil and gas markets or shifts in national policy could alter the economic limit of NPR-3, it productive life will be determined largely by a small and declining reserve base. DOE is proposing certain activities over the next six years in anticipation of the possible transfer of NPR-3 out of Federal operation. These activities would include the accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the continued development of the Rocky Mountain Oilfield Testing Center (RMOTC). DOE has prepared this environmental assessment that analyzes the proposed plugging and abandonment of wells, field restoration and development of RMOTC. Based on the analysis in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). The preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).
Sandia Energy - Numerical Simulations of Hydrokinetics in the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...
Toward portable programming of numerical linear algebra on manycore...
Office of Scientific and Technical Information (OSTI)
Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on ...
Development of Numerical Simulation Capabilities for In Situ...
Office of Scientific and Technical Information (OSTI)
Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In...
Numerical simulations for low energy nuclear reactions including...
Office of Scientific and Technical Information (OSTI)
Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for...
Numerical Verification of Bounce Harmonic Resonances in Neoclassical
Office of Scientific and Technical Information (OSTI)
for Tokamaks Kimin Kim, Jong-Kyu Park and Allen H. Boozer 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Tokamaks, Numerical Verification Tokamaks, Numerical Verification This...
Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...
Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling...
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some are unknown, a sensitivity analysis must be carried out to provide lower and upper bounds of the material behaviour. Finally, the model can be used as a basis to formulate a macroscopic material model for concrete subject to irradiation, which later can be used in structural analyses to estimate the structural impact of irradiation on nuclear power plants.
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
Numerical uncertainty in computational engineering and physics
Hemez, Francois M
2009-01-01
Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts of consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.
A survey of numerical cubature over triangles
Lyness, J.N.; Cools, R.
1993-12-31
This survey collects together theoretical results in the area of numerical cubature over triangles and is a vehicle for a current bibliography. We treat first the theory relating to regular integrands and then the corresponding theory for singular integrands with emphasis on the ``full comer singularity.`` Within these two sections we treat successively approaches based on transforming the triangle into a square, formulas based on polynomial moment fitting, and extrapolation techniques. Within each category we quote key theoretical results without proof, and relate other results and references to these. Nearly all the references we have found may be readily placed in one of these categories. This survey is theoretical in character and does not include recent work in adaptive and automatic integration.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J.; Barthelmess, Miriam; Oberthuer, Dominik; Yefanov, Oleksandr; Aquila, Andrew; Chapman, Henry N.; Bajt, Saa
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along the lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments [OSTI]
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION
Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.
2011-11-01
Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.
Very high numerical aperture light transmitting device
Allison, Stephen W. (Knoxville, TN); Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Knoxville, TN)
1998-01-01
A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.
An Updated Numerical Model Of The Larderello-Travale Geothermal...
Numerical Model Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Updated Numerical Model Of...
Numerical Modeling Of Basin And Range Geothermal Systems | Open...
for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal...
1997-05-01
The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.
High numerical aperture multilayer Laue lenses
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J.; Barthelmess, Miriam; et al
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
Self-similar radiation from numerical Rosenau-Hyman compactons
Rus, Francisco Villatoro, Francisco R.
2007-11-10
The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results.
Numerical evaluation of effective unsaturated hydraulic properties for
Office of Scientific and Technical Information (OSTI)
fractured rocks (Journal Article) | SciTech Connect Journal Article: Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks Citation Details In-Document Search Title: Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical
Numerical Verification of Bounce Harmonic Resonances in Neoclassical
Office of Scientific and Technical Information (OSTI)
Toroidal Viscosity for Tokamaks (Technical Report) | SciTech Connect Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks Citation Details In-Document Search Title: Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks This Letter presents the rst numerical veri cation for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by non-axisymmetric magnetic
Toward portable programming of numerical linear algebra on manycore nodes.
Office of Scientific and Technical Information (OSTI)
(Conference) | SciTech Connect Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on manycore nodes. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-05-01 OSTI Identifier: 1109301 Report Number(s): SAND2011-3556C 471555 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Toward petaflop numerical
Numerical Modelling of Geothermal Systems a Short Introduction...
Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...
History, Applications, Numerical Values and Problems with the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Numerical Values and Problems with the Calculation of EROI (Energy Return on Energy Investment) Professor Charles Hall State University of NY College of Environmental Science and...
A Numerical Evaluation Of Electromagnetic Methods In Geothermal...
Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - Discussion...
Numerical Modeling At Coso Geothermal Area (1995) | Open Energy...
transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling...
Development of Numerical Simulation Capabilities for In Situ...
Office of Scientific and Technical Information (OSTI)
Numerical Simulation Capabilities for In Situ Heating of Oil Shale Hoda, Nazish ExxonMobil Upstream Research Company, Houston, TX, USA; Fang, Chen ExxonMobil Upstream Research...
Numerical simulation of the environmental impact of hydraulic...
Office of Scientific and Technical Information (OSTI)
Numerical simulation of the environmental impact of hydraulic fracturing of tightshale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs,...
Direct Numerical Simulations and Robust Predictions of Cloud...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...
Numerical Modeling At Lightning Dock Geothermal Area (O'Brien...
Basin Additional References Retrieved from "http:en.openei.orgwindex.php?titleNumericalModelingAtLightningDockGeothermalArea(O%27Brien,EtAl.,1984)&oldid762871...
An Integrated Experimental and Numerical Study: Developing a...
in a numerical simulator (modified version of TOUGH2) that can adjust porosity and permeability fields according to experimentally observed chemical fluid-rock interactions...
Numerical Modeling At Raft River Geothermal Area (1983) | Open...
Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983)...
Numerical Modeling of PCCI Combustion | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
PCCI Combustion Numerical Modeling of PCCI Combustion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Livermore National Laboratory/University of Michigan PDF icon 2004_deer_flowers.pdf More Documents & Publications Modeling of HCCI and PCCI Combustion Processes Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Numerical Modeling of HCCI Combustion
NONE
1995-12-31
This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.
Y-12: Seawolf to National Prototype Center
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Propulsor, which ultimately led to Y-12 being designated as the National Prototype Center. ... This "propulsor development center" at Y-12 led to other opportunities for unique designs ...
Simple intrinsic defects in GaAs : numerical supplement.
Schultz, Peter Andrew
2012-04-01
This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.
A Numerical Evaluation Of Electromagnetic Methods In Geothermal...
L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical...
Kees Bol, a scientist on Project Matterhorn, PDX and numerous...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
a scientist on Project Matterhorn, PDX and numerous experiments, dies at 90 By Jeanne Jackson DeVoe August 25, 2015 Tweet Widget Google Plus One Share on Facebook Photo courtesy...
Numerical analysis of thermally assisted spin-transfer torque magnetization
Office of Scientific and Technical Information (OSTI)
reversal in synthetic ferrimagnetic free layers (Journal Article) | SciTech Connect Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers Citation Details In-Document Search Title: Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was
Numerical simulations for low energy nuclear reactions including direct
Office of Scientific and Technical Information (OSTI)
channels to validate statistical models (Conference) | SciTech Connect Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-01-08 OSTI
Experimental and numerical study of the effective thermal conductivity of
Office of Scientific and Technical Information (OSTI)
silica nanocomposites with thermal boundary resistance (Journal Article) | SciTech Connect Experimental and numerical study of the effective thermal conductivity of silica nanocomposites with thermal boundary resistance Citation Details In-Document Search Title: Experimental and numerical study of the effective thermal conductivity of silica nanocomposites with thermal boundary resistance The thermal interface resistance at the macro scale is mainly described by the physical gap between two
Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy
Office of Scientific and Technical Information (OSTI)
Production and Storage with MADNESS and MPQC: ALCF-2 Early Science Program Technical Report (Technical Report) | SciTech Connect Technical Report: Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPQC: ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Accurate Numerical Simulations Of Chemical Phenomena Involved in Energy Production and Storage with MADNESS and MPQC: ALCF-2 Early Science
An Iterated, Multipoint Differential Transform Method for Numerically
Office of Scientific and Technical Information (OSTI)
Evolving Partial Differential Equation Initial-Value Problems (Journal Article) | SciTech Connect Journal Article: An Iterated, Multipoint Differential Transform Method for Numerically Evolving Partial Differential Equation Initial-Value Problems Citation Details In-Document Search Title: An Iterated, Multipoint Differential Transform Method for Numerically Evolving Partial Differential Equation Initial-Value Problems Authors: Finkel, H. J. [1] + Show Author Affiliations (LCF) Publication
Numerical Investigation of Advanced Compressor Technologies | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Investigation of Advanced Compressor Technologies Numerical Investigation of Advanced Compressor Technologies The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications. PDF icon deer08_sun.pdf More Documents & Publications Numerical Investigation of Advanced Compressor Technologies Advanced boost system development for diesel HCCI/LTC applications Advanced Boost System Development for Diesel HCCI/LTC
MEMORANDUM OF UNDERSTANDING Between The Numerical Algorithms Group Ltd
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Between The Numerical Algorithms Group Ltd and The University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory on a Visitor Exchange Program This Memorandum of Understanding (MOU) is by and between the Numerical Algorithms Group Ltd (NAG) with a registered address at: Wilkinson House, Jordan hill Road, Oxford, UK and the University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory, including its
Simple intrinsic defects in InAs : numerical predictions.
Schultz, Peter Andrew
2013-03-01
This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.
Translation and integration of numerical atomic orbitals in linear molecules
Heinsmki, Sami
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
Numerical method to test a theoretical model of the quantum interferen...
Office of Scientific and Technical Information (OSTI)
Numerical method to test a theoretical model of the quantum interference effect in layered manganites Citation Details In-Document Search Title: Numerical method to test a ...
Numerical Modeling At Neal Hot Springs Geothermal Area (U.S....
Area Exploration Technique Numerical Modeling Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis A numerical reservoir model was created to...
Numerical study of thermoacoustic convection in a cavity
Fusegi, Toru; Farouk, B.; Oran, E.S.
1995-12-31
Thermoacoustic convection in a two-dimensional cavity is numerically studied. Part of a compressible fluid (Helium) near the center line of the cavity is suddenly energized to generate pressure waves. Numerical solutions are secured by employing a highly accurate explicit method termed LCPFCT algorithm for the convection terms of the full Navier-Stokes equations. Thermoacoustic waves, which decay in large time due to the viscosity of fluid, are of the oscillatory nature. Much higher heat transfer rate can be achieved in an initial stage of transient processes, compared to that due to conduction. When a partial length of the cavity center line is heated, resulting thermoacoustic waves exhibit remarkable two-dimensional patterns.
Numerical method for shear bands in ductile metal with inclusions
Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory
2010-01-01
A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.
On Numerical Considerations for Modeling Reactive Astrophysical Shocks
Papatheodore, Thomas L; Messer, Bronson
2014-01-01
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.
Numerical simulations of the decay of primordial magnetic turbulence
Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Brandenburg, Axel [Nordita, AlbaNova University Center, Roslagstullsbacken 23, 10691 Stockholm (Sweden); Department of Astronomy, Stockholm University, SE 10691 Stockholm (Sweden); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue Tbilisi, GE-0128 (Georgia); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)
2010-06-15
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site
Carroll, Rosemary; Giroux, Brian; Pohll, Greg; Hershey, Ronald; Russell, Charles; Howcroft, William
2004-01-28
Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.
Numerical solution of sand transport in hydraulic fracturing
Daneshy, A.A.; Crichlow, H.B.
1980-02-07
A numerical solution is developed for the deposition of a propping agent inside a hydraulic fracture. Such parameters as fluid leak-off into the formation, increase in sand concentration caused by leak-off, non-Newtonian fracturing fluids, hindered settling velocity, and an up-to-date geometry are taken into consideration. Three examples investigate the proppant deposition for low-, medium-, and high-viscosity fracturing fluids.
Numerical and Experimental Investigation of Internal Short Circuit in a
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Li-ion Cell | Department of Energy and Experimental Investigation of Internal Short Circuit in a Li-ion Cell Numerical and Experimental Investigation of Internal Short Circuit in a Li-ion Cell 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es109_kim_2011_p.pdf More Documents & Publications Battery Thermal Modeling and Testing Implantation, Activation, Characterization and Prevention/Mitigation of Internal Short
Direct Numerical Simulations and Robust Predictions of Cloud Cavitation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Collapse | Argonne Leadership Computing Facility Initiation of cloud cavitation collapse for 50,000 bubbles Initiation of cloud cavitation collapse for 50,000 bubbles. Jonas Sukys, ETH Zurich Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zurich Allocation Program: INCITE Allocation Hours at ALCF: 72 Million Year: 2016 Research Domain: Engineering Cloud cavitation collapse-the evolution
NREL Receives Numerous Accolades from Industry and DOE - News Releases |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
NREL NREL Receives Numerous Accolades from Industry and DOE Lab honored with awards for sustainability; employees recognized for hydrogen, battery R&D November 8, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) and its employees have garnered awards and recognition from industry groups for advancing energy research as well as furthering the lab's sustainable operating practices. Bryan Pivovar Named Charles W. Tobias Young Investigator by the
Los Alamos National Laboratory communicators capture numerous awards from
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Society for Technical Communication Society for Technical Communication Awards Los Alamos National Laboratory communicators capture numerous awards from Society for Technical Communication Three Los Alamos entries garnered Distinguished Technical Communication awards, the competition's highest award category. April 15, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering
COLLOQUIUM: History, Applications, Numerical Values and Problems with the
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculation of EROI - Energy Return on (Energy) Investment | Princeton Plasma Physics Lab March 2, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: History, Applications, Numerical Values and Problems with the Calculation of EROI - Energy Return on (Energy) Investment Professor Charles Hall State University of NY College of Environmental Science and Forestry Plants and animals are subjected to fierce selective pressure to do the "right thing" energetically, that is to
22nd International Conference on Numerical Simulation of Plasmas (ICNSP) |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab 9, 2011, 5:00pm Conference Long Branch, New Jersey 22nd International Conference on Numerical Simulation of Plasmas (ICNSP) Long Branch, NJ Host: W. Lee Coordinator: Jennifer Jones Contact Information Website: Website PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened security measures because of the events of September 11, 2001. Upon arrival at
Naval reactors in need of redesign
Kramer, David
2015-05-15
Nonproliferation concerns should propel US Navy to switch to safer nuclear fuel, says FAS task force.
Naval Petroleum Reserves | Department of Energy
Office of Environmental Management (EM)
federal property to Native Americans in the last century. NPR-2 - Enactment of the Energy Policy Act 2005 effected the transfer of administrative jurisdiction and land management...
Transient productivity index for numerical well test simulations
Blanc, G.; Ding, D.Y.; Ene, A.
1997-08-01
The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.
Numerical simulation of the hydrodynamical combustion to strange quark matter
Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth
2010-12-15
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.
ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS
Chiswell, S.; Buckley, R.
2009-01-15
During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.
Numerical Modeling of WECS at Ecole Centrale de Nantes
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LHEEA CNRS UMR 6598 Laboratoire de recherche en Hydrodynamique Énergétique et Environnement Atmosphérique Numerical modelling of Wave Energy Converters at LHEEA Lab Ecole Centrale de Nantes (France) Alain H. CLEMENT Senior researcher Ocean Energy and Ocean Waves Group NREL MHK Workshop - Broomfield (CO) - 9-10 July 2012 LHEEA CNRS UMR 6598 Laboratoire de recherche en Hydrodynamique Énergétique et Environnement Atmosphérique NREL MHK Workshop - Broomfield (CO) - 9-10 July 2012 The Ocean
Numerical calculation of the ion polarization in MEIC
Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury
2015-09-01
Ion polarization in the Medium-energy Electron-Ion Collider (MEIC) is controlled by means of universal 3D spin rotators designed on the basis of "weak" solenoids. We use numerical calculations to demonstrate that the 3D rotators have negligible effect on the orbital properties of the ring. We present calculations of the polarization dynamics along the collider's orbit for both longitudinal and transverse polarization directions at a beam interaction point. We calculate the degree of depolarization due to the longitudinal and transverse beam emittances in case when the zero-integer spin resonance is compensated.
Numerical routines for predicting ignition in pyrotechnic devices
Pierce, K.G.
1986-06-01
Two numerical models of the thermal processes leading to ignition in a pyrotechnic device have been developed. These models are based on finite difference approximations to the heat diffusion equation, with temperature-dependent thermal properties, in a single spatial coordinate. The derivation of the finite difference equations is discussed and the methods employed at boundaries and interfaces are given. The sources of the thermal-properties data are identified and how these data are used is explained. The program structure is explained and example runs of the programs are given.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge-based error estimates. We conclude that the quasi-optimal mesh must be quasi-uniform in this metric. All numerical experiments are based on the publicly available Ani3D package, the collection of advanced numerical instruments.
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
22nd International Conference on Numerical Simulation of Plasmas (ICNSP) |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab 11, 2011, 5:00pm Conference Long Branch, NJ 22nd International Conference on Numerical Simulation of Plasmas (ICNSP) The purpose of this conference series, which started at the College of William and Mary in 1967 "to disseminate progress in the state-of-the-art of plasma simulation and to report specific applications of computer experiments to various areas of plasma physics," remains unchanged. On the other hand, the topics of the Conference, which has
Numerical simulation of carbon arc discharge for nanoparticle synthesis
Kundrapu, M.; Keidar, M.
2012-07-15
Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.
High numerical aperture projection system for extreme ultraviolet projection lithography
Hudyma, Russell M. (San Ramon, CA)
2000-01-01
An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.
Numerical analysis of the spatial range of the Kondo effect
Busser, C. A.; Martins, G. B.; Ribeiro, L. Costa; Vernek, E.; Anda, E. V.; Dagotto, Elbio R
2010-01-01
The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization-group and Bethe-Ansatz solutions have provided detailed information about the thermodynamics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial range of the correlations created by the Kondo effect between the localized magnetic moment and the conduction electrons. The objective of this work is to present a quantitative way of measuring the extension of these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances from the impurity. The numerical techniques used, the embedded cluster approximation, the finite-U slave bosons, and numerical renormalization group, calculate the Green s functions in real space. With this information, one can calculate how the local density of states away from the impurity is modified by its presence, below and above the Kondo temperature, and then estimate the range of the disturbances in the noninteracting Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature TK. The results obtained agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenology of the Kondo cloud as well.
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
Energy Science and Technology Software Center (OSTI)
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Becausemore » it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
Numerical simulation of multi-layered textile composite reinforcement forming
Wang, P.; Hamila, N.; Boisse, P.
