Sample records for numerical modeling portfolio

  1. Optimal portfolios using Linear Programming models

    E-Print Network [OSTI]

    Cpu

    2002-10-17T23:59:59.000Z

    Feb 12, 2003 ... The problem. The portfolio manager Sigma wants to construct an optimal portfolio for a customer. .... It is easy to show that it is also possible ...

  2. Modeling Generator Power Plant Portfolios and Pollution Taxes

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice · Each Genco has a portfolio of power plants · Each power plant can have different supply costs and transaction costs · Supply costs can reflect capital

  3. Resource Portfolio Model's Determination of Conservation's Cost-Effectiveness1

    E-Print Network [OSTI]

    ,008 average megawatts of conservation8. The electricity price forecast used for this initial estimResource Portfolio Model's Determination of Conservation's Cost- Effectiveness1 The regional Resource Portfolio Model (RPM) finds large amounts of conservation cost effective. The cost of some

  4. The electricity portfolio simulation model (EPSim) technical description.

    SciTech Connect (OSTI)

    Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

    2005-09-01T23:59:59.000Z

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 to 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy's (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.

  5. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  6. R i l P tf li M d lRegional Portfolio Model Software Redevelopment

    E-Print Network [OSTI]

    R i l P tf li M d lRegional Portfolio Model Software Redevelopment Request for Proposals #12;II. Services Desired by the CouncilII. Services Desired by the Council Software redevelopment of the Council's Regional Software redevelopment of the Council s Regional Portfolio Model (RPM) Redeveloped

  7. FROM BUSINESS MODEL TO BUSINESS MODEL PORTFOLIO IN THE EUROPEAN BIOPHARMACEUTICAL INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FROM BUSINESS MODEL TO BUSINESS MODEL PORTFOLIO IN THE EUROPEAN BIOPHARMACEUTICAL INDUSTRY 1 GAEL and of the anticipations of consumers' needs, the business model approach complements corporate and business strategy approaches. Firms combine several business models simultaneously to deliver value to different markets

  8. Tractable Robust Expected Utility and Risk Models for Portfolio ...

    E-Print Network [OSTI]

    Mar 13, 2008 ... for the OCE risk measures and optimal portfolios are provided for ...... The Journal of Financial and Quantitative Analysis, 12(2):291–313, 1977.

  9. Modeling the Impact of Product Portfolio on the Economic and Environmental Performance of Recycling Systems

    E-Print Network [OSTI]

    Dahmus, Jeffrey B.

    hrough the development of a general model of electronics recycling systems, the effect of product portfolio choices on economic and environmental system performance is explored. The general model encompasses the three main ...

  10. A credit risk model for agricultural loan portfolios under the new Basel Capital Accord

    E-Print Network [OSTI]

    Kim, Juno

    2005-08-29T23:59:59.000Z

    The New Basel Capital Accord (Basel II) provides added emphasis to the development of portfolio credit risk models. An important regulatory change in Basel II is the differentiated treatment in measuring capital requirements for the corporate...

  11. Complexity cost quantification and modeling for strategic portfolio management

    E-Print Network [OSTI]

    Ma, Jan, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This project explores portfolio management and planning through effectively reducing complexity within operations. We apply this to a major healthcare company (referred to as Company X). The anticipated launch of new ...

  12. The CouncilThe Council''s Regionals Regional Portfolio ModelPortfolio Model

    E-Print Network [OSTI]

    Summer Winter Coal Operating CostsOperating Costs Model Overview #12;Page 3 5 Sources of Uncertainty Power Plan All of those to the left, except, perhaps, aluminum price Power plant construction costs, and labor costs Retirement Risk Carrying the forward-going fixed cost of an unused plant Undervaluing

  13. Numerical Modeling of HCCI Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

  14. Optimal Asset Allocation with Factor Models for Large Portfolios

    E-Print Network [OSTI]

    Pesaran, M Hashem; Zaffaroni, P

    ? ?) of the various tangency portfolio weights to be considered below, we further require the following assumption: Assumption 4 (mixed limit conditions) At any given point in time t as N ?? (B? e?¯?)?H?1t (B? e?¯?) N ?p At > 0, (10) B?H?1t H?1t B N ?p Ct ? 0, (11) 7... ?1 ? er0,t?1) ??1t?1(µt?1 ? er0,t?1). (43) Theorem 3 (minimum variance portfolio) 21 (i) Let w?mvit = N?1 (µ? ? r0t) et e ? iH?1t {(?t ? er0t) + [at(?t ? er0t)?¯? ? (ct ? atr0t)B]A?1t ?¯ } . (44) When conditions (7), (10), (11), (12), (13), (14), (16...

  15. An estimation-free, robust CVaR portfolio allocation model

    E-Print Network [OSTI]

    2007-03-27T23:59:59.000Z

    Mar 27, 2007 ... of these models have produced great theoretical impact, their practical ... the riskfree interest rate, and the asset returns, for dynamic portfolio models (cf. [12]). ...... Therefore, all the analysis and results presented through out the paper will ... [8] J. ?Cerbáková, Worst-case Var and CVaR, Operations Research ...

  16. Importance Sampling Methods for Estimating Convex Risk Measures in Portfolio Credit Risk Models

    E-Print Network [OSTI]

    Grübel, Rudolf

    obligors. Owing to the complexity of realistic models, quantitative risk analysis typically requires Monte the shortcomings of the industry standard Value-at-Risk (VaR). Our analysis demonstrates that standard Monte risk analysis to realistic credit portfolio models. During the past decade an intense effort has been

  17. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    than a third arises from generating electricity. With the accumulating evidence of global warming, any affect the equilibrium electric power supply chain network production outputs, the transactions betweenModeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain

  18. Studied models Numerical scheme

    E-Print Network [OSTI]

    Helluy, Philippe

    : Sound speed: c0 = 1500m/s Pressure: p0 = 105Pa Density: 0 = 1000kg/m3 Vapor: 1 = 1.4 (1 = 0) Water: 2. Helluy, S. M¨uller H´el`ene Mathis Micro-Macro Modelling and Simulation of Liquid-Vapour Flows #12 approximations H´el`ene Mathis Micro-Macro Modelling and Simulation of Liquid-Vapour Flows #12;Studied models

  19. January 2006 L-1 Appendix L: The Portfolio Model

    E-Print Network [OSTI]

    of uncertainties, like load and hydro generation, are to some extent separable from the rest of the model. (This the characteristics and treatment of independent power producers (IPPs). 1 Chapter 6 defines the terms "plan," "future® Monte Carlo games are prepared and how the OptQuestTM stochastic optimization application is configured

  20. Growth-optimal investments and numeraire portfolios under transaction costs: An analysis based on the von Neumann-Gale model

    E-Print Network [OSTI]

    Bahsoun, Wael; Taksar, Michael I

    2009-01-01T23:59:59.000Z

    The aim of this work is to extend the capital growth theory developed by Kelly, Breiman, Cover and others to asset market models with transaction costs. We define a natural generalization of the notion of a numeraire portfolio proposed by Long and show how such portfolios can be used for constructing growth-optimal investment strategies. The analysis is based on the classical von Neumann-Gale model of economic dynamics, a stochastic version of which we use as a framework for the modelling of financial markets with frictions.

  1. Bayesian Network Models of Portfolio Risk and Return

    E-Print Network [OSTI]

    Shenoy, Catherine; Shenoy, Prakash P.

    2000-01-01T23:59:59.000Z

    . Finance models focus on the historical, quantitative relationships between economic variables. However, financial analysts usually combine historical data with qualitative information and judge how this information affects stock returns, market return... Rate (IR), Stock Market (SM), Oil Industry (OI), and Oil Company Stock Price (SP). At the quantitative level, we specify conditional probability distributions for each variable in the network. Each variable has a set of possible values called its state...

  2. Essays on Bank Optimal Portfolio Choice under Liquidity Constraint

    E-Print Network [OSTI]

    Kim, Eul Jin

    2012-10-19T23:59:59.000Z

    portfolio choices under liquidity constraints. Our theory predicts that liquidation plays an important role in a bank's portfolio model. Even though liquidation is an off-equilibrium phenomenon, banks can have rich loan portfolios due to the possibility...

  3. Tactical Portfolio Construction

    E-Print Network [OSTI]

    Chen, Yue

    2012-01-01T23:59:59.000Z

    Chapter 2 Portfolio Construction Data source In thisTactical Portfolio Construction A thesis submitted inTHESIS Tactical Portfolio Construction by Yue Chen Master of

  4. FRA-MOWGS2MKT-049 Quantitative (Credit) Portfolio Management

    E-Print Network [OSTI]

    Fulmek, Markus

    FRA-MOWGS2MKT-049 Quantitative (Credit) Portfolio Management Topics in Banking and Finance 24 Mai Concepts of (Credit) Portfolio Management 2. Definition of Risk Appetite 3. Portfolio Optimization Contents management models Passive Defensive Reactive Active Traditional banking Portfolio modelling & analysis Ex

  5. Optimization of a petroleum producing assets portfolio: development of an advanced computer model

    E-Print Network [OSTI]

    Aibassov, Gizatulla

    2009-05-15T23:59:59.000Z

    Portfolios of contemporary integrated petroleum companies consist of a few dozen Exploration and Production (E&P) projects that are usually spread all over the world. Therefore, it is important not only to manage individual projects by themselves...

  6. Numerical wind speed simulation model

    SciTech Connect (OSTI)

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01T23:59:59.000Z

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  7. Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios

    E-Print Network [OSTI]

    Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/30­12/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate

  8. A Micro-foundations Model of Dollarization with Network Externalities and Portfolio Choice: The

    E-Print Network [OSTI]

    : The Case of Bolivia¤ John T. Cuddington, Rose Mary R. Garcia, and Daniel M. Westbrook Georgetown University-in°ationary Bolivia and Peru to be well explained by standard `portfolio balance' variables. The primary aim patterns in Bolivia. ¤ This paper closely resembles Chapter 5 of Rose Mary Garcia's Ph.D. dissertation

  9. High performance computing and numerical modelling

    E-Print Network [OSTI]

    ,

    2014-01-01T23:59:59.000Z

    Numerical methods play an ever more important role in astrophysics. This is especially true in theoretical works, but of course, even in purely observational projects, data analysis without massive use of computational methods has become unthinkable. The key utility of computer simulations comes from their ability to solve complex systems of equations that are either intractable with analytic techniques or only amenable to highly approximative treatments. Simulations are best viewed as a powerful complement to analytic reasoning, and as the method of choice to model systems that feature enormous physical complexity such as star formation in evolving galaxies, the topic of this 43rd Saas Fee Advanced Course. The organizers asked me to lecture about high performance computing and numerical modelling in this winter school, and to specifically cover the basics of numerically treating gravity and hydrodynamics in the context of galaxy evolution. This is still a vast field, and I necessarily had to select a subset ...

  10. Lattice Boltzmann Model for Numerical Relativity

    E-Print Network [OSTI]

    Ilseven, E

    2015-01-01T23:59:59.000Z

    In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  11. Systems Portfolio Guide A Resource For Creating Your Systems Portfolio

    E-Print Network [OSTI]

    Amin, S. Massoud

    Systems Portfolio Guide A Resource For Creating Your Systems Portfolio Academic Quality Improvement Program Contents The Systems Portfolio........................................................................................................... 9 Using the Systems Portfolio to document the Criteria for Accreditation

  12. Numerical modeling of vertical cavity semiconductor lasers

    SciTech Connect (OSTI)

    Chow, W.W.; Hadley, G.R.

    1996-08-01T23:59:59.000Z

    A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.

  13. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01T23:59:59.000Z

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  14. Portfolio Manager Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Manager 3 | TAP Webcast eere.energy.gov What is Portfolio Manager? Free, web-based tool for benchmarking existing buildings Measure and track the energy use of...

  15. A numerical model of aerosol scavenging

    SciTech Connect (OSTI)

    Bradley, M.M.; Molenkamp, C.R.

    1991-10-01T23:59:59.000Z

    Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate.

  16. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

  17. Numerical Modeling of the Nucleation Conditions of Petal-Centerline...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Numerical Modeling of the Nucleation Conditions of...

  18. Optimisation of physical and financial power purchase portfolios

    E-Print Network [OSTI]

    2003-03-10T23:59:59.000Z

    protect a power purchase portfolio against market risks. Facing this question, a multicriterial linear stochastic optimisation model has been developed. It is based

  19. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's existing non-mandated renewable energy objective, creating a mandatory renewable portfolio standard (RPS) called the Renewable Energy Standard ...

  20. Columbia- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water and...

  1. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric-utility restructuring law. In 1999, Maine's Public Utility Commission (PUC) adopted rules...

  2. Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models

    E-Print Network [OSTI]

    Tackley, Paul J.

    Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models John W. Hernlund,1,2 Paul J. Tackley,1,3 and David J. Stevenson4 Received 18 November 2006; revised 18 October 2007 diffusely extending lithosphere is studied using numerical convection models covering a wide range

  3. Evolution of the Bohemian Massif: Insights from numerical modeling

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Evolution of the Bohemian Massif: Insights from numerical modeling Petra Maierová Supervisor: Doc of Geophysics Faculty of Mathematics and Physics Charles University in Prague #12;February 4, 2013Evolution Conclusions Outline #12;February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 3

  4. NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE

    E-Print Network [OSTI]

    Abdou, Mohamed

    NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE Xiao-Yong Luo, Ming-Jiu Ni for multiphase flows. A con- tinuum surface force (CSF) tension model is used in the present cases. Phase change

  5. Material model library for explicit numerical codes

    SciTech Connect (OSTI)

    Hofmann, R.; Dial, B.W.

    1982-08-01T23:59:59.000Z

    A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.

  6. A numerical model of perturbation gas chromatography

    E-Print Network [OSTI]

    DeBarro, Marc Joseph

    1985-01-01T23:59:59.000Z

    the polymer and the solvent. Flory (1965) extended his original model to account for the volume changes in the polymer phase. A further model was suggested by Sanchez and Lacombe (1978) based on s. lattice fluid theory. For the system examined in this work...

  7. Numerical studies of a simple Coulomb blockade model

    E-Print Network [OSTI]

    Shao, Jianfeng

    1991-01-01T23:59:59.000Z

    NUMERICAL STUDIES OF A SIMPLE COULOMB BLOCKADE MODEL A Thesis by JIANFENG SHAO Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991... Major Subject: Physics NUMERICAL STUDIES OF A SIMPLE COULOMB BLOCKADE MODEL A Thesis by JIANFENG SHAO Approved as to style and content by: Roland E, Allen (Chair of Committee) /, 1 r oseph H. R s ( Member) Chin B. Su (Member) Richard L...

  8. Category:Numerical Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury VaporTemplatespage? For

  9. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a renewable portfolio standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  10. Clean Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

  11. Numerical Models of Blackbody-Dominated GRBs

    E-Print Network [OSTI]

    Cuesta-Martínez, Carlos F; Mimica, Petar; Thöne, Christina C; de Ugarte-Postigo, Antonio

    2015-01-01T23:59:59.000Z

    Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by the absence of a typical afterglow, long durations and the presence of a significant thermal component following the prompt gamma-ray emission. GRB 101225A (the `Christmas burst') is a prototype of this class. A plausible progenitor system for it, and for the BBD-GRBs, is the merger of a neutron star (NS) and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of an ultrarelativistic jet through the enviroment created by such a merger and we compute the whole radiative signature, both thermal and non-thermal, of the jet dynamical evolution. We find that the thermal emission originates from the interaction between the jet and the hydrogen envelope ejected during the NS/He merger.

  12. Diffusion and Dispersion Characterization of a Numerical Tsunami Model

    E-Print Network [OSTI]

    Tolkova, Elena

    and numerical model. This plan is currently under devel- opment at the NCTR and a proof of concept has been-computed database of unit source solutions to determine the offshore tsunami waves. It then uses the MOST model (in nested grid mode) to propagate the offshore waves onshore for select regions. The critical factor

  13. Numerical Modeling of Brain Dynamics in Traumatic Situations -Impulsive Translations

    E-Print Network [OSTI]

    Burtscher, Martin

    .S.A. Abstract We numerically model the brain dy- namics during and after impulsive head translations using brain injuries appear among boxers and shaken babies despite minimal rotations of their heads. Modeling head translations also helps understand the brain dynamics during head rotations about an arbitrary

  14. Numerical modelling and analysis of a room temperature magnetic

    E-Print Network [OSTI]

    Numerical modelling and analysis of a room temperature magnetic refrigeration system Thomas Frank and analysis of a room temperature magnetic refrigeration system Department: Fuel Cells and Solid State-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration

  15. 155: Numerical Models of Groundwater Flow and Transport

    E-Print Network [OSTI]

    Sorek, Shaul

    155: Numerical Models of Groundwater Flow and Transport EKKEHARD HOLZBECHER1 AND SHAUL SOREK2 1. #12;2402 GROUNDWATER Calibration as a task cannot be separated from the other tasks. Inverse modeling of the Negev, J. Blaustein Institutes for Desert Research, Sede Boker, Israel The article gives an introduction

  16. Quadrennial Technology Review Workshop Portfolios | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Review Workshop Portfolios Quadrennial Technology Review Workshop Portfolios Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop...

  17. ENERGY STAR Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate Portfolio Manager; add a property and enter details...

  18. Numerical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal RegisterImplementation andNumerical simulations

  19. Robust Growth-Optimal Portfolios

    E-Print Network [OSTI]

    2015-04-13T23:59:59.000Z

    Modern portfolio theory based ...... Optimal gambling systems for favourable games. ... International Symposium on Computer Aided Control Systems Design.

  20. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  1. Friction versus dilation revisited: Insights from theoretical and numerical models

    E-Print Network [OSTI]

    Einat, Aharonov

    Friction versus dilation revisited: Insights from theoretical and numerical models N. Makedonska,1 controlled by the frictional strength of the fault gouge, a granular layer that accumulates between the fault friction coefficient) of such granular layers is the systems resistance to dilation, a byprocess

  2. Numerical Modeling of the 2011 Tohoku Earthquake Tsunami

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Evolution of Ocean WAVEs) to reconstruct the tsunami across the Pacific and its transformation aroundNumerical Modeling of the 2011 Tohoku Earthquake Tsunami Yoshiki Yamazaki Post-doctoral Research 2011 Tohoku earthquake (Mw 9.0) generated a massive tsunami devastated the entire Pacific coast

  3. Department of Numerical Analysis Modeling the Austenite Ferrite

    E-Print Network [OSTI]

    Vuik, Kees

    Department of Numerical Analysis Modeling the Austenite Ferrite Transformation by Cellular Ferrite Transformation by Cellular Automaton Improving Interface Stability Master of Science Thesis. Computational Materials Science 48.3 (2010): 692-699] for the austenite to ferrite transformation in low

  4. Direct Numerical Simulations and Modeling of Jets in Crossflow

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Direct Numerical Simulations and Modeling of Jets in Crossflow A THESIS SUBMITTED TO THE FACULTY. i #12;To my parents and my grandparents, and to Ramnath ii #12;Abstract Jets in crossflow are used to study the different aspects of round jets in a crossflow. The first problem studies

  5. ACHIEVING CALIFORNIA'S 33 PERCENT RENEWABLE PORTFOLIO

    E-Print Network [OSTI]

    affect estimated overall costs and risks associated with alternate portfolios of generating resources........................................................................................................ 1 Chapter 2: Using the Capital asset pricing model approach to estimate the market price referent ...... system costs and, importantly, examine cost/risk interrelationships associated with this mandate

  6. On numerical considerations for modeling reactive astrophysical shocks

    SciTech Connect (OSTI)

    Papatheodore, Thomas L.; Messer, O. E. Bronson, E-mail: tpapathe@utk.edu, E-mail: bronson@ornl.gov [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-02-10T23:59:59.000Z

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  7. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    Reinecke, M; Niemeyer, J C

    2002-01-01T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  8. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    M. Reinecke; W. Hillebrandt; J. C. Niemeyer

    2001-11-26T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  9. Causal Network Methods for Integrated Project Portfolio Risk Analysis

    E-Print Network [OSTI]

    Govan, Paul

    2014-08-06T23:59:59.000Z

    Corporate portfolio risk analysis is of primary concern for many organizations, as the success of strategic objectives greatly depends on an accurate risk assessment. Current risk analysis methods typically involve statistical models of risk...

  10. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15T23:59:59.000Z

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  11. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect (OSTI)

    Du, Qiang

    2014-11-12T23:59:59.000Z

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous study of nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.

  12. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect (OSTI)

    White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY

    2011-06-10T23:59:59.000Z

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  13. Finance 360 Section 001 (11312) Applied Portfolio Management

    E-Print Network [OSTI]

    Young, Paul Thomas

    valuation methods portfolio theory equity, debt, derivatives and real asset trading portfolio creation

  14. Numerical Modeling of Charged Black Holes with Massive Dilaton

    E-Print Network [OSTI]

    T. L. Boyadjiev; P. P. Fiziev

    2003-11-28T23:59:59.000Z

    In this paper the static, spherically symmetric and electrically charged black hole solutions in Einstein-Born-Infeld gravity with massive dilaton are investigated numerically. The Continuous Analog of Newton Method (CANM) is used to solve the corresponding nonlinear multipoint boundary value problems (BVPs). The linearized BVPs are solved numerically by means of collocation scheme of fourth order. A special class of solutions are the extremal ones. We show that the extremal horizons within the framework of the model satisfy some nonlinear system of algebraic equations. Depending on the charge $q$ and dilaton mass $\\gamma$, the black holes can have no more than three horizons. This allows us to construct some Hermite polynomial of third order. Its real roots describe the number, the type and other characteristics of the horizons.

  15. On Numerical Considerations for Modeling Reactive Astrophysical Shocks

    SciTech Connect (OSTI)

    Papatheodore, Thomas L [ORNL] [ORNL; Messer, Bronson [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.

  16. Alternative Energy Portfolio Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Portfolio Standard Provider Pennsylvania Public Utility Commission Pennsylvania's Alternative Energy Portfolio Standard (AEPS), created by S.B. 1030 on November 30, 2004,...

  17. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 Grand Challenge Portfolio: Driving Innovations in...

  18. Fracture Density Estimation Using Spectral Analysis of Reservoir Reflections: A Numerical Modeling Approach

    E-Print Network [OSTI]

    Pearce, Fred

    2003-01-01T23:59:59.000Z

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir

  19. Progress report on LBL's numerical modeling studies on Cerro Prieto

    SciTech Connect (OSTI)

    Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.

    1989-04-01T23:59:59.000Z

    An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.

  20. Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

    E-Print Network [OSTI]

    Tunc, Sait

    2012-01-01T23:59:59.000Z

    We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations ca...