2011-05-04
One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.
Progress report on LBL's numerical modeling studies on Cerro Prieto
Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.
1989-04-01
An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.
Three dimensional numerical simulations of the UPS-292-SC engine
O'Rourke, P.J.; Amsden, A.A.
1987-01-01
We present and analyze three-dimensional calculations of the spray, mixing and combustion in the UPS-292 stratified charge engine for three different operating conditions, corresponding to overall air-fuel ratios between 22.4 and 61.0. The numerical calculations are performed with KIVA, a multidimensional arbitrary-mesh, finite-difference hydrodynamics program for internal combustion engine applications. The calculations use a mesh of 10,000 computational cells, which conform to the shape of the piston bowl and cylinder and move to follow piston motion. Each operating condition is calculated from intake valve closure at 118/sup 0/ BTDC to 90/sup 0/ ATDC and requires approximately three hours of CRAY-XMP computer time.
Not Available
1994-10-01
The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about property rights and attaining permission to cross the property of proposed affected owners.
A neural approach for the numerical modeling of two-dimensional magnetic
Office of Scientific and Technical Information (OSTI)
hysteresis (Journal Article) | SciTech Connect A neural approach for the numerical modeling of two-dimensional magnetic hysteresis Citation Details In-Document Search Title: A neural approach for the numerical modeling of two-dimensional magnetic hysteresis This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers
NUMERICAL STUDY OF THE VISHNIAC INSTABILITY IN SUPERNOVA REMNANTS
Michaut, C.; Cavet, C.; Bouquet, S. E.; Roy, F.; Nguyen, H. C.
2012-11-10
The Vishniac instability is thought to explain the complex structure of radiative supernova remnants in their Pressure-Driven Thin Shell (PDTS) phase after a blast wave (BW) has propagated from a central explosion. In this paper, the propagation of the BW and the evolution of the PDTS stage are studied numerically with the two-dimensional (2D) code HYDRO-MUSCL for a finite-thickness shell expanding in the interstellar medium (ISM). Special attention is paid to the adiabatic index, {gamma}, and three distinct values are taken for the cavity ({gamma}{sub 1}), the shell ({gamma}{sub 2}), and the ISM ({gamma}{sub 3}) with the condition {gamma}{sub 2} < {gamma}{sub 1}, {gamma}{sub 3}. This low value of {gamma}{sub 2} accounts for the high density in the shell achieved by a strong radiative cooling. Once the spherical background flow is obtained, the evolution of a 2D-axisymmetric perturbation is computed from the linear to the nonlinear regime. The overstable mechanism, previously demonstrated theoretically by E. T. Vishniac in 1983, is recovered numerically in the linear stage and is expected to produce and enhance anisotropies and clumps on the shock front, leading to the disruption of the shell in the nonlinear phase. The period of the increasing oscillations and the growth rate of the instability are derived from several points of view (the position of the perturbed shock front, mass fluxes along the shell, and density maps), and the most unstable mode differing from the value given by Vishniac is computed. In addition, the influence of several parameters (the Mach number, amplitude and wavelength of the perturbation, and adiabatic index) is examined and for wavelengths that are large enough compared to the shell thickness, the same conclusion arises: in the late stage of the evolution of the radiative supernova remnant, the instability is dampened and the angular initial deformation of the shock front is smoothed while the mass density becomes uniform with the angle. As a result, our model shows that the supernova remnant returns to a stable evolution and the Vishniac instability does not lead to the fragmentation of the shock as predicted by the theory.
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
Advances in the numerical modeling of field-reversed configurations
Belova, Elena V.; Davidson, Ronald C.; Ji, Hantao; Yamada, Masaaki
2006-05-15
The field-reversed configuration (FRC) is a compact torus with little or no toroidal magnetic field. A theoretical understanding of the observed FRC equilibrium and stability properties presents significant challenges due to the high plasma beta, plasma flows, large ion gyroradius, and the stochasticity of the particle orbits. Advanced numerical simulations are generally required to describe and understand the detailed behavior of FRC plasmas. Results of such simulations are presented in this paper. It is shown that 3D nonlinear hybrid simulations using the HYM code [E. V. Belova et al., Phys. Plasmas 7, 4996 (2000)] reproduce all major experimentally observed stability properties of elongated (theta-pinch-formed) FRCs. Namely, the scaling of the growth rate of the n=1 tilt mode with the S*/E parameter (S* is the FRC kinetic parameter, E is elongation, and n is toroidal mode number), the nonlinear saturation of the tilt mode, ion toroidal spin-up, and the growth of the n=2 rotational mode have been demonstrated and studied in detail. The HYM code has also been used to study stability properties of FRCs formed by the counterhelicity spheromak merging method. A new stability regime has been found for FRCs with elongation E{approx}1, which requires a close-fitting conducting shell and energetic beam ion stabilization.
Comparison of numerical models of a pyrotechnic device
Pierce, K.G.
1986-01-01
The predictions of two numerical models of a hot-wire initiated pyrotechnic device are compared to each other and to experimental results. Both models employ finite difference approximations to the heat diffusion equation in cylindrical coordinates. The temperature dependence of the thermal properties of the pyrotechnic materials and of the bridgewire are modeled. An Arrhenius' model is used to describe the exothermic reaction in the powder. One model employs a single radial coordinate and predicts the radial temperature distribution in the bridgewire and surrounding powder mass. In addition to the radial coordinate, the other model also employs a longitudinal coordinate to predict the temperature distribution parallel to the axis of the bridgewire. The predictions of the two-dimensional model concerning the energy requirements for ignition and the energy losses from the ends of the bridgewire are presented. A comparison of the predictions of the two models and the development of thermal gradients are employed to define the regime where the assumption, in the one-dimensional model, of negligible heat transfer axial to the bridgewire does not lead to significant error. The general problems associated with predicting ignition from a diffusion model are also discussed.
Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts
Sapir, Nir; Halbertal, Dorri [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-12-01
We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D. [University of Palermo-Dept. of Industrial engineering (Italy)
2011-05-04
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Numerical simulation of plasma heating of a composite powder particle
Demetriou, M.D.; Lavine, A.S.; Ghoniem, N.M.
1999-07-01
The use of fine composite powder particles (composed of a ceramic core and a metallic coating) in plasma spraying processes is desirable in developing thin film coatings that possess high abrasion as well as high fracture resistance. Quantitative knowledge of the thermal behavior of a composite particle in a plasma beam is essential in optimizing the process variables to achieve uniform melting of the coating material. In this work, a numerical model is developed to analyze the in-flight thermal behavior of a spherically symmetric WC-Co composite particle travelling in an argon arc-jet DC plasma under strongly unsteady plasma conditions. The model gives quantitative as well as qualitative information about the thermal response of the heated particle. The important features that are addressed are the temperature response of the particle; the history of the location of the melting and vaporization fronts; and the physical state of the particle at the end of its flight. For the conditions investigated, it was determined that the internal conduction resistance is negligible as compared to the net external resistance. However, the presence of the ceramic base was found to affect the transient heating process since its content in the particle composition determines the time constant of the process. Another interesting observation is that proper selection of the particle injection speed and injection location can be effective means for optimizing the heating process and achieving uniform melting of the coating material.
DRIVER TO SUPPORT USE OF NUMERICAL SIMULATION TOOLS
Energy Science and Technology Software Center (OSTI)
2001-02-13
UNIPACK is a computer interface that simplifies and enhances the use of numerical simulation tools to design a primary geometry and/or a forming die for a powder compact and/or to design the pressing process used to shape a powder by compaction. More particularly, it is an interface that utilizes predefined generic geometric configurations to simplify the use of finite element method modeling software to simply and more efficiently design: (1) the shape and size amore » powder compact; (2) a forming die to shape a powder compact; and/or (3) the pressing process used to form a powder compact. UNIPACK is a user interface for a predictive model for powder compaction that incorporates unprecedented flexibility to design powder press tooling and powder pressing processes. UNIPACK works with the Sandia National Laboratories (SNL) Engineering Analysis Cide Access System (SEACAS) to generate a finite element (FE) mesh and automatically perform a FE analysis of powder compaction. UNIPACK was developed to allow a non-expert with minimal training to quickly and easily design/construct a variable dimension component or die in real time on a desktop or laptop personal computer.« less
Numerical investigation of spontaneous flame propagation under RCCI conditions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less
Numerical modeling of the SNS H{sup ?} ion source
Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.
2015-04-08
Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.
Improving the trust in results of numerical simulations and scientific data
Office of Scientific and Technical Information (OSTI)
analytics (Technical Report) | SciTech Connect Technical Report: Improving the trust in results of numerical simulations and scientific data analytics Citation Details In-Document Search Title: Improving the trust in results of numerical simulations and scientific data analytics This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the
CASL-8-2015-0103-000 Multi-Phase Flow: Direct Numerical Simulation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3-000 Multi-Phase Flow: Direct Numerical Simulation Igor Bolotnov North Carolina State University Gretar Tryggvason University of Notre Dame July 8-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct Numerical Simulation Multi-Phase Flow: Direct Numerical Simulation Igor Bolotnov - North Carolina State University Gretar Tryggvason - University of Notre Dame CASL Education Workshop, Oak Ridge National Laboratories, July 9-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct Numerical
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James
2014-07-15
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
Numerical research of the optimal control problem in the semi-Markov inventory model
Gorshenin, Andrey K.
2015-03-10
This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the systems research and finding the optimal control are presented.
Numerical simulation of tectonic plates motion and seismic process in Central Asia
Peryshkin, A. Yu.; Makarov, P. V. Eremin, M. O.
2014-11-14
An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the ? parameter that was varied in the numerical experiments within ? = 1.11.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutions of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.
A numerical study of crack initiation in a bcc iron system based...
Office of Scientific and Technical Information (OSTI)
direct numerical results to the dynamic bifurcation theory R. Haberman, SIAM J. Appl. Math. 37, 69-106 (1979). Authors: Li, Xiantao, E-mail: xli@math.psu.edu 1 + Show Author...
Improving the trust in results of numerical simulations and scientific data
Office of Scientific and Technical Information (OSTI)
analytics (Technical Report) | SciTech Connect Technical Report: Improving the trust in results of numerical simulations and scientific data analytics Citation Details In-Document Search Title: Improving the trust in results of numerical simulations and scientific data analytics × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit
Numerical Study of Velocity Shear Stabilization of 3D and Theoretical
Office of Scientific and Technical Information (OSTI)
Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts Citation Details In-Document Search Title: Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally
A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines Citation Details In-Document Search Title: A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few
Force-controlled absorption in a fully-nonlinear numerical wave tank
Spinneken, Johannes Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
Three-dimensional Numerical Analysis on Blade Response of Vertical Axis
Office of Scientific and Technical Information (OSTI)
Tidal Current Turbine Under Operational Condition (Journal Article) | SciTech Connect Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Citation Details In-Document Search Title: Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its
NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL
Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau
2014-06-01
The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.
Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion
Anastasia Dobroskok; Yevhen Holubnyak; James Sorensen
2009-05-01
Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.
Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135
Oran, E.S.; Boris, J.P. )
1991-01-01
Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonation transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.
Black, Carrie; Ng, C. S.
2013-01-15
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein (LB) collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set [C.-S. Ng et al., Phys. Rev. Lett. 83, 1974 (1999) and C. S. Ng et al., Phys. Rev. Lett. 96, 065002 (2004)]. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
Electromagnetic scattering problems -Numerical issues and new experimental approaches of validation
Geise, Robert; Neubauer, Bjoern; Zimmer, Georg
2015-03-10
Electromagnetic scattering problems, thus the question how radiated energy spreads when impinging on an object, are an essential part of wave propagation. Though the Maxwells differential equations as starting point, are actually quite simple,the integral formulation of an objects boundary conditions, respectively the solution for unknown induced currents can only be solved numerically in most cases.As a timely topic of practical importance the scattering of rotating wind turbines is discussed, the numerical description of which is still based on rigorous approximations with yet unspecified accuracy. In this context the issue of validating numerical solutions is addressed, both with reference simulations but in particular with the experimental approach of scaled measurements. For the latter the idea of an incremental validation is proposed allowing a step by step validation of required new mathematical models in scattering theory.
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy
Huang Guojie; Xie Shuisheng; Cheng Lei; Cheng Zhenkang [State Key Laboratory for Fabrication and Processing of Nonferrous Metals, Beijing General Research Institute for Non-ferrous Metals, China, 100088 (China)
2007-05-17
Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K{approx}1463K, the casting speed is between 7.2m/h{approx}10.8m/h and the speed of cooling water is between 3.6m/s{approx}4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.
Numerical design of SiC bulk crystal growth for electronic applications
Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.
2014-10-06
Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.
Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware
Office of Scientific and Technical Information (OSTI)
Faults (Technical Report) | SciTech Connect Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults Citation Details In-Document Search Title: Numerical Analysis of Fixed Point Algorithms in the Presence of Hardware Faults Authors: Stoyanov, Miroslav K [1] ; Webster, Clayton G [1] + Show Author Affiliations ORNL Publication Date: 2013-08-01 OSTI Identifier: 1089785 Report Number(s): ORNL/TM-2013/283 KJ0402000; ERKJU16 DOE Contract Number: DE-AC05-00OR22725 Resource
Numerical modeling of aerial bursts and ablation melting of Libyan desert
Office of Scientific and Technical Information (OSTI)
glass. (Conference) | SciTech Connect Numerical modeling of aerial bursts and ablation melting of Libyan desert glass. Citation Details In-Document Search Title: Numerical modeling of aerial bursts and ablation melting of Libyan desert glass. No abstract prepared. Authors: Boslough, Mark Bruce Elrick Publication Date: 2006-07-01 OSTI Identifier: 892766 Report Number(s): SAND2006-4263C TRN: US200623%%501 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:
ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL A NUMERICAL MODELING ANALYSIS
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
2014-04-18
This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.
Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems
Rezayi, Edward
2013-07-25
Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.
1992-10-01
This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.
Numerical study of self modulation instability of 1 nC electron bunch at ATF
Fang Yun; Mori, Warren; Muggli, Patric
2012-12-21
The development of self-modulation instability (SMI) is investigated numerically for the 1 nC electron bunch available at Accelerator Test Facility (ATF) of Brookhaven National Laboratory (BNL). Possible experiment based on the simulation results is proposed. All the simulations are performed with the 2D-cylindrically symmetric particle-in-cell code.
Numerical simulation of transient, incongruent vaporization induced by high power laser
Tsai, C.H.
1981-01-01
A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.
Numerical errors in the presence of steep topography: analysis and alternatives
Lundquist, K A; Chow, F K; Lundquist, J K
2010-04-15
It is well known in computational fluid dynamics that grid quality affects the accuracy of numerical solutions. When assessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell volume are considered. Mesoscale atmospheric models generally use terrain-following coordinates with large aspect ratios near the surface. As high resolution numerical simulations are increasingly used to study topographically forced flows, a high degree of non-orthogonality is introduced, especially in the vicinity of steep terrain slopes. Numerical errors associated with the use of terrainfollowing coordinates can adversely effect the accuracy of the solution in steep terrain. Inaccuracies from the coordinate transformation are present in each spatially discretized term of the Navier-Stokes equations, as well as in the conservation equations for scalars. In particular, errors in the computation of horizontal pressure gradients, diffusion, and horizontal advection terms have been noted in the presence of sloping coordinate surfaces and steep topography. In this work we study the effects of these spatial discretization errors on the flow solution for three canonical cases: scalar advection over a mountain, an atmosphere at rest over a hill, and forced advection over a hill. This study is completed using the Weather Research and Forecasting (WRF) model. Simulations with terrain-following coordinates are compared to those using a flat coordinate, where terrain is represented with the immersed boundary method. The immersed boundary method is used as a tool which allows us to eliminate the terrain-following coordinate transformation, and quantify numerical errors through a direct comparison of the two solutions. Additionally, the effects of related issues such as the steepness of terrain slope and grid aspect ratio are studied in an effort to gain an understanding of numerical domains where terrain-following coordinates can successfully be used and those domains where the solution would benefit from the use of the immersed boundary method.
2013 Federal Energy and Water Management Award Winner Naval Sea...
More Documents & Publications CX-005670: Categorical Exclusion Determination U.S. Navy Marine Diesel Engines and the Environment - Part 1 EIS-0259: Record of Decision...
STEM Educator Training by the U.S. Naval Academy
Broader source: Energy.gov [DOE]
Want to improve your lessons in science, technology, engineering, and mathematics (STEM)? Sign up for the upcoming STEM Educator Training in Project Based Learning, hosted by the Unites States...
The Naval Petroleum and Oil Shale Reserves | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing lands from the public domain. Between 1909 and 1924, tracts in California, Utah, and ...
Naval Support Activity (NSA) in Bethesda Employment Education Fair
Broader source: Energy.gov [DOE]
Location: NSA Bethesda Fitness Center (Gymnasium, Bldg 17), 8901 Wisconsin Ave., Bethesda, MD 20889Attendees: Donna Friend (HC) and Rauland Sharp (HC)POC: Donna FriendWebsite: http://bit.ly/1yTjTNu
Naval Petroleum Reserve No. 3 Site Environmental Report
2000-06-14
The CY1999 Site Environmental Report and Compliance Summary discusses environmental compliance activities for NPR-3 (Teapot Dome). All hazardous wastes that were stored in the hazardous waste accumulation at NPR-3 were removed in CY1999. NPR-3 maintains its status as a conditionally exempt small quantity generator. Hydrogen sulfide (H2S) flares have not operated at NPR-3 since 1996; monitoring of H2S indicates readings well below limits. All underground storage tanks were removed in 1998. Wastewater samples were in compliance with applicable standards.
Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates
Yamaguchi, M.; Amano, C.; Itoh, Y.
1989-07-15
This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.
Rider, William; Kamm, J. R.; Tomkins, C. D.; Zoldi, C. A.; Prestridge, K. P.; Marr-Lyon, M.; Rightley, P. M.; Benjamin, R. F.
2002-01-01
We consider the detailed structures of mixing flows for Richtmyer-Meshkov experiments of Prestridge et al. [PRE 00] and Tomkins et al. [TOM 01] and examine the most recent measurements from the experimental apparatus. Numerical simulations of these experiments are performed with three different versions of high resolution finite volume Godunov methods. We compare experimental data with simulations for configurations of one and two diffuse cylinders of SF{sub 6} in air using integral measures as well as fractal analysis and continuous wavelet transforms. The details of the initial conditions have a significant effect on the computed results, especially in the case of the double cylinder. Additionally, these comparisons reveal sensitive dependence of the computed solution on the numerical method.