  1. Research Portfolio Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading Room Electronic PublicResearch Portfolio

  2. Numerical modeling of multiphase plumes: a comparative study between two-fluid and mixed-fluid integral models 

    E-Print Network [OSTI]

    Bhaumik, Tirtharaj

    2005-11-01T23:59:59.000Z

    Understanding the physics of multiphase plumes and their simulation through numerical modeling has been an important area of research in recent times in the area of environmental fluid mechanics. The two renowned numerical modeling types...

  3. A numerical model of aerosol scavenging: Part 1, Microphysics parameterization

    SciTech Connect (OSTI)

    Molenkamp, C.R.; Bradley, M.M.

    1991-09-01T23:59:59.000Z

    We have developed a three-dimensional numerical model (OCTET) to simulate the dynamics and microphysics of clouds and the transport, diffusion and precipitation scavenging of aerosol particles. In this paper we describe the cloud microphysics and scavenging parameterizations. The representation of cloud microphysics is a bulk- water parameterization which includes water vapor and five types of hydrometeors (cloud droplets, rain drops, ice crystals, snow, and graupel). A parallel parameterization represents the scavenging interactions between pollutant particles and hydrometeors including collection of particles because of condensation nucleation, Brownian and phoretic attachment, and inertial capture, resuspension because of evaporation and sublimation; and transfer interactions where particles collected by one type of hydrometeor are transferred to another type of freezing, melting, accretion, riming and autoconversion.

  4. Effective viscosity of active suspensions: Three-dimensional numerical modeling

    E-Print Network [OSTI]

    Levan Jibuti; Walter Zimmermann; Salima Rafaï; Philippe Peyla

    2014-12-10T23:59:59.000Z

    A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of its two flagella. The model reveals unusual angular orbits of the active swimmer under a linear shear flow. Namely, the swimmer sustains orientation transiently across the flow when flagella plane is perpendicular to the shear plane, and amplify the shear-induced rotation along the flow. Such behavior is a result of the interplay between shear-induced deformation and swimmer's periodic beating motion that exerts internal torques on the torque-free swimmer. This particular behavior has some significant consequences on the rheological properties of the suspension that tends to confirm previous experimental results [Phys. Rev. Lett. 104, 098102 (2010)]. We calculated the intrinsic viscosity of the suspension with such isolated modeled microswimmers (dilute case) in shear flow using numerical simulations based on Rotne-Prager approximation. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to non-active ones in accordance with previous experimental measurements. A major enhancement of the active swimmer viscosity occurs due to the effectively extended shape of the deformable swimming cells. We also recover the experimentally observed shear thinning behavior.

  5. Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory

    E-Print Network [OSTI]

    Zhihao Ge; Ruihua Li

    2014-12-25T23:59:59.000Z

    In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.

  6. Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory

    E-Print Network [OSTI]

    Zhihao Ge; Ruihua Li

    2015-03-08T23:59:59.000Z

    In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.

  7. 2014 SunShot Initiative Portfolio Book: Tackling Challenges in...

    Energy Savers [EERE]

    & Publications Download the SunShot Initiative 2014 Portfolio 2014 SunShot Initiative Portfolio Book: Photovoltaics 2014 SunShot Initiative Portfolio Book: Systems Integration...

  8. Diversifying Project Portfolios for Utility Energy Service Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversifying Project Portfolios for Utility Energy Service Contracts Diversifying Project Portfolios for Utility Energy Service Contracts Building a diversified project portfolio...

  9. AI-Based Simulation: An Alternative to Numerical Simulation and Modeling

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    : Numerical Modeling, Simulation, Artificial Intelligence, Data Min- ing, Reservoir Modeling, Reservoir data for brown fields. The run-time of AI-Based reservoir models that provide complete field responses Computational Fluid Dynamics (CFD) to Numer- ical Reservoir Simulation (NRS) most of the computational modeling

  10. Consistency of robust portfolio estimators

    E-Print Network [OSTI]

    2006-10-19T23:59:59.000Z

    Oct 6, 2006 ... The effect was made visible by examining stability of portfolio .... where W(Z, q) denotes the Wishart distribution with scale matrix Z ? Rn×n.

  11. Resource portfolio management: bundling process

    E-Print Network [OSTI]

    Worthington, William John

    2009-05-15T23:59:59.000Z

    Managers within firms seek to align their portfolio of capabilities to best respond to their competitive environment. Processes used by firms to acquire resources, bundle those resources into capabilities, and then leverage those capabilities...

  12. ENERGY STAR Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

  13. Guam- Renewable Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

  14. Fragility of CVaR in portfolio optimization

    E-Print Network [OSTI]

    Lim, A.E.B.; Shanthikumar, J.G.; Vahn, G.-Y.

    2009-01-01T23:59:59.000Z

    of CVar in portfolio optimization A.E.B. Lim, UC Berkeleyof CVaR in portfolio optimization A . E . B . Lim* J.G.data-driven portfolio optimization. We show that portfolios

  15. Numerical study of energy diffusion in King models

    E-Print Network [OSTI]

    Tom Theuns

    1995-11-07T23:59:59.000Z

    The energy diffusion coefficients D_n(E) (n=1,2) for a system of equal mass particles moving self-consistently in an N-body realisation of a King model are computed from the probability per unit time, P(E, Delta E), that a star with initial energy E will undergo an energy change Delta E. In turn, P is computed from the number of times during the simulation that a particle in a state of given energy undergoes a transition to another state. These particle states are defined directly from the time evolution of E by identifying them with the event occuring between two local maxima in the E(t) curve. If one assumes next that energy changes are uncorrelated between different states, one can use diffusion theory to compute D_n(E). The simulations employ N=512, 2048,... , 32768 particles and are performed using an implementation of Aarseth's direct integrator N-body1 on a massively parallel computer. The more than seven million transitions measured in the largest N simulation provide excellent statistics. The numerically determined D(E)'s are compared against their theoretical counterparts which are computed from phase-space averaged rates of energy change due to independent binary encounters. The overall agreement between them is impressive over most of the energy range, notwithstanding the very different type of approximations involved, giving considerable support to the valid usage of these theoretical expressions to simulate dynamical evolution in Fokker-Planck type calculations.

  16. Representing Cloud Processing of Aerosol in Numerical Models

    SciTech Connect (OSTI)

    Mechem, D.B.; Kogan, Y.L.

    2005-03-18T23:59:59.000Z

    The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

  17. Combining a Renewable Portfolio Standard with a Cap-and-Trade Policy: A General Equilibrium Analysis

    E-Print Network [OSTI]

    renewable sources such as wind, solar, and biomass. I use a computable general equilibrium (CGE) modelCombining a Renewable Portfolio Standard with a Cap-and-Trade Policy: A General Equilibrium, Technology and Policy Program #12;#12;3 Combining a Renewable Portfolio Standard with a Cap-and-Trade Policy

  18. An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling

    E-Print Network [OSTI]

    Williamson, Mark

    An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark Williamson Working Paper 83 #12;An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark for long time period simulations and large ensemble studies in Earth system models of intermediate

  19. Numerical analysis of a model for Nickel-Iron alloy electrodeposition on rotating disk

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical analysis of a model for Nickel-Iron alloy electrodeposition on rotating disk electrode N the nickel-iron electrodeposition process, we have developed one-dimensional numerical model. This model ad can predict characteristic features of the nickel-iron sys- tem. this work was supported

  20. Numerical modelling of hyperbolic conservation laws using bicharacteristics

    E-Print Network [OSTI]

    Hanke-Bourgeois, Martin

    volume methods -1- #12;Overview I. Hyperbolic Conservation Laws Theory of bicharacteristics and evolution, bicharacteritsics stability, accuracy, error analysis III. Numerical Experiments: Wave equation system, Euler eqs finite volume methods -2- #12;· airflow · hydraulic schock · meteorological flow Source: efluid

  1. ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    numerical results are reported showing different kinds of flows in the case of impermeable or partially. Joliot Curie, F-13453 Marseille cedex 13. Email : [angot,fboyer,fhubert]@cmi.univ-mrs.fr cl EDP Sciences

  2. EPA ENERGY STAR Webcast- Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s new ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate the new Portfolio Manager; add a property and...

  3. ENERGY STAR Webinar: Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s new ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate the new Portfolio Manager; add a property and...

  4. Some Problems in Stochastic Portfolio Theory

    E-Print Network [OSTI]

    Liu, Xiaobo

    2007-12-11T23:59:59.000Z

    We consider some problems in the stochastic portfolio theory of equity markets. In the first part, we maximize the expected terminal value of a portfolio of equities. The optimal investment problem is then solved by the stochastic control approach...

  5. Optimization Online - Multistage Stochastic Portfolio Optimisation in ...

    E-Print Network [OSTI]

    Paula Rocha

    2010-06-04T23:59:59.000Z

    Jun 4, 2010 ... Multistage Stochastic Portfolio Optimisation in Deregulated Electricity Markets Using Linear Decision Rules. Paula Rocha ...

  6. Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and

    E-Print Network [OSTI]

    Sites, James R.

    Thesis Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and Explanation our supervision by Markus Gloeckler entitled "Numerical Modeling of CIGS Solar Cells: Definition. A three-layer structure, simulating a Cu(InGa)Se2 (CIGS) heterojunction solar cell, was set up using

  7. NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE

    E-Print Network [OSTI]

    Sites, James R.

    NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE M. Gloeckler, A important complications that are often found in experimental CIGS and CdTe solar cells. 1. INTRODUCTION Numerical modeling of polycrystalline thin-film solar cells is an important strategy to test the viability

  8. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters

    E-Print Network [OSTI]

    Lee, Zhongping

    Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters in the upper ocean, the vertical distribution of solar radiation (ESR) in the shortwave domain plays (2005), Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal

  9. Numerical analysis of a one-dimensional elastodynamic model of dry friction and unilateral contact

    E-Print Network [OSTI]

    Renard, Yves - Pôle de Mathématiques, Institut National des Sciences Appliquées de Lyon

    .e. hyperbolic) model with dry friction. Since we consider a Coulomb friction law with a slip velocity dependentNumerical analysis of a one-dimensional elastodynamic model of dry friction and unilateral contact in the numerical analysis of more elaborated dynamic purely elastic problems with dry friction. Ó 2001 Elsevier

  10. ON ACCURACY OF NUMERICAL EMC/EMI MODELING OVER A WIDE FREQUENCY RANGE

    E-Print Network [OSTI]

    Loyka, Sergey

    1 ON ACCURACY OF NUMERICAL EMC/EMI MODELING OVER A WIDE FREQUENCY RANGE Sergey Loyka EMC Lab: loyka@nemc.belpak.minsk.by Abstract - Numerical EMC/EMI modeling over a wide frequency range requires computational efficiency is proposed. I. INTRODUCTION Almost all the EMC problems are wide frequency range ones

  11. Text Classification for Intelligent Portfolio Management

    E-Print Network [OSTI]

    , earnings summaries, and Beta value (risk) associated with the individual holdings in their stock portfolioText Classification for Intelligent Portfolio Management Young-Woo Seo Joseph Giampapa Katia Sycara management, software agents that eval- uate the risks associated with the individual companies of a portfolio

  12. Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water Alexey, University of Virginia, USA Available online 3 February 2007 Abstract Short pulse laser interaction modeling; Nanoparticles; Cell targeting; Laser damage 1. Introduction Short pulse laser irradiation

  13. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  14. Numerical Model of a Tensioner System and Flex Joint

    E-Print Network [OSTI]

    Huang, Han

    2013-07-27T23:59:59.000Z

    Top Tensioned Riser (TTR) and Steel Catenary Riser (SCR) are often used in a floating oil/gas production system deployed in deep water for oil transport. This study focuses on the improvements to the existing numerical code, known as CABLE3D...

  15. Numerical Modeling of Human Effect on Indoor Propagation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    several types of obstacles such a brick enclosure walls, one metal heater, two metal wardrobes, two metal antenna placed 85 cm above the floor level. The spatial step is /10, or is the wavelength, chosen by the numerical dispersions. The choice of the spatial step is a compromise between the minimization of inaccuracy

  16. Portfolio Selection under Model Uncertainty:

    E-Print Network [OSTI]

    2011-06-29T23:59:59.000Z

    Roy H. Kwon ..... in the set Q. In such cases, it is reasonable to treat the measure P as a reference ... and the parameter k helps to adjust the level of penalty.

  17. Regional Portfolio Model Redevelopment Update

    E-Print Network [OSTI]

    and Lost Opportunity Conservation 4. CO2 emission tracking 5. Dispatch of existing and new resources 6 futures) 11©2012 Navigant Consulting, Inc. E N E R G Y ­ Equilibrium electricity prices over time (able

  18. Numerical modelling of a radio-frequency micro ion thruster

    E-Print Network [OSTI]

    Tsay, Michael Meng-Tsuan

    2006-01-01T23:59:59.000Z

    A simple performance model is developed for an inductively-coupled radio-frequency micro ion thruster. Methods of particle and energy balance are utilized for modeling the chamber plasma discharge. A transformer model is ...

  19. Fractional Calculus in Hydrologic Modeling: A Numerical Perspective

    SciTech Connect (OSTI)

    David A. Benson; Mark M. Meerschaert; Jordan Revielle

    2012-01-01T23:59:59.000Z

    Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.

  20. Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    1987-08-01T23:59:59.000Z

    The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

  1. Numerical simulation of a lattice polymer model at its integrable point

    E-Print Network [OSTI]

    A. Bedini; A. L. Owczarek; T. Prellberg

    2013-05-21T23:59:59.000Z

    We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Bl\\"ote and Nienhuis in J. Phys. A. {\\bf 22}, 1415 (1989) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents $\

  2. INTERNATIONAL JOURNAL OF c 2011 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing and Information

    E-Print Network [OSTI]

    Bürger, Raimund

    -dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2011 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing

  3. INTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing and Information

    E-Print Network [OSTI]

    Bürger, Raimund

    -dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing

  4. Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of wave propagation in random anisotropic heterogeneous elastic media Q.-A. Ta numerical experiments that were performed on wave propagation in a randomly generated anisotropic used for the propagation of waves in geophysical media are not compatible with the surface recordings

  5. Improvements on FFD Modeling by Using Different Numerical Schemes Wangda Zuo, Jianjun Hu, Qingyan Chen

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    . "Improvements on FFD modeling by using different numerical schemes," Numerical Heat Transfer, Part B (m) t time step (s) Greek Symbols ratio of mass flow rate to a flow domain over that out of the flow: Fundamentals, 58(1), 1-16. #12;2 Abstract Indoor environm ent design and air m anagement in buildings requires

  6. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    E-Print Network [OSTI]

    Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent numerical simulations of multiphase (liquid-gas), multicomponent (H2O­CO2) hydrothermal fluid flow

  7. USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS to develop a methodology to generate solar radiation maps using information from different sources. First with conclusions and next works in the last section. Keywords: Solar Radiation maps, Numerical Weather Predictions

  8. Combining a Renewable Portfolio Standard with a Cap-and-Trade Policy: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Morris, Jennifer

    Many efforts to address greenhouse gas emissions combine a cap-and-trade system with other measures such as a renewable portfolio standard. In this paper we use a computable general equilibrium (CGE) model, the MIT Emissions ...

  9. Analytical-Numerical Modeling Of Komatiite Lava Emplacement And...

    Open Energy Info (EERE)

    Modeling Of Komatiite Lava Emplacement And Thermal Erosion At Perseverance, Western Australia Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Numerical modeling of elastic wave scattering by near-surface heterogeneities

    E-Print Network [OSTI]

    Al Muhaidib, Abdulaziz

    2013-01-01T23:59:59.000Z

    A perturbation method for elastic waves and numerical forward modeling are used to calculate the effects of seismic wave scattering from arbitrary shape shallow subsurface heterogeneities. Wave propagation is simulated ...

  11. 2D-Modelling of pellet injection in the poloidal plane: results of numerical tests

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2D-Modelling of pellet injection in the poloidal plane: results of numerical tests P. Lalousis developed for computing the expansion of pellet-produced clouds in the poloidal plane. The expansion

  12. Seismic scattering attributes to estimate reservoir fracture density : a numerical modeling study

    E-Print Network [OSTI]

    Pearce, Frederick D. (Frederick Douglas), 1978-

    2003-01-01T23:59:59.000Z

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  13. Seismic Scattering Attributes to Estimate Reservoir Fracture Density: A Numerical Modeling Study

    E-Print Network [OSTI]

    Pearce, Frederick Douglas

    We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...

  14. A comparative analysis of numerical simulation and analytical modeling of horizontal well cyclic steam injection 

    E-Print Network [OSTI]

    Ravago Bastardo, Delmira Cristina

    2005-08-29T23:59:59.000Z

    The main objective of this research is to compare the performance of cyclic steam injection using horizontal wells based on the analytical model developed by Gunadi against that based on numerical simulation. For comparison, ...

  15. Computational Exploration of Investor Utilities Underlying a Portfolio Insurance Strategy

    E-Print Network [OSTI]

    M. Khoshnevisan; Florentin Smarandache; Sukanto Bhattacharya

    2002-10-30T23:59:59.000Z

    In this paper we take a look at a simple portfolio insurance strategy using a protective put and computationally derive the investor's governing utility structures underlying such a strategy under alternative market scenarios. Investor utility is deemed to increase with an increase in the excess equity generated by the portfolio insurance strategy over a simple investment strategy without any insurance. Three alternative market scenarios (probability spaces) have been explored -- 'Down', 'Neutral' and 'Up', categorized according to whether the price of the underlying security is most likely to go down, stay unchanged or go up. The methodology used is computational, primarily based on simulation and numerical extrapolation. The Arrow-Pratt measure of risk aversion has been used to determine how the investors react towards risk under the different scenarios.

  16. Numerically Estimating Internal Models of Dynamic Virtual Objects

    E-Print Network [OSTI]

    Sekuler, Robert

    human subjects to manipulate a computer-animated virtual object. This virtual object (vO) was a high, human cognition, human information processing, ideal performer, internal model, virtual object, virtual, specifically how humans acquire an internal model of a dynamic virtual object. Our methodology minimizes

  17. A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model

    E-Print Network [OSTI]

    Giovanni Noselli; Antonio DeSimone

    2014-08-26T23:59:59.000Z

    We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. 'breathing-like' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.

  18. Automatic Trading Agent. RMT based Portfolio Theory and Portfolio Selection

    E-Print Network [OSTI]

    Snarska, M; Snarska, Malgorzata; Krzych, Jakub

    2006-01-01T23:59:59.000Z

    Portfolio theory is a very powerful tool in the modern investment theory. It is helpful in estimating risk of an investor's portfolio, which arises from our lack of information, uncertainty and incomplete knowledge of reality, which forbids a perfect prediction of future price changes. Despite of many advantages this tool is not known and is not widely used among investors on Warsaw Stock Exchange. The main reason for abandoning this method is a high level of complexity and immense calculations. The aim of this paper is to introduce an automatic decision - making system, which allows a single investor to use such complex methods of Modern Portfolio Theory (MPT). The key tool in MPT is an analysis of an empirical covariance matrix. This matrix, obtained from historical data is biased by such a high amount of statistical uncertainty, that it can be seen as random. By bringing into practice the ideas of Random Matrix Theory (RMT), the noise is removed or significantly reduced, so the future risk and return are b...

  19. NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL

    E-Print Network [OSTI]

    Ghoniem, A.F.

    2013-01-01T23:59:59.000Z

    1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium

  20. Numerical Modeling of Hydraulic Fracturing in Oil Sands

    E-Print Network [OSTI]

    2008-11-16T23:59:59.000Z

    A thermal hydro-mechanical fracture nite element model is developed, which is able to ..... c) Fluid velocity: Darcy's law, in general index form, is given by: vi = Kij.

  1. Numerical Modeling of Seafloor Interation with Steel Catenary Riser

    E-Print Network [OSTI]

    You, Jung Hwan

    2012-10-19T23:59:59.000Z

    degradation it is possible to simulate the trench formation process and estimate deflections and moments along the riser length. The seabed model is used to perform parametric studies to assess the effects of stiffness, soil strength, amplitude of pipe...

  2. Ductile fracture modeling : theory, experimental investigation and numerical verification

    E-Print Network [OSTI]

    Xue, Liang, 1973-

    2007-01-01T23:59:59.000Z

    The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

  3. Numerically Efficient Water Quality Modeling and Security Applications

    E-Print Network [OSTI]

    Mann, Angelica

    2013-02-04T23:59:59.000Z

    utilities protect the public against potential contamination events. The first component is a novel water quality modeling framework referred to as Merlion. The linear system describing contaminant spread through the network at the core of Merlion provides...

  4. Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits

    E-Print Network [OSTI]

    Stryk, Oskar von

    Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits. A fully three- dimensional dynamical model of Sony's four-legged robot is used to state an optimal control model and the algorithm for evaluating the dynamics. The formulation of the optimal control problem

  5. Author's personal copy A new 3D numerical model of cosmogenic nuclide 10

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Author's personal copy A new 3D numerical model of cosmogenic nuclide 10 Be production's atmosphere cosmogenic isotopes A new quantitative model of production of the cosmogenic isotope 10 solar energetic particle events. The model was tested against the results of direct measurements

  6. Numerical Experiments of Some Krylov Subspace Methods for Black Oil Model

    E-Print Network [OSTI]

    Lai, Choi-Hong

    Numerical Experiments of Some Krylov Subspace Methods for Black Oil Model Jianwen Cao #3; Choi of linear systems originated from the black oil model in oil reservoir simulation. There exists some Krylov subspace algorithms and pre- conditioning techniques for the black oil model as appeared in the literature

  7. Liquid phase oxidation kinetics of oil sands bitumen: Models for in situ combustion numerical simulators

    SciTech Connect (OSTI)

    Adegbesan, K.O.; Donnelly, J.K.; Moore, R.G.; Bennion, D.W.

    1986-08-01T23:59:59.000Z

    Multiresponse kinetic models are established for the low-temperature oxidation (LTO) reaction of Athabasca oil sands bitumen. The models provide adequate description of the overall rate of oxygen consumption and of the reactions of the liquid phase bitumen components. The LTO models are suitable for use in the in situ combustion numerical simulators of oil sands.

  8. A CONSISTENT MODELLING METHODOLOGY FOR SECONDARY1 SETTLING TANKS: A RELIABLE NUMERICAL METHOD2

    E-Print Network [OSTI]

    Bürger, Raimund

    relations for hindered settling, compression and dispersion can be used within the model, allowing the user, continuous sedimentation, secondary clarifier, simulation5 model, partial differential equation6 NomenclatureA CONSISTENT MODELLING METHODOLOGY FOR SECONDARY1 SETTLING TANKS: A RELIABLE NUMERICAL METHOD2

  9. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  10. IMPROVED NUMERICAL METHODS FOR MODELING RIVER-AQUIFER INTERACTION.

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Sue Tillery; Phillip King

    2008-09-01T23:59:59.000Z

    A new option for Local Time-Stepping (LTS) was developed to use in conjunction with the multiple-refined-area grid capability of the U.S. Geological Survey's (USGS) groundwater modeling program, MODFLOW-LGR (MF-LGR). The LTS option allows each local, refined-area grid to simulate multiple stress periods within each stress period of a coarser, regional grid. This option is an alternative to the current method of MF-LGR whereby the refined grids are required to have the same stress period and time-step structure as the coarse grid. The MF-LGR method for simulating multiple-refined grids essentially defines each grid as a complete model, then for each coarse grid time-step, iteratively runs each model until the head and flux changes at the interfacing boundaries of the models are less than some specified tolerances. Use of the LTS option is illustrated in two hypothetical test cases consisting of a dual well pumping system and a hydraulically connected stream-aquifer system, and one field application. Each of the hypothetical test cases was simulated with multiple scenarios including an LTS scenario, which combined a monthly stress period for a coarse grid model with a daily stress period for a refined grid model. The other scenarios simulated various combinations of grid spacing and temporal refinement using standard MODFLOW model constructs. The field application simulated an irrigated corridor along the Lower Rio Grande River in New Mexico, with refinement of a small agricultural area in the irrigated corridor.The results from the LTS scenarios for the hypothetical test cases closely replicated the results from the true scenarios in the refined areas of interest. The head errors of the LTS scenarios were much smaller than from the other scenarios in relation to the true solution, and the run times for the LTS models were three to six times faster than the true models for the dual well and stream-aquifer test cases, respectively. The results of the field application show that better estimates of daily stream leakage can be made with the LTS simulation, thereby improving the efficiency of daily operations for an agricultural irrigation system. ACKNOWLEDGEMENTSThe authors appreciatively acknowledge support for Sue Tillery provided by Sandia National Laboratories' through a Campus Executive Laboratory Directed Research and Development (LDRD) research project.Funding for this study was provided by Directed Research and Development (LDRD) research project.

  11. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  12. Lattice Percolation Approach to Numerical Modeling of Tissue Aging

    E-Print Network [OSTI]

    Privman, Vladimir; Libert, Sergiy

    2015-01-01T23:59:59.000Z

    We describe a percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Tissues are considered as structures made of regular healthy, senescent, dead (apoptotic) cells, and studied dynamically, with the ongoing processes including regular cell division to fill vacant sites left by dead cells, healthy cells becoming senescent or dying, and other processes. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. An illustrative application of the developed theoretical modeling approach is reported, confirming recent experimental findings that inhibition of senescence can lead to extended lifespan.

  13. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect (OSTI)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01T23:59:59.000Z

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  14. EFFICIENT NUMERICAL SOLUTION TECHNIQUES IN COMPOSITION MODEL 1

    E-Print Network [OSTI]

    on the reservoir pressure and saturation pressure. A black­oil model works well in simulating the waterflooding The objective of reservoir simulation is to understand the complex chemical, physical, and fluid flow processes occurring in a petroleum reservoir sufficiently well to be able to optimize the recovery of hydrocarbon

  15. Dynamic Portfolio Optimization with Transaction Costs: Heuristics ...

    E-Print Network [OSTI]

    2011-02-03T23:59:59.000Z

    Aug 10, 2010 ... Dynamic Portfolio Optimization with Transaction. Costs: Heuristics and Dual Bounds. David B. Brown and James E. Smith?. Fuqua School of ...

  16. Robust Portfolio Optimization with Derivative Insurance Guarantees

    E-Print Network [OSTI]

    2009-01-13T23:59:59.000Z

    Jan 13, 2009 ... a portfolio consisting of a single stock and a put option by controlling ..... in the returns whilst taking into consideration that the centroid µ of ?+.

  17. Efficient Cardinality/Mean-Variance Portfolios

    E-Print Network [OSTI]

    2012-03-02T23:59:59.000Z

    Mar 2, 2012 ... security i is described by a random variable Ri, whose average can be computed ..... More information on these security sectors (or portfolios of ...

  18. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 grandchallengesportfoliopg9.pdf More Documents & Publications Grand...

  19. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 grandchallengesportfoliopg6.pdf More Documents & Publications Grand...

  20. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 grandchallengesportfoliopg8.pdf More Documents & Publications Grand...

  1. Joint physical and numerical modeling of water distribution networks.

    SciTech Connect (OSTI)

    Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

    2009-01-01T23:59:59.000Z

    This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

  2. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  3. Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO Analysis Portfolio Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells...

  4. Interpretive electronic music systems: a portfolio of compositions 

    E-Print Network [OSTI]

    Rawlinson, Julian Dean

    2011-11-23T23:59:59.000Z

    A portfolio of electronic music compositions employing adaptable controllers, graphic notation, and custom software performance environments. The portfolio is comprised of scores, recordings, and supporting software and ...

  5. ENERGY STAR Portfolio Manager and Utility Benchmarking Programs...

    Energy Savers [EERE]

    ENERGY STAR Portfolio Manager and Utility Benchmarking Programs: Effectiveness as a Conduit to Utility Energy Efficiency Programs ENERGY STAR Portfolio Manager and Utility...

  6. Numerical modeling and experimental measurements of water spray impact and transport over a cylinder.

    SciTech Connect (OSTI)

    Avedisian, C. T. (Cornell University, Ithaca, NY); Presser, Cary (National Institute of Standard & Technology, Gaithersburg, MD); DesJardin, Paul Edward (University at Buffalo, New York, NY); Hewson, John C.; Yoon, Sam Sukgoo

    2005-03-01T23:59:59.000Z

    This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier-Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI).

  7. A Numerical Model for the Dynamic Simulation of a Recirculation Single-Effect Absorption Chiller

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Numerical Model for the Dynamic Simulation of a Recirculation Single- Effect Absorption Chiller A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film

  8. URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1

    E-Print Network [OSTI]

    Boyer, Edmond

    URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1 , L. SOULHAC2 , E. FREJAFON3 , R technologique ALATA BP2, F-60550 Verneuil-en-Halatte, France. Keywords: LIDAR, URBAN AEROSOLS, MODEL, IMPACT SURVEY. INTRODUCTION The impact of particulate matters and aerosols on environment and on radiative

  9. Numerical methods for vector Stefan models of solid-state alloys

    E-Print Network [OSTI]

    Vuik, Kees

    -called aluminium-based alloys. Subsequently, the obtained alloy is cast into a mould where it solidifies. DuringNumerical methods for vector Stefan models of solid-state alloys PROEFSCHRIFT ter verkrijging van for vector Stefan models of solid-state alloys. Dissertation at Delft University of Technology. Copyright c

  10. NUMERICAL MODELING OF SHOCK-INDUCED DAMAGE FOR GRANITE UNDER DYNAMIC LOADING

    E-Print Network [OSTI]

    Stewart, Sarah T.

    NUMERICAL MODELING OF SHOCK-INDUCED DAMAGE FOR GRANITE UNDER DYNAMIC LOADING H. A. Ai1 , T. J beneath impact crater in granite. Model constants are determined either directly from static uniaxial from Century Dynamics to simulate the shock-induced damage in granite targets impacted by projectiles

  11. An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical Methods in Engineering

    E-Print Network [OSTI]

    Gracie, Robert

    PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec

  12. Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier

    E-Print Network [OSTI]

    Nick, F. M.; van der Veen, Cornelis J.; Oerlemans, J.

    2007-07-11T23:59:59.000Z

    A one-dimensional numerical ice flow model is used to study the advance of a tidewater glacier into deep water. Starting with ice-free conditions, the model simulates glacier growth at higher elevations followed by advance on land to the head...

  13. FOUNDATION, ANALYSIS, AND NUMERICAL INVESTIGATION OF A VARIATIONAL NETWORK-BASED MODEL FOR RUBBER

    E-Print Network [OSTI]

    Boyer, Edmond

    FOUNDATION, ANALYSIS, AND NUMERICAL INVESTIGATION OF A VARIATIONAL NETWORK-BASED MODEL FOR RUBBER, many models based on polymer chain statistics have been proposed to describe rubber elasticity. Recently, Alicandro, Cicalese, and the first author rigorously derived a continuum theory of rubber

  14. NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS

    E-Print Network [OSTI]

    processes. A black-oil model is commonly used to describe water injection. This model works well. Special focus is posed on the numerical solution algorithms for the saturation equation, which is a convection dominated, degenerate convection-di#11;usion equation. Both theory and applications are discussed

  15. A Model and Numerical Framework for the Simulation of Solid-Solid Phase Transformations

    E-Print Network [OSTI]

    Govindjee, Sanjay

    A Model and Numerical Framework for the Simulation of Solid-Solid Phase Transformations Garrett J computational realization for the simulation of solid-solid phase transformations of the type observed in shape physical experiments and is indicative of the power of the proposed modelling methodology. In particular

  16. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S modeling of the turbulent flow in a rotor-stator cavity subjected to a superimposed throughflow with heat the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial

  17. MODELING AND ADAPTIVE NUMERICAL TECHNIQUES FOR OXI-DATION OF CERAMIC COMPOSITES

    E-Print Network [OSTI]

    Adjerid, Slimane

    . INTRODUCTION Oxidation shortens the life of ceramic matrix composites by, e.g., chang- ing the elasticMODELING AND ADAPTIVE NUMERICAL TECHNIQUES FOR OXI- DATION OF CERAMIC COMPOSITES S. Adjerid, M. Ai of thermal or other loading may expose the matrix and bers to hostile envi- ronments. We present a model

  18. Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics Hong Gun Sung½ and Stephan T. Grilli¾ ½ Korea Ocean Research and Development Institute, Daejeon model fully nonlinear free surface waves caused by a translating dis- turbance made of a pressure patch

  19. Concrete calcium leaching at variable temperature: experimental data and numerical model inverse

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , concrete porous solution is very basic (pH around 13) and several ionic species are highly concentrated [1Concrete calcium leaching at variable temperature: experimental data and numerical model inverse/DSU/SSIAD/BERIS, Fontenay-aux-Roses, France Abstract A simplified model for calcium leaching in concrete is presented

  20. Numerical modeling of response of monolithic and bilayer plates to impulsive loads

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    -receiving side) amplifies the initial shock loading and thereby enhances the destructive effect of the blast modeling FEM analysis Metal-elastomer adhesion Numerical blast modeling a b s t r a c t In this paper, we in the latter case the pressure effects. Comparing the simulation and the experimental results, we focus

  1. international journal of numerical modelling : electronic networks, devices and fields, Vol. 10, 217229 (1997)

    E-Print Network [OSTI]

    Bornemann, Jens

    , 217­229 (1997) SPECTRAL-DOMAIN MODELLING OF SUPERCONDUCTING MICROSTRIP STRUCTURES smain amari with available data to document the validity of the approach. © 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Model., 10, 217­229 (1997) No. of Figures: 9. No. of Tables: 0. No. of References: 18. 1. INTRODUCTION

  2. Numerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering.

    E-Print Network [OSTI]

    d'Orléans, Université

    processes widely used in chemical engineering: distillation and chromatography. Distillation is a wellNumerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering. F. James 1 M. Postel 2 M. Sep'ulveda 3 Abstract A model to take into account the finite exchange

  3. Numerical modeling of fiber lasers with long and ultra-long ring cavity

    E-Print Network [OSTI]

    Turitsyn, Sergei K.

    Numerical modeling of fiber lasers with long and ultra-long ring cavity I.A. Yarutkina,1,2, O. S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high highlight two important aspects related to a mathematical modeling of pulsed fiber lasers with long

  4. A consistent modelling methodology for secondary settling tanks: a reliable numerical method

    E-Print Network [OSTI]

    Bürger, Raimund

    accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solutionA consistent modelling methodology for secondary settling tanks: a reliable numerical method modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE

  5. Optimal Portfolio Selection Under Concave Price Impact

    SciTech Connect (OSTI)

    Ma Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States); Song Qingshuo, E-mail: songe.qingshuo@cityu.edu.hk [City University of Hong Kong, Department of Mathematics (Hong Kong); Xu Jing, E-mail: xujing8023@yahoo.com.cn [Chongqing University, School of Economics and Business Administration (China); Zhang Jianfeng, E-mail: jianfenz@usc.edu [University of Southern California, Department of Mathematics (United States)

    2013-06-15T23:59:59.000Z

    In this paper we study an optimal portfolio selection problem under instantaneous price impact. Based on some empirical analysis in the literature, we model such impact as a concave function of the trading size when the trading size is small. The price impact can be thought of as either a liquidity cost or a transaction cost, but the concavity nature of the cost leads to some fundamental difference from those in the existing literature. We show that the problem can be reduced to an impulse control problem, but without fixed cost, and that the value function is a viscosity solution to a special type of Quasi-Variational Inequality (QVI). We also prove directly (without using the solution to the QVI) that the optimal strategy exists and more importantly, despite the absence of a fixed cost, it is still in a 'piecewise constant' form, reflecting a more practical perspective.

  6. Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH

    SciTech Connect (OSTI)

    Niemi, A.; Bodvarsson, G.S.; Pruess, K.

    1991-11-01T23:59:59.000Z

    As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user`s manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented.

  7. CSE/Math 555: Numerical Optimization Techniques Course Announcement

    E-Print Network [OSTI]

    Shontz, Suzanne M.

    towards graduate students, researchers and faculty in · computer science and engineering · mathematics portfolios Description: The course will emphasize the design and mathematical analysis of numerical op: unconstrained optimization methods, automatic differentiation, nonlinear equations, constrained optimization

  8. Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models

    E-Print Network [OSTI]

    Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-01-01T23:59:59.000Z

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...

  9. Characterization of Texas lignite and numerical modeling of its in-situ gasification 

    E-Print Network [OSTI]

    Wang, Yih-Jy

    1983-01-01T23:59:59.000Z

    Modeling Site selection for in-situ gasification projects normally involves application of site screen1ng criteria. Some of these cr1teria were discussed by Russell et al. (1983). Numerical simulation may play an important role in s1te selection...CHARACTERIZATION OF TEXAS LIGNITE AND NUMERICAL MODELING OF ITS IN-SITU GASIFICATION A Thesis by YIH-JY WANG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  10. The numerical solution of a nickel-cadmium battery cell model using the method of lines

    E-Print Network [OSTI]

    Hailu, Teshome

    1990-01-01T23:59:59.000Z

    THE NUMERICAL SOLUTION OF A NICKEL-CADMIUM BATTERY CELL MODEL USING THE METHOD OF LINES A Thesis by TESHOME HAILU Submitted to the Office of Graduate Studies Texas Adi:M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THE NUMERICAL SOLUTION OF A NICKEL-CADMIUM BATTERY CELL MODEL USING THE METHOD OF LINES A Thesis by TESHOME HAILU Approved as to style and content by: Ralph E. White (Chairman...

  11. LAMAR DODD SCHOOL OF ART PORTFOLIO REVIEW REQUIREMENTS

    E-Print Network [OSTI]

    Arnold, Jonathan

    LAMAR DODD SCHOOL OF ART PORTFOLIO REVIEW REQUIREMENTS Summer 2014 PHASE I: Pre-review WHO floor, North wing, Lamar Dodd School of Art WHAT: The portfolio is to contain the FIVE works described and guidelines are not adhered to, the portfolio will be rejected. HOW: The Lamar Dodd School of Art Portfolio

  12. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    SciTech Connect (OSTI)

    Taylor, S.R.; Kamm, J.R. [eds.

    1993-11-01T23:59:59.000Z

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

  13. Design and Execution of Model Experiments to Validate Numerical Modelling of 2D Ship Operations in Pack Ice

    E-Print Network [OSTI]

    Bruneau, Steve

    in Pack Ice Roelof C. Dragt Offshore Engineering Faculty of Mechanical, Maritime and Material Engineering of experiments to validate a Graphics Processing Unit based numerical modelling of ship operations in 2D pack ice interaction, 2D Model Experiments, Image Processing. I. INTRODUCTION A ship travelling through pack ice

  14. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    E-Print Network [OSTI]

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr?czi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I

    2014-01-01T23:59:59.000Z

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  15. Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2

    E-Print Network [OSTI]

    Kirby, James T.

    Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

  16. January 2, 2008 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

  17. Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles

    E-Print Network [OSTI]

    Aubertin, Michel

    Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles O Fala1 , M Aubertin1,3 , J Molson1 , B Bussière2,3 , G W Wilson4 , R Chapuis1 and V Martin1 ABSTRACT Waste rock piles these piles, many physical, geochemical and biological processes can contribute to the production of AMD

  18. Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository $

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository $ C of the French nuclear waste management agency ANDRA, investigations are conducted to optimize and finalize by the Nuclear Waste Management Agency ANDRA Corresponding author. Phone: +49 30 20372 560, Fax: +49 30 2044975

  19. Numerical analysis of electric field formulations of the eddy current model

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    Numerical analysis of electric field formulations of the eddy current model Alfredo Berm´udez1 methods for the numeri- cal solution of the eddy current problem in a bounded conducting domain crossed): 78M10, 65N30 Key words Low-frequency harmonic Maxwell equations, eddy currents, finite elements

  20. Mathematical and numerical analysis of a transient non-linear axisymmetric eddy current model

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    Mathematical and numerical analysis of a transient non-linear axisymmetric eddy current model the theoretically predicted behavior of the method, are reported. Keywords transient eddy current · axisymmetric is the accurate computation of power losses in the ferromagnetic components of the core due to hysteresis and eddy-current

  1. NUMERICAL SOLUTION OF A TRANSIENT NON-LINEAR AXISYMMETRIC EDDY CURRENT MODEL WITH NON-LOCAL

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    NUMERICAL SOLUTION OF A TRANSIENT NON-LINEAR AXISYMMETRIC EDDY CURRENT MODEL WITH NON@ing-mat.udec.cl This paper deals with an axisymmetric transient eddy current problem in conductive nonlinear magnetic media of the proposed scheme. Keywords: transient eddy current problem; electromagnetic losses; nonlinear magnetic

  2. A simple numerical model of the apparent loss of eddy current conductivity due to surface roughness

    E-Print Network [OSTI]

    Nagy, Peter B.

    A simple numerical model of the apparent loss of eddy current conductivity due to surface roughness of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation, the path of the eddy current must follow a more tortuous route in the material, which produces a reduction

  3. Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting

    E-Print Network [OSTI]

    Ribes, Aurélien

    Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting SAMUEL RE significant. This led to the implementation of an ensemble Kalman filter (EnKF) within COBEL-ISBA. The new by using an ensemble Kalman filter (EnKF; Evensen 1994, 2003). Theoreti- cally, ensemble filters

  4. LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS

    E-Print Network [OSTI]

    Haller, Merrick

    1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

  5. A numerical modeling study on desert oasis self-supporting mechanisms

    E-Print Network [OSTI]

    Chu, Peter C.

    A numerical modeling study on desert oasis self-supporting mechanisms Peter C. Chua, *, Shihua Lub February 2005 Abstract Oasis self-supporting mechanisms due to oasis breeze circulation (OBC) are proposed from the oasis makes the oasis surface colder than the surrounding desert surface. The sensible heat

  6. September 25, 2006 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    September 25, 2006 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats@obs.ujf- grenoble.fr, marielle.collombet@ujf-grenoble.fr, yleguen@lgit.obs.ujf-grenoble.fr. #12;Abstract When carbon

  7. COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS

    E-Print Network [OSTI]

    Dimov, Ivan

    COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS I. DIMOV , K. GEORGIEVy, TZ. OSTROMSKY , R. J. VAN DER PASz, AND Z. ZLATEVx Abstract. The air pollution, and especially the reduction of the air pollution to some acceptable levels, is an important environmental problem, which

  8. Nonlinear inverse problem for a model of ion-exchange filter: numerical recovery of parameters

    E-Print Network [OSTI]

    ) and pressure (15 MPa) of hot steam [2]. Some units are made of cheap corrosion and heat-resistant steel which1 Nonlinear inverse problem for a model of ion-exchange filter: numerical recovery of parameters]. Power-generating units of TPP operate under severe corrosive conditions: high temperature (515 - 530°C

  9. NUMERICAL MODELLING OF THERMAL-ELECTRICAL PHENOMENA IN SPARK PLASMA SINTERING

    E-Print Network [OSTI]

    Boyer, Edmond

    NUMERICAL MODELLING OF THERMAL-ELECTRICAL PHENOMENA IN SPARK PLASMA SINTERING P. Mondaleka , L'Etudes Structurales), France c Université Paul Sabatier, Toulouse, France Abstract. Spark Plasma Sintering belongs: Finite element method, Spark plasma sintering, powder compaction. INTRODUCTION Spark Plasma Sintering

  10. A numerical ocean circulation model of the Norwegian and Greenland Seas

    E-Print Network [OSTI]

    Stevens, David

    A numerical ocean circulation model of the Norwegian and Greenland Seas DAVID P STEVENS School of the Norwegian and Greenland Seas are investigated using a three-dimensional primitive equation ocean circulation and seasonally varying wind and thermohalme forcing. The connections of the Norwegian and Greenland Seas

  11. Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation Simon S. Clift and Peter parabolic partial integro-differential equation (PIDE). An implicit, finite difference method is derived with an FFT. The method prices both American and European style contracts indepen- dent (under some simple

  12. A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT CAVERN

    E-Print Network [OSTI]

    Boyer, Edmond

    A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT damage on top of an underground solution mining, an in-situ experiment is undertaken above a salt cavity in the Lorraine region (NE of France). The overburden overlying the salt cavity is characterized by a competent

  13. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow

    E-Print Network [OSTI]

    Boyer, Edmond

    Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

  14. Numerical modeling of spray cooling-assisted dermatologic laser surgery for treatment of port wine stains

    E-Print Network [OSTI]

    Aguilar, Guillermo

    Numerical modeling of spray cooling-assisted dermatologic laser surgery for treatment of port wine to the epidermis during dermatologic laser surgery (DLS) for removal of port wine stain (PWS) birthmarks heat (J/kg/K) c speed of light in i (m/s) D optical diffusion coefficient (m) Ea activation energy

  15. 3 Response to comment by Jozsef Szilagyi on 4 ``Using numerical modelling to evaluate the

    E-Print Network [OSTI]

    McDonnell, Jeffrey J.

    REPLY 3 Response to comment by Jozsef Szilagyi on 4 ``Using numerical modelling to evaluate the 5 by Szilagyi is a welcome addition to the de- 15 bate surrounding the link between the hypothesis of 16 a possible explanation for high proportions of 40pre-event water. 41Szilagyi (submitted) has identified

  16. Numerical modelling of avalanches based on Saint-Venant equations using a kinetic scheme

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    avalanches are treated here as a dry granular flow with Coulomb-type behavior. The numerical finite volume of an avalanche over simplified topography. Coulomb-type behavior with constant and variable friction angle modelling, Coulomb friction, Saint-Venant equations, finite volume kinetic scheme. 1 Introduction Granular

  17. Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    microfluidics Jonathan Siegrist,*a Mary Amasia,a Navdeep Singh,b Debjyoti Banerjeeb and Marc Madoua Received 1st analysis of microchamber filling in centrifugal microfluidics is presented. In the development of micro on centrifugal microfluidic platforms, numerical modeling using the Volume of Fluids method is performed

  18. NUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA-HIGH

    E-Print Network [OSTI]

    Boyer, Edmond

    in the cementitious matrix can react with carbon dioxide dissolved in the water filling the crack. Autogenous healingNUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA into the crack and leads to a partial recovery of mechanical properties (Young's modulus, tensile strength

  19. Mathematical, physical and numerical principles essential for models of turbulent mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV

    2009-01-01T23:59:59.000Z

    We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.