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Li, Nailu; Balas, Mark J.; Yang, Hua; Jiang, Wei; Magar, Kaman T.
2015-01-01
This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
Rossi, Tuomas P. Sakko, Arto; Puska, Martti J.; Lehtola, Susi; Nieminen, Risto M.
2015-03-07
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.
Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames
Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.
2008-04-15
The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)
Verifying the error bound of numerical computation implemented in computer systems
Sawada, Jun
2013-03-12
A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.
Holladay, Jamelyn D.; Wang, Yong
2015-05-01
Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformers small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanols low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.
Numerical simulations of impulsively generated Alfvn waves in solar magnetic arcades
Chmielewski, P.; Murawski, K.; Musielak, Z. E.; Srivastava, A. K.
2014-09-20
We perform numerical simulations of impulsively generated Alfvn waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfvn waves along the magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze the influence of the arcade size and the width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfvn waves in this arcade is described by 2.5-dimensional magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfvn wave amplitude decreases as a result of a partial reflection of Alfvn waves in the solar transition region, and that the waves that are not reflected leak through the transition region and reach the solar corona. We also find the decrement of the attenuation time of Alfvn waves for wider initial pulses. Moreover, our results show that the propagation of Alfvn waves in the arcade is affected by the spatial dependence of the Alfvn speed, which leads to phase mixing that is stronger for more curved and larger magnetic arcades. We discuss the processes that affect the Alfvn wave propagation in an asymmetric solar arcade and conclude that besides phase mixing in the magnetic field configuration, the plasma properties of the arcade, the size of the initial pulse, and the structure of the solar transition region all play a vital role in the Alfvn wave propagation.
Numerical simulations of stripping effects in high-intensity hydrogen ion linacs
Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne
2008-12-01
Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.
Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks
Office of Scientific and Technical Information (OSTI)
7 PPPL- 4867 Numerical Verification of Bounce Harmonic Resonances in Neoclassical Toroidal Viscosity for Tokamaks April, 2013 Kimin Kim, Jong-Kyu Park and Allen H. Boozer Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their
Stress-dependent permeability of fractured rock masses: A numerical study
Min, Ki-Bok; Rutqvist, J.; Tsang, Chin-Fu; Jing, Lanru
2004-04-30
We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional distinct element method program, UDEC, based on a realistic discrete fracture network realization. A series of ''numerical'' experiments were conducted to calculate changes in the permeability of simulated fractured rock masses under various loading conditions. Numerical experiments were conducted in two ways: (1) increasing the overall stresses with a fixed ratio of horizontal to vertical stresses components; and (2) increasing the differential stresses (i.e., the difference between the horizontal and vertical stresses) while keeping the magnitude of vertical stress constant. These numerical experiments show that the permeability of fractured rocks decreases with increased stress magnitudes when the stress ratio is not large enough to cause shear dilation of fractures, whereas permeability increases with increased stress when the stress ratio is large enough. Permeability changes at low stress levels are more sensitive than at high stress levels due to the nonlinear fracture normal stress-displacement relation. Significant stress-induced channeling is observed as the shear dilation causes the concentration of fluid flow along connected shear fractures. Anisotropy of permeability emerges with the increase of differential stresses, and this anisotropy can become more prominent with the influence of shear dilation and localized flow paths. A set of empirical equations in closed-form, accounting for both normal closure and shear dilation of the fractures, is proposed to model the stress-dependent permeability. These equations prove to be in good agreement with the results obtained from our numerical experiments.
Bowman, D.; DeWaters, J.; Smith, J.; Snow, S.; Thomas, R.
1995-08-01
The approach for conducting a Pollution Prevention Opportunity Assessment (PPOA) at the Norfolk NAS is described along with background information about the site. Section 2 provides background information related to cooling tower operations and water treatment processes. Section 3 describes the current cooling tower activities and operations that were observed during the NAS site visit. Possible alternative practices for minimizing these wastes are discussed in Section 4. Recommendations on potential follow-up activities are also included in Section 4. Appendices include PPOA worksheets (Appendix A), National Pollutant Discharge Elimination Systems (NPDES) discharge limits (Appendix B), discharge data (Appendix C), material safety data sheets (MSDS) (Appendix D), the Hampton Roads Sanitation District Cooling Tower Waste Discharge Policy with Industrial Wastewater Pollutant Limitations and Discharge Requirements (Appendix E), and the MSDS for DIAS-Aid Tower Treatment XP-300 (Appendix F).
On a framework for generating PoD curves assisted by numerical simulations
Subair, S. Mohamed Agrawal, Shweta Balasubramaniam, Krishnan Rajagopal, Prabhu; Kumar, Anish; Rao, Purnachandra B.; Tamanna, Jayakumar
2015-03-31
The Probability of Detection (PoD) curve method has emerged as an important tool for the assessment of the performance of NDE techniques, a topic of particular interest to the nuclear industry where inspection qualification is very important. The conventional experimental means of generating PoD curves though, can be expensive, requiring large data sets (covering defects and test conditions), and equipment and operator time. Several methods of achieving faster estimates for PoD curves using physics-based modelling have been developed to address this problem. Numerical modelling techniques are also attractive, especially given the ever-increasing computational power available to scientists today. Here we develop procedures for obtaining PoD curves, assisted by numerical simulation and based on Bayesian statistics. Numerical simulations are performed using Finite Element analysis for factors that are assumed to be independent, random and normally distributed. PoD curves so generated are compared with experiments on austenitic stainless steel (SS) plates with artificially created notches. We examine issues affecting the PoD curve generation process including codes, standards, distribution of defect parameters and the choice of the noise threshold. We also study the assumption of normal distribution for signal response parameters and consider strategies for dealing with data that may be more complex or sparse to justify this. These topics are addressed and illustrated through the example case of generation of PoD curves for pulse-echo ultrasonic inspection of vertical surface-breaking cracks in SS plates.
Numerical Modeling of the Lake Mary Road Bridge for Foundation Reuse Assessment
Sitek, M. A.; Bojanowski, C.; Lottes, S. A.
2015-04-01
This project uses numerical techniques to assess the structural integrity and capacity of the bridge foundations and, as a result, reduces the risk associated with reusing the same foundation for a new superstructure. Nondestructive test methods of different types were used in combination with the numerical modeling and analysis. The onsite tests included visual inspection, tomography, ground penetrating radar, drilling boreholes and coreholes, and the laboratory tests on recovered samples. The results were utilized to identify the current geometry of the structure with foundation, including the hidden geometry of the abutments and piers, and soil and foundation material properties. This data was used to build the numerical models and run computational analyses on a high performance computer cluster to assess the structural integrity of the bridge and foundations including the suitability of the foundation for reuse with a new superstructure and traffic that will increase the load on the foundations. Computational analysis is more cost-effective and gives an advantage of getting more detailed knowledge about the structural response. It also enables to go beyond non-destructive testing and find the failure conditions without destroying the structure under consideration.
Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation
Derakhshan, Shahram; Nourbakhsh, Ahmad
2008-09-15
When a pump works as a turbine, its hydraulic behavior will be changed. Several methods have been developed to predict the best efficiency of pumps running as turbines but their results are not in good coincidence with experimental data for all pumps. Therefore, study and investigation of hydraulic behavior of pumps in reverse operation can be useful. In this study, the best efficiency point of an industrial centrifugal pump running as turbine was achieved using a theoretical analysis. This method tries to estimate hydraulic components of reverse (turbine) mode using direct (pump) mode. In the next step, the pump was simulated in direct and reverse modes by computational fluid dynamics. 3D full Navier-Stokes equations were solved using FineTurbo V.7 flow solver. Using numerical results, complete characteristic curves of the pump in direct and reverse modes were obtained. For experimental verification of theoretical and numerical results, the pump was tested as a turbine in a test rig. All required parameters were measured to achieve complete characteristic curves of the reverse pump. The theoretical and numerical results were compared with experimental data and some other methods. (author)
Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number
Blaylock, Myra L.; Maniaci, David Charles; Resor, Brian R.
2015-04-01
New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally above 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale. However, more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. Reynolds number regimes for the sub-scale rotor are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations in an effort to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere
Caillol, Jean-Michel; Trulsson, Martin
2014-09-28
We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.
Figueroa, Aldo [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico)] [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico); Meunier, Patrice; Villermaux, Emmanuel [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France)] [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France); Cuevas, Sergio; Ramos, Eduardo [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)] [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)
2014-01-15
We present a combination of experiment, theory, and modelling on laminar mixing at large Pclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech. 662, 134172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.
Experimental and numerical analysis of metal leaching from fly ash-amended highway bases
Cetin, Bora; Aydilek, Ahmet H.; Li, Lin
2012-05-15
Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.
Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard
Biswas, Kaushik; LuPh.D., Jue; Soroushian, Parviz; Shrestha, Som S
2014-01-01
In the United States, forty-eight (48) percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced building envelopes can facilitate maximizing the energy efficiency of buildings. Combined experimental testing and numerical modeling of PCM-enhanced envelope components are two important aspects of the evaluation of their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conductive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. A wall with cellulose cavity insulation and prototype PCM-enhanced interior wallboards was built and tested in a natural exposure test (NET) facility in a hot-humid climate location. The test wall contained PCM wallboards and regular gypsum wallboard, for a side-by-side annual comparison study. Further, numerical modeling of the walls containing the nano-PCM wallboard was performed to determine its actual impact on wall-generated heating and cooling loads. The model was first validated using experimental data, and then used for annual simulations using Typical Meteorological Year (TMY3) weather data. This article presents the measured performance and numerical analysis evaluating the energy-saving potential of the nano-PCM-enhanced wallboard.
Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems
Hykes, J. M.; Ferrer, R. M.
2013-07-01
The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is {sup 98}Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)
Godfrey, Brendan B.; Vay, Jean-Luc
2013-09-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the ColeKarkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Selection of a numerical unsaturated flow code for tilted capillary barrier performance evaluation
Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.
1996-09-01
Capillary barriers consisting of tilted fine-over-coarse layers have been suggested as landfill covers as a means to divert water infiltration away from sensitive underground regions under unsaturated flow conditions, especially for arid and semi-arid regions. Typically, the HELP code is used to evaluate landfill cover performance and design. Unfortunately, due to its simplified treatment of unsaturated flow and its essentially one-dimensional nature, HELP is not adequate to treat the complex multidimensional unsaturated flow processes occurring in a tilted capillary barrier. In order to develop the necessary mechanistic code for the performance evaluation of tilted capillary barriers, an efficient and comprehensive unsaturated flow code needs to be selected for further use and modification. The present study evaluates a number of candidate mechanistic unsaturated flow codes for application to tilted capillary barriers. Factors considered included unsaturated flow modeling, inclusion of evapotranspiration, nodalization flexibility, ease of modification, and numerical efficiency. A number of unsaturated flow codes are available for use with different features and assumptions. The codes chosen for this evaluation are TOUGH2, FEHM, and SWMS{_}2D. All three codes chosen for this evaluation successfully simulated the capillary barrier problem chosen for the code comparison, although FEHM used a reduced grid. The numerical results are a strong function of the numerical weighting scheme. For the same weighting scheme, similar results were obtained from the various codes. Based on the CPU time of the various codes and the code capabilities, the TOUGH2 code has been selected as the appropriate code for tilted capillary barrier performance evaluation, possibly in conjunction with the infiltration, runoff, and evapotranspiration models of HELP. 44 refs.
Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.
2006-09-29
This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.
NUMERICAL SIMULATIONS OF CHROMOSPHERIC ANEMONE JETS ASSOCIATED WITH MOVING MAGNETIC FEATURES
Yang, Liping; He, Jiansen; Tu, Chuanyi; Zhang, Lei; Peter, Hardi; Feng, Xueshang; Zhang, Shaohua
2013-11-01
Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallel to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.
THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS
Wada, Koji; Tanaka, Hidekazu; Yamamoto, Tetsuo; Suyama, Toru; Kimura, Hiroshi
2011-08-10
Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, the key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.
Numerical prediction of energy consumption in buildings with controlled interior temperature
Jarošová, P.; Št’astník, S.
2015-03-10
New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.
Numerical simulation of alumina spraying in argon-helium plasma jet
Chang, C.H.
1992-01-01
A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)
Numerical simulation of alumina spraying in argon-helium plasma jet
Chang, C.H.
1992-08-01
A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)
2D numerical simulation of the MEP energy-transport model with a finite difference scheme
Romano, V. . E-mail: romano@dmi.unict.it
2007-02-10
A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.
Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot
Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei
2012-07-15
Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.
Contribution to the numerical study of turbulence in high intensity discharge lamps
Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)
2011-07-15
We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.
Direct numerical simulations of fluid flow, heat transfer and phase changes
Juric, D.; Tryggvason, G.; Han, J.
1997-04-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article
Jankowski, Todd A [Los Alamos National Laboratory; Johnson, Debra P [Los Alamos National Laboratory; Jurney, James D [Los Alamos National Laboratory; Freer, Jerry E [Los Alamos National Laboratory; Dougherty, Lisa M [Los Alamos National Laboratory; Stout, Stephen A [Los Alamos National Laboratory
2009-01-01
The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.
Kees Bol, a scientist on Project Matterhorn, PDX and numerous experiments,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
dies at 90 | Princeton Plasma Physics Lab Kees Bol, a scientist on Project Matterhorn, PDX and numerous experiments, dies at 90 By Jeanne Jackson DeVoe August 25, 2015 Tweet Widget Google Plus One Share on Facebook Photo courtesy of the Bol family. (Photo by Kees Bol ) Photo courtesy of the Bol family. Gallery: Kees Bol, second from left, at a conference with Soviet scientists in Sukhumi, Georgia in 1975. To his left is Gil Emmert, now a professor emeritus at the University of Wisconsin, and
Shen, J.; Shi, M.; Tanaka, T. Matsuyama, K.
2015-05-07
The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the LandauLifshitzGilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.
Pan Yi; Buonanno, Alessandra; Buchman, Luisa T.; Chu, Tony; Scheel, Mark A.; Kidder, Lawrence E.; Pfeiffer, Harald P.
2010-04-15
We present the first attempt at calibrating the effective-one-body (EOB) model to accurate numerical relativity simulations of spinning, nonprecessing black-hole binaries. Aligning the EOB and numerical waveforms at low frequency over a time interval of 1000M, we first estimate the phase and amplitude errors in the numerical waveforms and then minimize the difference between numerical and EOB waveforms by calibrating a handful of EOB-adjustable parameters. In the equal-mass, spin aligned case, we find that phase and fractional amplitude differences between the numerical and EOB (2,2) mode can be reduced to 0.01 radian and 1%, respectively, over the entire inspiral waveforms. In the equal-mass, spin antialigned case, these differences can be reduced to 0.13 radian and 1% during inspiral and plunge, and to 0.4 radian and 10% during merger and ringdown. The waveform agreement is within numerical errors in the spin aligned case while slightly over numerical errors in the spin antialigned case. Using Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EOB and the numerical (2,2) mode, maximized over the initial phase and time of arrival, is larger than 0.999 for binaries with total mass 30M{sub {center_dot}-}200M{sub {center_dot}}. In addition to the leading (2,2) mode, we compare four subleading modes. We find good amplitude and frequency agreements between the EOB and numerical modes for both spin configurations considered, except for the (3,2) mode in the spin antialigned case. We believe that the larger difference in the (3,2) mode is due to the lack of knowledge of post-Newtonian spin effects in the higher modes.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.
2014-10-01
In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less
Improving the quality of numerical software through user-centered design
Pancake, C. M., Oregon State University
1998-06-01
The software interface - whether graphical, command-oriented, menu-driven, or in the form of subroutine calls - shapes the user`s perception of what software can do. It also establishes upper bounds on software usability. Numerical software interfaces typically are based on the designer`s understanding of how the software should be used. That is a poor foundation for usability, since the features that are ``instinctively right`` from the developer`s perspective are often the very ones that technical programmers find most objectionable or most difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users more actively in design, a process known as user-centered design (UCD). While UCD requires extra organization and effort, it results in much higher levels of usability and can actually reduce software costs. This is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved the usability of a subroutine library, a command language, and an invocation interface.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
Becker, R; Stolken, J; Jannetti, C; Bassani, J
2003-10-16
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.
Numerical investigation of the double-arcing phenomenon in a cutting arc torch
Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.
2014-07-14
A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electronion recombination, and ionion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7??10{sup 4}?A/s.
Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.
2014-10-01
In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to a constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.
Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI
Sartori, E. Veltri, P.; Serianni, G.; Dlougach, E.; Hemsworth, R.; Singh, M.
2015-04-08
Injection of high energy beams of neutral particles is a method for plasma heating in fusion devices. The ITER injector, and its prototype MITICA (Megavolt ITER Injector and Concept Advancement), are large extrapolations from existing devices: therefore numerical modeling is needed to set thermo-mechanical requirements for all beam-facing components. As the power and charge deposition originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by comprehensive 3D models. This paper presents a comparative study between two codes: BTR has been used for several years in the design of the ITER HNB/DNB components; SAMANTHA code was independently developed and includes additional phenomena, such as secondary particles generated by collision of beam particles with the background gas. The code comparison is valuable in the perspective of the upcoming experimental operations, in order to prepare a reliable numerical support to the interpretation of experimental measurements in the beam test facilities. The power density map calculated on the Electrostatic Residual Ion Dump (ERID) is the chosen benchmark, as it depends on the electric and magnetic fields as well as on the evolution of the beam species via interaction with the gas. Finally the paper shows additional results provided by SAMANTHA, like the secondary electrons produced by volume processes accelerated by the ERID fringe-field towards the Cryopumps.
Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri
Rovey, Charles; Gouzie, Douglas; Biagioni, Richard
2013-09-30
The project titled Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri provided training for three graduate students in areas related to carbon capture and storage. Numerical modeling of CO{sub 2} injection into the St. Francois aquifer at the Southwest Power Plant Site in Greene County, Missouri indicates that up to 4.1 x 10{sup 5} metric tons of CO{sub 2} per year could be injected for 30 years without exceeding a 3 MPa differential injection pressure. The injected CO{sub 2} would remain sequestered below the top of the overlying caprock (St. Francois confining unit) for more than 1000 years. Geochemical modeling indicates that portions of the injected CO{sub 2} will react rapidly with trace minerals in the aquifer to form various solid carbonate mineral phases. These minerals would store significant portions of injected CO{sub 2} over geologic time scales. Finally, a GIS data base on the pore-fluid chemistry of the overlying aquifer system in Missouri, the Ozark aquifer, was compiled from many sources. This data base could become useful in monitoring for leakage from future CO{sub 2} sequestration sites.
Dynamic Response of a Pulse-Heated, Thick-Walled, Hollow Sphere: Validation of Code Numerics
Canaan, R.E.
2000-01-19
Volumetric pulse heating of a thick-walled hollow sphere is numerically investigated. The primary objective is to validate a variety of LLNL 30 hydrocodes for modeling the dynamic behavior of fissile/fissionable metals subject to rapid ''fission-heating'' transients. The 30 codes tested include both DYNA3D and NIKE3D, as well as the ''ASCI'' code, ALE3D. The codes are compared ''head-to-head'' and are benchmarked against a 1D finite difference solution to the problem that is derived from basic principles. Three pulse-heating transients are examined with full-width-half-maximum pulse durations of 41{micro}s, 85{micro}s, and 140{micro}s, respectively. These three transients produce a significant range of dynamic responses in the thermo-elastic regime. We present results for dynamic radial displacements and stresses for each pulse, and also discuss which code features/options worked best for these types of calculations. In general, the code results are in excellent agreement for the simple system considered. Validation of code numerics in simple systems is a key first step toward future application of the codes in more complicated geometries (U).
Numerical integration of structural elements in NIKE3D and DYNA3D
Maker, B.N.; Whirley, R.G.; Engelmann, B.E.
1992-08-05
The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.
SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION
Dixon, K.; Knox, A.
2012-02-13
Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.
Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W
2007-01-30
Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.
A Numerical Model of the Temperature Field of the Cast and Solidified Ceramic Material
Kavicka, Frantisek; Sekanina, Bohumil; Stransky, Karel; Stetina, Josef [Brno University of Technology, Brno, Technicka 2 (Czech Republic); Dobrovska, Jana [Technical University of Ostrava, Ostrava, Tr. 17.listopadu 17 (Czech Republic)
2010-06-15
Corundo-baddeleyit material (CBM)--EUCOR--is a heat- and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mould. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient in any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on samples of EUCOR prove that the applied method of measurement of chemical heterogeneity provides detailed quantitative information on the material structure and makes it possible to analyse the solidification process. The analysis of this process entails statistical processing of the results of the measurements of the heterogeneity of the components of EUCOR and performs correlation of individual components during solidification. The crystallisation process seems to be very complicated, where the macro- and microscopic segregations differ significantly. The verification of both numerical models was conducted on a real cast 350x200x400 mm block.
Tao, Y.B.; He, Y.L.
2010-10-15
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)
Van Eerten, Hendrik J.; MacFadyen, Andrew I.
2012-06-01
We discuss jet dynamics for narrow and wide gamma-ray burst (GRB) afterglow jets and the observational implications of numerical simulations of relativistic jets in two dimensions. We confirm earlier numerical results that sideways expansion of relativistic jets during the bulk of the afterglow emission phase is logarithmic in time and find that this also applies to narrow jets with half opening angle of 0.05 rad. As a result, afterglow jets remain highly nonspherical until after they have become nonrelativistic. Although sideways expansion steepens the afterglow light curve after the jet break, the jet edges becoming visible dominates the jet break, which means that the jet break is sensitive to the observer angle even for narrow jets. Failure to take the observer angle into account can lead to an overestimation of the jet energy by up to a factor of four. This weakens the challenge posed to the magneter energy limit by extreme events such as GRB090926A. Late-time radio calorimetry based on a spherical nonrelativistic outflow model remains relevant when the observer is approximately on-axis and where differences of a few in flux level between the model and the simulation are acceptable. However, this does not imply sphericity of the outflow and therefore does not translate to high observer angles relevant to orphan afterglows. For more accurate calorimetry and in order to model significant late-time features such as the rise of the counterjet, detailed jet simulations remain indispensable.
Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.
2013-08-24
Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.
Terascale direct numerical simulations of turbulent combustion using S3D
Chen, Jackie; Klasky, Scott A; Hawkes, Evatt R; Sankaran, Ramanan; Choudhary, Alok; Yoo, Chun S; Liao, Wei-keng; Podhorszki, Norbert
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.
Ostermann, Lars; Seidel, Christian
2015-03-10
The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.
Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris; Jen, Tien Chien
2015-03-15
Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.
Numerical simulation to study the transient self focusing of laser beam in plasma
Sharma, R. P.; Hussain, Saba Gaur, Nidhi
2015-02-15
In this paper, we present the numerical simulation for the coupled system of equations governing the dynamics of laser and Ion Acoustic Wave (IAW) in a collisionless plasma, when the coupling between the waves is through ponderomotive non-linearity. The nonlinear evolution of the laser beam is studied when the pump laser is perturbed by a periodic perturbation. By changing the perturbation wave number, we have studied its effect on the nonlinear evolution pattern of laser beam. In order to have a physical insight into the nonlinear dynamics of laser beam evolution in time and space, we have studied the laser and IAW spectra containing spatial harmonics. The magnitude of these harmonics changes with time and leads to time dependent localization of laser beam in spatial domain. The nonlinear dynamics of this localization is investigated in detail by using simulation and a semi-analytical model.
Numerical study on the influence of electron cyclotron current drive on tearing mode
Chen, Long; Liu, Jinyuan; Mao, Aohua; Sun, Jizhong, E-mail: jsun@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Duan, Ping [Department of Physics, Dalian Maritime University, Dalian 116026 (China)
2014-10-15
Controlling tearing modes by localized current drive is explored by using numerical simulation with a set of compressible magnetohydrodynamics equations. By examining the effects of different characteristics of driven current, such as density distribution, duration time, and deposition location, it is found that a driven current with larger magnitude and more focused deposition region shows a better suppression effect on the tearing modes. Meanwhile destabilizing effects are also observed when a driven current over a certain magnitude is applied continuously. In comparison with those on the X-point of the magnetic island, the results are better when the current deposition is targeted on the O-point. In addition, the timing control of the current deposition will be also addressed.
Real time control and numerical simulation of pipeline subjected to landslide
Cuscuna, S.; Giusti, G.; Gramola, C.
1984-06-01
This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the global behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.
Numerical renormalization-group study of a Kondo hole in a one-dimensional Kondo insulator
Yu, C.C.
1996-12-01
We have studied a Kondo hole in a one-dimensional Kondo insulator at half-filling using a density matrix formulation of the numerical renormalization group. The Kondo hole introduces midgap states. The spin density introduced by the hole is localized in the vicinity of the hole. It resides primarily in the {ital f} spins for small exchange coupling {ital J} and in the conduction spins for large {ital J}. We present results on the spin gap, charge gap, and neutral gap. The presence of the Kondo hole reduces the charge gap but not the spin gap relative to a Kondo insulator without defects. For small {ital J}, the spin gap is smaller than the charge gap, while for large {ital J}, the spin gap is larger than the charge gap. RKKY interactions are reduced by the Kondo hole as can be seen in the staggered susceptibility. {copyright} {ital 1996 The American Physical Society.}
Numerical simulation of a thermoacoustic refrigerator. 2: Stratified flow around the stack
Worlikar, A.S.; Knio, O.M.; Klein, R.
1998-08-10
The unsteady, two-dimensional, thermally stratified flow in the neighborhood of an idealized thermoacoustic stack is analyzed using a low-Mach-number model that extends the adiabatic flow scheme developed in part 1 (Journal of Computational Physics 127, 424 (1996)). The extension consists of incorporation of numerical solvers for the energy equations in the fluid and the stack plates, and construction and implementation of fast Poisson solver for the velocity potential based on a domain decomposition/boundary Green`s function technique. The unsteady computations are used to predict the steady-state, acoustically generated temperature gradient across a two-dimensional couple and to analyze its dependence on the amplitude of the prevailing resonant wave. Computed results are compared to theoretical predictions and experimental data.
Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate
Jones, G.F.; Bennett, G.A.; Bultman, D.H.
1987-01-01
We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.
Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)
Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok
2007-07-01
A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)
Numerical study of the Columbia high-beta device: Torus-II
Izzo, R.
1981-01-01
The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.
Romero, C.; Benner, J.C.; Berkbigler, L.W.
1997-02-01
Los Alamos National Laboratory is currently in the design phase of a large Containment System that will be used to contain hydrodynamic experiments. The system in question is being designed to elastically withstand a 50 kg internal high explosive (PBX-9501) detonation. A one-tenth scaled model of the containment system was fabricated and used to obtain experimental results of both pressure loading and strain response. The experimental data are compared with numerical predictions of pressure loading and strain response obtained from an Eulerian hydrodynamic code (MESA-2D) and an explicit, non-linear finite element code (LLNL DYNA3D). The two-dimensional pressure predictions from multiple hydrodynamic simulations are used as loading in the structural simulation. The predicted pressure histories and strain response compare well with experimental results at several locations.
Defect reaction network in Si-doped InP : numerical predictions.
Schultz, Peter Andrew
2013-10-01
This Report characterizes the defects in the defect reaction network in silicon-doped, n-type InP deduced from first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si-doped InP until culminating in immobile reaction products. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon-related defects in the reaction network. This Report serves to extend the results for intrinsic defects in SAND 2012-3313: %E2%80%9CSimple intrinsic defects in InP: Numerical predictions%E2%80%9D to include Si-containing simple defects likely to be present in a radiation-induced defect reaction sequence.
Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation
Lim, Woei Chet; Regis, Marco; Clarkson, Chris E-mail: regis@to.infn.it
2013-10-01
We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.
Bitter, M.; Fraenkel, B.; Hill, K.W.; Hsuan, H.; von Goeler, S. )
1995-01-01
Line brightness calculations for the parameters at the International Thermonuclear Experimental Reactor (ITER) and results from recent experiments on the Tokamak Fusion Test Reactor (TFTR) indicate that time-resolved measurements of the central ion temperature and other central plasma parameters should be feasible on ITER with nonperturbing amounts of krypton. Since the measurements will have to be performed in the presence of high fluxes of 14-MeV neutrons from DT-fusion reactions, the size of windows, apertures and x-ray detectors must be as small as possible. Under these conditions, the use of doubly focussing crystals can significantly enhance the signal-to-noise ratio. This paper describes numerical studies of the focussing properties of spherically bent crystals and their application to ITER.
Numerical simulation of fracture rocks and wave propagation by means of fractal theory
Valle G., R. del
1994-12-31
A numerical approach was developed for the dynamic simulation of fracture rocks and wave propagation. Based on some ideas of percolation theory and fractal growth, a network of particles and strings represent the rock model. To simulate an inhomogeneous medium, the particles and springs have random distributed elastic parameters and are implemented in the dynamic Navier equation. Some of the springs snap with criteria based on the confined stress applied, therefore creating a fractured rock consistent with the physical environment. The basic purpose of this research was to provide a method to construct a fractured rock with confined stress conditions as well as the wave propagation imposed in the model. Such models provide a better understanding of the behavior of wave propagation in fractured media. The synthetic seismic data obtained henceforth, can be used as a tool to develop methods for characterizing fractured rocks by means of geophysical inference.
Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)
2005-01-15
The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.
The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending
Bardelcik, A.; Worswick, M.J.
2005-08-05
This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.
Numerical simulation study on fluid dynamics of plasma window using argon
Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.
2013-07-15
In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.
Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility
Cao, Y.; Gohar, Y.; Zhong, Z.
2013-07-01
The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)
Numerical prediction of the thermodynamic properties of ternary Al-Ni-Hf alloys
Romanowska, Jolanta; Kotowski, S?awomir; Zagula-Yavorska, Maryana
2014-10-06
Thermodynamic properties of ternary Al-Hf-Ni system, such as {sup ex}G, ?{sub Al}, ?{sub Ni} and ?{sub Zr} at 1373K were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting {sup ex}G values was regarded as the calculation of excess Gibbs energy values inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of {sup ex}G on all legs of the triangle are known. {sup ex}G and L{sub ijk} ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism are calculated numerically using Wolfram Mathematica 9 software.
Defect reaction network in Si-doped InAs. Numerical predictions.
Schultz, Peter A.
2015-05-01
This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulk InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank
Direct numerical simulation of turbulent flow in a rotating square duct
Dai, Yi-Jun; Huang, Wei-Xi Xu, Chun-Xiao; Cui, Gui-Xiang
2015-06-15
A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub ?} = 300 and 0 ? Ro{sub ?} ? 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, and the underlying mechanism is explained according to the budget analysis of the mean momentum equations.
Three dimensional numerical simulations of the UPS-292 stratified charge engine
O'Rourke, P.J.; Amsden, A.A.
1987-01-01
The authors present and analyze three-dimensional calculations of the spray, mixing and combustion in the UPS-292 stratified charge engine for three different operating conditions, corresponding to overall air-fuel ratios between 22.4 and 61.0. The numerical calculations are performed with KIVA, a multidimensional arbitrary-mesh, finite-difference hydrodynamics program for internal combustion engine applications. The calculations use a mesh of 10,000 computational cells. Each operating condition is calculated from intake valve closure at 118/sup 0/ BTDC to 90/sup 0/ ATDC and requires approximately three hours of CRAY-XMP computer time. Combustion occurs primarily in the wake of the spark plug, and to include the effects of the spark plug on the flow field, we use a novel internal obstacle treatment. The methodology, in which internal obstacles are represented by computational particles, promises to be applicable to the calculation of the flows around intake and exhaust valves.
A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials
Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A
2008-12-04
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin
2015-02-15
It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.
Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems
Yang, Ge; Wang, Jun; Fang, Wen
2015-04-15
In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.
Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.
2008-02-04
Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple PhasesWater-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.
Dryer, Frederick L.
2009-04-10
This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10^{-2} to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H_{2}/O_{2} or H_{2}/O_{2})by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H_{2}/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the developed mechanisms and to assess the uncertainties in elementary rate constant evaluations.
Numerical study of nucleation and growth of bubbles in viscous magmas
Toramaru, A.
1995-02-01
The nucleation and growth processes of bubbles in viscous magmas with a constant decompression rate have been numerically investigated based on a formation which accounts for effects of viscosity, as well as diffusivity, interfacial tension, and decompression rate. The numerical solutions show two regimes in the nucleation and growth process, a diffusion-controlled regime and a viscosity-controlled regime, mainly depending on the decompression rate, initial saturation pressure and viscosity. The basic mechanism common to both regimes is that growth governs nucleation through depletion of degassing components. In basaltic eruptions the vesiculation is essentially controlled by diffusion, and the viscosity-controlled regime is limited to very high decompression rate and very small water content. When andesitic magma saturated by water at 10 MPa is decompressed through the propagation of rarefraction wave induced by a landslide, as took place in the Mount St. Helens 1980 eruption, the vesiculation is controlled by the viscosity up to 100 m depth. On the other hand, in a rhyolitic magma for the same situation, vesiculation is controlled by the viscosity over the whole depth of the magma column. In the viscosity-controlled regime, the vesicularity may be 90% or less as seen in silicic pumice, whereas in the diffusion-controlled regime the vesicularity equals or exceeds 98% such as in reticulite in Hawaiian basalt. An observed variation of the number density of bubbles by several orders of magnitude in plinian eruptions and the correlation with the SiO2 content can be attributed approximately to the dependence of diffusivity of viscosity on SiO2 content and temperature, assuming the apparent correlation between SiO2 content and temperature of magma.
Experimental and numerical investigation of hydrogen combustion in a supersonic flow
Segal, C.
1991-01-01
Supersonic combustion ramjet, or SCRAMJET, engines are currently being evaluated for the propulsion of hypersonic vehicles. A unique supersonic wind tunnel facility has been built at the Aerospace Research Laboratory to simulate the operation of a SCRAMJET over a range of Mach numbers of 5 to 6.5 and altitudes of 40,000 to 150,000 ft. The tunnel provides high stagnation temperature, clean air in a continuous Mach 2 flow to the combustor where hydrogen is injected and burned. One of the major parameters in the design of the engine is the combustion efficiency, a quantity which is extremely difficult to evaluate directly. Wall pressure and temperature measurements were made on a model combustor in the ARL facility and a one-dimensional, chemical equilibrium, finite difference model was used to infer combustion efficiency. The initial stagnation temperature was maintained around or below 850 K and an inlet static pressure of 1/2 atm, or less. At these relative low temperatures, thermal choking occurred for relatively low equivalence ratios, limiting this parameter to a maximum of 0.1, depending on the injection configuration. A detailed validation of the analytical model requires extensive knowledge of the physical properties of the flowfield. Since reliable, non-intrusive measurements methods are still under development, the results of the combustion efficiency evaluation were compared with a detailed numerical simulation of the flowfield of interest. The numerical simulation used a 3-D full Navier-Stokes program, which includes a finite rate chemistry model to duplicate one of the experimental cases. The calculations were performed on a CRAY - 2S supercomputer at the National Supercomputer Applications Center at NASA Langley. The solution required 35 CPU hours.
NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS
Sabau, Adrian S; Wright, Ian G
2007-01-01
Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out by varying the inlet mass flow while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effect of turbine matching between the NG and SG cases was approximately 10 C, and 8 to 14% for rotor inlet temperature and total cooling flows, respectively. These results indicate that turbine-compressor matching, before and after fuel change, must be included in turbine models. The last stage of the turbine, for the SG case, experienced higher inner wall temperatures than the corresponding case for NG, with the temperature of the vane approaching the maximum allowable limit. This paper was published by ASME as paper no. GT2007-27530.
Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho
2015-03-10
Density log is widely applied for a variety of fields such as the petroleum exploration, mineral exploration, and geotechnical survey. The logging condition of density log is normally open holes but there are frequently cased boreholes. The primary calibration curve by slim hole logging manufacturer is normally the calibration curves for the variation of borehole diameter. In this study, we have performed the correction of steel casing effects using numerical and experimental methods. We have performed numerical modeling using the Monte Carlo N-Particle (MCNP) code based on Monte Carlo method, and field experimental method from open and cased hole log. In this study, we used the FDGS (Formation Density Gamma Sonde) for slim borehole with a 100 mCi 137Cs source, three inch borehole and steel casing. The casing effect between numerical and experimental method is well matched.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
Taylor, G.; Dong, C.; Sun, S.