  20. 792 / JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 1999 NUMERICAL MODEL OF SEDIMENTATION/THICKENING

    E-Print Network [OSTI]

    Wells, Scott A.

    792 / JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 1999 NUMERICAL MODEL OF SEDIMENTATION with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on July 20, 1998. This paper is part of the Journal of Environmental Engineering, Vol. 125, No. 9

  1. The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows.

    E-Print Network [OSTI]

    Kim, Guebuem

    The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows. Seoleun Shin 15. Feb. 2011 Abstract The Hamiltonian Particle-Mesh (HPM) method is an interesting alternative have developed schemes based on the HPM method for the shallow-water equations on the sphere, nonhydro

  2. NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau

    2014-06-01T23:59:59.000Z

    The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.

  3. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    E-Print Network [OSTI]

    Coclite, A; De Palma, P; Pascazio, G

    2015-01-01T23:59:59.000Z

    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  4. Direct Numerical Simulations of the Kraichnan Model: Scaling Exponents and Fusion Rules

    E-Print Network [OSTI]

    Adrienne L. Fairhall; Barak Galanti; Victor S. L'vov; Itamar Procaccia

    1997-07-01T23:59:59.000Z

    We present results from direct numerical simulations of the Kraichnan model for passive scalar advection by a rapidly-varying random scaling velocity field for intermediate values of the velocity scaling exponent. These results are compared with the scaling exponents predicted for this model by Kraichnan. Further, we test the recently proposed fusion rules which govern the scaling properties of multi-point correlations, and present results on the linearity of the conditional statistics of the Laplacian operator on the scalar field.

  5. Development and validation of a vertically two-dimensional mesoscale numerical model

    E-Print Network [OSTI]

    Walters, Michael Kent

    1985-01-01T23:59:59.000Z

    values of model variables for static test and kinetic energy calculations . . . . . . . . . 25 2 Results of kinetic energy budget calculations . . 29 ? 1 -5 Surface heating rate (K s x 10 ) . . . . . . . 32 4 Initial values of variables for nonlinear.... These tests provide an important means of debugging the numerical scheme. The validation tests performed on the mesoscale model consisted of a simple static test, calculation of the mass continuity and the kinet. ic energy budget, and performing non...

  6. Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository

    E-Print Network [OSTI]

    Bourgeat, Alain; Smai, Farid

    2010-01-01T23:59:59.000Z

    We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.

  7. EPA ENERGY STAR Webcast- Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

  8. N. Mariana Islands- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    The Commonwealth of the Northern Mariana Islands enacted its Renewables Portfolio Standard in September 2007, in which a certain percentage of its net electricity sales must come from renewable e...

  9. Alternative and Renewable Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply...

  10. Essays in asset pricing and portfolio choice 

    E-Print Network [OSTI]

    Illeditsch, Philipp Karl

    2009-05-15T23:59:59.000Z

    ESSAYS IN ASSET PRICING AND PORTFOLIO CHOICE A Dissertation by PHILIPP KARL ILLEDITSCH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2007... Major Subject: Finance ESSAYS IN ASSET PRICING AND PORTFOLIO CHOICE A Dissertation by PHILIPP KARL ILLEDITSCH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR...

  11. Numerical upscaling for the eddy-current model with stochastic magnetic materials

    SciTech Connect (OSTI)

    Eberhard, Jens P. [Computer Simulation Technology, Bad Nauheimer Strasse, 19, D-64289 Darmstadt (Germany)], E-mail: jens.eberhard@cst.com; Popovic, Dan [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: dan.popovic@stud.uni-heidelberg.de; Wittum, Gabriel [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: wittum@uni-hd.de

    2008-04-01T23:59:59.000Z

    This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the eddy-current approximation of Maxwell's equations to describe the electric field for heterogeneous, isotropic magnetic materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model. The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations which contain a Laplacian as well as a curl-curl operator. We present a computational method how the equation of the combined operators can be discretized and solved numerically using an extended variational formulation compared to standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.

  12. Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney

    E-Print Network [OSTI]

    1 Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney@usc.edu Colloquium topic area: 12. New Technology Concepts Keywords: Micro-combustion, Heat-recirculating combustors, Extinction limits Shortened running title: Numerical Modeling of Heat-Recirculating Combustors Word count

  13. Physical Modeling of the Motions of a Container Ship Moored to a Dock with Comparison to Numerical Simulation

    E-Print Network [OSTI]

    Zhi, Yuanzhe

    2013-07-11T23:59:59.000Z

    model experimental results of solid dock are also compared with the numerical simulation. These comparisons indicate that the motion characteristics of the model container ship represent similar trends for both rotations and translations...

  14. Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models

    E-Print Network [OSTI]

    Jonathan Blackman; Scott E. Field; Chad R. Galley; Bela Szilagyi; Mark A. Scheel; Manuel Tiglio; Daniel A. Hemberger

    2015-02-26T23:59:59.000Z

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second depending on the number of output modes and the sampling rate. Our model includes all spherical-harmonic ${}_{-2}Y_{\\ell m}$ waveform modes that can be resolved by the NR code up to $\\ell=8$, including modes that are typically difficult to model with other approaches. We assess the model's uncertainty, which could be useful in parameter estimation studies seeking to incorporate model error. We anticipate NR surrogate models to be useful for rapid NR waveform generation in multiple-query applications like parameter estimation, template bank construction, and testing the fidelity of other waveform models.

  15. Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)] [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2013-11-15T23:59:59.000Z

    A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

  16. An investigation of analytical and numerical sucker rod pumping mathematical models

    E-Print Network [OSTI]

    Schafer, Donald Joseph

    1987-01-01T23:59:59.000Z

    of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering AN INVESTIGATION OF ANALYTICAL AND NUMERICAL SUCKER ROD PUMPING MATHEMATICAL MODELS A Thesis by DONALD JOSEPH SCHAFER Approved as to style and content by: 7d JW. J ni (Chai... to Sucker Rod Pumping Research, Inc. , developed a method for computing downhole forces and displacements using an analog computer simulation. The procedure that results from this work, commonly called the API method, considers the total sucker rod...

  17. Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    or radioactive waste [30], geothermal Corresponding author Email address: benoit.carrier@enpc.fr (Benoit Carrier processes. During the last sixty years, numerous papers [3, 7, 14, 21, 35, 34, 41, 25, 27, 22, 38, 36, 1. In the recent years, a scaling and asymptotic framework was built to determine the influence of the physical

  18. Thermo--inertial bouncing of a relativistic collapsing sphere: A numerical model

    E-Print Network [OSTI]

    L. Herrera; A. Di Prisco; W. Barreto

    2005-12-05T23:59:59.000Z

    We present a numerical model of a collapsing radiating sphere, whose boundary surface undergoes bouncing due to a decreasing of its inertial mass density (and, as expected from the equivalence principle, also of the ``gravitational'' force term) produced by the ``inertial'' term of the transport equation. This model exhibits for the first time the consequences of such an effect, and shows that under physically reasonable conditions this decreasing of the gravitational term in the dynamic equation may be large enough as to revert the collapse and produce a bouncing of the boundary surface of the sphere.

  19. Moist processes and the quasi-hydrostatic approximation in a mesoscale numerical model

    E-Print Network [OSTI]

    Kennedy, Charles Joseph

    1987-01-01T23:59:59.000Z

    of Committee) James P. McGuirk (Member) J'ohn M. Klinck (Member) James R. Sco ns (Head of Department) December 1987 ABSTRACT Moist Processes and the Ouasi-Hydrostatic Approximation in a Mesoscale Numerical Model. (December 1987) Charles Joseph...HV)ds' ? gHp s + gHps a dg 1 gt = (gt), s 1 1 (19) the pressure tendency at the model top equation: g f V ~ (pHV)ds' ? VS Vp Q ( el 1 + 0 Yp CpT ? V (H0) ds' )' ? ) (20) Richardson's equation for vertical motion: s f , , f Id d'D &DDVdd ' ? 0 D, 0...

  20. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.

    SciTech Connect (OSTI)

    Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

    2006-01-01T23:59:59.000Z

    In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

  1. Probe measurements and numerical model predictions of evolving size distributions in premixed flames

    SciTech Connect (OSTI)

    De Filippo, A.; Sgro, L.A.; Lanzuolo, G.; D'Alessio, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy)

    2009-09-15T23:59:59.000Z

    Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter of 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)

  2. A New Cone Programming Approach for Robust Portfolio Selection ?

    E-Print Network [OSTI]

    2006-12-22T23:59:59.000Z

    Dec 10, 2006 ... Let us consider a discrete-time market with n traded assets. The vector of asset ...... We next report the performance of the classical portfolio and the robust portfolios corre- sponding to our ..... Utilities (Gas & Electric). EMR.

  3. Assessing and reducing product portfolio complexity in the pharmaceutical industry

    E-Print Network [OSTI]

    Leiter, Kevin M. (Kevin Michael)

    2011-01-01T23:59:59.000Z

    Overly complex product portfolios lead to inefficient use of resources and limit an organization's ability to react quickly to changing market dynamics. The challenges of reducing portfolio complexity are defining excess ...

  4. A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests

    E-Print Network [OSTI]

    W. Schmidt; J. C. Niemeyer; W. Hillebrandt

    2006-01-23T23:59:59.000Z

    We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the subgrid scale model in this paper as a basis for more advanced applications in numerical simulations of complex astrophysical phenomena involving turbulence.

  5. Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation

    E-Print Network [OSTI]

    Lyon, Thomas P.

    131 Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation Thomas P. Lyon* and Haitao Yin** Renewable portfolio standards (RPSs) for electricity generation are politically popularU.S.stategovernments of Renewable Portfolio Standards (RPSs) as a policy tool for promoting renewable electricity generation. An RPS

  6. Emissions of volatile organic compounds from stationary combustion sources: Numerical modeling capabilities

    SciTech Connect (OSTI)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Kee, R.J.; Lutz, A.J. [Sandia National Labs., Albuquerque, NM (United States); Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States); Senkan, S. [California Univ., Los Angeles, CA (United States)

    1992-09-01T23:59:59.000Z

    A collaborative research program initiated to study the emissions of a wide variety of chemical species from stationary combustion systems. These product species have been included in the Clean Air act legislation and their emissions must be rigidly controlled, but there is a need for much better understanding of the physical and chemical mechanisms that produce and consume them. We are using numerical modeling study the chemical reactions and fluid mechanical factors that occur in industrial processes: we are examining systems including premixed and diffusion flames, stirred reactors and plug flow reactors in these modeling studies to establish the major factors leading to emissions of these chemicals. In addition, we are applying advanced laser diagnostic techniques to validate the model predictions and to study the possibilities of developing sophisticated sensors to detect emissions of undesirable species in real time. This paper will discuss the organization of this collaborative effort and its results to date.

  7. A localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests

    E-Print Network [OSTI]

    Schmidt, W; Niemeyer, J C

    2006-01-01T23:59:59.000Z

    We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the sub...

  8. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; the NINJA-2 Collaboration; :; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Díaz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Gräf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kéfélian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

    2014-01-05T23:59:59.000Z

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\\odot}+10M_{\\odot}$ ($50M_{\\odot}+50M_{\\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF

  9. Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri

    SciTech Connect (OSTI)

    Rovey, Charles; Gouzie, Douglas; Biagioni, Richard

    2013-09-30T23:59:59.000Z

    The project titled Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri provided training for three graduate students in areas related to carbon capture and storage. Numerical modeling of CO{sub 2} injection into the St. Francois aquifer at the Southwest Power Plant Site in Greene County, Missouri indicates that up to 4.1 x 10{sup 5} metric tons of CO{sub 2} per year could be injected for 30 years without exceeding a 3 MPa differential injection pressure. The injected CO{sub 2} would remain sequestered below the top of the overlying caprock (St. Francois confining unit) for more than 1000 years. Geochemical modeling indicates that portions of the injected CO{sub 2} will react rapidly with trace minerals in the aquifer to form various solid carbonate mineral phases. These minerals would store significant portions of injected CO{sub 2} over geologic time scales. Finally, a GIS data base on the pore-fluid chemistry of the overlying aquifer system in Missouri, the Ozark aquifer, was compiled from many sources. This data base could become useful in monitoring for leakage from future CO{sub 2} sequestration sites.

  10. A phase screen model for simulating numerically the propagation of a laser beam in rain

    SciTech Connect (OSTI)

    Lukin, I P; Rychkov, D S; Falits, A V [Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation); Lai, Kin S; Liu, Min R [DSO National Laboratories 20 (Singapore)

    2009-09-30T23:59:59.000Z

    The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. The 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)

  11. Natural gas contracts in efficient portfolios

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1994-12-01T23:59:59.000Z

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  12. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake

    E-Print Network [OSTI]

    Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics

  13. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    SciTech Connect (OSTI)

    Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)

    2014-01-15T23:59:59.000Z

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  14. Numeric-modeling sensitivity analysis of the performance of wind turbine arrays

    SciTech Connect (OSTI)

    Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.

    1982-06-01T23:59:59.000Z

    An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.

  15. EPA ENERGY STAR Webcast- Portfolio Manager® Office Hours, Focus Topic: Portfolio Manager 2015 Priorities

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  16. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    SciTech Connect (OSTI)

    Eliasson, B. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Stenflo, L. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Department of Physics, Linkoeping University, SE-581 83 Linkoeping (Sweden); Shukla, P. K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2008-10-15T23:59:59.000Z

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.

  17. Numerical modeling of roll structures in mesoscale vortexes over the Black Sea

    E-Print Network [OSTI]

    Iarova, D A

    2014-01-01T23:59:59.000Z

    This paper is a case study of horizontal atmospheric rolls that formed over the Black Sea on 16 August 2007. The rolls were discovered in WRF modeling results for a mesoscale cyclone that originated over the sea on 15 August 2007. The roll formation mechanisms, such as Rayleigh-Benard convective instability, dynamic instability, advection and stretching of vertical velocity field inhomogeneities, are considered. It is shown that indeed convective instability played an important role in the roll formation but dynamic instability did not occur. In order to distinguish other possible mechanisms of the roll formation numerical experiments were performed. In these experiments sea surface temperature in the initial conditions was decreased in order to prevent convective instability. Even though convective instability was suppressed roll-like structures still appeared in the modeling results, although their height and circulation velocity were smaller than in the control run. It was found that these structures were ...

  18. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect (OSTI)

    Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

    2013-11-28T23:59:59.000Z

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  19. 19th. AIAA-CEAS Aeroacoutics Conference, May 28th 2013, Berlin Dynamic Modeling and Numerical Simulation of

    E-Print Network [OSTI]

    Huang, Xun

    19th. AIAA-CEAS Aeroacoutics Conference, May 28th 2013, Berlin Dynamic Modeling and Numerical was presented in this paper. By this control-oriented model, transient dynamic process of multi-physics coupling problem in a progressive wave tube could be approximately studied. The proposed model is verified

  20. An economic model of the limits to foraging range in central place foragers with numerical solutions for

    E-Print Network [OSTI]

    place. 2. The basic model can be varied to suit foragers that optimise either their rate of net energy uptake or their foraging ef®ciency. 3. The model requires speci®cation of the time and energy budgetsAn economic model of the limits to foraging range in central place foragers with numerical

  1. A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning

    E-Print Network [OSTI]

    Stroud, Jonathan

    A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return 2000 This Draft: December 2003 Abstract We present a simulation-based method for solving discrete, parameter and model uncertainty, and learning. We first establish the properties of the method

  2. DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION

    E-Print Network [OSTI]

    Eichhorn, Andreas

    DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS the dynamic decision structure appropriately. In energy risk management, which is typically carried out ex, for integrating risk management into a stochastic optimization framework, risk has to be quantified in a definite

  3. Multiperiod Portfolio Optimization with General Transaction Costs

    E-Print Network [OSTI]

    2013-07-17T23:59:59.000Z

    Department of Management Science and Operations, London Business School, ... For market impact costs, we show that the optimal portfolio policy at each ... Markowitz's analysis are that the investor only cares about single-period ... The case with a single-risky asset and proportional transaction costs is well understood.

  4. Essays in asset pricing and portfolio choice

    E-Print Network [OSTI]

    Illeditsch, Philipp Karl

    2009-05-15T23:59:59.000Z

    In the ?rst essay, I decompose in?ation risk into (i) a part that is correlated with real returns on the market portfolio and factors that determine investor’s preferences and investment opportunities and (ii) a residual part. I show that only...

  5. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    SciTech Connect (OSTI)

    none,; Rose, Kelly [NETL] [NETL; Hakala, Alexandra [NETL] [NETL; Guthrie, George [NETL] [NETL

    2012-09-30T23:59:59.000Z

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999?s Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL?s Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this body of work is to build the scientific understanding and assessment tools necessary to develop the confidence that key domestic oil and gas resources can be produced safely and in an environmentally sustainable way. For the Deepwater and Ultra-Deepwater Portfolio, the general objective is to develop a scientific base for predicting and quantifying potential risks associated with exploration and production in extreme offshore environments. This includes: (1) using experimental studies to improve understanding of key parameters (e.g., properties and behavior of materials) tied to loss-of-control events in deepwater settings, (2) compiling data on spatial variability for key properties used to characterize and simulate the natural and engineered components involved in extreme offshore settings, and (3) utilizing findings from (1) and (2) in conjunction with integrated assessment models to model worst-case scenarios, as well as assessments of most likely scenarios relative to potential risks associated with flow assurance and loss of control. This portfolio and approach is responsive to key Federal-scale initiatives including the Ocean Energy Safety Advisory Committee (OESC). In particular, the findings and recommendations of the OESC?s Spill Prevention Subcommittee are addressed by aspects of the Complementary Program research. The Deepwater and Ultra-Deepwater Portfolio is also aligned with some of the goals of the United States- Department of the Interior (US-DOI) led Alaska Interagency Working Group (AIWG) which brings together state, federal, and tribal government personnel in relation to energy-related issues and needs in the Alaskan Arctic. For the Unconventional Fossil Resources Portfolio, the general objective is to develop a sufficient scientific base for predicting and quantifying potential risks associated with the oil/gas resources in shale reservoirs that require hydraulic fracturing and/or other engineering measures to produce. The major areas of focus include: (1) improving predictions of fugitive methane and greenhouse gas emissions, (2) pr

  6. Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models

    SciTech Connect (OSTI)

    Paik, Joongcheol [University of Minnesota; Sotiropoulos, Fotis [University of Minnesota; Sale, Michael J [ORNL

    2005-06-01T23:59:59.000Z

    A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

  7. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24T23:59:59.000Z

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  8. Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Flow and Geomechanics N. Guy*, G. Enchéry and G. Renard IFP Energies nouvelles, 1-4 avenue de Bois of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid Flow and Geomechanics when both thermal fluid flow and geomechanics are coupled in order to take into account variations

  9. Tidally averaged circulation in Puget Sound sub-basins: Comparison of historical data, analytical model, and numerical model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun; Roberts, Mindy

    2011-07-20T23:59:59.000Z

    Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters, but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.

  10. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model

    E-Print Network [OSTI]

    Boyer, Edmond

    Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf1, T. Haberkorn, SADCO 2011, March 2nd M. Cerf, T. Haberkorn, E. Tr´elat Continuation from a flat to a round Earth model

  11. Numerical modelling of hybrid arc/laser welding: a Level Set approach for weld bead formation and residual stresses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Numerical modelling of hybrid arc/laser welding: a Level Set approach for weld bead formation.Bellet@mines-paristech.fr ABSTRACT The joining of high thickness steel sheets by means of hybrid Laser/GMAW welding processes of the workpiece borders. Two finite elements models are presented to illustrate: (i) A hybrid arc/laser welding

  12. An efficient numerical model for incompressible two-phase flow in fractured media Hussein Hoteit a,1

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    in fractured hydrocarbon reservoirs [1­6]. In this model, the matrix­fracture mass transfer is describedAn efficient numerical model for incompressible two-phase flow in fractured media Hussein Hoteit a,1 , Abbas Firoozabadi a,b,* a Reservoir Engineering Research Institute, Palo Alto, CA, USA b Yale

  13. Numerical Modeling of Salt Tectonics on Passive Continental Margins: Preliminary Assessment of the Effects of Sediment Loading,

    E-Print Network [OSTI]

    Beaumont, Christopher

    Numerical Modeling of Salt Tectonics on Passive Continental Margins: Preliminary Assessment Sciences The University of Leeds LS2 9JT Leeds United Kingdom Abstract Salt tectonics in passive model of frictional-plastic sedimentary overburden overlying a linear viscous salt layer. We present

  14. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is applied on a complex computational model of an automotive vehicle. 1 INTRODUCTION This work is performed

  15. Portfolio Resampling on Various Financial Models

    E-Print Network [OSTI]

    Chen, Yu-Ching Eugene

    2013-01-01T23:59:59.000Z

    the six approaches, theReturns Markowitz SIM_SS SIM_NSS CCM_SS CCM_NSS MGM_SS Equal S&P500 Index Figure 3.2: Performanceof returns, M arkowitz > CCM SS ? SIM N SS > M GM > SIM SS >

  16. Portfolio Risk Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin:Porter County,Porter-CologneRisk

  17. Numerical-model developments for stimulation technologies in the Eastern Gas Shales Project

    SciTech Connect (OSTI)

    Barbour, T.G.; Maxwell, D.E.; Young, C.

    1980-01-01T23:59:59.000Z

    These efforts were directed towards the development of a numerical tensile failure model that could be used to make a parameter sensitivity study of the EGSP wellbore stimulation methods for gas recovery in Devonain shales, calculations were performed using the NTS Multi-Frac Mineback Experiments as the geometry, boundary conditions and material properties of the models. Several major accomplishments were achieved during this task. These include: development of a Crack and Void Strain (CAVS) tensile failure model for one-dimensional fracture analysis using the one-dimensional geometries available in SAI's STEALTH 1-D finite-difference code; modification of the original CAVS tensile failure criteria to improve its representation of multiple fracture development by introducing a logic that adjusts the material's tensile strength (both for crack initiation and crack propagation) according to the degree of cracking that has occurred; adding a submodel to CAVS to allow for cracking propping when a crack is reclosed and to require energy to be expanded during this process; adding a submodel to CAVS to allow for crack pressurization when a crack void strain is in communication with the fluid pressure of the borehole; and performing a parameter sensitivity analysis to determine the effect that the material properties of the rock has on crack development, to include the effects of yielding and compaction. Using the CAVS model and its submodels, a series of STEALTH calculations were then performed to estimate the response of the NTS unaugmented Dynafrac experiment. Pressure, acceleration and stress time histories and snapshot data were obtained and should aid in the evaluation of these experiments. Crack patterns around the borehole were also calculated and should be valuable in a comparison with the fracture patterns observed during mineback.

  18. A framework for the architecting of aerospace systems portfolios with commonality

    E-Print Network [OSTI]

    Hofstetter, Wilfried Konstantin

    2009-01-01T23:59:59.000Z

    (cont.) The framework was applied to three case studies: commonality analysis for a portfolio of future and legacy exploration life support systems, for the historical Saturn launch vehicle portfolio, and for a portfolio ...

  19. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    SciTech Connect (OSTI)

    Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland; Guiochon, Georges A [ORNL

    2011-01-01T23:59:59.000Z

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily for the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.

  20. A numerical model of aerosol scavenging. Part 2, Simulation of a large city fire

    SciTech Connect (OSTI)

    Bradley, M.M.; Molenkamp, C.R.

    1991-10-01T23:59:59.000Z

    Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate.

  1. Numerical Modeling of Geomechanical Processes Related to CO{sub 2} Injection within Generic Reservoirs

    SciTech Connect (OSTI)

    Eckert, Andreas

    2013-05-31T23:59:59.000Z

    In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ?P{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ?P{sub c} magnitudes, especially for the compressional stress regime.

  2. GTO Project Portfolio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,StatementFinancing SolutionsFossilCommunitiesGTO Project Portfolio

  3. Energy Portfolio Standards and the Promotion of Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    2009 U.S. Environmental Protection Agency (EPA) Combined Heat and Power (CHP) Partnership paper covers Energy Portfolio Standards (EPS) which are becoming a widely applied method...

  4. Small Buildings and Small Portfolios Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office's Small Buildings and Small Portfolios activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

  5. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Broader source: Energy.gov (indexed) [DOE]

    development of state renewable portfolio standards (RPS) has helped spur the growth of renewable energy projects, including solar, wind, and biomass power. This report aims to...

  6. Consistency of robust optimization with application to portfolio ...

    E-Print Network [OSTI]

    Megiddo

    2010-09-26T23:59:59.000Z

    very general portfolio and risk constraints. Further, consistency will also carry ...... Quantitative Analysis, 42(3):621–656, 2007. [21] A. Kirsch. An Introduction to ...

  7. Optimisation of physical and financial power purchase portfolios

    E-Print Network [OSTI]

    Gorden Spangardt

    2002-10-18T23:59:59.000Z

    Oct 18, 2002 ... Optimisation of physical and financial power purchase portfolios. Gorden Spangardt (spa ***at*** umsicht.fhg.de) Michael Lucht (luc ***at*** ...

  8. NASA's Composite Portfolio: Department of Energy Workshop Fiber...

    Broader source: Energy.gov (indexed) [DOE]

    NASA 's Composites Portfolio Department of Energy Workshop Fiber Reinforced Polymer Composites Manufacturing Presented by: John Vickers January 13, 2014 www.nasa.gov...

  9. The Federal Guiding Principles Checklist in ENERGY STAR Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webcast will teach Federal energy and sustainability professionals how to use the ENERGY STAR measurement and tracking tool, Portfolio Manager, to help ensure compliance with the Guiding...

  10. ENDOWING CITIZENS WITH A PORTFOLIO OF STATE-SPONSORED ENTERPRISES FOR EFFICIENT AND EQUITABLE PRIVATIZATION

    E-Print Network [OSTI]

    Hartnett, William

    2003-03-28T23:59:59.000Z

    This paper discusses a portfolio endowment policy as an alternative to conventional privatization policies. The portfolio endowment policy endows each citizen with a ...

  11. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011...

  12. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP Industrial Distributed...

  13. Numerical Realization of a Shell Model for Impurity Spreading in Plasmas

    SciTech Connect (OSTI)

    Tokar, M. Z.; Koltunov, M. [Institute for Energy and Climate Research-Plasma Physics, Research Center Juelich GmbH, Juelich, 52428 (Germany)

    2011-09-14T23:59:59.000Z

    In plasmas of fusion devices impurity particles are released as a consequence of wall erosion and are seeded deliberately for diverse purposes. Often they enter the plasma volume from small spots and spread away both along and perpendicular to the magnetic field. This process is described by continuity, motion and heat balance equations taking into account such physical processes as ionization by electrons, friction and heating in coulomb collisions with background ions, etc. In present paper we introduce a shell model where solutions of these equations, such as the densities of different impurity ions, are approximated by functions decaying exponentially from the source region due to the ionization into higher charged states. By integrating the original transport equations over several space regions, we get a set of ordinary differential equations describing the time evolution of the characteristic values for the impurity ion densities, fluxes, temperatures, and the dimensions along and across the magnetic field of the clouds where different states are predominantly localized. The equations obtained include time derivatives of complex non-linear combinations of the variables in question. Two numerical approaches to solve such equations are elaborated and compared by considering the spreading of lithium particles in deuterium plasma.

  14. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect (OSTI)

    Paradkar, B. S.; Cros, B.; Maynard, G. [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France)] [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France); Mora, P. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)] [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-08-15T23:59:59.000Z

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (?1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (?5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  15. On the spherically symmetrical combustion of methyl decanoate droplets and comparisons with detailed numerical modeling

    E-Print Network [OSTI]

    Walter, M.Todd

    .53­0.57 mm and the combustion gas is normal atmospheric pressure air. A detailed numerical simulationOn the spherically symmetrical combustion of methyl decanoate droplets and comparisons Biodiesel Biofuel Microgravity Numerical Droplet combustion a b s t r a c t This study presents

  16. The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and

    E-Print Network [OSTI]

    of the finite volume scheme implemented in the code. We explain the numerical treatment of the wet is decided on the base of inundation maps which are produced with this type of numerical tools. Finally we and the perspectives for future research presented. Key words: tsunami waves, shallow water equations, tsunami

  17. Numerical analysis of a finite element method for the axisymmetric eddy current model of an induction furnace

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    Numerical analysis of a finite element method for the axisymmetric eddy current model, 27002, Lugo, Spain The aim of this paper is to analyze a finite element method to solve an eddy current of the method are reported. Keywords: low-frequency harmonic Maxwell equations, eddy current problems, finite

  18. A controlled distributed parameter model for a fluid-flexible structure system: numerical simulations and experiment validations

    E-Print Network [OSTI]

    Baudouin, Lucie

    A controlled distributed parameter model for a fluid-flexible structure system: numerical consider the problem of active reduction of vibrations in a fluid-flexible structure system and the sloshing of the fuel inside the wing's tank. The control is performed using piezoelectric patches

  19. ERS SAR characterization of coastal polynyas in the Arctic and comparison with SSM/I and numerical model investigations

    E-Print Network [OSTI]

    Winsor, Peter

    ), and a numerical polynya model (NPM) forced by National Center for Environmental Predictions (NCEP) wind fields increases to .83. The NPM computes offshore coastal polynya widths, heat exchange, and ice production is that SAR images processed through the SAR polynya algorithm in combination with the NPM is a powerful tool

  20. IMA Journal of Numerical Analysis (1988) 8, 415-433 Finite Element Methods for a Model for Full Waveform Acoustic

    E-Print Network [OSTI]

    Harrison, Mark

    1988-01-01T23:59:59.000Z

    IMA Journal of Numerical Analysis (1988) 8, 415-433 Finite Element Methods for a Model for Full are given and then a discrete-time, explicit finite element procedure is defined and analysed, with finite on the existence, uniqueness and finite element approximation of the solution of Biot's equations were given in [15

  1. Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct is studied, focusing on the effects of the relative position of polyurea with respect to the loading plates subjected to uniform blast loads and compared their predictions with experimental results. Bahei

  2. Segmentation and Tracking of Mesoscale Eddies in Numeric Ocean Models Vishal Sood, Bin John, Ramprasad Balasubramanian and Amit Tandon*

    E-Print Network [OSTI]

    Tandon, Amit

    Segmentation and Tracking of Mesoscale Eddies in Numeric Ocean Models Vishal Sood, Bin John suggested that the mesoscale eddies and mesoscale features play a strong role in carrying heat poleward oceanographers an invaluable tool to assess mesoscale eddies and the Lagrangian characteristics of this mesoscale

  3. Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of rock strength and precipitation

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of the morphology of mountain belts. Here we investigate the modalities of defor- mation in Central Nepal on a c that the pattern of uplift in Nepal is mainly dependent on both erodability and fault geometry, rather than

  4. Evaluating a Proposed 20% National Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Logan, J.; Sullivan, P.; Short, W.; Bird, L.; James, T. L.; Shah, M. R.

    2009-02-01T23:59:59.000Z

    This paper provides a preliminary analysis of the impacts of a proposed 20% national renewable portfolio standard (RPS) by 2021, which has been advanced in the U.S. Congress by Senator Jeff Bingaman of New Mexico. The paper was prepared before the America Recovery and Reinvestment Act was signed into law by President Barack Obama on February 17, 2009, and thus does not consider important changes in renewable energy (RE) policy that need to be addressed in follow-on analysis. We use NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the RPS requirements on the energy sector and consider design issues associated with renewable energy certificate (REC) trading markets.

  5. Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control the flow of water in hydropower developments, urban

    E-Print Network [OSTI]

    Barthelat, Francois

    Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control, their solution is found either by physical hydraulic modeling or, more recently, by numerical modeling significantly reduce turbine efficiency and cause premature mechanical failure when they occur at hydropower

  6. Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    Mathematical modeling of thermal energy storage in aquifers:presented at the Thermal Energy storage in aquifers1979; Aquifer thermal energy storage—a numerical simulation

  7. Wind Farm Portfolio Optimization under Network Capacity Constraints

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Wind Farm Portfolio Optimization under Network Capacity Constraints H´el`ene Le Cadre, Anthony of wind farms in a Market Coupling organization, for two Market Designs (exogenous prices and endogenous of efficient wind farm portfolios, is derived theoretically as a function of the number of wind farms

  8. Operation and Configuration of a Storage Portfolio via Convex Optimization

    E-Print Network [OSTI]

    is equally broad, and includes pumped hydro, compressed air energy storage (CAES), battery energy storage sys type and size of battery is sub- sequently picked as the (single device) storage portfolio. HoweverOperation and Configuration of a Storage Portfolio via Convex Optimization Matt Kraning, Yang Wang

  9. The Potential Economic Impacts of a Renewable Portfolio Standard

    E-Print Network [OSTI]

    Delaware, University of

    , hydropower, and biomass) according to a specified schedule. Many states are prioritizing renewable energyThe Potential Economic Impacts of a Renewable Portfolio Standard in Delaware Briefing Paper of Figures Figure 1. State Renewable Portfolio Standards in the U.S. ..................... 1 Figure 2. Retail

  10. advanced materials portfolio: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials portfolio First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Portfolio evaluation of advanced...

  11. Numerical study of the mass spectrum in the 2D O(3) sigma model with a theta term

    E-Print Network [OSTI]

    B. Alles; A. Papa

    2007-11-12T23:59:59.000Z

    It has been conjectured that the mass spectrum of the O(3) non-linear sigma model with a theta term in 2 dimensions may possess an excited state, which decays when theta is lowered from pi below a critical value. Since the direct numerical investigation of the model is prevented by a sign problem, we try to infer some information on the mass spectrum at real theta by studying the model at imaginary theta via analytic continuation. A modified Swendsen-Wang cluster algorithm has been introduced to simulate the model with the theta term.

  12. An evaluation of pocket-model, numerical readout breath alcohol testing instruments

    E-Print Network [OSTI]

    Van Tassel, William Edward

    2004-11-15T23:59:59.000Z

    Eight small-scale breath alcohol measurement devices were tested for accuracy, precision and the ability to not yield false positive and false negative readings. These pocket-sized breath testers (PMBTs), which provided numerical readout of Br...

  13. Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt

    E-Print Network [OSTI]

    Wilcock, William

    for Nu up to 50­60. Solutions are characterized by an unstable bottom thermal boundary layer where equation. To avoid classical numerical artifacts such as nonphysical oscillatory behavior and artificial

  14. Qualification of the ITER CS Quench Detection System using Numerical Modeling

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL; Radovinsky, Alexey L [ORNL

    2013-01-01T23:59:59.000Z

    Abstract The ITER Central Solenoid (CS) magnet needs to be protected against overheating of the conductor in the event of the occurrence of a normal zone (NZ). Due to a large amount of stored energy and slow NZ propagation, the NZ needs to be detected and the switchyard needs to open the breakers within 2 s after detection of the NZ. The CS will be discharged on a dump resistor with a time constant of 7.5 s. During operation of the CS and its interaction with the poloidal field (PF) coils and plasma current, the CS experiences large inductive voltages from multiple sources, including nonlinear signals from eddy currents in the vacuum vessel and plasma current variation, that make the task of detecting the resistive signal even more difficult. This inductive voltage needs to be cancelled by quench detection (QD) hardware (e.g., bridges, converters, filters, processors) and appropriate processing of the QD signals to reliably detect NZ initiation and propagation. Two redundant schemes are proposed as the baseline for the CS QD System: 1) A scheme with Regular Voltage Taps (RVT) from triads of Double Pancakes (DP) supplemented by Central Difference Averaging (CDA) and by digital suppression of the inductive voltage from all active coils (the CS and PF coils). Voltage taps are taken from helium outlets at the CS outer diameter. 2)A scheme with Cowound Voltage Taps (CVT) taken from cowound wires routed from the helium inlet at the CS inner diameter. Summary of results of the numerical modeling of the performance of both baseline CS QD systems is presented in this paper. Index Terms Quench detection, Central Solenoid, ITER

  15. A new strategy for discrete element numerical models: 2. Sandbox applications

    E-Print Network [OSTI]

    Sandiford, Mike

    and visualized by the modeler. Reliable modeling of geomechanic processes enables the structural interpreter

  16. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01T23:59:59.000Z

    global warming problems that accompany traditional electricitytheir electricity portfolio so as to prevent global warming,

  17. Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager

    Broader source: Energy.gov [DOE]

    Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

  18. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01T23:59:59.000Z

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  19. State Clean Energy Practices: Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Hurlbut, D.

    2008-07-01T23:59:59.000Z

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, a renewable portfolio standard (RPS) mandates an increase in the use of wind, solar, biomass, and other alternatives to fossil and nuclear electric generation. This paper provides a summary of the policy objectives that commonly drive the establishment of an RPS, the key issues that states have encountered in implementing an RPS, and the strategies that some of the leading states have followed to address implementation challenges. The factors that help an RPS function best generally have been explored in other analyses. This study complements others by comparing empirical outcomes, and identifying the policies that appear to have the greatest impact on results.

  20. Oil Prices, Stock Markets and Portfolio Investment: Evidence from Sector Analysis in Europe over the Last Decade

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the dynamic relationship between oil price variations and stock markets. The pioneering paper by Jones model with GARCH effects to American monthly data and shows a significant relationship between oil priceOil Prices, Stock Markets and Portfolio Investment: Evidence from Sector Analysis in Europe over

  1. Three-dimensional numerical modeling of smoke injection from large fires in the early post-nuclear-exchange environment

    SciTech Connect (OSTI)

    Bradley, M.M.; Peterson, K.R.; Rodriguez, D.J.

    1988-11-17T23:59:59.000Z

    During the hours immediately following a nuclear exchange, large fires could inject enormous quantities of smoke into the atmosphere. This smoke, together with dust from surface bursts, would severely restrict visibilities and darken the skies over large areas for days. This, in turn, could impact surface and air operations and systems. These effects could be mitigated by various scavenging mechanisms within the convective clouds that form above the fires. In order to evaluate impacts of post-nuclear-exchange smoke injection, we are developing a three-dimensional numerical smoke plume model (OCTET) to simulate the dynamics and microphysical processes within smoke plumes and convective clouds above large fires. This model is based on the dynamic framework of the Klemp-Wilhelmson (1978) convective storm model and includes parameterizations of scavenging processes. In addition, we are combining results of laboratory research, field experiments, and detailed numerical modeling of cloud microphysical processes in order to better understand smoke scavenging mechanisms. In this brief demonstration of capabilities, we present results from the OCTET model and from a three-dimensional mesoscale model. The smoke plume and fire-induced cloud simulations demonstrate the effects of nucleation scavenging, seasonal variation of atmospheric stability, and various fuel sources. The mesoscale simulations (that use the plume model output as input) demonstrate the mesoscale transport and diffusion of smoke and predict optical depths over the hypothetical target area. No dust effects have been included in these simulations. 2 refs., 8 figs.

  2. The Coupling of the Numerical Heat Transfer Model of the Pauzhetka Hydrothermal System (Kamchatka, USSR) with Hydroisotopic Data

    SciTech Connect (OSTI)

    Kiryukhin, A.V.; Sugrobov, V.M.

    1986-01-21T23:59:59.000Z

    The application of the two-dimensional numerical heat-transfer model to the Pauzhetka hydrothermal system allowed us to establish that: (1) a shallow magma body with the anomalous temperature of 700-1000 C and with a volume of 20-30 km{sup 3} may be a heat source for the formation of the Pauzhetka hydrothermal system. (2) The water feeding source of the Pauzhetka hydrothermal system may be meteoric waters which are infiltrated at an average rate of 5-10 kg/s {center_dot} km{sup 2}. The coupling of the numerical heat-transfer model with hydroisotopic data (D,T,{sup 18}O) obtained from the results of testing of exploitation wells, rivers and springs is the basis to understand more clearly the position of recharge areas and the structure of water flows in the hydrothermal system.

  3. Scalar-Scalar Ladder Model in the Unequal-Mass Case. III - Numerical Studies of the P-Wave Case -

    E-Print Network [OSTI]

    Ichio Fukui; Noriaki Setoh

    1999-01-21T23:59:59.000Z

    The eigenvalue problem for the p-wave bound states formed by two unequal-mass scalar particles through the massive scalar particle exchange is analyzed numerically in the framework of the Bethe-Salpeter ladder model. As in the s-wave case, the eigenvalues of the coupling constant are found to become complex for some mass configurations in some range of the bound state mass. The Bethe-Salpeter amplitudes of the low-lying bound states are also investigated.

  4. A numerical procedure to model and monitor CO2 sequestration in

    E-Print Network [OSTI]

    Santos, Juan

    area of research. o We present a methodology integrating numerical simulation of CO2 -brine o The simultaneous flow of brine and CO2 is described by the well-known Black in the brine but the brine is not allowed to vaporize into the CO2 phase. o This formulation uses

  5. Numerical modeling of observed effective flow behavior in unsaturated heterogeneous sands

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    , and a stochastic theory were compared to effective retention and hydraulic conductivity characteristics measured slow a response in the outflow rate. An alternative approach involving a combination of arithmetic, deterministic simulations would demand vast computa- tional resources by requiring an extremely dense numerical

  6. Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock

    E-Print Network [OSTI]

    Boyer, Edmond

    and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration. R¨ohle, F. Thiele, B. Noll, The Entropy Wave Generator (EWG): A reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574-598] where an entropy wave is generated upstream of a nozzle

  7. LABORATORY-NUMERICAL MODEL COMPARISONS OF CANYON FLOWS: A PARAMETER STUDY.

    E-Print Network [OSTI]

    , but the enhanced viscosities needed to obtain numerical stability give boundary layers that are too wide along length scales, one the fluid depth and another a more narrow boundary-layer-like thickness [O(RoBu-1 is the interaction of an oscillatory, along-slope background current with an isolated canyon incised in an otherwise

  8. Overland flow modelling with the Shallow Water Equation using a well balanced numerical scheme

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    or kinematic waves equations, and using either finite volume or finite difference method. We compare these four show that, for relatively simple configurations, kinematic waves equations solved with finite volume; finite differ- ences scheme; kinematic wave equations; shallow water equations; comparison of numerical

  9. Numerical modeling of extreme rogue waves generated by directional energy focusing

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    of an overturning rogue wave, and analyze the sensitivity of its geometry and kinematics to water depth and maximum. Keywords: Water waves; Numerical wave tank; Extreme wave kinematics; Rogue waves 1. Introduction finely resolved 3D focused overturning waves and analyze their geometry and kinematics. In this paper, we

  10. Numerical study on transient heat transfer under soil with plastic mulch in agriculture applications using a nonlinear finite element model

    E-Print Network [OSTI]

    De Castro, Carlos Armando

    2011-01-01T23:59:59.000Z

    In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.

  11. MARKETING PORTFOLIO Please keep in mind that your audience for the portfolio is a prospective employer, so everything has to be

    E-Print Network [OSTI]

    de Lijser, Peter

    MARKETING PORTFOLIO DIRECTIONS AUDIENCE Please keep in mind that your audience for the portfolio is a prospective employer, so everything has to be done with that individual in mind. At a minimum you

  12. Field observations and numerical model experiments for the snowmelt process at a field site

    E-Print Network [OSTI]

    Ohara, N; Kawas, M L

    2006-01-01T23:59:59.000Z

    a one dimensional heat transfer model is introduced in orderone dimensional heat transfer model is con- venient forHowever, the simple heat transfer model is a useful tool to

  13. Regional Portfolio Model ResultsRegional Portfolio Model Results Michael Schilmoeller

    E-Print Network [OSTI]

    Plans on the efficient frontier Interpreting a plan Issue Studies Carbon control and climate changeChanges in Assumptions and Data CO2 penalty likelihood distribution Conservation base case New programs and re on the efficient frontier Interpreting a plan Issue Studies Carbon control and climate change The economic effects

  14. Optimization Online - Efficient Cardinality/Mean-Variance Portfolios

    E-Print Network [OSTI]

    R. P. Brito

    2012-03-03T23:59:59.000Z

    Mar 3, 2012 ... Efficient Cardinality/Mean-Variance Portfolios. R. P. Brito(rpedro.brito ***at*** gmail.com) L. N. Vicente(lnv ***at*** mat.uc.pt). Abstract: A ...

  15. Running in place : renewal portfolio standards and climate change

    E-Print Network [OSTI]

    Hogan, Michael T. (Michael Thomas)

    2008-01-01T23:59:59.000Z

    Renewable portfolio standards ("RPS") have spread widely as states have made an effort to promote electricity production from renewable energy sources, granting privileged market access to eligible technologies and resources. ...

  16. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    teChnologIes Program IntroduCtIon the research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy...

  17. Technology Portfolio Planning by Weighted Graph Analysis of System Architectures

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology Portfolio Planning by Weighted Graph Analysis of System Architectures Peter Davison and Bruce Cameron Massachusetts Institute of Technology, Cambridge, MA 02139 Edward F. Crawley Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia Abstract5 Many systems undergo significant

  18. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01T23:59:59.000Z

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  19. EPA ENERGY STAR Webinar: ENERGY STAR Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time; using...