2010-03-18
A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The finite volume method and the standard MFE method are used to approximate the convection and dispersion terms respectively. The model is used to investigate the interaction of adsorption with transport and to extract information on effective adsorption distribution coefficients. Numerical examples in different fractured media illustrate the robustness and efficiency of the proposed numerical model.
Numeric-modeling sensitivity analysis of the performance of wind turbine arrays
Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.
1982-06-01
An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.
Eckert, Andreas
2013-05-31
In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ΔP{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ΔP{sub c} magnitudes, especially for the compressional stress regime.
Zhao Xinghai; Mathews, Grant J.
2011-01-15
General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10{sup -5} level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.
Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada
Cooper, C.A.
1990-01-01
Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.
Numerical simulation of the compressor coil of the plasma dynamic accelerator
Thomas, P.
1997-01-01
The plasma dynamic accelerator accelerates a plasma to very high velocities in a coaxial accelerator and then compresses it in a compressor coil, achieving high densities. The axial component of the current distribution, extending from the tip of the coaxial accelerator`s center electrode to the coil turns, causes compressing forces, the radial component yields accelerating forces. The rapid change of the coil current induces azimuthal eddy currents in the plasma that interact with the coil`s magnetic field, again yielding Lorentz forces. Aerodynamic compression may also be an important effect. A new two-dimensional magnetohydrodynamics code is used to investigate which of these effects are really important for the compression. The code allows one to simulate all effects mentioned separately and in combination. In a first step only aerodynamic compression is considered. Then each electromagnetic effect is imposed on the system. Finally, a complete simulation of the compressor coil is performed. The analysis of the results provides new insights in the way the coil operates. This paper presents important aspects of the mathematical model and of the numerical implementation and reports results.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
Ibrahim, M.B.; Tew, R.C.; Dudenhoefer, J.E.
1994-09-01
This paper describes the first phase of an effort to develop multidimensional models of Stirling engine components; the ultimate goal is to model an entire engine working space. More specifically, this paper describes parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes: Laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, have been solved Crack-Nicloson finite-difference scheme. Model predictions have been compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. The simplifying assumptions will later be relaxed to permit modeling of incompressible, laminar/turbulent flow that occurs in Stirling heat exchanger. Excellent agreement has been obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
All-reflective optical target illumination system with high numerical aperture
Sigler, Robert D. (Ann Arbor, MI)
1978-01-01
An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.
PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME
Buscheck, Timothy Eric
1980-03-01
There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.
Lima da Silva, M.; Sauvage, E.; Brun, P.; Gagnoud, A.; Fautrelle, Y.; Riva, R.
2013-07-01
The process of vitrification in a cold crucible heated by direct induction is used in the fusion of oxides. Its feature is the production of high-purity materials. The high-level of purity of the molten is achieved because this melting technique excludes the contamination of the charge by the crucible. The aim of the present paper is to analyze the hydrodynamic of the vitrification process by direct induction, with the focus in the effects associated with the interaction between the mechanical stirrer and bubbling. Considering the complexity of the analyzed system and the goal of the present work, we simplified the system by not taking into account the thermal and electromagnetic phenomena. Based in the concept of hydraulic similitude, we performed an experimental study and a numerical modeling of the simplified model. The results of these two studies were compared and showed a good agreement. The results presented in this paper in conjunction with the previous work contribute to a better understanding of the hydrodynamics effects resulting from the interaction between the mechanical stirrer and air bubbling in the cold crucible heated by direct induction. Further works will take into account thermal and electromagnetic phenomena in the presence of mechanical stirrer and air bubbling. (authors)
Doty, Michael A. (Manteca, CA)
1997-01-01
A system and method for simultaneously collecting serial number information reports from numerous colliding coded-radio-frequency identity tags. Each tag has a unique multi-digit serial number that is stored in non-volatile RAM. A reader transmits an ASCII coded "D" character on a carrier of about 900 MHz and a power illumination field having a frequency of about 1.6 Ghz. A one MHz tone is modulated on the 1.6 Ghz carrier as a timing clock for a microprocessor in each of the identity tags. Over a thousand such tags may be in the vicinity and each is powered-up and clocked by the 1.6 Ghz power illumination field. Each identity tag looks for the "D" interrogator modulated on the 900 MHz carrier, and each uses a digit of its serial number to time a response. Clear responses received by the reader are repeated for verification. If no verification or a wrong number is received by any identity tag, it uses a second digital together with the first to time out a more extended period for response. Ultimately, the entire serial number will be used in the worst case collision environments; and since the serial numbers are defined as being unique, the final possibility will be successful because a clear time-slot channel will be available.
Doty, M.A.
1997-01-07
A system and method are disclosed for simultaneously collecting serial number information reports from numerous colliding coded-radio-frequency identity tags. Each tag has a unique multi-digit serial number that is stored in non-volatile RAM. A reader transmits an ASCII coded ``D`` character on a carrier of about 900 MHz and a power illumination field having a frequency of about 1.6 Ghz. A one MHz tone is modulated on the 1.6 Ghz carrier as a timing clock for a microprocessor in each of the identity tags. Over a thousand such tags may be in the vicinity and each is powered-up and clocked by the 1.6 Ghz power illumination field. Each identity tag looks for the ``D`` interrogator modulated on the 900 MHz carrier, and each uses a digit of its serial number to time a response. Clear responses received by the reader are repeated for verification. If no verification or a wrong number is received by any identity tag, it uses a second digital together with the first to time out a more extended period for response. Ultimately, the entire serial number will be used in the worst case collision environments; and since the serial numbers are defined as being unique, the final possibility will be successful because a clear time-slot channel will be available. 5 figs.
Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up
E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer
2005-06-06
Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.
Numerical study of transition to supersonic flows in the edge plasma
Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-Franois; Imbeaux, Frdric [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar382428 (India)
2014-07-15
The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupled equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.
Zhang, Zhongqiang; Yang, Xiu; Lin, Guang; Karniadakis, George Em
2013-03-01
We consider a piston with a velocity perturbed by Brownian motion moving into a straight tube filled with a perfect gas at rest. The shock generated ahead of the piston can be located by solving the one-dimensional Euler equations driven by white noise using the Stratonovich or Ito formulations. We approximate the Brownian motion with its spectral truncation and subsequently apply stochastic collocation using either sparse grid or the quasi-Monte Carlo (QMC) method. In particular, we first transform the Euler equations with an unsteady stochastic boundary into stochastic Euler equations over a fixed domain with a time-dependent stochastic source term. We then solve the transformed equations by splitting them up into two parts, i.e., a deterministic part and a stochastic part. Numerical results verify the StratonovichEuler and ItoEuler models against stochastic perturbation results, and demonstrate the efficiency of sparse grid and QMC for small and large random piston motions, respectively. The variance of shock location of the piston grows cubically in the case of white noise in contrast to colored noise reported in [1], where the variance of shock location grows quadratically with time for short times and linearly for longer times.
A review of direct numerical simulations of astrophysical detonations and their implications
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.
2013-04-11
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less
Romero-Talam?s, C A; Hooper, E B; Hill, D N; Cohen, B I; McLean, H S; Wood, R D; Moller, J M
2006-03-15
Data from a recently installed insertable magnetic probe array in the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] is compared against NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)], a full 3D resistive magnetohydrodynamic code that is used to simulate SSPX plasmas. The experiment probe consists of a linear array of chip inductors arranged in clusters that are spaced every 2 cm, and spans the entire machine radius at the flux conserver midplane. Both the experiment and the numerical simulations show the appearance, shortly after breakdown, of a column with a hollow current profile that precedes magnetic reconnection, a process essential to the formation of closed magnetic flux surfaces. However, there are differences between the experiment and the simulation in how the column evolves after it is formed. These differences are studied to help identify the mechanisms that eventually lead to closed-flux surfaces (azimuthally averaged) and flux amplification, which occur in both the experiment and the simulation.
Numerical study of the stress state of a deformation twin in magnesium
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Arul Kumar, M.; Kanjarla, A. K.; Niezgoda, S. R.; Lebensohn, R. A.; Tomé, C. N.
2014-11-26
Here, we present a numerical study of the distribution of the local stress state associated with deformation twinning in Mg, both inside the twinned domain and in its immediate neighborhood, due to the accommodation of the twinning transformation shear. A full-field elastoviscoplastic formulation based on fast Fourier transformation is modified to include the shear transformation strain associated with deformation twinning. We performed two types of twinning transformation simulations with: (i) the twin completely embedded inside a single crystal and (ii) the twin front terminating at a grain boundary. We show that: (a) the resulting stress distribution is more strongly determinedmore » by the shear transformation than by the intragranular character of the twin or the orientation of the neighboring grain; (b) the resolved shear stress on the twin plane along the twin direction is inhomogeneous along the twin–parent interface; and (c) there are substantial differences in the average values of the shear stress in the twin and in the parent grain that contains the twin. We discuss the effect of these local stresses on twin propagation and growth, and the implications of our findings for the modeling of deformation twinning.« less
Oostrom, Martinus; Wietsma, Thomas W.; Strickland, Christopher E.; Freedman, Vicky L.; Truex, Michael J.
2012-02-01
Soil desiccation, in conjunction with surface infiltration control, is considered at the Hanford Site as a potential technology to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. An intermediate-scale experiment was conducted to test the response of a series of instruments to desiccation and subsequent rewetting of porous media. The instruments include thermistors, thermocouple psychrometers, dual-probe heat pulse sensors, heat dissipation units, and humidity probes. The experiment was simulated with the multifluid flow simulator STOMP, using independently obtained hydraulic and thermal porous medium properties. All instrument types used for this experiment were able to indicate when the desiccation front passed a certain location. In most cases the changes were sharp, indicating rapid changes in moisture content, water potential, or humidity. However, a response to the changing conditions was recorded only when the drying front was very close to a sensor. Of the tested instruments, only the heat dissipation unit and humidity probes were able to detect rewetting. The numerical simulation results reasonably match the experimental data, indicating that the simulator captures the pertinent gas flow and transport processes related to desiccation and rewetting and may be useful in the design and analysis of field tests.
Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow
Khalzov, I. V.; Brown, B. P.; Schnack, D. D.; Forest, C. B. [University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Ebrahimi, F. [University of New Hampshire, 8 College Road, Durham, New Hampshire 03824 (United States)
2011-03-15
The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.
A numerical study of soot aggregate formation in a laminar coflow diffusion flame
Zhang, Q.; Thomson, M.J. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8 (Canada); Guo, H.; Liu, F.; Smallwood, G.J. [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Building M-9, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)
2009-03-15
Soot aggregate formation in a two-dimensional laminar coflow ethylene/air diffusion flame is studied with a pyrene-based soot model, a detailed sectional aerosol dynamics model, and a detailed radiation model. The chemical kinetic mechanism describes polycyclic aromatic hydrocarbon formation up to pyrene, the dimerization of which is assumed to lead to soot nucleation. The growth and oxidation of soot particles are characterized by the HACA surface mechanism and pyrene-soot surface condensation. The mass range of the solid soot phase is divided into thirty-five discrete sections and two equations are solved in each section to model the formation of the fractal-like soot aggregates. The coagulation model is improved by implementing the aggregate coagulation efficiency. Several physical processes that may cause sub-unitary aggregate coagulation efficiency are discussed. Their effects on aggregate structure are numerically investigated. The average number of primary soot particles per soot aggregate n{sub p} is found to be a strong function of the aggregate coagulation efficiency. Compared to the available experimental data, n{sub p} is well reproduced with a constant 20% aggregate coagulation efficiency. The predicted axial velocity, OH mole fraction, and C{sub 2}H{sub 2} mole fraction are validated against experimental data in the literature. Reasonable agreements are obtained. Finally, a sensitivity study of the effects of particle coalescence on soot volume fraction and soot aggregate nanostructure is conducted using a coalescence cutoff diameter method. (author)
GPU accelerated flow solver for direct numerical simulation of turbulent flows
Salvadore, Francesco [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza via Eudossiana 18, 00184 Rome (Italy)] [Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)
2013-02-15
Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible NavierStokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.
Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory
Hussein, M.; Shalchi, A. E-mail: andreasm4@yahoo.com
2014-04-10
A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit of the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor ?B/B {sub 0} where B {sub 0} is the mean field and ?B the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.
THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS
Felipe, T.
2012-10-20
The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
Ma, Fa-Jun Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.
Terascale Direct Numerical Simulations of Turbulent Combustion: Capabilities and Limits (PReSS Talk)
Yoo, Chun Sang
2009-03-26
The rapid growth in computational capabilities has provided great opportunities for direct numerical simulations (DNS) of turbulent combustion, a type of simulations without any turbulence model. With the help of terascale high performance supercomputing (HPC) resources, we are now able to provide fundamental insight into turbulence-chemistry interaction in simple laboratory-scale turbulent flames with detailed chemistry using three-dimensional (3D) DNS. However, the actual domain size of 3D-DNS is still limited within {approx} O(10 cm{sup 3}) due to its tremendously high grid resolution required to resolve the smallest turbulent length scale as well as flame structures. Moreover, 3D-DNS will require more computing powers to investigate next-generation engines, of which operating conditions will be characterized by higher pressures, lower temperatures, and higher levels of dilution. In this talk, I will discuss the capabilities and limits of DNS of turbulent combustion and present some results of ignition/extinction characteristics of a highly diluted hydrogen flame counter-flowing against heated air. The results of our recent 3D-DNS of a spatially-developing turbulent lifted hydrogen jet flame in heated coflow will also be presented. The 3D-DNS was performed at a jet Reynolds number of 11,000 with {approx} 1 billion grid points, which required 3.5 million CPU hours on Cray XT3/XT4 at Oak Ridge National Laboratories.
Numerical simulation of jet mixing concepts in Tank 241-SY-101
Trent, D.S.; Michener, T.E.
1993-03-01
The episodic gas release events (GRES) that have characterized the behavior of Tank 241-SY-101 for the past several years are thought to result from gases generated by the waste material in it that become trapped in the layer of settled solids at the bottom of the tank. Several concepts for mitigating the GREs have been proposed. One concept involves mobilizing the solid particles with mixing jets. The rationale behind this idea is to prevent formation of a consolidated layer of settled solids at the bottom of the tank, thus inhibiting the accumulation of gas bubbles in this layer. Numerical simulations were conducted using the TEMPEST computer code to assess the viability and effectiveness of the proposed jet discharge concepts and operating parameters. Before these parametric studies were commenced, a series of turbulent jet studies were conducted that established the adequacy of the TEMPEST code for this application. Configurations studied for Tank 241-SY-101 include centrally located downward discharging jets, draft tubes, and horizontal jets that are either stationary or rotating. Parameter studies included varying the jet discharge velocity, jet diameter, discharge elevation, and material properties. A total of 18 simulations were conducted and are reported in this document. The effect of gas bubbles on the mixing dynamics was not included within the scope of this study.
Skovorodko, P. A.; Sharafutdinov, R. G.
2014-12-09
The paper is devoted to experimental and numerical study of the gas jet technical device for obtaining axisymmetric flow with low pressure in its near axis region. The studied geometry of the device is typical of that used in the plasma generator consisting of an electron gun with a hollow (plasma) cathode and a double supersonic ring nozzle. The geometry of the nozzles as well as the relation between the gas flow rates through the nozzles providing the electron beam extraction into the region with increased pressure are tested both experimentally and numerically. The maximum external pressure of about 0.25 bar that does not disturb the electron beam is achieved.
Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
Worlikar, A.S.; Knio, O.M.
1999-01-01
A thermoacoustic refrigerator may be idealized as consisting of a straight resonance tube housing a stack of parallel plates and heat exchangers, and an acoustic source. Among the advantages of thermoacoustic refrigerators are the simplicity of their design and the fact that they naturally avoid the need for harmful refrigerants such as chlorofluorocarbons (CFCs). The operation of these devices is based on exploiting the well-known thermoacoustic effect to induce a temperature difference across the stack and to transport heat from one end of the plate to the other. Heat exchangers are then used to transfer energy from the thermoacoustic refrigerator to hot and cold reservoirs. A two-dimensional, low-Mach-number computational model is used to analyze the unsteady flow and temperature fields in the neighborhood of an idealized stack/heat exchanger configuration. The model relies on a vorticity-based formulation of the mass, momentum, and energy equations in the low-Mach-number, short-stack limit. The stack and heat exchangers are assumed to consist of flat plates of equal thickness. The heat exchanger plates are assumed isothermal and in perfect thermal contact with the stack plates. The simulations are used to study the effect of heat exchanger size and operating conditions on the heat transfer and stack performance. Computed results show that optimum stack performance is achieved when the length of the heat exchanger is nearly equal to the peak-to-peak particle displacement. Numerical estimates of the mean enthalpy flux within the channel are in good agreement with the predictions of linear theory. However, the results reveal that a portion of the heat exchangers is ineffective due to reverse heat transfer. Details of the energy flux density around the heat exchangers are visualized, and implications regarding heat exchanger design and model extension are discussed.
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; Fermi National Accelerator Lab.
2015-10-28
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~more » 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less
Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes
Boehm, H.; Braun-Unkhoff, M.
2008-04-15
This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)
Evolution of turbulence in the expanding solar wind, a numerical study
Dong, Yue; Grappin, Roland; Verdini, Andrea E-mail: verdini@arcetri.astro.it
2014-10-01
We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup 1}, we observe a steepening toward a k {sup 5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup 1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.
Some effects of data base variations on numerical simulations of uranium migration
Carnahan, C.L.
1987-12-01
Numerical simulations of migration of chemicals in the geosphere depend on knowledge of identities of chemical species and on values of chemical equilibrium constants supplied to the simulators. In this work, some effects of variability in assumed speciation and in equilibrium constants were examined, using migration of uranium as an example. Various simulations were done of uranium migration in systems with varying oxidation potential, pH, and mator component content. A simulation including formation of aqueous species UO/sub 2//sup 2 +/, UO/sub 2/CO/sub 3//sup 0/, UO/sub 2/(CO/sub 3/)/sub 2//sup 2 -/, UO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/, (UO/sub 2/)/sub 2/CO/sub 3/(OH)/sub 3//sup -/, UO/sub 2//sup +/, U(OH)/sub 4//sup 0/, and U(OH)/sub 5//sup -/ is compared to simulation excluding formation of UO/sub 2//sup +/ and U(OH)/sub 5//sup -/. These simulations relied on older data bases, and they are compared to a further simulation using recently published data on formation of U(OH)/sub 4//sup 0/, (UO/sub 2/)/sub 2/CO/sub 3/(OH)/sub 3//sup -/, UO/sub 2/(CO/sub 3/)/sub 5//sup 5 -/, and U(CO/sub 3/)/sub 5//sup 6 -/. Significant differences in dissolved uranium concentrations are noted among the simulations. Differences are noted also in precipitation of two solids, USiO/sub 4/(c) (coffinite) and CaUO/sub 4/(c) (calcium uranate), although the solubility products of the solids were not varied in the simulations. 18 refs., 9 figs., 2 tabs.