  20. NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES 

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2013-09-27T23:59:59.000Z

    determined. A deterministic model includes both a dynamic model, and a static model. Compared to a deterministic solute diffusion model, a stochastic diffusion model has one or more stochastic elements. Concentration diffusion system formulated... solute diffusion equation, which merely appears in the form of a number line, the quasi-2D solute diffusion equation forms a Cartesian grid system. Also, for the explicit quasi-2D solute diffusion equation (Eq. 4), concentration variation is measured...

  1. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01T23:59:59.000Z

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  2. The development of an effective portfolio assessment instrument

    E-Print Network [OSTI]

    Alderete, Karen Leigh

    1993-01-01T23:59:59.000Z

    THE DEVELOPMENT OF AN EFFECTIVE PORTFOLIO ASSESSMENT INSTRUMENT A Thesis by KAREN LEIGH ALDERETE Submitted to the Offices of Graduate Studies of Texas AfxM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1993 Major Subject: Curriculum and Instruction THE DEVELOPMENT OF AN EFFECTIVE PORTFOLIO ASSESSMENT INSTRUMENT A Thesis by KAREN LEIGH ALDERETE Approved as to style and content by: Viola E. Florez ( Chair of Committee ) Rafael ra...

  3. Observational and Numerical Modeling Studies of Turbulence on the Texas-Louisiana Continental Shelf

    E-Print Network [OSTI]

    Zhang, Zheng

    2013-05-24T23:59:59.000Z

    values to CH model values for (a) q= k, (b) P , (c) B, (d) t, (e) 0t, (f) M 2, and (g) N2. . . . . . . . . . . . . . . . . 58 2.19 Ratios of values between the models: (a) SG/CHx; (b) SGx/CH; (c) SG/SGx; (d) CHx... between depths of 6 and 15 m; (b) sum of the turbulent oxygen uxes at the layers. . . . . . . . . . . . . . . . . . . 80 xvii 3.11 (a) observed ; (b) CH modeled ; (c) SG modeled ; (d) observed ; (e) CH modeled ; (f) SG modeled . The SBL and BBL...

  4. Thermodynamic Modeling and Numerical Simulation of Single-Shaft Microturbine Performance

    E-Print Network [OSTI]

    Hao, X.; Zhang, G.; Zhou, J.; Chen, Y.

    2006-01-01T23:59:59.000Z

    's performance under off-design situations. The proposed model is validated by operational data of a commercially available micro- turbine from a reference. The result shows that the proposed mathematical model can preferably represent the quasi...

  5. Numerical Modeling of Diffusion in Fractured Media for Gas-Injection

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    ; Arana 2001; Darvish et al. 2006). Coats (1989) has modeled the effect of diffusion in dual- porosity

  6. A numerical model for the coupled long-term evolution of salt marshes and tidal flats

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    -shore mudflat model that takes into account tidal effects; Waeles et al. [2004] incor- porated in the same

  7. A Numerical Model for Miscible Displacement of Multi-Component Reactive Species

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Azarouala a Water Department/Groundwater and Geochemistry Modeling, BRGM (French Geological Survey) 3 of our approach. Therefore, the model may prove useful for many practical applications. 1. INTRODUCTION Demands to undertake modeling analysis of coupled groundwater ow, solute transport, and reactive water

  8. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

  9. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    Doughty, 1979a, Aquifer thermal energy storage--a numericalical modeling of thermal energy storage in aquifers.Presented at the Thermal Energy Storage in Aquifers

  10. Numerical simulations of the internal shock model in magnetized relativistic jets of blazars

    E-Print Network [OSTI]

    Rueda-Becerril, Jesus M; Aloy, Miguel A

    2015-01-01T23:59:59.000Z

    The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.

  11. Aerosol dispersion and coagulation from a coal-fired power plant: a three dimensional numerical model

    SciTech Connect (OSTI)

    Buckholtz, H.T.; Biermann, A.H.

    1980-01-01T23:59:59.000Z

    A computational model to simulate the dispersion and coagulation of aerosols emitted from coal-fired power plants was constructed. In modeling the dispersion of the aerosol, turbulent diffusion and wind-driven advection are treated by a finite-difference method. Molecular coagulation is incorporated in the model to follow shifts in the particle-size distribution. Particulate coagulation is mathematically described by Timiskii's equation. The relevent semi-empirical work of Smirnov is incorporated in the model to provide for the coagultion constant. Input for the model is a bimodal, particle-size distribution measured at an operating coal-fired power plant. Simulations indicate that dispersion competes against coagulation mechanisms to maintain the bimodal shaped distribution for 32 km. Turbulence and particle settling tend to enchance coagulation effects. The size-dependent spatial segregation of particles within the plume is predicted.

  12. MICROMECHANICS BASED CONSTITUTIVE MODEL FOR GRANULAR SOLIDS AND ITS IMPLEMENTATION INTO MESHFREE NUMERICAL METHOD

    E-Print Network [OSTI]

    Lusk, Miriam Beatriz

    2011-12-31T23:59:59.000Z

    To capture the fracture process and non-linear behavior at the element and structural level of granular materials, concrete, under the presence of pre-existing imperfections, a constitutive model and a mesh free method is ...

  13. Airborne observations and numerical modeling of fetch- limited waves in the Gulf of Tehuantepec

    E-Print Network [OSTI]

    Romero, Leonel

    2008-01-01T23:59:59.000Z

    velocity scaling in wind wave generation. Boundary-Layerlinear theory of of wind wave generation applied to waveSource terms in a third-generation wind wave model. J. Phys.

  14. Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids

    E-Print Network [OSTI]

    Olorode, Olufemi Morounfopefoluwa

    2012-02-14T23:59:59.000Z

    Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

  15. Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Haet Exchangers 

    E-Print Network [OSTI]

    Muraya, Norman K.

    1994-01-01T23:59:59.000Z

    Non-linear finite element models were developed to simulate transient heat and mass transfer in the soil surrounding the ground heat exchangers of ground-coupled heat pumps (GCHPs) operating in the cooling mode. Parametric studies were performed...

  16. NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2013-09-27T23:59:59.000Z

    , an innovative modeling approach was employed that focuses on the interface growth of the microbial mat surfaces using a combined stochastic and deterministic approach. A range of different initial conditions were simulated to evaluate the 3D topography evolution...

  17. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    studies related to the Cerro Prieto Field: Proceedings, 1stSymposium on the Cerro Prieto Geothermal Field, San Diego,modeling studies of the Cerro Prieto Reservoir--A progress

  18. Mathematical Modelling and Numerical Analysis Will be set by the publisher Modelisation Mathematique et Analyse Numerique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of underground storage facilities for nuclear waste. The processes involved in near-field models are extremely field u : [0, T ] × R3 and a pressure field p : [0, T ] × R such that - ·(u) + b p = f, in [0

  19. Efficient Conservative Numerical Schemes for 1D Nonlinear Spherical Diffusion Equations with Applications in Battery Modeling

    E-Print Network [OSTI]

    Zeng, Yi

    Mathematical models of batteries which make use of the intercalation of a species into a solid phase need to solve the corresponding mass transfer problem. Because solving this equation can significantly add to the ...

  20. Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Haet Exchangers

    E-Print Network [OSTI]

    Muraya, Norman K.

    Non-linear finite element models were developed to simulate transient heat and mass transfer in the soil surrounding the ground heat exchangers of ground-coupled heat pumps (GCHPs) operating in the cooling mode. Parametric studies were performed...

  1. University of Stuttgart IWS, Department of Hydromechanics and Modelling of Hydrosystems Numerical investigation of microbially

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    vicinity Abandoned wellCO2 2 #12;University of Stuttgart IWS, Department of Hydromechanics and Modelling discretization cap rock precipitated calcite reservoir radius of several meters injection of bacteria, urea

  2. Numerical modeling of fluid flow and time-lapse seismics to monitor ...

    E-Print Network [OSTI]

    santos

    May 30, 2014 ... including the presence of shale seals and fractures and fractal variations of the ... In the Black-Oil model employed, brine is NOT present, OIL is.

  3. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  4. Final Report: A Model Management System for Numerical Simulations of Subsurface Processes

    SciTech Connect (OSTI)

    Zachmann, David

    2013-10-07T23:59:59.000Z

    The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.

  5. This Ph.D thesis encompasses a global numerical simulation of the needleeye float zone process, used to grow silicon single crystals. The numerical models includes coupled electro

    E-Print Network [OSTI]

    and free surface models and a global heat transfer model, with moving boundaries. An axisymmetric fluid to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite field, from which temperature gradients are determined. The heat transfer model is furthermore expanded

  6. Numerical Modeling of Hydraulic Fracture Propagation Using Thermo-hydro-mechanical Analysis with Brittle Damage Model by Finite Element Method 

    E-Print Network [OSTI]

    Min, Kyoung

    2013-07-16T23:59:59.000Z

    are studied using a coupled thermo-hydro-mechanical (THM) analysis. The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering...

  7. Incorporating property characteristics and capital market conditions in optimizing commercial real estate portfolios

    E-Print Network [OSTI]

    Liu, Yanjia

    2014-01-01T23:59:59.000Z

    We all know for diversification purposes we cannot "put all our eggs in one basket." Markowitz's Modern Portfolio Theory leads us to diversify our portfolio to achieve the highest Sharp ratio. Fama-French's Three-Factor ...

  8. Building an All-of-the-Above Portfolio with Loan Guarantees for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects...

  9. The effectiveness of portfolios in assessing students' connections between mathematical symbols and mathematical concepts

    E-Print Network [OSTI]

    McGinnis, Leslie Grable

    1995-01-01T23:59:59.000Z

    The purpose of this study was to assess the effectiveness of mathematics portfolios in determining the type of connections students were making between mathematical concepts and mathematical symbols. A mathematics portfolio is a purposeful...

  10. Downside Risk Constraints and Currency Hedging in International Portfolios: the Asian and Late-2000 Crisis

    E-Print Network [OSTI]

    Zhou, Ying

    2012-02-14T23:59:59.000Z

    MV is the traditional method to treat international portfolio selection problems, which bases its theory on the assumption of Normal Distribution. However, during economy recession the portfolio return turns out to be a fat tail distribution...

  11. Empirical Analysis of Value at Risk and Expected Shortfall in Portfolio Selection Problem

    E-Print Network [OSTI]

    Ding, Liyuan 1988-

    2012-12-11T23:59:59.000Z

    Safety first criterion and mean-shortfall criterion both explore cases of assets allocation with downside risk. In this paper, I compare safety first portfolio selection problem and mean-shortfall portfolio optimization problem, considering risk...

  12. Microsoft PowerPoint -Risk_Portfolio_Manager(RPM)_overview_Under...

    Office of Environmental Management (EM)

    PowerPoint - RiskPortfolioManager(RPM)overviewUnderSecDOE2011V4 Final 3-22-2011.ppt Read-Only Compatibili Microsoft PowerPoint - RiskPortfolioManager(RPM)overviewUn...

  13. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    frontiers in a cost- risk nexus of energy technologies.the true cost risks involved in the energy portfolio. Usingthe true cost risks involved in the energy portfolio. Using

  14. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Yu, Y. H.

    2012-05-01T23:59:59.000Z

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  15. Numerical model for the vacuum pyrolysis of scrap tires in batch reactors

    SciTech Connect (OSTI)

    Yang, J.; Tanguy, P.A.; Roy, C. [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique] [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique

    1995-06-01T23:59:59.000Z

    A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.

  16. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect (OSTI)

    None

    2005-07-01T23:59:59.000Z

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  17. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    Renewable Portfolio157 B.2 Renewable Energy Funding and Speci?c Technology161 ix B.3 Renewable Energy Penetration

  18. Peer Review of the Federal Energy Management Program Energy-Efficient Product Procurement Portfolio

    Broader source: Energy.gov [DOE]

    Document details the peer review of the Federal Energy Management Program Energy-Efficient Product Procurement portfolio.

  19. Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable

    E-Print Network [OSTI]

    Vuik, Kees

    -called thermal pulse combustor. By integrating the model equations in time it is possible to predict whether A thermal pulse combustion. Figure 1 gives a schematic representation of such a thermal pulse combustor combustors may give important guide- lines on how design parameters should be chosen. This paper gives

  20. Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ""r,c,rn The authors are for hel]JfuI #12;Abstract Constructing maps of pollution levels is vital for air quality concentrations. Key tlJords: air pollution, Ba~yesian inference, change of support, likelihood approaches, Matern Resolutions 2.5 Modeling a Nonstationary Covariance . 3 Estimation 3.1 Algorithm 4 Application: Air Pollution

  1. A numerical procedure to model and monitor CO2 sequestration in

    E-Print Network [OSTI]

    Santos, Juan

    sequestration over very long periods of time. · The analysis of CO2 underground storage safety in the long term procedure to model and monitor CO2 sequestration in aquifers ­ p. #12;Introduction. I · Storage of CO2 (31.6C, 7.38 MPa). · First industrial scale CO2 injection project: Sleipner gas field (North Sea

  2. A numerical procedure to model and monitor CO2 sequestration in aquifers

    E-Print Network [OSTI]

    Santos, Juan

    sequestration over very long periods of time. The analysis of CO2 underground storage safety in the long term procedure to model and monitor CO2 sequestration in aquifers ­ p. #12;Introduction. I Storage of CO2 (31.6C, 7.38 MPa). First industrial scale CO2 injection project: Sleipner gas field (North Sea

  3. A multiple layer numerical model of the formation of the low-level jet

    E-Print Network [OSTI]

    Shen, Tsu-Cheng

    1980-01-01T23:59:59.000Z

    310 320 e(kj Fig. 3. The initial vertical distribution of potential tempera- ture in the model . Table 3. The vertical distribution of the variables used for setting the initial conditions. LEVEL k (m s ) kh(m s ) u(ms ) v(ms ) w(ms ) e (k) 00 p...

  4. NUMERICAL MODELLING OF MICROORGANISMS DISPERSION IN URBAN AREA: APPLICATION TO LEGIONELLA.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with transmission of an infectious agent from cooling towers (CT). During the episode that occured in Pas to contaminated cooling towers system may occur over distance larger than 10km. In addition, most cooling towers dispersion from a virtual cooling tower at the same location. The biological model has been activated

  5. Evaluation of a semi-implicit numerical algorithm for a rate-dependent ductile failure model.

    SciTech Connect (OSTI)

    Zocher, M. A. (Marvin Anthony); Zuo, Q. K. (Qiuhai K.); Mason, T. A. (Thomas A.)

    2002-09-01T23:59:59.000Z

    A survey conducted in the mid-80's revealed that the mathematical descriptions of ductile fracture tended to apply to either tensile tests or spa11 tests. The objective behind the development of the TEPLA was then a unification of these disparate phenomena into a single model.

  6. Experimental Validation of a Numerical Multizone Airflow and Pollutant Transfer Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and long-term assessment of the performances of ventilation systems, the experimental house MARIA and ventilation systems are modeled in MATLAB/Simulink environment. This paper quickly describes the multi exhaust, balanced and natural ventilation systems. In addition, the virtual laboratory SIMBAD Building

  7. Numerical Modeling of Nonlinear Coupling between Lines/Beams with Multiple Floating Bodies

    E-Print Network [OSTI]

    Yang, Chan K.

    2010-07-14T23:59:59.000Z

    to be capable of modeling the tendon disconnection both at the top and the bottom connection as well as the down stroke behavior for the pinned bottom joint. The performance of the tie-down clamp of derrick is also investigated by using six degrees of freedom...

  8. Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs

    E-Print Network [OSTI]

    Mitchell, John E.

    Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs John E. Mitchell. Abstract: The inclusion of transaction costs is an essential element of any realistic portfolio transaction costs are incurred to rebalance an investment portfolio. In partic- ular, we consider linear

  9. OCTOBER 2010 SPECIAL INSTRUCTIONS TO DESIGNERS SID-S SUSTAINABLE PRODUCTS PORTFOLIO

    E-Print Network [OSTI]

    Kamat, Vineet R.

    by the Sustainability Team at the University of Michigan (U-M) Department of Architecture, Engineering & ConstructionSID-S OCTOBER 2010 SPECIAL INSTRUCTIONS TO DESIGNERS SID-S SUSTAINABLE PRODUCTS PORTFOLIO Page 1 of 2 SUSTAINABLE PRODUCTS PORTFOLIO General The Sustainable Products Portfolio (SPP) is maintained

  10. Numerical study of three-dimensional PIC for the surface plasmon excitation based on Drude model

    E-Print Network [OSTI]

    Liu, La-Qun; Wang, Hui-Hui; Liu, Da-Gang

    2015-01-01T23:59:59.000Z

    This paper explores the time-domain equations of noble metals, in which Drude model is adopted to describe the dielectric constant, to implement three-dimensional particle-in-cell (PIC) simulations for the surface plasmon excitation with the finite-difference time-domain method (FDTD). A three-dimensional model for an electron bunch movement near the metal film is constructed, and particle-in-cell (PIC) simulations are carried out with various metal films of different thicknesses. The frequency of surface plasmon obtained from PIC simulation is agreed with that from theory. Furthermore, the surface plasmon wave properties of excitation and propagation with the metal film is summarized by PIC results.

  11. Modelling Viscoelastic Behaviour of Polymer by A Mixed Velocity, Displacement Formulation - Numerical and Experimental Results

    SciTech Connect (OSTI)

    Pham, VT.; Silva, L.; Digonnet, H.; Combeaud, C.; Billon, N.; Coupez, T. [Centre for Material Forming (CEMEF), MINES ParisTech, Rue Claude Daunesse, Sophia Antipolis cedex (France)

    2011-05-04T23:59:59.000Z

    The objective of this work is to model the viscoelastic behaviour of polymer from the solid state to the liquid state. With this objective, we perform experimental tensile tests and compare with simulation results. The chosen polymer is a PMMA whose behaviour depends on its temperature. The computation simulation is based on Navier-Stokes equations where we propose a mixed finite element method with an interpolation P1+/P1 using displacement (or velocity) and pressure as principal variables. The implemented technique uses a mesh composed of triangles (2D) or tetrahedra (3D). The goal of this approach is to model the viscoelastic behaviour of polymers through a fluid-structure coupling technique with a multiphase approach.

  12. Laboratory experiments and numerical modeling of wave attenuation through artificial vegetation

    E-Print Network [OSTI]

    Augustin, Lauren Nicole

    2009-05-15T23:59:59.000Z

    ). The first hydrodynamic model developed by Price et al. (1968) simulated the effects of seaweed as a high viscous layer. Mork (1996) extended the idea of the high viscous layer and developed a theory for kelp plants that took into account not only viscous... has been validated by artificial laboratory kelp experiments for the species Laminaria Hyperborea, and is assumed appropriate for representing wave transformation and damping over submerged vegetative fields of variable depths. Mork (1996) studied...

  13. Exact theory and numeric results for short pulse ionization of simple model atom in one dimension

    E-Print Network [OSTI]

    Rokhlenko, Alexander

    2015-01-01T23:59:59.000Z

    Our exact theory for continuous harmonic perturbation of a one dimensional model atom by parametric variations of its potential is generalized for the cases when a) the atom is exposed to short pulses of an external harmonic electric field and b) the forcing is represented by short bursts of different shape changing the strength of the binding potential. This work is motivated not only by the wide use of laser pulses for atomic ionization, but also by our earlier study of the same model which successfully described the ionization dynamics in all orders, i.e. the multi-photon processes, though being treated by the non-relativistic Schr\\"odinger equation. In particular, it was shown that the bound atom cannot survive the excitation of its potential caused by any non-zero frequency and amplitude of the continuous harmonic forcing. Our present analysis found important laws of the atomic ionization by short pulses, in particular the efficiency of ionizing this model system and presumably real ones as well.

  14. Numerical modeling of a thermohydrochemical (T-H-C) coupling and the implications to radionuclide transport.

    SciTech Connect (OSTI)

    Esh, D. W.; Scheetz, B. E.

    1999-09-21T23:59:59.000Z

    Thermohydrochemical (T-H-C) processes result from the placement of heat-generating radioactive materials in unsaturated, fractured geologic materials. The placement of materials in the proposed Yucca Mountain repository will result in complex environmental conditions. Simple models are developed liking the thermohydrological effects simulated with TOUGHZ to system chemistry, with an example presented for chloride. Perturbations to near-field chemistry could have a significant impact on the migration of actinides and fission products in geologic materials. Various conceptual models to represent fractures are utilized in TOUGHZ simulations of thermohydrological processes. The simulated moisture redistribution is then coupled to simple chemical models to demonstrate the potential magnitude of T-H-C processes. The concentration of chloride in solution (returning to the engineered barrier system) is demonstrated, in extreme cases, to exceed 100,000 mg/L. The implication is that the system (typically ambient chemical and hydrological conditions) in which radionuclide transport is typically simulated and measured may be significantly different from the perturbed system.

  15. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    E-Print Network [OSTI]

    Dubus, Guillaume; Fromang, Sébastien

    2015-01-01T23:59:59.000Z

    Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...

  16. An improved neutral diffusion model and numerical solution of the two dimensional edge plasma fluid equations. Final report

    SciTech Connect (OSTI)

    Prinja, A.K.

    1998-09-01T23:59:59.000Z

    In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.

  17. Numerical modeling of gas migration at a proposed repository for low and intermediate level nuclear wastes at Oberbauenstock, Switzerland

    SciTech Connect (OSTI)

    Pruess, K.

    1990-03-01T23:59:59.000Z

    Hydrologic impacts of corrosive gas release from a hypothetical L/ILW nuclear waste repository at Oberbauenstock are explored by means of numerical simulation. A schematic two dimensional vertical section through the mountain is modeled with the simulator TOUGH, which describes two-phase flow of water and gas in porous and fractured media. Two reference cases are considered which represent the formations as a porous and as a fractured-porous (dual permeability) medium, respectively. Both cases predict similar and rather modest pressure increases, from ambient 10 bars to near 25 bars at the repository level. These results are to be considered preliminary because important parameters affecting two-phase flow, such as relative permeabilities of a fractured medium, are not well known at present. 24 refs., 15 figs., 5 tabs.

  18. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect (OSTI)

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04T23:59:59.000Z

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  19. A numerical model and scaling relationship for energetic electron beams propagating in air

    SciTech Connect (OSTI)

    Fernsler, R. F.; Slinker, S. P. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Lambrakos, S. G. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2008-09-15T23:59:59.000Z

    Scaling relationships for energy loss and scattering are combined with a particle code to construct a purely algebraic expression for the energy deposited by an energetic electron beam injected into field-free homogeneous air. An algebraic formulation is possible because the mean free paths for the major collisional processes depend similarly on density and energy above 1 keV. Accordingly, the spatial behavior of an initially cold pencil beam is approximately self-similar when expressed in terms of the nominal beam range, provided the beam energy at injection exceeds several keV. Since a warm and broad beam can always be decomposed into a series of cold pencil beams, the total energy deposited can be obtained through a simple sum. With such a model, the ionization and excitation generated by a beam can be computed quickly and easily at every point in space. Similar formulations can be developed for other media using particle codes or experimental data. In liquids or solids, the energy deposited is quickly converted to heat and ultimately to melting and/or vaporization of the material.

  20. Mathematical and numerical studies of nonstandard difference equation models of differential equations. Final technical report, September 1995--September 1997

    SciTech Connect (OSTI)

    Mickens, R.E.

    1997-12-12T23:59:59.000Z

    The major thrust of this proposal was to continue our investigations of so-called non-standard finite-difference schemes as formulated by other authors. These schemes do not follow the standard rules used to model continuous differential equations by discrete difference equations. The two major aspects of this procedure consist of generalizing the definition of the discrete derivative and using a nonlocal model (on the computational grid or lattice) for nonlinear terms that may occur in the differential equations. Our aim was to investigate the construction of nonstandard finite-difference schemes for several classes of ordinary and partial differential equations. These equations are simple enough to be tractable, yet, have enough complexity to be both mathematically and scientifically interesting. It should be noted that all of these equations differential equations model some physical phenomena under an appropriate set of experimental conditions. The major goal of the project was to better understand the process of constructing finite-difference models for differential equations. In particular, it demonstrates the value of using nonstandard finite-difference procedures. A secondary goal was to construct and study a variety of analytical techniques that can be used to investigate the mathematical properties of the obtained difference equations. These mathematical procedures are of interest in their own right and should be a valuable contribution to the mathematics research literature in difference equations. All of the results obtained from the research done under this project have been published in the relevant research/technical journals or submitted for publication. Our expectation is that these results will lead to improved finite difference schemes for the numerical integration of both ordinary and partial differential equations. Section G of the Appendix gives a concise summary of the major results obtained under funding by the grant.

  1. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11T23:59:59.000Z

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  2. Essays on portfolio choice with Bayesian methods

    E-Print Network [OSTI]

    Kebabci, Deniz

    2007-01-01T23:59:59.000Z

    Protopapadakis (2002) estimate a GARCH model of daily equityreal. They estimate a GARCH model of daily equity returns,

  3. Diversifying Project Portfolios for Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Building a diversified project portfolio enhances utility energy service contracts (UESCs) to ensure Federal agencies get the best value possible. Energy efficiency measures are inherent in UESC projects. However, do not overlook the possibility for renewable energy and water efficiency and other conservation measures.

  4. NIH Portfolio Analysis on Climate Change and Health

    E-Print Network [OSTI]

    Madey, Gregory R.

    NIH Portfolio Analysis on Climate Change and Health Total studies that in some way relate to climate change 1,357 > Directly relate to climate change 7 > Examine the climate variables on health 85 response to climate change By David Taylor Climate change and its relationship to health research

  5. RISK MANAGEMENT IN REAL OPTIONS BASED PHARMACEUTICAL PORTFOLIO PLANNING

    E-Print Network [OSTI]

    Maranas, Costas

    RISK MANAGEMENT IN REAL OPTIONS BASED PHARMACEUTICAL PORTFOLIO PLANNING Michael J. Rogers, Anshuman valuations and a risk management analysis for balancing risk versus reward tradeoffs. The resulting valuation that minimize risk for a specified level of return, to begin Phase I clinical testing from a set of candidate

  6. Rebalancing an Investment Portfolio in the Presence of Convex ...

    E-Print Network [OSTI]

    2004-12-17T23:59:59.000Z

    an existing portfolio must be included in any realistic analysis. In this paper, we ... recent survey on the impact of transaction costs on the dynamic rebalancing problem, see ...... European Journal of Operational Research, 79(1):85–94, 1994. [2] E. D. ... Technical report, Department of Economics, Lund University, Sweden,.

  7. California's Renewable Portfolio Standard Northwest Power and Conservation Council

    E-Print Network [OSTI]

    resources are being procured and at what cost? Challenges with renewable integration Challenges target for 33% of energy to be from eligible renewable energy resources Large hydro and rooftop solarCalifornia's Renewable Portfolio Standard Northwest Power and Conservation Council California Power

  8. Mean-risk optimization of electricity portfolios Andreas Eichhorn 1

    E-Print Network [OSTI]

    Eichhorn, Andreas

    refer to a wide range of literature dealing with power management in a hydro-thermal system and simultaneous optimization of power production and electricity trading, e.g. [7] and [10]. We suppose that eachMean-risk optimization of electricity portfolios Andreas Eichhorn 1 , Nicole Gr¨owe-Kuska1 , Andrea

  9. PG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance

    E-Print Network [OSTI]

    Electric Transportation Natural Gas Capped at 334 MMT 80 MMT #12;(MMT CO2e Business as Usual ­ 2020 507 Electric and Natural Gas Sectors Energy Efficiency 12 Renewables 11 Other 2 Transportation Low Carbon FuelPG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance Fong Wan Senior Vice President

  10. Optimization of Real Asset Portfolio using a Coherent Risk Measure ...

    E-Print Network [OSTI]

    2010-07-22T23:59:59.000Z

    techniques evolved to the use of enterprise portfolio management, very common in the energy ... Petrobras refineries for fuel and inputs in their units (30%), the demand of local .... the stochastic linear program with uncertain right hand side: ? ... since it would correspond to start building a new pipeline only after the gas de-.

  11. A MEAN-VARIANCE PORTFOLIO OPTIMIZATION OF CALIFORNIA'S

    E-Print Network [OSTI]

    that have lower expected costs, less cost risk, and substantially reduced CO2 emissions and energy import, renewable energy, electricity planning, fuel prices, energy risks #12;TABLE OF CONTENTS EXECUTIVE SUMMARY'S 33 PERCENT RENEWABLE PORTFOLIO STANDARD GOAL Prepared For: California Energy Commission Prepared By

  12. 11. NUMERICAL TECHNIQUES 1 Numerical identification of effective multipole

    E-Print Network [OSTI]

    Boyer, Edmond

    11. NUMERICAL TECHNIQUES 1 Numerical identification of effective multipole moments of polarizable of the induced multipole moments. A general multipole theory is available in the literature, however, only linear multipole model is usually exploited when determining numerically these effective moments. Since this axial

  13. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer

    SciTech Connect (OSTI)

    Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland; Guiochon, Georges A [ORNL

    2010-01-01T23:59:59.000Z

    When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as 'supercritical fluid chromatography' or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data.

  14. Three-dimensional numerical modeling of the influence of faults on groundwater flow at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cohen, Andrew J.B.

    1999-06-01T23:59:59.000Z

    Numerical simulations of groundwater flow at Yucca Mountain, Nevada are used to investigate how the faulted hydrogeologic structure influences groundwater flow from a proposed high-level nuclear waste repository. Simulations are performed using a 3-D model that has a unique grid block discretization to accurately represent the faulted geologic units, which have variable thicknesses and orientations. Irregular grid blocks enable explicit representation of these features. Each hydrogeologic layer is discretized into a single layer of irregular and dipping grid blocks, and faults are discretized such that they are laterally continuous and displacement varies along strike. In addition, the presence of altered fault zones is explicitly modeled, as appropriate. The model has 23 layers and 11 faults, and approximately 57,000 grid blocks and 200,000 grid block connections. In the past, field measurement of upward vertical head gradients and high water table temperatures near faults were interpreted as indicators of upwelling from a deep carbonate aquifer. Simulations show, however, that these features can be readily explained by the geometry of hydrogeologic layers, the variability of layer permeabilities and thermal conductivities, and by the presence of permeable fault zones or faults with displacement only. In addition, a moderate water table gradient can result from fault displacement or a laterally continuous low permeability fault zone, but not from a high permeability fault zone, as others postulated earlier. Large-scale macrodispersion results from the vertical and lateral diversion of flow near the contact of high and low permeability layers at faults, and from upward flow within high permeability fault zones. Conversely, large-scale channeling can occur due to groundwater flow into areas with minimal fault displacement. Contaminants originating at the water table can flow in a direction significantly different than that of the water table gradient, and isolated zones of contaminants will occur at the water table downgradient. This behavior is not predicted by traditional models of contaminant transport. In addition, the influence of a particular type of fault cannot be generalized; depending on the location where contaminants enter the saturated zone, faults may either enhance of inhibit vertical dispersion.

  15. Grid-Based Surrogate Reservoir Modeling (SRM) for Fast Track Analysis of Numerical Reservoir Simulation Models at the Grid block Level

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    with a large number of producers, second, to a CO2 sequestration project in Australia, and finally to a numerical simulation study of potential carbon storage site in the United States. The numerical reservoir

  16. Retrospective on the Seniors' Council Tier 1 LDRD portfolio.

    SciTech Connect (OSTI)

    Ballard, William Parker

    2012-04-01T23:59:59.000Z

    This report describes the Tier 1 LDRD portfolio, administered by the Seniors Council between 2003 and 2011. 73 projects were sponsored over the 9 years of the portfolio at a cost of $10.5 million which includes $1.9M of a special effort in directed innovation targeted at climate change and cyber security. Two of these Tier 1 efforts were the seeds for the Grand Challenge LDRDs in Quantum Computing and Next Generation Photovoltaic conversion. A few LDRDs were terminated early when it appeared clear that the research was not going to succeed. A great many more were successful and led to full Tier 2 LDRDs or direct customer sponsorship. Over a dozen patents are in various stages of prosecution from this work, and one project is being submitted for an R and D 100 award.

  17. Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model

    E-Print Network [OSTI]

    Luo, Meng

    Advanced High Strength Steels (AHSS) are increasingly used in automotive industry due to their superior strength and substantial weight advantage. However, their compromised ductility gives rise to numerous manufacturing ...

  18. A Study to Verify the Material Surface Concept of Water Table by Examining Analytical and Numerical Models

    E-Print Network [OSTI]

    Dadi, Sireesh Kumar

    2011-10-21T23:59:59.000Z

    and both the numerical and the analytical results were compared with a 7-day, constant rate pumping test conducted by University of Waterloo researchers at Canadian Air Force Base Borden in Ontario, Canada....

  19. Experiments in Robust Portfolio Optimization Daniel Bienstock ...

    E-Print Network [OSTI]

    2007-02-27T23:59:59.000Z

    testing of the performance of our algorithms. ... The 'laboratory' testing of such ...... paper we have chosen the following concrete model, which we refer to this as ...

  20. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    E-Print Network [OSTI]

    Wiser, Ryan

    2008-01-01T23:59:59.000Z

    less than 1% is small hydro and ocean energy, demonstratingexcept that certain small-hydro facilities owned by Oregon8% geothermal, and 4% small hydro. Renewables Portfolio

  1. Costs and Benefits of Renewables Portfolio Standards in the United States

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01T23:59:59.000Z

    Approval of Its Amended Renewable Energy Plan. June 3, 2013.Benefits of Complying with Renewable Portfolio Standards:The Costs and Benefits of Renewable Resource Procurement in

  2. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A. [University of Washington Dept. of Atmospheric Sciences

    2013-11-13T23:59:59.000Z

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  3. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    SciTech Connect (OSTI)

    Prickett, T.A.

    1980-04-01T23:59:59.000Z

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  4. Climate Change Technology R&D Portfolio Decision Making Under Uncertainty

    SciTech Connect (OSTI)

    Baker, E.; Keisler, J.; Chon, H.

    2008-11-17T23:59:59.000Z

    In this project we have completed, or are in the process of, collecting and analyzing information on seven energy technologies – solar photovoltaics, nuclear power, carbon capture and storage, electricity from biomass, liquid bio-fuels, and batteries – in regards to their potential impact on reducing greenhouse gas emissions. We have collected expert elicitations, relating U.S. government funding trajectories to probabilities of success. We then used MiniCAM, a technologically-detailed Integrated Assessnent Model to determine the impact on the marginal cost of reducing greenhouse gas emissions, if the technologies were successful. Finally, we have performed initial analysis on portfolios of technologies. This project has partially supported nine papers, either published, under review, or under preparation for such journals as Energy Economics, The Energy Journal, Climatic Change, Management Science, and Transportation Research.

  5. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect (OSTI)

    Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

    2010-05-01T23:59:59.000Z

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  6. Numerical modeling of radiation-dominated and quantum-electrodynamically strong regimes of laser-plasma interaction

    SciTech Connect (OSTI)

    Sokolov, Igor V. [Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan 48109 (United States); Naumova, Natalia M. [Laboratoire d'Optique Appliquee, UMR 7639 ENSTA, Ecole Polytechnique, CNRS, 91761 Palaiseau (France); Nees, John A. [Center for Ultrafast Optical Science and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-09-15T23:59:59.000Z

    Ultra-strong laser pulses can be so intense that an electron in the focused beam loses significant energy due to {gamma}-photon emission while its motion deviates via the radiation back-reaction. Numerical methods and tools designed to simulate radiation-dominated and quantum-electrodynamically strong laser-plasma interactions are summarized here.

  7. A Fundamental Study of Convective Mixing of CO2 in Heterogeneous Geologic Media using Surrogate Fluids and Numerical Modeling

    E-Print Network [OSTI]

    of formation heterogeneity on convective mixing. Finite volume based numerical code was developed to capture of Canadian Petroleum Technology, 44(10). - Neufeld, J. A., Hesse M. A., Riaz, A., Hallworth M. A., Tchelepi, H. A., and Huppert H. E., 2010, Convective dissolution of carbon dioxide in saline aquifers, Geophys

  8. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands)

    E-Print Network [OSTI]

    Kirby, James T.

    Palma, Canary Islands): Tsunami source and near field effects S. M. Abadie,1 J. C. Harris,2 S. T. Grilli of the Cumbre Vieja Volcano (CVV; La Palma, Canary Island, Spain) through numerical simulations performed in two of such wave trains on La Palma and other Canary Islands are assessed in detail in the paper. Citation: Abadie

  9. Energy Procurement Portfolios and Production Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    (stochastic modeling) Setting of the "risk factor" must reflect your operational reality Electricity pricing 2011 Project team: Cagri Latifoglu Lehigh University Jim Hutton Air Products Peter Connard Air Products buckets Contract types available: ­ Fixed price (FP or f) ­ Quantitybased tiered (QB or q) ­ Timebased

  10. Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs and Market Impact Costs

    E-Print Network [OSTI]

    Mitchell, John E.

    Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs and Market Impact Costs John E. Mitchell Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY. Abstract The inclusion of transaction costs is an essential element of any realistic portfolio optimization

  11. Mean-Risk Optimization of Electricity Portfolios Using Multiperiod Polyhedral Risk Measures

    E-Print Network [OSTI]

    Eichhorn, Andreas

    Mean-Risk Optimization of Electricity Portfolios Using Multiperiod Polyhedral Risk Measures Andreas-risk optimization of electricity portfolios containing electricity futures as well as several com- ponents to satisfy a stochastic electricity demand: electricity spot market, two different types of supply contracts

  12. Decision-support tool for assessing future nuclear reactor generation portfolios.

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    Decision-support tool for assessing future nuclear reactor generation portfolios. Shashi Jain, where especially capital costs are known to be highly uncertain. Differ- ent nuclear reactor types uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors

  13. On the method of optimal portfolio choice by cost-efficiency

    E-Print Network [OSTI]

    Rüschendorf, Ludger

    On the method of optimal portfolio choice by cost-efficiency Ludger R¨uschendorf*, Viktor Wolf Freiburg, Germany Abstract We develop the method of optimal portfolio choice based on the concept of cost-efficiency class of cost-efficient payoffs. While the results for the cost-efficient payoff given so far

  14. MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography The School-Bozeman School of Film and Photography, Attn: Portfolio/Audition Committee PO Box 173350 VCB 202 Bozeman, MT on the basis of the written statement, originality, creative energy, and relative accomplishment of the work

  15. PORTFOLIO RISK ASSESSMENT OF SA WATER'S LARGE DAMS by David S. Bowles1

    E-Print Network [OSTI]

    Bowles, David S.

    PORTFOLIO RISK ASSESSMENT OF SA WATER'S LARGE DAMS by David S. Bowles1 , Andrew M. Parsons2 , Loren R. Anderson3 and Terry F. Glover4 ABSTRACT This paper summarises the Portfolio Risk Assessment (PRA and an initial prioritisation of future investigations and possible risk reduction measures. The PRA comprised

  16. PNNL: Codes Portfolio - 2015 Peer Review | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreachPNNL AdvancesPNNL: Codes Portfolio

  17. Attachment J-16 Portfolio Management Task Order 14-001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational ManagementDemand6 Department ofJ-16 PortfolioMod

  18. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|& Renewable Portfolio

  19. Environmental Protection Agency (EPA) Portfolio Manager | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place:EnergyLiteInformation Portfolio Manager

  20. Multi-period robust risk measures and portfolio selection models ...

    E-Print Network [OSTI]

    2015-05-08T23:59:59.000Z

    P. R. China, zchen@mail.xjtu.edu.cn, liu.jia@stu.xjtu.edu.cn .... problem incorporating transaction costs, we show that they can be equivalently transformed into.

  1. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22T23:59:59.000Z

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  2. A MOUNTAIN-SCALE 3-D NUMERICAL MODEL FOR CHARACTERIZING UNSATURATED FLOW AND TRANSPORT IN FRACTURED VOLCANIC ROCK AT YUCCA MOUNTAIN

    SciTech Connect (OSTI)

    Yu-Shu Wu

    2006-02-28T23:59:59.000Z

    A three-dimensional site-scale numerical model has been developed to simulate water and gas flow, heat transfer, and radionuclide transport in the unsaturated zone of Yucca Mountain, Nevada, the American underground repository site for high level radioactive waste. The modeling approach is based on a mathematical formulation of coupled multiphase fluid and heat flow and tracer transport through porous and fractured rock. This model is intended for use in predicting current and future conditions in the unsaturated zone, so as to aid in assessing the system performance of the repository. In particular, an integrated modeling methodology is discussed for integrating a wide variety of moisture, pneumatic, thermal, and isotopic geochemical data into comprehensive modeling analyses. The reliability and accuracy of the model predictions were the subject of a comprehensive model calibration study, in which the model was calibrated against measured data, including liquid saturation, water potential, and temperature. This study indicates that the model is able to reproduce the overall system behavior at Yucca Mountain with respect to moisture profiles, pneumatic pressure and chloride concentration variations in different geological units, and ambient geothermal conditions.

  3. ATS 680 A6: Applied Numerical Weather Prediction MW, 1:00-1:50 PM, ACRC Room 212B

    E-Print Network [OSTI]

    , Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press in class. Numerical model The primary numerical model that will be u

  4. Principal UncertaintiesPrincipal Uncertainties Their Representation in the Regional Portfolio ModelTheir Representation in the Regional Portfolio Model

    E-Print Network [OSTI]

    % 20% 30% 40% 50% 60% 70% 80% 90% 100% #12;Page 5 9 Wholesale Electricity PricesWholesale Electricity

  5. Florian SEITZ: Atmospheric and oceanic impacts to Earth rotations numerical studies with a dynamic Earth system model

    E-Print Network [OSTI]

    Schuh, Harald

    with a dynamic Earth system model (completed in October 2004) Variations of Earth rotation are caused Earth system model DyMEG has been developed. It is based on the balance of angular momentum

  6. NUMERICAL MODELING OF CO2 SEQUESTRATION WITH ANOZIE EBIGBO, ANDREAS BIELINSKI, ANDREAS KOPP, HOLGER CLASS, RAINER HELMIG

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    . It takes into account the two phases CO2 and brine and the components CO2 and water which can dissolve the conceptual model for a non-isothermal composi- tional CO2-water (brine) model based on the simulator MUFTE. MODEL For the description of the flow and transport processes of carbon dioxide and brine in a rock

  7. The Numerical Simulation of Turbulence

    E-Print Network [OSTI]

    W. Schmidt

    2007-12-06T23:59:59.000Z

    In this contribution, I give an overview of the various approaches toward the numerical modelling of turbulence, particularly, in the interstellar medium. The discussion is placed in a physical context, i. e. computational problems are motivated from basic physical considerations. Presenting selected examples for solutions to these problems, I introduce the basic ideas of the most commonly used numerical methods.

  8. NUMERICAL ANALYSIS KENDALL E. ATKINSON

    E-Print Network [OSTI]

    Atkinson, Kendall

    of mathematics and computer science that creates, analyzes, and implements algorithms for solving nu- merically mathematical models in science and engineering, and numerical analysis of increasing sophistication has been of numerical analysis varies from quite theoretical mathematical studies (e.g. see [5]) to computer science

  9. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING Int. J. Numer. Meth. Biomed. Engng. (2012)

    E-Print Network [OSTI]

    Buscaglia, Gustavo C.

    2012-01-01T23:59:59.000Z

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING Int. J. Numer. Meth. Biomed iterative coupling of dimen- sionally heterogeneous flow models in computational hemodynamics. INTRODUCTION In recent years, several efforts have been directed at integrating different mathematical models

  10. Numerical Modeling of Gas Migration at a Proposed Repository for Low and Intermediate Level Nuclear Wastes at Oberbauenstock, Switzerland

    E-Print Network [OSTI]

    Pruess editor, K.

    2010-01-01T23:59:59.000Z

    grid Thermophysical properties of hydrogen Total hydrogen4. Thermophysical properties of hydrogen density at P = 1hydrogen. This is modeled as an ideal gas; the thennophysical properties

  11. Risk assessment methodology applied to counter IED research & development portfolio prioritization

    SciTech Connect (OSTI)

    Shevitz, Daniel W [Los Alamos National Laboratory; O' Brien, David A [Los Alamos National Laboratory; Zerkle, David K [Los Alamos National Laboratory; Key, Brian P [Los Alamos National Laboratory; Chavez, Gregory M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In an effort to protect the United States from the ever increasing threat of domestic terrorism, the Department of Homeland Security, Science and Technology Directorate (DHS S&T), has significantly increased research activities to counter the terrorist use of explosives. More over, DHS S&T has established a robust Counter-Improvised Explosive Device (C-IED) Program to Deter, Predict, Detect, Defeat, and Mitigate this imminent threat to the Homeland. The DHS S&T portfolio is complicated and changing. In order to provide the ''best answer'' for the available resources, DHS S&T would like some ''risk based'' process for making funding decisions. There is a definite need for a methodology to compare very different types of technologies on a common basis. A methodology was developed that allows users to evaluate a new ''quad chart'' and rank it, compared to all other quad charts across S&T divisions. It couples a logic model with an evidential reasoning model using an Excel spreadsheet containing weights of the subjective merits of different technologies. The methodology produces an Excel spreadsheet containing the aggregate rankings of the different technologies. It uses Extensible Logic Modeling (ELM) for logic models combined with LANL software called INFTree for evidential reasoning.