Numerical simulation of a wave-guide mixing layer on a Cray C-90
Greenough, J.A.; Crutchfield, W.Y.; Rendleman, C.A.
1995-05-19
The development of a three-dimensional spatially evolving compressible mixing layer is investigated numerically using a parallel implementation of Adaptive Mesh Refinement (AMR) on a Cray C-90. The parallel implementation allowed the flow to be highly resolved while significantly reducing the wall-clock runtime. A sustained computation rate of 5.3 Gigaflops including I/O was obtained for a typical production run on a 16 processor machine. A novel mixing layer configuration is investigated where a pressure mismatch is maintained between the two inlet streams. In addition, the sonic character of the two streams is sufficiently different so that the pressure relief wave is trapped in the high speed stream. The trapped wave forces the mixing layer to form a characteristic cellular pattern. The cellular structure introduces curvature into the mixing layer that excites centrifugal instabilities characterized by large-scale counter-rotating vortical pairs embedded within the mixing layer. These are the dominant feature of the flow. Visualizations of these structures in cross-section show the pumping action which lifts dense fluid up into light gas. This effect has a strong impact on mixing enhancement as monitored by a conserved scalar formulation. Once the large-scale structures axe well established in the flow and undergo intensification from favorable velocity gradients, the time-averaged integrated product shows almost a four-fold increase. A spectral analysis of the flow-field over the cellular structures, as part of a full space-time analysis, shows these structures to be zero-frequency modes that develop from low level essentially broad-banded noise. This characterization of the vortical structures and their appearance is consistent with a recent linear stability analysis, of a mixing layer over a curved wall that predicts the most unstable modes to be zero frequency streamwise vortices.
Naziar, J.; Couch, R.; Davis, M.
1996-01-01
Traditionally, aeropropulsion structural performance and aerodynamic performance have been designed separately and later mated together via flight testing. In today`s atmosphere of declining resources, it is imperative that more productive ways of designing and verifying aeropropulsion performance and structural interaction be made available to the aerospace industry. One method of obtaining a more productive design and evaluation capability is through the use of numerical simulations. Currently, Lawrence Livermore National Laboratory has developed a generalized fluid/structural interaction code known as ALE3D. This code is capable of characterizing fluid and structural interaction for components such as the combustor, fan/stators, inlet and/or nozzles. This code solves the 3D Euler equations and has been applied to several aeropropulsion applications such as a supersonic inlet and a combustor rupture simulation. To characterize aerodynamic-structural interaction for rotating components such as the compressor, appropriate turbomachinery simulations would need to be implemented within the ALE3D structure. The Arnold Engineering Development Center is currently developing a three-dimensional compression system code known as TEACC (Turbine Engine Analysis Compressor Code). TEACC also solves the 3D Euler equations and is intended to simulate dynamic behavior such as inlet distortion, surge or rotating stall. The technology being developed within the TEACC effort provides the necessary turbomachinery simulation for implementation into ALE3D. This paper describes a methodology to combine three-dimensional aerodynamic turbomachinery technology into the existing aerodynamic-structural interaction simulation, ALE3D to obtain the desired aerodynamic and structural integrated simulation for an aeropropulsion system.
Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection
Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad; Torabian, Shahab
2008-07-08
Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection that has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.
Numerical simulations of quiet sun magnetism: On the contribution from a small-scale dynamo
Rempel, M.
2014-07-10
We present a series of radiative MHD simulations addressing the origin and distribution of the mixed polarity magnetic field in the solar photosphere. To this end, we consider numerical simulations that cover the uppermost 2-6 Mm of the solar convection zone and we explore scales ranging from 2 km to 25 Mm. We study how the strength and distribution of the magnetic field in the photosphere and subsurface layers depend on resolution, domain size, and boundary conditions. We find that 50% of the magnetic energy at the ? = 1 level comes from fields with the less than 500 G strength and that 50% of the energy resides on scales smaller than about 100 km. While the probability distribution functions are essentially independent of resolution, properly describing the spectral energy distribution requires grid spacings of 8 km or smaller. The formation of flux concentrations in the photosphere exceeding 1 kG requires a mean vertical field strength greater than 30-40 G at ? = 1. The filling factor of kG flux concentrations increases with overall domain size as the magnetic field becomes organized by larger, longer-lived flow structures. A solution with a mean vertical field strength of around 85 G at ? = 1 requires a subsurface rms field strength increasing with depth at the same rate as the equipartition field strength. We consider this an upper limit for the quiet Sun field strength, which implies that most of the convection zone is magnetized close to the equipartition. We discuss these findings in view of recent high-resolution spectropolarimetric observations of quiet Sun magnetism.
TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
Pruess, K. [Lawrence Berkeley Lab., CA (United States)
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min
2015-10-28
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R_{56} ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Thomas Washington, July-August, 1991 • Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 15/3 in the South Atlantic Ocean (WOCE Section A9, February March 1991) • Carbon Dioxide Concentrations in Surface Water and the Atmosphere During 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 11/5 in the South Atlantic and Northern Weddell Sea Areas (WOCE sections A-12 and A-21) • Surface Water and Atmospheric Carbon Dioxide and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 • Indian Ocean Radiocarbon: Data from the INDIGO 1, 2, and 3 Cruises • Carbonate Chemistry of the North Pacific Ocean • Carbonate Chemistry of the Weddell Sea • GEOSECS Atlantic, Pacific, Indian, and Mediterranean Radiocarbon Data •\tTransient Tracers in the Oceans (TTO) - Hydrographic Data and Carbon Dioxide Systems with Revised Carbon Chemistry Data.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 081103) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) Global Ocean Data Analysis Project GLODAP: Results and Data Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 120596) and A24, A20, and A22 (053097 090397) Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 012296) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 102192) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 111093) The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 Jan, 1996) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th
Gonalves, W. C.; Sardella, E.; UNESP-Universidade Estadual Paulista, IPMet-Instituto de Pesquisas Meteorolgicas, CEP 17048-699 Bauru, SP ; Becerra, V. F.; Miloevi?, M. V.; Peeters, F. M.; Departamento de Fsica, Universidade Federal do Cear, 60455-900 Fortaleza, Cear
2014-04-15
The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states.
Seawolf Manufacturing Challenge | Y-12 National Security Complex
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Seawolf Manufacturing ... Seawolf Manufacturing Challenge Posted: February 11, 2013 - 2:42pm | Y-12 Report | Volume 9, Issue 2 | 2013 The Seawolf propulsor prototype was...
Y-12 Work for Others ? a historical perspective, part 2
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the prototype SSN-21 full scale propulsor. This 65M task required development of new manufacturing processes that have resulted in basic changes in how the US Navy...
Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.
2013-04-01
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.
NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES
Okuzumi, Satoshi; Sakagami, Masa-aki [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)
2009-12-20
Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dust aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform acceleration (e.g., gravity) and their collision is induced by the difference in their terminal velocities. We point out an important implication of this discovery for dust growth in protoplanetary disks.
McDonell, Vincent; Hill, Scott; Akbari, Amin; McDonell, Vincent
2011-09-30
As simulation capability improves exponentially with increasingly more cost effective CPUs and hardware, it can be used ?routinely? for engineering applications. Many commercial products are available and they are marketed as increasingly powerful and easy to use. The question remains as to the overall accuracy of results obtained. To support the validation of the CFD, a hierarchical experiment was established in which the type of fuel injection (radial, axial) as well as level of swirl (non-swirling, swirling) could be systematically varied. The effort was limited to time efficient approaches (i.e., generally RANS approaches) although limited assessment of time resolved methods (i.e., unsteady RANS and LES) were considered. Careful measurements of the flowfield velocity and fuel concentration were made using both intrusive and non-intrusive methods. This database was then used as the basis for the assessment of the CFD approach. The numerical studies were carried out with a statistically based matrix. As a result, the effect of turbulence model, fuel type, axial plane, turbulent Schmidt number, and injection type could be studied using analysis of variance. The results for the non-swirling cases could be analyzed as planned, and demonstrate that turbulence model selection, turbulence Schmidt number, and the type of injection will strongly influence the agreement with measured values. Interestingly, the type of fuel used (either hydrogen or methane) has no influence on the accuracy of the simulations. For axial injection, the selection of proper turbulence Schmidt number is important, whereas for radial injection, the results are relatively insensitive to this parameter. In general, it was found that the nature of the flowfield influences the performance of the predictions. This result implies that it is difficult to establish a priori the ?best? simulation approach to use. However, the insights from the relative orientation of the jet and flow do offer some guidance for which approach to take. Overall, the results underscore the importance of model ?anchoring? (i.e., ?tuning? the model to provide ?reasonable? agreement with a well characterized geometry/flow). Finally, the results obtained have been carefully compiled into a standalone database following a standard format that is contained in an Appendix. This database is thus available for use by others for CFD modeling evaluations.
Direct Numerical Simulation of Interfacial Flows: Implicit Sharp-Interface Method (I-SIM)
Robert Nourgaliev; Theo Theofanous; HyeongKae Park; Vincent Mousseau; Dana Knoll
2008-01-01
In recent work (Nourgaliev, Liou, Theofanous, JCP in press) we demonstrated that numerical simulations of interfacial flows in the presence of strong shear must be cast in dynamically sharp terms (sharp interface treatment or SIM), and that moreover they must meet stringent resolution requirements (i.e., resolving the critical layer). The present work is an outgrowth of that work aiming to overcome consequent limitations on the temporal treatment, which become still more severe in the presence of phase change. The key is to avoid operator splitting between interface motion, fluid convection, viscous/heat diffusion and reactions; instead treating all these non-linear operators fully-coupled within a Newton iteration scheme. To this end, the SIMs cut-cell meshing is combined with the high-orderaccurate implicit Runge-Kutta and the recovery Discontinuous Galerkin methods along with a Jacobian-free, Krylov subspace iteration algorithm and its physics-based preconditioning. In particular, the interfacial geometry (i.e., markers positions and volumes of cut cells) is a part of the Newton-Krylov solution vector, so that the interface dynamics and fluid motions are fully-(non-linearly)-coupled. We show that our method is: (a) robust (L-stable) and efficient, allowing to step over stability time steps at will while maintaining high-(up to the 5th)-order temporal accuracy; (b) fully conservative, even near multimaterial contacts, without any adverse consequences (pressure/velocity oscillations); and (c) highorder-accurate in spatial discretization (demonstrated here up to the 12th-order for smoothin-the-bulk-fluid flows), capturing interfacial jumps sharply, within one cell. Performance is illustrated with a variety of test problems, including low-Mach-number manufactured solutions, shock dynamics/tracking with slow dynamic time scales, and multi-fluid, highspeed shock-tube problems. We briefly discuss preconditioning, and we introduce two physics-based preconditioners Block-Diagonal and Internal energy-Pressure-Velocity Partially Decoupled, demonstrating the ability to efficiently solve all-speed flows with strong effects from viscous dissipation and heat conduction.
Kohno, H.; Myra, J. R.; D'Ippolito, D. A.
2012-01-15
A new finite element numerical scheme for analyzing self-consistent radio-frequency (RF) sheath-plasma interaction problems in the ion cyclotron range of frequencies is applied to various problems represented by simplified models for the tokamak scrape-off layer. The present code incorporates a modified boundary condition, which is called a sheath boundary condition, that couples the radio-frequency waves and sheaths at the material boundaries by treating the sheath as a thin vacuum layer. A series of numerical analyses in one- and two-dimensional domains show several important physical properties, such as the existence of multiple roots, hysteresis effects, presence and characteristics of the sheath-plasma waves, and the phase shift of a reflected slow wave, some of which are newly identified by introducing a spatially varying plasma density and background magnetic field.
Delande, D.; Gay, J.C.
1986-10-20
The transition to chaos in ''the hydrogen atom in a magnetic field'' is numerically studied and shown to lead to well-defined signature on the energy-level fluctuations. Upon an increase in the energy, the calculated statistics evolve from Poisson to Gaussian orthogonal ensemble according to the regular or chaotic character of the classical motion. Several methods are employed to test the generic nature of these distributions.
Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States) [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States); Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Magin, Thierry E. [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium)] [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chausse de Waterloo, 72, 1640 Rhode-St-Gense (Belgium); Shaqfeh, Eric S.G.; Iaccarino, Gianluca [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)] [Center for Turbulence Research, Building 500, Stanford University, Stanford, CA 94305-3035 (United States)
2013-12-15
A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible NavierStokes equations using an explicit time advancement scheme and high-order finite differences. This NavierStokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.
Tokuhiro, A.T.; Kimura, N.; Nishimura, M.; Kobayashi, J.; Miyakoshi, H.
1999-07-01
The thermal-hydraulic mixing of three quasi-planar vertical water jets was experimentally and numerically investigated. The central jet was initially 5 C lower in temperature than the other two. The hydraulic diameter and average exit velocity-based Reynolds and Richardson numbers were, Re{sub D} = 2 x 10{sup 4}, Ri{sub D} = 0.002. Besides temperature measurements from a traversing array of 37 thermocouples, velocity measurements were made using laser and ultrasound Doppler velocimetries (LDV and UDV). In parallel the in-house code, CASCADE, featuring a {kappa}-{epsilon} turbulence model was used to simulate the experimental flow configuration. A comparison of the experimental and numerical results showed that code validation by LDV/UDV was possible and in particular that time-averaged field and frequency characteristics of transversely swaying jets, even under Reynolds averaging of the conservation equations, could be simulated. A representative comparison of the amplitude of oscillation is shown in Figure A-1 with an inset of the visualized flow and sample time-series of the temperature fluctuations at the position indicated. The difference in the predominant frequency, the numerically predicted {approximately}1.6 Hz versus the experimental {approximately}2.25 Hz, is attributed to the turbulence model that overestimate thus effective fluid viscosity. Development of an accurate numerical simulation is of relevance to the design of the liquid metal fast breeder reactor (LMFBR), where the lack of mixing of the cold sodium may initiate thermal striping; that is, poorly mixed hot and cold streams may thermally stress the components onto which they impinge. Turbulent mixing of jets is equally of general interest to environmental and material processing flows.
Liu, Qian; Liu, Yue, E-mail: liuyue@dlut.edu.cn; Samir, Tagra; Ma, Zhaoshuai [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2014-08-15
Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid ?-?-mode.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pan, Wenxiao; Daily, Michael; Baker, Nathan A.
2015-05-07
Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less
Biswas, Kaushik; Abhari, Mr. Ramin
2014-01-01
A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test building in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.
Arima, T.; Sonoda, T.; Shirotori, M.; Tamura, A.; Kikuchi, K.
1999-01-01
The authors have developed a computer simulation code for three-dimensional viscous flow in turbomachinery based on the time-averaged compressible Navier-Stokes equations and a low-Reynolds-number {kappa}-{epsilon} turbulence model. It is described in detail in this paper. The code is used to compute the flow fields for two types of rotor (a transonic fan NASA Rotor 67 and a transonic axial compressor NASA rotor 37), and numerical results are compared to experimental data based on aerodynamic probe and laser anemometer measurements. In the case of Rotor 67, calculated and experimental results are compared under the design speed to validate the code. The calculated results show good agreement with the experimental data, such as the rotor performance map and the spanwise distribution of total pressure, total temperature, and flow angle downstream of the rotor. In the case of Rotor 37, detailed comparisons between the numerical results and the experimental data are made under the design speed condition to assess the overall quality of the numerical solution. Furthermore, comparisons under the part-speed condition are used to investigate a flow field without passage shock. The results are well predicted qualitatively. However, considerable quantitative discrepancies remain in predicting the flow near the tip. In order to assess the predictive capabilities of the developed code, computed flow structures are presented with the experimental data for each rotor and the cause of the discrepancies is discussed.
Pan, Wenxiao; Daily, Michael; Baker, Nathan A.
2015-05-07
Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with imperfect reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.
Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.
2015-12-01
We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Biswas, Kaushik; Abhari, Mr. Ramin
2014-01-01
A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. This article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less
Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)
2005-06-15
To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.
Martin, V.; Egido, J.L.; Khoo, T.L.; Lauritsen, T.
1993-11-11
The electromagnetic decay of the nuclei {sup 152-154-156}Dy is analyzed using microscopic Hartree-Fock calculations at finite temperature. The theoretical collective transition probabilities are implemented in numerical simulations to produce theoretical espectra. Thermal shape fluctuations are also taken into account. The inclusion of these correlation is crucial in order to understand the main features of the collective E2 spectra of these isotopes at different energies. The theoretical calculations suggest a shape change as responsible for the unusual features of the spectrum of the nucleus {sup 154}Dy at high energy.
Potyondy, D.O.; Fairhurst, C.E.
1999-07-01
The post-peak load/deformation behavior of cohesive-frictional materials is an integral part of the overall response of a specimen to compressive loading. A more comprehensive understanding of the pre- and post-peak behavior is necessary. Recent developments in numerical modeling that allow study of the overall response of a synthetic material containing discrete heterogeneities and discontinuities both at the micro (particle) scale and at the larger scale of jointed rock masses can greatly aid the interpretation and application of laboratory test results on these materials.
Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.
2014-06-01
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
DOE R&D Accomplishments [OSTI]
Wigner, E. P.; Wilkins, J. E. Jr.
1944-09-14
In this paper we set up an integral equation governing the energy distribution of neutrons that are being slowed down uniformly throughout the entire space by a uniformly distributed moderator whose atoms are in motion with a Maxwellian distribution of velocities. The effects of chemical binding and crystal reflection are ignored. When the moderator is hydrogen, the integral equation is reduced to a differential equation and solved by numerical methods. In this manner we obtain a refinement of the dv/v{sup 2} law. (auth)
Konovalenko, Igor S. Smolin, Alexey Yu. Konovalenko, Ivan S.; Promakhov, Vladimir V.; Psakhie, Sergey G.
2014-11-14
Movable cellular automaton method was used for investigating the mechanical behavior of ceramic composites under uniaxial compression. A 2D numerical model of ceramic composites based on oxides of zirconium and aluminum with different structural parameters was developed using the SEM images of micro-sections of a real composite. The influence of such structural parameters as the geometrical dimensions of layers, inclusions, and their spatial distribution in the sample, the volume content of the composite components and their mechanical properties (as well as the amount of zirconium dioxide that underwent the phase transformation) on the fracture, strength, deformation and dissipative properties was investigated.
Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Peng; Fietz, Chris; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.; Institute of Electronic Structure
2015-04-14
A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.
Ea, L.; Hoekstra, M.
2014-04-01
This paper offers a procedure for the estimation of the numerical uncertainty of any integral or local flow quantity as a result of a fluid flow computation; the procedure requires solutions on systematically refined grids. The error is estimated with power series expansions as a function of the typical cell size. These expansions, of which four types are used, are fitted to the data in the least-squares sense. The selection of the best error estimate is based on the standard deviation of the fits. The error estimate is converted into an uncertainty with a safety factor that depends on the observed order of grid convergence and on the standard deviation of the fit. For well-behaved data sets, i.e. monotonic convergence with the expected observed order of grid convergence and no scatter in the data, the method reduces to the well known Grid Convergence Index. Examples of application of the procedure are included. - Highlights: Estimation of the numerical uncertainty of any integral or local flow quantity. Least squares fits to power series expansions to handle noisy data. Excellent results obtained for manufactured solutions. Consistent results obtained for practical CFD calculations. Reduces to the well known Grid Convergence Index for well-behaved data sets.
Goldberg, L.F.
1992-04-01
Aspects of the information propagation modeling behavior of integral machine computer simulation programs are investigated in terms of a transmission line. In particular, the effects of pressure-linking and temporal integration algorithms on the amplitude ratio and phase angle predictions are compared against experimental and closed-form analytic data. It is concluded that the discretized, first order conservation balances may not be adequate for modeling information propagation effects at characteristic numbers less than about 24. An entropy transport equation suitable for generalized use in Stirling machine simulation is developed. The equation is evaluated by including it in a simulation of an incompressible oscillating flow apparatus designed to demonstrate the effect of flow oscillations on the enhancement of thermal diffusion. Numerical false diffusion is found to be a major factor inhibiting validation of the simulation predictions with experimental and closed-form analytic data. A generalized false diffusion correction algorithm is developed which allows the numerical results to match their analytic counterparts. Under these conditions, the simulation yields entropy predictions which satisfy Clausius' inequality.
Ozoe, H. ); Sato, N. ); Churchill, S.W. )
1990-01-01
This paper reports general two- and three-dimensional models derived and solved numerically for the thermoacoustical convection that is generated in a compressible fluid by rapid heating of one of the vertical enclosing walls.
Stein, W.; Ermak, D.L.
1980-11-04
A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method. Output of the calculations is presented in both tabular and graphical form.
Stein, W.; Ermak, D.L.
1981-01-01
A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method.Output of the calculations is presented in both tabular and graphical form.
WUBTERSTEUBMSTEVEB R.; VEERS,PAUL S.
2000-01-01
Because the fatigue lifetime of wind turbine components depends on several factors that are highly variable, a numerical analysis tool called FAROW has been created to cast the problem of component fatigue life in a probabilistic framework. The probabilistic analysis is accomplished using methods of structural reliability (FORM/SORM). While the workings of the FAROW software package are defined in the user's manual, this theory manual outlines the mathematical basis. A deterministic solution for the time to failure is made possible by assuming analytical forms for the basic inputs of wind speed, stress response, and material resistance. Each parameter of the assumed forms for the inputs can be defined to be a random variable. The analytical framework is described and the solution for time to failure is derived.
Masada, Youhei; Sano, Takayoshi E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, can be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.
Shaw, A. K.; Goswami, K. S.; Saikia, B. J. [Centre of Plasma Physics-Institute for Plasma Research, Sonapur-782 402, Guwahati, Kamrup (M) (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India)
2012-01-15
The effect of ion temperature, magnitude of magnetic field and its orientation on a magnetized plasma sheath consisting of electrons and two species of positive ions are investigated. Using three-fluid hydrodynamic model and some dimensionless variables, the dimensionless equations are obtained and solved numerically. It is found that with the increase of the ion temperature and magnetic field strength there is a significant change in ion densities and energies in the sheath. It is also noticed that increase of magnetic field angle enhances the ion density near the sheath edge for a constant ion temperature. With increase in ion temperature and magnetic field angle, the lighter ion density near the sheath edge enhances and reverses for the heavier ion species.
Song, J. H.; Lee, J.; Lee, S.; Kim, E. Z.; Lee, N. K.; Lee, G. A.; Park, S. J.; Chu, A.
2013-12-16
In this paper, laser forming characteristics in ultra high strength steel with ultimate strength of 1200MPa are investigated numerically and experimentally. FE simulation is conducted to identify the response related to deformation and characterize the effect of laser power, beam diameter and scanning speed with respect to the bending angle for a square sheet part. The thermo-mechanical behaviors during the straight-line heating process are presented in terms of temperature, stress and strain. An experimental setup including a fiber laser with maximum mean power of 3.0 KW is used in the experiments. From the results in this work, it would be easily adjustment the laser power and the scanning speed by controlling the line energy for a bending operation of CP1180 steel sheets.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Meyer, H. O.
The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.
Mare, Thierry; Voicu, Ionut; Miriel, Jacques [Laboratoire de Genie Civil et de Genie Mecanique (LGCGM), INSA de Rennes, IUT Saint Malo, 35043 Rennes (France); Galanis, Nicolas [Faculte de genie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Sow, Ousmane [Laboratoire d'Energie Appliquee, Ecole superieure Polytechnique, Dakar (Senegal)
2008-04-15
Velocity vectors in a vertical coaxial double-duct heat exchanger for parallel ascending flow of water under conditions of laminar mixed convection have been determined experimentally using the particle image velocimetry technique. The measured velocity distributions for large annular flow rates, resulting in an essentially isothermal environment for the stream in the inner tube, are in very good agreement with corresponding numerical predictions. For flow rates of the same order of magnitude in the inner tube and the annulus, and corresponding temperature differences of about 20 C, experimental observations show that flow reversal occurs simultaneously in both streams over large axial distances for both heating and cooling of the flow in the inner tube. (author)
Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming
Rentsch, Ruediger; Brinksmeier, Ekkard [Stiftung Institut fuer Werkstofftechnik, Badgasteiner Strasse 3, 28359 Bremen (Germany)
2011-05-04
For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.
Soker, N.; Sarazin, C.L.; O'Dea, C.P.
1988-04-01
Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with kidney-shaped cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side. 31 references.
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2015-05-22
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffreys equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160?, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice BhatnagarGrossKrook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nuclear Energy Safety Technologies Facilities Battery ... of a turbulent combustion process and simple 'building ... mesh refinement andor vortex methods, are useful for ...
Office of Scientific and Technical Information (OSTI)
... extreme observations with more reasonable ones 6 - http:jeff560.tripod.comw.html (accessed on September 16, 2009) 10 using ( a k K 0 , b j ...
Neeraj Gupta
2008-03-31
A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.
Prinja, A.K.
1998-09-01
In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.
Chang, S. L.
1998-08-25
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. New and modified processes are constantly developed by refinery companies to improve their global competitiveness and meet more stringent environmental regulations. Short residence time FCC riser reactor is one of the advanced processes that the refining industry is actively pursuing because it can improve the yield selectivity and efficiency of an FCC unit. However, as the residence time becomes shorter, the impact of the mixing between catalyst and feed oil at the feed injection region on the product yield becomes more significant. Currently, most FCC computer models used by the refineries perform sophisticated kinetic calculations on simplified flow field and can not be used to evaluate the impact of fluid mixing on the performance of an FCC unit. Argonne National Laboratory (AFL) is developing a computational fluid dynamic (CFD) code ICRKFLO for FCC riser flow modeling. The code, employing hybrid hydrodynamic-chemical kinetic coupling techniques, is used to investigate the effect of operating and design conditions on the product yields of FCC riser reactors. Numerical calculations were made using the code to examine the impacts of the operating and design conditions on the product yields. The controlling parameters under investigation include the residence time, reaction temperature, and catalyst/oil ratio. This paper describes the CFD code, presents computation results, and discusses the effects of operating conditions on the performance of short residence time FCC riser reactors.
Vernek, E.; Bsser, C. A.; Anda, E. V.; Feiguin, A. E.; Martins, G. B.
2014-03-31
A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of the device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.
Kicker, Dwayne Curtis; Herrick, Courtney G.; Zeitler, Todd; Malama, Bwalya; Rudeen, David Keith; Gilkey, Amy P.
2016-01-01
The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.
Kashiwa, B. A.
2010-12-01
Abstract A thermodynamically consistent and fully general equationof state (EOS) for multifield applications is described. EOS functions are derived from a Helmholtz free energy expressed as the sum of thermal (fluctuational) and collisional (condensedphase) contributions; thus the free energy is of the MieGruneisen1 form. The phasecoexistence region is defined using a parameterized saturation curve by extending the form introduced by Guggenheim,2 which scales the curve relative to conditions at the critical point. We use the zerotemperature condensedphase contribution developed by Barnes,3 which extends the ThomasFermiDirac equation to zero pressure. Thus, the functional form of the EOS could be called MGGB (for Mie GruneisenGuggenheimBarnes). Substancespecific parameters are obtained by fitting the lowdensity energy to data from the Sesame4 library; fitting the zerotemperature pressure to the Sesame cold curve; and fitting the saturation curve and latent heat to laboratory data,5 if available. When suitable coexistence data, or Sesame data, are not available, then we apply the Principle of Corresponding States.2 Thus MGGB can be thought of as a numerical recipe for rendering the tabular Sesame EOS data in an analytic form that includes a proper coexistence region, and which permits the accurate calculation of derivatives associated with compressibility, expansivity, Joule coefficient, and specific heat, all of which are required for multifield applications. 1
Greulich, Johannes Höffler, Hannes; Würfel, Uli; Rein, Stefan
2013-11-28
A method for analyzing the power losses of solar cells is presented, supplying a complete balance of the incident power, the optical, thermodynamic, and electrical power losses and the electrical output power. The involved quantities have the dimension of a power density (units: W/m{sup 2}), which permits their direct comparison. In order to avoid the over-representation of losses arising from the ultraviolet part of the solar spectrum, a method for the analysis of the electrical free energy losses is extended to include optical losses. This extended analysis does not focus on the incident solar power of, e.g., 1000 W/m{sup 2} and does not explicitly include the thermalization losses and losses due to the generation of entropy. Instead, the usable power, i.e., the free energy or electro-chemical potential of the electron-hole pairs is set as reference value, thereby, overcoming the ambiguities of the power balance. Both methods, the power balance and the free energy loss analysis, are carried out exemplarily for a monocrystalline p-type silicon metal wrap through solar cell with passivated emitter and rear (MWT-PERC) based on optical and electrical measurements and numerical modeling. The methods give interesting insights in photovoltaic (PV) energy conversion, provide quantitative analyses of all loss mechanisms, and supply the basis for the systematic technological improvement of the device.
Davidson, R. L.; Earle, G. D.; Heelis, R. A.; Klenzing, J. H.
2010-08-15
Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.
E.V. Belova; R.C. Davidson; H. Ji; M. Yamada; C.D. Cothran; M.R. Brown; M.J. Schaffer
2004-11-12
Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects.
Salbi, Pegah; Matzner, Christopher D.; Ro, Stephen [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Levin, Yuri, E-mail: salbi@astro.utoronto.ca [Monash Center for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)
2014-07-20
Non-spherical explosions develop non-radial flows as the pattern of shock emergence progresses across the stellar surface. In supernovae, these flows can limit ejecta speeds, stifle shock breakout emission, and cause collisions outside the star. Similar phenomena occur in stellar and planetary collisions, tidal disruption events, accretion-induced collapses, and propagating detonations. We present two-dimensional, nested-grid Athena simulations of non-radial shock emergence in a frame comoving with the breakout pattern, focusing on the adiabatic, non-relativistic limit in a plane stratified envelope. We set boundary conditions using a known self-similar solution and explore the role of box size and resolution on the result. The shock front curves toward the stellar surface, and exhibits a kink from which weak discontinuities originate. Flow around the point of shock emergence is neither perfectly steady nor self-similar. Waves and vortices, which are not predominantly due to grid effects, emanate from this region. The post-shock flow is deflected along the stellar surface and its pressure disturbs the stellar atmosphere upstream of the emerging shock. We use the numerical results and their analytical limits to predict the effects of radiation transfer and gravity, which are not included in our simulations.
Kumaran, K.; Babu, V.
2009-04-15
In this numerical study, the influence of chemistry models on the predictions of supersonic combustion in a model combustor is investigated. To this end, 3D, compressible, turbulent, reacting flow calculations with a detailed chemistry model (with 37 reactions and 9 species) and the Spalart-Allmaras turbulence model have been carried out. These results are compared with earlier results obtained using single step chemistry. Hydrogen is used as the fuel and three fuel injection schemes, namely, strut, staged (i.e., strut and wall) and wall injection, are considered to evaluate the impact of the chemistry models on the flow field predictions. Predictions of the mass fractions of major species, minor species, dimensionless stagnation temperature, dimensionless static pressure rise and thrust percentage along the combustor length are presented and discussed. Overall performance metrics such as mixing efficiency and combustion efficiency are used to draw inferences on the nature (whether mixing- or kinetic-controlled) and the completeness of the combustion process. The predicted values of the dimensionless wall static pressure are compared with experimental data reported in the literature. The calculations show that multi step chemistry predicts higher and more wide spread heat release than what is predicted by single step chemistry. In addition, it is also shown that multi step chemistry predicts intricate details of the combustion process such as the ignition distance and induction distance. (author)
Volker Sick; Dennis N. Assanis
2002-11-27
Through the combination of advanced imaging laser diagnostics with multi-dimensional computer models, a new understanding of the performance of direct-injection gasoline engines is pursuit. The work focuses on the fuel injection process, the breakup of the liquid into a fine spray and the mixing of the fuel with the in-cylinder gases. Non-intrusive laser diagnostics will be used to measure the spatial distribution of droplets and vaporized fuel with very high temporal resolution. These data along with temperature measurements will be used to validate a new spray breakup model for gasoline direct-injection. Experimental data on near wall fuel distributions will be used for comparison with a model that predicts the spray-wall interaction and the dynamics of the liquid film on the surface. Quantitative measurements of local nitric oxide concentrations inside the combustion chamber will provide a critical test for a numerical simulation of the nitric oxide formation process. This model is based on a modified flamelet approach and will be used to study the effects of exhaust gas recirculation.
Cheng, C.Z.
1988-12-01
A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, theta, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical ..beta../sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab.
Danish, Mohammad Suman, Sawan Srinivasan, Balaji
2014-12-15
The pressure Hessian tensor plays a key role in shaping the behavior of the velocity gradient tensor, and in turn, that of many incumbent non-linear processes in a turbulent flow field. In compressible flows, the role of pressure Hessian is even more important because it represents the level of fluid-thermodynamic coupling existing in the flow field. In this work, we first perform a direct numerical simulation-based study to clearly identify, isolate, and understand various important inviscid mechanisms that govern the evolution of the pressure Hessian tensor in compressible turbulence. The ensuing understanding is then employed to introduce major improvements to the existing Lagrangian model of the pressure Hessian tensor (the enhanced Homogenized Euler equation or EHEE) in terms of (i) non-symmetric, non-isentropic effects and (ii) improved representation of the anisotropic portion of the pressure Hessian tensor. Finally, we evaluate the new model extensively by comparing the new model results against known turbulence behavior over a range of Reynolds and Mach numbers. Indeed, the new model shows much improved performance as compared to the EHEE model.
Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.
2012-11-01
Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.
Shibata, T. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.
2015-04-08
Time structure of Balmer H{sub ?} line intensity in Linac4 RF plasma has been analyzed by the combined simulation model of atomic transport and Collisional-Radiative models. As a preliminary result, time variation of the line intensity in the ignition phase of RF plasma is calculated and compared with the experimental results by photometry. For the comparison, spatial distribution of the local H{sub ?} photon emission rate at each time is calculated from the numerical model. The contribution of the local photon emission rates to the observed line intensity via optical viewing port is also investigated by application of the mock-up of the optical viewing port and the known light source. It has been clarified from the analyses that the higher and the lower peaks of the H{sub ?} line intensity observed during 1 RF cycle is mainly due to the different spatial distributions in the electron energy distribution function and the resultant local photon emission rate. These results support previous suggestion that the existence of the capacitive electric field in axial direction leads to the higher/lower peaks of the line intensity.
de Stadler, M; Chand, K
2007-11-12
Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.
Huang, Lianjie; Simonetti, Francesco; Huthwaite, Peter; Rosenberg, Robert; Williamson, Michael
2010-01-01
Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Rosenberg, Duane L; Pouquet, Dr. Annick; Mininni, Dr. Pablo D.; Marino, Dr. Raffaele
2015-01-01
We report results on rotating stratified turbulence in the absence of forcing, with large-scale isotropic initial conditions, using direct numerical simulations computed on grids of up to $4096^3$ points. The Reynolds and Froude numbers are respectively equal to $Re=5.4\\times 10^4$ and $Fr=0.0242$. The ratio of the Brunt-V\\"ais\\"al\\"a to the inertial wave frequency, $N/f$, is taken to be equal to 5, a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global buoyancy Reynolds number $R_B=ReFr^2=32$, a value sufficient for some isotropy to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-scale dynamics and confirm that the Froude number based on a typical vertical length scale is of order unity, with strong gradients in the vertical. Two characteristic scales emerge from this computation, and are identified from sharp variations in the spectral distribution of either total energy or helicity. A spectral break is also observed at a scale at which the partition of energy between the kinetic and potential modes changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous in the flow in the velocity and temperature fields, and a large-scale enhancement of energy is also observed, directly attributable to the effect of rotation.