  12. Assessment of managed aquifer recharge site suitability and influence using a GIS and3 numerical modeling4

    E-Print Network [OSTI]

    Fisher, Andrew

    " for20 MAR. Results from the GIS analysis were used with a regional groundwater model to assess the groundwater flowing to the ocean over the long term. Modeling results28 illustrate considerable variability evaluation of options for32 enhancing groundwater resources.33 34 1. Introduction35 Groundwater

  13. Numerical modeling of time-lapse seismic data from fractured reservoirs including fluid flow and geochemical processes 

    E-Print Network [OSTI]

    Shekhar, Ravi

    2009-05-15T23:59:59.000Z

    and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My...

  14. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risø National Laboratory Wind Energy Department and The Technical University of Denmark Informatics and Mathematical Modelling Department Nicholas J. Cutler s000144 Constructing a Numerical Wind Atlas 5 2.1 Introduction

  15. Selling an Energy Efficiency Loan Portfolio in Oregon: Resale of the Craft3 loan portfolio to Self-Help Credit Union

    SciTech Connect (OSTI)

    Thompson, Peter; Borgeson, Merrian; Kramer, Chris; Zimring, Mark; Goldman, Charles

    2014-05-30T23:59:59.000Z

    Under the Clean Energy Works (CEW) program, Craft3 developed a loan product that widened access to financing for homeowners, offered long term funding, and collected repayments through the customer?s utility bill. The program?s success led Craft3 to pursue the sale of the loan portfolio to both mitigate its own risks and replenish funds for lending. This sale breaks new ground for energy efficiency finance and is notable as it was completed even with many novel program design elements. It replenished Craft3?s program capital and uncovered some valuable lessons that may facilitate future transactions. However, the lack of data history and the unproven nature of the loan portfolio meant that Craft3 had to limit the risk of losses to Self-Help, the purchaser of the portfolio. It remains to be seen whether this experience will pave the way for more sales of on-bill energy efficiency loan portfolios. This case study illustrates how certain program design decisions can sometimes both facilitate programmatic objectives and possibly present challenges for the sale of a portfolio of energy efficiency loans.

  16. Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method.

    E-Print Network [OSTI]

    Tao, Qingfeng

    2010-07-14T23:59:59.000Z

    finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation...

  17. Experimental measurements and numerical modeling of fast-ion distributions in the Alcator C-Mod Tokamak

    E-Print Network [OSTI]

    Bader, Aaron Craig

    2012-01-01T23:59:59.000Z

    In this thesis we discuss measurements and modeling of minority heated fast-ion distributions in the Ion Cyclotron Range of Frequencies (ICRF) on the Alcator C-Mod tokamak. Analysis of fast-ions >100Te is important for ...

  18. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    SciTech Connect (OSTI)

    Gupta, Prabhat Kumar [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (MP), India; Rabehl, Roger [FNAL

    2014-07-01T23:59:59.000Z

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  19. The Value of Assessing Uncertainty in Oil and Gas Portfolio Optimization

    E-Print Network [OSTI]

    Hdadou, Houda

    2013-07-25T23:59:59.000Z

    It has been shown in the literature that the oil and gas industry deals with a substantial number of biases that impact project evaluation and portfolio performance. Previous studies concluded that properly estimating uncertainties...

  20. Appropriateness and feasibility of targeted diversification in a private equity portfolio

    E-Print Network [OSTI]

    Browne, Kathleen R. (Kathleen Rose)

    2006-01-01T23:59:59.000Z

    Diversification tools such as modem portfolio theory are used by institutional investors when making asset allocation decisions, which often result in an allocation to the private equity asset class. While some level of ...

  1. Unexploited Gains From International Diversification: Patterns Of Portfolio Holdings Around The World

    E-Print Network [OSTI]

    Didier, Tatiana

    Using unique data on mutual fund portfolios with different investment scopes, we study the extent of international diversification. Mutual funds invest in a surprisingly limited number of stocks—about 100. The number of ...

  2. Worst-Case Value-at-Risk of Non-Linear Portfolios - Optimization

    E-Print Network [OSTI]

    2012-06-21T23:59:59.000Z

    Jun 21, 2012 ... level ? is defined as the (1 ? ?)-percentile of the portfolio loss distribution, where ? is typically chosen as 1% or 5%. Put differently, VaR?(w) is ...

  3. Managing a portfolio of real options : sequential exploration of dependent prospects

    E-Print Network [OSTI]

    Smith, James L.

    2004-01-01T23:59:59.000Z

    We consider the impact of sequential investment and active management on the value of a portfolio of real options. The options are assumed to be interdependent, in that exercise of any one is assumed to produce, in addition ...

  4. Venture Capitalists' Decision to Withdraw: The Role of Portfolio Configuration From a Real Options Lens

    E-Print Network [OSTI]

    Li, Yong; Chi, Tailan

    2012-01-01T23:59:59.000Z

    When does a venture capital firm withdraw from an investment project prior to its completion? This study offers a real options view on this decision by examining the contingent effects of portfolio configuration. We explore how project withdrawal...

  5. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    E-Print Network [OSTI]

    Wiser, Ryan

    2008-01-01T23:59:59.000Z

    except that certain small-hydro facilities owned by OregonMSW, and less than 1% is small hydro and ocean energy,8% geothermal, and 4% small hydro. Renewables Portfolio

  6. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Sharing Forward and Transfer Ownership

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  7. EPA ENERGY STAR Webcast- Portfolio Manager Office Hours, Focus Topic: Weather Data and Metrics

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  8. MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Friday Audition/Portfolio Scholarships for the School of Film and Photography The School of Film and Photography expects to have scholarship monies on the basis of the written statement, originality, creative energy, and relative

  9. Extracting product opportunities from intellectual property portfolios : from patent to product idea

    E-Print Network [OSTI]

    Cooper-Davis, Sarah

    2014-01-01T23:59:59.000Z

    Companies and research institutes maintain large intellectual property portfolios, which are considered company assets and require significant investments to maintain. This thesis looks at the potential to extract value ...

  10. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan.

    SciTech Connect (OSTI)

    Lee, C.; Schwab, D. J.; Beletsky, D.; Stroud, J.; Lesht, B.; PNNL; NOAA; Univ. of Michigan; Univ. of Pennsylvania

    2007-02-17T23:59:59.000Z

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are (1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and (2) the settling velocity of sediment flocs which controls the deposition location.

  11. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan

    SciTech Connect (OSTI)

    Lee, Cheegwan; Schwab, David J.; Beletsky, Dmitry; Stroud, Jonathan; Lesht, B. M.

    2007-02-17T23:59:59.000Z

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive+noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically-based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are 1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and 2) the settling velocity of sediment flocs which controls the deposition location.

  12. Portfolio sire selection to maximize the utility of individual management and breeding goals

    E-Print Network [OSTI]

    Bloom, Andrew Scott

    1988-01-01T23:59:59.000Z

    PORTFOLIO SIRE SELECTION TO MAXIMIZE THE UTILITY OF INDIVIDUAL MANAGEMENT AND BREEDING GOALS A Thesis by ANDREW SCOTT BLOOM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1988 Major Subject: Dairy Science PORTFOLIO SIRE SELECTION TO MAXIMIZE THE UTILITY OF INDIVIDUAL MANAGEMENT AND BREEDING GOALS A Thesis by ANDREW SCOTT BLOOM Approved as to style and content by: michael A...

  13. Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes

    E-Print Network [OSTI]

    Kalise, Dante

    2011-01-01T23:59:59.000Z

    The set of 3D inviscid primitive equations for the atmosphere is dimensionally reduced by a Discontinuous Galerkin discretization in one horizontal direction. The resulting model is a 2D system of balance laws where with a source term depending on the layering procedure and the choice of coupling fluxes, which is established in terms of upwind considerations. The "2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter centered approach. We study four tests cases related to atmospheric phenomena to analyze the physical validity of the model.

  14. Model Realization and Numerical Studies of a Three-Dimensional Bosonic Topological Insulator and Symmetry-Enriched Topological Phases

    E-Print Network [OSTI]

    Scott Geraedts; Olexei Motrunich

    2014-08-05T23:59:59.000Z

    We study a topological phase of interacting bosons in (3+1) dimensions which is protected by charge conservation and time-reversal symmetry. We present an explicit lattice model which realizes this phase and which can be studied in sign-free Monte Carlo simulations. The idea behind our model is to bind bosons to topological defects called hedgehogs. We determine the phase diagram of the model and identify a phase where such bound states are proliferated. In this phase we observe a Witten effect in the bulk whereby an external monopole binds half of the elementary boson charge, which confirms that it is a bosonic topological insulator. We also study the boundary between the topological insulator and a trivial insulator. We find a surface phase diagram which includes exotic superfluids, a topologically ordered phase, and a phase with a Hall effect quantized to one-half of the value possible in a purely two-dimensional system. We also present models that realize symmetry-enriched topologically-ordered phases by binding multiple hedgehogs to each boson; these phases show charge fractionalization and intrinsic topological order as well as a fractional Witten effect.

  15. Essays on Incorporating Risk Modeling Techniques in Agriculture

    E-Print Network [OSTI]

    Larsen, Ryan A.

    2012-10-19T23:59:59.000Z

    single period model, an asymmetric risk measure, conditional value at risk, and asymmetric dependence measure, copulas, are implemented into the portfolio optimization model. The efficient frontiers under both symmetric and asymmetric assumptions show...

  16. Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers

    SciTech Connect (OSTI)

    Pruess, Karsten; Zhang, Keni

    2008-11-17T23:59:59.000Z

    For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against modest changes in problem parameters, and are essentially constant as long as no dissolved CO2 reaches the lower boundary of the system.

  17. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 1

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI)

    2009-03-01T23:59:59.000Z

    The power transfer potential for bringing renewable energy into the Southeast in response to a renewable portfolio standard (RPS) will depend not only on available transmission capacity but also on electricity supply and demand factors. This interim report examines how the commonly used EIA NEMS and EPRI NESSIE energy equilibrium models are considering such power transfers. Using regional estimates of capacity expansion and demand, a base case for 2008, 2020 and 2030 are compared relative to generation mix, renewable deployments, planned power transfers, and meeting RPS goals. The needed amounts of regional renewable energy to comply with possible RPS levels are compared to inter-regional transmission capacities to establish a baseline available for import into the Southeast and other regions. Gaps in the renewable generation available to meet RPS requirements are calculated. The initial finding is that the physical capability for transferring renewable energy into the SE is only about 10% of what would be required to meet a 20% RPS. Issues that need to be addressed in future tasks with respect to modeling are the current limitations for expanding renewable capacity and generation in one region to meet the demand in another and the details on transmission corridors required to deliver the power.

  18. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    SciTech Connect (OSTI)

    Ali, Melkamu; Ye, Sheng; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Fiori, Aldo; Sivapalan, Murugesu

    2014-07-19T23:59:59.000Z

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurface flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.

  19. Experimental evidence of intermittent chaos in a glow discharge plasma without external forcing and its numerical modelling

    SciTech Connect (OSTI)

    Ghosh, S., E-mail: sabuj.ghosh@saha.ac.in; Kumar Shaw, Pankaj; Sekar Iyengar, A. N.; Janaki, M. S.; Saha, Debajyoti; Michael Wharton, Alpha [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)] [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mitra, Vramori [Purbasha Housing Estate, Kankurgachi, Kolkata 700054 (India)] [Purbasha Housing Estate, Kankurgachi, Kolkata 700054 (India)

    2014-03-15T23:59:59.000Z

    Intermittent chaos was observed in a glow discharge plasma as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) as the discharge voltage was increased. Floating potential fluctuations were analyzed by different statistical and spectral methods. Features like a gradual change in the normal variance of the interpeak time intervals, a dip in the skewness, and a hump in the kurtosis with variation in the control parameter have been seen, which are strongly indicative of intermittent behavior in the system. Detailed analysis also suggests that the intrinsic noise level in the experiment increases with the increasing discharge voltage. An attempt has been made to model the experimental observations by a second order nonlinear ordinary differential equation derived from the fluid equations for an unmagnetized plasma. Though the experiment had no external forcing, it was conjectured that the intrinsic noise in the experiment could be playing a vital role in the dynamics of the system. Hence, a constant bias and noise as forcing terms were included in the model. Results from the theoretical model are in close qualitative agreement with the experimental results.

  20. Productivity, detritus formation and grazing of the seagrass Thalassia testudinum Banks in Caribbean meadows: a simulative numerical model

    E-Print Network [OSTI]

    Victoria-Rueda, Carlos Humberto

    1981-01-01T23:59:59.000Z

    ). The amount of organic carbon yield by the leaves of Thalassia compares well, and in many cases surpasses, average values reported for tropical rain forest and reef ecosystems and intensively cultivated agroecosystems such as hybrid corn, rice... course of my graduate studies. I extend my grat1tude to Dr, Rezneat Darnell, co-chairman of the committee, who initiated my interest in the top1c of ecosystem modeling. His constructive crit1cism and contr1bution to this work is fully appreciated. I...

  1. A study of atmosphere-ocean interaction using a one-dimensional numerical air-sea boundary layer model

    E-Print Network [OSTI]

    Hebenstreit, Gerald Thomas

    1974-01-01T23:59:59.000Z

    surface with no allowance for exchange induced by wave action. The model does produce reasonable solutions, in comparison with oceanic data, for the response of the lower atmosphere and the upper ocean to specific. sets of meteorological and oceanic.../2 this function is of the form f(Ri) = (1 + b Ri) , then one obtains ? 3 1/2 2 -1 K (z) = K 62 (gX ) exp(z/W) (z/I + rdI) (1 + b Ri) hw 1 (61) Although KITAIGORODSKII (1961) does not give a specific value of b, it would appear that b = 10/3 would be in line...

  2. Numerical modelling of VLF radio wave propagation through earth-ionosphere waveguide and its application to sudden ionospheric disturbances

    E-Print Network [OSTI]

    Pal, Sujay

    2015-01-01T23:59:59.000Z

    In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a h...

  3. Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method

    SciTech Connect (OSTI)

    Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

    2009-07-01T23:59:59.000Z

    The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

  4. Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

    2012-03-19T23:59:59.000Z

    To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

  5. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  6. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect (OSTI)

    A. S. Rood

    2010-10-01T23:59:59.000Z

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each specified output time, and water and solute fluxes through each cell and specified output time. Computer run times for coupled transient water flow and solute transport were typically several seconds on a 2 GHz Intel Pentium IV desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than two percent.

  7. NUMERICAL MODELING OF THE DISRUPTION OF COMET D/1993 F2 SHOEMAKER-LEVY 9 REPRESENTING THE PROGENITOR BY A GRAVITATIONALLY BOUND ASSEMBLAGE OF RANDOMLY SHAPED POLYHEDRA

    SciTech Connect (OSTI)

    Movshovitz, Naor; Asphaug, Erik; Korycansky, Donald, E-mail: nmovshov@ucsc.edu [Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-11-10T23:59:59.000Z

    We advance the modeling of rubble-pile solid bodies by re-examining the tidal breakup of comet Shoemaker-Levy 9, an event that occurred during a 1.33 R encounter with Jupiter in 1992 July. Tidal disruption of the comet nucleus led to a chain of sub-nuclei {approx}100-1000 m diameter; these went on to collide with the planet two years later. They were intensively studied prior to and during the collisions, making SL9 the best natural benchmark for physical models of small-body disruption. For the first time in the study of this event, we use numerical codes treating rubble piles as collections of polyhedra. This introduces forces of dilatation and friction, and inelastic response. As in our previous studies we conclude that the progenitor must have been a rubble pile, and we obtain approximately the same pre-breakup diameter ({approx}1.5 km) in our best fits to the data. We find that the inclusion of realistic fragment shapes leads to grain locking and dilatancy, so that even in the absence of friction or other dissipation we find that disruption is overall more difficult than in our spheres-based simulations. We constrain the comet's bulk density at {rho}{sub bulk} {approx} 300-400 kg m{sup -3}, half that of our spheres-based predictions and consistent with recent estimates derived from spacecraft observations.

  8. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    SciTech Connect (OSTI)

    Wiser, Ryan; Wiser, Ryan; Barbose, Galen; Bird, Lori; Churchill, Susannah; Deyette, Jeff; Holt, Ed

    2008-04-09T23:59:59.000Z

    Renewables portfolio standards (RPS) have proliferated at the state level in the United States since the late 1990s. In combination with Federal tax incentives, state RPS requirements have emerged as one of the most important drivers of renewable energy capacity additions. The focus of most RPS activity in the U.S. has been within the states. Nonetheless, the U.S. House of Representatives and Senate have, at different times, each passed versions of a Federal RPS; a Federal RPS, however, has not yet been signed into law. The design of an RPS can and does vary, but at its heart an RPS simply requires retail electricity suppliers (also called load-serving entities, or LSEs) to procure a certain minimum quantity of eligible renewable energy. An RPS establishes numeric targets for renewable energy supply, applies those targets to retail electricity suppliers, and seeks to encourage competition among renewable developers to meet the targets in a least-cost fashion. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, and many--but not all--such policies include the trading of renewable energy certificates (RECs). Renewables portfolio standards are a relatively recent addition to the renewable energy policy landscape, and these policies continue to evolve. Keeping up with the design, early experience, and projected impacts of these programs is a challenge. This report seeks to fill this need by providing basic, factual information on RPS policies in the United States. It focuses on state-level initiatives, though a later section briefly discusses Federal developments as well. The report does not cover municipal-level renewable energy goals, unless required by state law. Similarly, this report focuses on mandatory state RPS requirements, though it also touches on non-binding renewable energy goals, especially when those goals are developed by state law or regulation. This report is the first of what is envisioned to be an ongoing series; as such, it concentrates on key recent developments, while also providing basic information on historical RPS experience and design. The report begins with an overview of state RPS policies: where they have been developed, when, and with what design features. Though most RPS programs are still in their infancy, the report summarizes the early impacts of these policies on renewable energy development, and provides a forecast of possible future impacts. It then turns to the implications of the growing trend towards solar and/or distributed generation set-asides within state RPS programs. Next, the report highlights state RPS compliance levels, enforcement actions, and cost impacts, as well as key developments in REC markets. Finally, the report provides a brief overview of Federal RPS proposals.

  9. Electronic copy available at: http://ssrn.com/abstract=1558744 The optimal portfolio of emissions abatement and

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Electronic copy available at: http://ssrn.com/abstract=1558744 The optimal portfolio of emissions abatement and low-carbon R&D depends on the expected availability of negative emission technologies Derek M optimal portfolio of emissions abatement and low-carbon R&D depends on the expected availability

  10. SUMMARY OF AVC/H.264 LICENSE TERMS1 The AVC Patent Portfolio License is divided into two principal parts (see Diagram): (a)

    E-Print Network [OSTI]

    Rodriguez, Carlos

    SUMMARY OF AVC/H.264 LICENSE TERMS1 The AVC Patent Portfolio License is divided into two principal and may not be relied upon for any purpose. The AVC Patent Portfolio License provides the actual terms of license on which users may rely. 2 Sections 2.1 and 2.6 of the AVC Patent Portfolio License 3 Sections 2

  11. Geometric Numerical Methods for Numerical Weather Prediction

    E-Print Network [OSTI]

    Langdon, Stephen

    -Mesh (HPM) Method · Label space is discretised into N particles with coordinates on the momentum phase space and Sij = (1 - ^2xx)-1. Geometric Numerical Methods for Numerical Weather Prediction ­ p. 8/28 #12;HPM Equations of shallow water motions · The canonical HPM equations of 1D shallow water motion on TS1 are P

  12. Numerical Modeling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFractures below a Borehole Floor, A Jump

  13. In: Proceedings of the Workshop on Algebraic Models of Reasoning, KI-2003, Hamburg, Germany, Sept. 16, 2003 Automated Abstraction of Numerical Simulation Models

    E-Print Network [OSTI]

    Cengarle, María Victoria

    to real automotive subsystems. These difficulties include complexity and methodological issues, and what in the respective engineering domain. Automotive industry has become one of the major areas in which model, failure-modes-and- effects analysis (FMEA), and diagnosability analysis, we decided to explore

  14. The Economics of LEED-EB for Single Buildings and Building Portfolios

    E-Print Network [OSTI]

    Arny, M.

    P. O. Box 5425, Madison, WI 53705 1526 Chandler St., Madison, WI 53711 ph. 608.280.0255 fx. 608.255.7202 www.leonardoacademy.org 1 The Economics of LEED-EB for Single Buildings and Building Portfolios PRESENTED...?BY?MICHAEL?ARNY,?PRESIDENT? PRESENTATION DESCRIPTION This presentation covers the economics of LEED for Existing Buildings (EB) implementation in single buildings and for building portfolios. It is based on Leonardo Academy?s recently completed a survey of buildings that have earned...

  15. Causal Modeling with Applications to the Foreign Exchange Market

    E-Print Network [OSTI]

    Deaton, Brian D.

    2013-11-27T23:59:59.000Z

    , Japanese yen, and United States dollar). This information is used in portfolio management to improve risk management, to visualize the causal connections between currencies, and enhance the forecasting ability of time series models. In the first section, a...

  16. Numerical Simulation of PulseTube Refrigerators: 1D model I.A. Lyulina 1 , R.M.M. Mattheij 1 , A.S. Tijsseling 1 , A.T.A.M. de Waele 2

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Numerical Simulation of Pulse­Tube Refrigerators: 1D model I.A. Lyulina 1 , R.M.M. Mattheij 1 , A of a pulse­tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved, calculate the average enthalpy flow and estimate the refrigeration power. Keywords: pulse­tube refrigerator

  17. Numerical simulation of hydraulic fracturing

    E-Print Network [OSTI]

    Warner, Joseph Barnes

    1987-01-01T23:59:59.000Z

    ~ared that the results of such treatments were not always adequately described by the two-dimensional models. With recent advances in hydraulic fracturing and computing technology, attempts have been made to formulate more realistic fracture models. These three...NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...

  18. NOTICE OF RENEWABLE POWER STANDARDS (RPS) MEETING Renewable Portfolio Standard Plan Before Council

    E-Print Network [OSTI]

    establishes minimum quantities of renewable energy resources that load serving entities must procure annually of renewables energy resources that load serving entities must procure annually through 2020. Each load servingNOTICE OF RENEWABLE POWER STANDARDS (RPS) MEETING Renewable Portfolio Standard Plan Before Council

  19. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    levelized generating costs per kWh. Expected portfolioThis is due to the high cost per kWh (low return) shown in2 costs are derived by multiplying 1kg of CO 2 per kWh for

  20. Portfolio of Tools, Faculty Pay-Merit Paradigm (updated August 2012) Type of Faculty

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Portfolio of Tools, Faculty Pay-Merit Paradigm (updated August 2012) Type of Faculty Salary-tenure review). This tool contrasts with "standard" equity (see other side). Cost-share: Central campus pays up. Rolling horizon of implementation; local units drive process. TBD: HR Redesign tools; periodicity of CCF