The dog originated south of Yangtse river less than 16,000 years ago, from numerous wolves
Leitner, Thomas; Pang, Jun - Feng; Kluetsch, Cornelya
2009-01-01
We here present a detailed picture of the origins of the dog, giving strong and precise evidence for 'where and when', and thereby also a first tentative picture of 'how, why and by whom' the wolf was domesticated. Previous studies of mitochondrial DNA (mtDNA) have failed to definitely establish the time and place of origin because of lack in phylogenetic resolution for the so far studied 582 bp region, and inadequate sampling across the world. We therefore analysed 169 mtDNA genomes, selected from partial sequences (582 bp) from 1,576 dogs worldwide. This shows that dogs universally share a common gene pool, but the three earlier identified universally occurring phylogenetic clades ofhigh age consist often much younger subclades, which originated 5,000-16,000 ya from at least 48 wolf founders. The full range of genetic diversity, all 10 subclades, is found only in south-eastern Asia south of Yangtze River, and the diversity decreases gradually across Eurasia down to only four sub clades in Europe. This establishes that the dog has a single origin in time and space from a large number ofwolves, less than 16,000 ya, probably in China south of Y angtzeRiver. The place and time coincide with the origin of rice agriculture, suggesting an origin among sedentary hunter-gatherers or early rice farmers. The numerous founders indicate that wolf taming was an important cultural trait, and it is noticeable that in this region dogs are since ancient times used as food, offering a possible reason for the wolf domestication.
Pore-Scale and Multiscale Numerical Simulation of Flow and Transport in a Laboratory-Scale Column
Scheibe, Timothy D.; Perkins, William A.; Richmond, Marshall C.; McKinley, Matthey I.; Romero Gomez, Pedro DJ; Oostrom, Martinus; Wietsma, Thomas W.; Serkowski, John A.; Zachara, John M.
2015-02-01
Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, the scale at which a continuum approximation of a porous medium is valid is usually larger, on the order of centimeters to decimeters. Furthermore, laboratory experiments that measure continuum properties are typically performed on decimeter-scale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeter-scale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a mixed Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain.
Gokaltun, Seckin; Munroe, Norman; Subramaniam, Shankar
2014-12-31
This study presents a new drag model, based on the cohesive inter-particle forces, implemented in the MFIX code. This new drag model combines an existing standard model in MFIX with a particle-based drag model based on a switching principle. Switches between the models in the computational domain occur where strong particle-to-particle cohesion potential is detected. Three versions of the new model were obtained by using one standard drag model in each version. Later, performance of each version was compared against available experimental data for a fluidized bed, published in the literature and used extensively by other researchers for validation purposes. In our analysis of the results, we first observed that standard models used in this research were incapable of producing closely matching results. Then, we showed for a simple case that a threshold is needed to be set on the solid volume fraction. This modification was applied to avoid non-physical results for the clustering predictions, when governing equation of the solid granular temperate was solved. Later, we used our hybrid technique and observed the capability of our approach in improving the numerical results significantly; however, improvement of the results depended on the threshold of the cohesive index, which was used in the switching procedure. Our results showed that small values of the threshold for the cohesive index could result in significant reduction of the computational error for all the versions of the proposed drag model. In addition, we redesigned an existing circulating fluidized bed (CFB) test facility in order to create validation cases for clustering regime of Geldart A type particles.
Schuster, Eugenio
2014-05-02
The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex#2;B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.
X. Frank Xu
2010-03-30
Multiscale modeling of stochastic systems, or uncertainty quantization of multiscale modeling is becoming an emerging research frontier, with rapidly growing engineering applications in nanotechnology, biotechnology, advanced materials, and geo-systems, etc. While tremendous efforts have been devoted to either stochastic methods or multiscale methods, little combined work had been done on integration of multiscale and stochastic methods, and there was no method formally available to tackle multiscale problems involving uncertainties. By developing an innovative Multiscale Stochastic Finite Element Method (MSFEM), this research has made a ground-breaking contribution to the emerging field of Multiscale Stochastic Modeling (MSM) (Fig 1). The theory of MSFEM basically decomposes a boundary value problem of random microstructure into a slow scale deterministic problem and a fast scale stochastic one. The slow scale problem corresponds to common engineering modeling practices where fine-scale microstructure is approximated by certain effective constitutive constants, which can be solved by using standard numerical solvers. The fast scale problem evaluates fluctuations of local quantities due to random microstructure, which is important for scale-coupling systems and particularly those involving failure mechanisms. The Green-function-based fast-scale solver developed in this research overcomes the curse-of-dimensionality commonly met in conventional approaches, by proposing a random field-based orthogonal expansion approach. The MSFEM formulated in this project paves the way to deliver the first computational tool/software on uncertainty quantification of multiscale systems. The applications of MSFEM on engineering problems will directly enhance our modeling capability on materials science (composite materials, nanostructures), geophysics (porous media, earthquake), biological systems (biological tissues, bones, protein folding). Continuous development of MSFEM will further contribute to the establishment of Multiscale Stochastic Modeling strategy, and thereby potentially to bring paradigm-shifting changes to simulation and modeling of complex systems cutting across multidisciplinary fields.
Perez, Jean Carlos; Chandran, Benjamin D. G.
2013-10-20
We present direct numerical simulations of inhomogeneous reduced magnetohydrodynamic (RMHD) turbulence between the Sun and the Alfvn critical point. These are the first such simulations that take into account the solar-wind outflow velocity and the radial inhomogeneity of the background solar wind without approximating the nonlinear terms in the governing equations. RMHD turbulence is driven by outward-propagating Alfvn waves (z {sup +} fluctuations) launched from the Sun, which undergo partial non-WKB reflection to produce sunward-propagating Alfvn waves (z {sup } fluctuations). We present 10 simulations with different values of the correlation time ?{sub c{sub sun}{sup +}} and perpendicular correlation length L{sub ?} of outward-propagating Alfvn waves at the coronal base. We find that between 15% and 33% of the z {sup +} energy launched into the corona dissipates between the coronal base and Alfvn critical point. Between 33% and 40% of this input energy goes into work on the solar-wind outflow, and between 22% and 36% escapes as z {sup +} fluctuations through the simulation boundary at r = r{sub A}. The z {sup } power spectra scale like k{sub perpendicular}{sup -?{sup }}, where k is the wavenumber in the plane perpendicular to B{sub 0}. In our simulation with the smallest value of ?{sub c{sub sun}{sup +}} (?2 minutes) and largest value of L{sub ?} (2 10{sup 4} km), we find that ?{sup +} decreases approximately linearly with increasing ln (r), reaching a value of 1.3 at r = 11.1 R{sub ?}. Our simulations with larger values of ?{sub c{sub sun}{sup +}} exhibit alignment between the contours of constant ?{sup +}, ?{sup }, ?{sub 0}{sup +}, and ?{sub 0}{sup -}, where ?{sup } are the Elssser potentials and ?{sub 0}{sup } are the outer-scale parallel Elssser vorticities.
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.
Vrnak, B.; ic, T.; Dumbovi?, M.; Temmer, M.; Mstl, C.; Veronig, A. M.; Taktakishvili, A.; Mays, M. L.; Odstr?il, D. E-mail: tzic@geof.hr E-mail: manuela.temmer@uni-graz.at E-mail: astrid.veronig@uni-graz.at E-mail: m.leila.mays@nasa.gov
2014-08-01
Real-time forecasting of the arrival of coronal mass ejections (CMEs) at Earth, based on remote solar observations, is one of the central issues of space-weather research. In this paper, we compare arrival-time predictions calculated applying the numerical ''WSA-ENLIL+Cone model'' and the analytical ''drag-based model'' (DBM). Both models use coronagraphic observations of CMEs as input data, thus providing an early space-weather forecast two to four days before the arrival of the disturbance at the Earth, depending on the CME speed. It is shown that both methods give very similar results if the drag parameter ? = 0.1 is used in DBM in combination with a background solar-wind speed of w = 400 km s{sup 1}. For this combination, the mean value of the difference between arrival times calculated by ENLIL and DBM is ?-bar =0.099.0 hr with an average of the absolute-value differences of |?|-bar =7.1 hr. Comparing the observed arrivals (O) with the calculated ones (C) for ENLIL gives O C = 0.3 16.9 hr and, analogously, O C = +1.1 19.1 hr for DBM. Applying ? = 0.2 with w = 450 km s{sup 1} in DBM, one finds O C = 1.7 18.3 hr, with an average of the absolute-value differences of 14.8 hr, which is similar to that for ENLIL, 14.1 hr. Finally, we demonstrate that the prediction accuracy significantly degrades with increasing solar activity.
Pelanti, Marica; Shyue, Keh-Ming
2014-02-15
We model liquidgas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of SaurelPetitpasBerry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquidvapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquidvapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.
Schey, Steve
2015-05-01
Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicles mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.
FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay...
The project will not only save taxpayers 1.2 million in annual energy costs, but will also save 650,000 gallons of diesel fuel and reduce air pollution by 26 tons of SO 2 and 15 ...
Universe Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Natl....
Office of Scientific and Technical Information (OSTI)
Dept. IASF, Milan Padua U. AIM, Saclay ASDC, Frascati INFN, Perugia Perugia U. NASA, Goddard NASA, Goddard CRESST, Greenbelt CSST, Baltimore SLAC KIPAC, Menlo Park...
Analysis of radiation exposure for naval personnel at Operation GREENHOUSE. Technical report
Thomas, C.; Weitz, R.; Gminder, R.; Goetz, J.; Stuart, J.
1982-07-30
The radiological environments are reconstructed for seven ships and the residence islands of Eniwetok Atoll that received fallout during operation GREENHOUSE (April-May 1951) as a result of Shots DOG, EASY, and ITEM. From the reconstructed operations and radiological environments, equivalent personnel film-badge doses are calculated and compared with actual film-badge data available for six of the ships. Considering the increased time spent topside by badged personnel as opposed to an average crewmember, correlation between calculations and dosimetry is good. Average shipboard doses range from a low of 0.13 rem for the crew of the USNS LT. ROBERT CRAIG to a high of 1.14 rem for the crew of the USNS SGT. CHARLES E. MOWER. Average doses on the residence islands of Eniwetok Atoll range from 2.75 rem to 3.10 rem.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Schilling, Oleg; Mueschke, Nicholas J.
2010-10-18
Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmoreand destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.less
Chen, Jacqueline H.; Hawkes, Evatt R.
2004-08-01
Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they also show less departure from the unstrained laminar value, suggesting that detailed modeling of this quantity may not be critical for the conditions considered. For all quantities investigated, including CO production, the R-to-P laminar configuration provides an improved description relative to the twin flame configuration, which predicts qualitatively incorrect trends and overestimates extinction.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Schilling, Oleg; Mueschke, Nicholas J.
2010-10-18
Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore » and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. Thus, these results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less
Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui
2014-09-30
A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.
Petrov, A.V.; Samsonova, L.M.; Vasil`kova, N.A.; Zinin, A.I.; Zinina, G.A. |
1994-06-01
Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used.
Auletta, C.; Raiconi, G.; De Luca, R.; Pace, S.
1995-05-01
We have performed numerical simulations of a field-cooled dc susceptibility experiment carried out for granular superconductors by modeling these systems with a simple Josephson-junction array proposed by the authors. By this analysis the temperature dependence of the positive field-cooled susceptibility at very low values of the applied magnetic field, observed by Braunisch {ital et} {ital al}. [Phys. Rev. Lett. 68, 1908 (1992)] for some ceramic superonductors, has been reproduced and interpreted.
Priimak, Dmitri
2014-12-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.
Skibinski, Jakub; Wejrzanowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02507 Warsaw (Poland); Caban, Piotr [Institute of Electronic Materials Technology, Wolczynska 133, 01919 Warsaw (Poland); Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering Woloska, 141, 02507 Warsaw (Poland)
2014-10-06
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.
Martin, V.; Egido, J.L.; Khoo, T.L.; Lauritsen, T.
1995-06-01
The electromagnetic decay of the nuclei {sup 152,154,156}Dy is analyzed using microscopic Hartree-Fock calculations at finite temperature. The theoretical collective transition probabilities are implemented in numerical simulations to produce theoretical spectra. Thermal shape fluctuations are also taken into account. The inclusion of these correlation is crucial in order to understand the main features of the collective {ital E}2 spectra of these isotopes at different energies. The theoretical calculations suggest a shape change as responsible for the unusual features of the spectrum of the nucleus {sup 154}Dy at high energy.
Prexl, A.; Hoffmann, H. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Golle, M. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Institute of Punching and Blanking, Pforzheim University, D-75175 Pforzheim (Germany); Kudrass, S.; Wahl, M. [AUDI AG, D-85045 Ingolstadt (Germany)
2011-01-17
Springback prediction and compensation is nowadays a widely recommended discipline in finite element modeling. Many researches have shown an improvement of the accuracy in prediction of springback using advanced modeling techniques, e.g. by including the Bauschinger effect. In this work different models were investigated in the commercial simulation program AutoForm for a large series production part, manufactured from the dual phase steel HC340XD. The work shows the differences between numerical drawbead models and geometrically modeled drawbeads. Furthermore, a sensitivity analysis was made for a reduced kinematic hardening model, implemented in the finite element program AutoForm.
Scheibe, Timothy D.; Richmond, Marshall C.
2002-01-30
This paper describes a numerical model of juvenile salmonid migration in the Columbia and Snake Rivers. The model, called the Fish Individual-based Numerical Simulator or FINS, employs a discrete, particle-based approach to simulate the migration and history of exposure to dissolved gases of individual fish. FINS is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories can be input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. Therefore, FINS serves as a critical linkage between hydrodynamic models of the river system and models of biological impacts. FINS was parameterized and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. A quasi-inverse approach was used to decouple fish swimming movements from advection with the local water velocity, allowing inference of time series of non-advective displacements of individual fish from the radiotelemetry data. Statistical analyses of these displacements are presented, and confirm that strong temporal correlation of fish swimming behavior persists in some cases over several hours. A correlated random-walk model was employed to simulate the observed migration behavior, and parameters of the model were estimated that lead to close correspondence between predictions and observations.
Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.
2013-09-26
In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.
D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma
2002-11-22
In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.
Numerical Modeling | Open Energy Information
4.0 4.1 Jerome Sacks,William Welch,Toby Mitchell,Henry Wynn. 1989. Design and Analysis of Computer Experiments. Statistical Science. . Page Area Activity Start Date Activity End...
A Numerical Sensitivity Study of...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
4 hours Kaolinite Immersion Freezing Rate (log(L-s-)) No Solution Effect 30 % Sol. Mass 50 % Sol. Mass 70 % Sol. Mass 95 % Sol. Mass Imm. Freezing Rate (log10(L -1 s -1...
Numerical Modeling of HCCI Combustion
Broader source: Energy.gov [DOE]
Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.
Boiler Upgrades and Decentralizing Steam Systems Save Water and...
Office of Environmental Management (EM)
Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana...
LaVenue, A.M.; Haug, A.; Kelley, V.A.
1988-03-01
This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.
Movshovitz, Naor; Asphaug, Erik; Korycansky, Donald
2012-11-10
We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet Shoemaker-Levy 9, an event that occurred during a 1.33 R encounter with Jupiter in 1992 July. Tidal disruption of the comet nucleus led to a chain of sub-nuclei {approx}100-1000 m diameter; these went on to collide with the planet two years later. They were intensively studied prior to and during the collisions, making SL9 the best natural benchmark for physical models of small-body disruption. For the first time in the study of this event, we use numerical codes treating rubble piles as collections of polyhedra. This introduces forces of dilatation and friction, and inelastic response. As in our previous studies we conclude that the progenitor must have been a rubble pile, and we obtain approximately the same pre-breakup diameter ({approx}1.5 km) in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to grain locking and dilatancy, so that even in the absence of friction or other dissipation we find that disruption is overall more difficult than in our spheres-based simulations. We constrain the comet's bulk density at {rho}{sub bulk} {approx} 300-400 kg m{sup -3}, half that of our spheres-based predictions and consistent with recent estimates derived from spacecraft observations.
Kriba, Ilhem; Djebaili, A.
2008-09-23
Plasma spray processes have been widely used to produce high performance coatings of a wide range of Materials (metallic, non-metallic, ceramics), offering protection from, eg. wear, extreme temperature, chemical attack and environmental corrosion. To obtain good quality coatings, spray parameters must be carefully selected. Due to the large variety in process parameters, it is difficult to optimize the process for each specific coating and substrate combinations. Furthermore modelling the spray process allows a better understanding of the process sequences during thermal spraying. Good agreement of the virtual spraying process with the real coating formation is achieved by modelling the particular process steps. The simulation of coating formation to estimate the process parameters is an important tool to develop new coating structures with defined properties. In this work, the process of plasma sprayed coating has been analyzed by numerical simulation. Commercial code is used to predict the plasma jet characteristics, plasma--particle interaction, and coating formation. Using this model we can obtain coating microstructure and characteristics which form a foundation for further improvement of an advanced ceramic coating build up model.
Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)
2011-01-15
Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)
Jones, J.M.; Jirka, G.H.; Caughey, D.A.
1985-01-01
The development of predictive techniques for the predominantly horizontal, layered fluid motions that result when a continuous buoyant source is discharged into an ambient fluid at a bounding surface, interface or equilibrium level is studied. Although the numerical techniques developed are applicable to general discharge configurations, the model development is focused on the particular case of a radial source of buoyancy and momentum discharged into a uniform ambient crossflow. The resulting density current is analyzed by application of the depth-integrated hydrodynamic equations. The density current dynamics are shown to vary with the relative intermediate- to near-field strengths, as characterized by the ratio of their respective length scales. The complete range of this interaction, from small near-field effects to large near-field effects, is investigated. Results are presented as the depth integrated velocity and current thickness distributions for different field strength values. The model predictions are compared to two sets of laboratory data and to limited field information, involving a river discharge and a submerged outfall into the ocean. Good agreement is obtained in all cases. Finally, the model results are applied to the prediction of a river plume into a coastal ocean current and to the continuous discharge from an OTEC plant operating in the stratified ocean. In both cases, the results indicate the significant horizontal extent (order of several kilometers) of the resulting current, together with their limited vertical extent (order of several meters). Their strong sensitivity to ambient current magnitude and stratification strength is demonstrated.
Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.
2012-06-01
Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.
Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.
2012-03-19
To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.
Houze, Jr., Robert A.
2013-11-13
We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.
Pruess, K.; Nordbotten, J.
2010-12-28
We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the groundwater column to collapse ahead of the plume tip. Increased resistance to vertical flow of aqueous phase in anisotropic media leads to reduced speed of updip plume advancement. Vertical equilibrium models that ignore effects of vertical flow will overpredict the speed of plume advancement. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulations include dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-) horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was developed to represent convective enhancement of CO{sub 2} dissolution. This process is found to greatly reduce the thickness of the CO{sub 2} plume, but, for the parameters used in our simulations, does not affect the speed of plume advancement.
Schey, Steve; Francfort, Jim
2015-07-01
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicles mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.
MH Lane
2006-02-15
This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.