Powered by Deep Web Technologies
Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Numerical and experimental validation of transient modelling for Scramjet active cooling with supercritical  

E-Print Network (OSTI)

Numerical and experimental validation of transient modelling for Scramjet active cooling of the engine. In order to simulate the behaviour of a complete actively cooled scramjet, a one for supercritical fuel under pyrolysis. This model is called RESPIRE (French acronym for Scramjet Cooling

Paris-Sud XI, Université de

2

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

SciTech Connect

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

3

Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics  

E-Print Network (OSTI)

microfluidics Jonathan Siegrist,*a Mary Amasia,a Navdeep Singh,b Debjyoti Banerjeeb and Marc Madoua Received 1st analysis of microchamber filling in centrifugal microfluidics is presented. In the development of micro on centrifugal microfluidic platforms, numerical modeling using the Volume of Fluids method is performed

Banerjee, Debjyoti

4

Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical  

E-Print Network (OSTI)

""r,c,rn The authors are for hel]JfuI #12;Abstract Constructing maps of pollution levels is vital for air quality concentrations. Key tlJords: air pollution, Ba~yesian inference, change of support, likelihood approaches, Matern Resolutions 2.5 Modeling a Nonstationary Covariance . 3 Estimation 3.1 Algorithm 4 Application: Air Pollution

Washington at Seattle, University of

5

Development and validation of a vertically two-dimensional mesoscale numerical model  

E-Print Network (OSTI)

because the model is dry. The equations are as follows: dv " ? 1 1 d dv f k X V ? ? Vp ? g Vz + ? ~ ? (pK ? ), (2) dt P pH ds m ds pgH do dn d o + 'it ~ pV + ? (ns) + p V ~ VH = 0 dt ds P H (4) dT . H Q sg ? + d t C p C p pRT The symbols... of the model. The remaining variables have been previously defined. 15 The finite difference equations are as follows: ~ H (o V (i, k) = H(i+1) * ( p(i+1, k) + p(i, k) ) * u(i+1, k) ? H(i) * ( p(i, k) + p (i-l, k) ) * u(i, k) / ( 2 a DX ) = DV(i k) (I...

Walters, Michael Kent

2012-06-07T23:59:59.000Z

6

Model Validation Status Review  

SciTech Connect

The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.

E.L. Hardin

2001-11-28T23:59:59.000Z

7

Model Validation Bernie Lesieutre  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Model Validation Model Validation Bernie Lesieutre University of Wisconsin lesieutre@wisc.edu 27 June 2013 Washington, DC DOE/OE Transmission Reliability Program 2 Project Objectives To Develop techniques and tools for PMU- and feature-based power system model validation. Background: Our prior proof-of-concept research demonstrated that feature-based sensitivity models can be used to calibrate power system dynamic models. This was applied to the WECC composite load model for oscillatory and FIDVR events. 3 Project Objectives PSLF simulation features features Sensitivity Model (parameters) Measured Data Simulated Data Features Error Adjust Parameters Technical Approach 4 Project Objectives Current Research: Use PMU data to calibrate power plant models. Four Tasks:

8

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desert Research Institute STATE:NV Desert Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number NREl-11-012 G010337 Based on my review of the information concerning the proposed action, as NEPA CompHance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analYSis (including computer modeling), document preparation (such as conceptual deSign or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution;

9

Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling Numerical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Numerical Modeling Details Activities (8) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Dictionary.png Numerical Modeling: A computer model that is designed to simulate and reproduce the mechanisms of a particular system. Other definitions:Wikipedia Reegle

10

Verification and validation of the SWIFT model  

SciTech Connect

A number of tests have been performed, under controlled conditions, with the SWIFT model in order to complete its quality-assurance records. Some of these tests verify the numerical algorithms employed by the code implementation through comparison with analytical data. Other tests validate the processes addressed by the model through comparison with field data. These tests show good agreement between SWIFT and the reference data. In this paper several of the tests are highlighted. 10 references, 6 figures, 2 tables.

Ward, D.S.; Reeves, M.; Duda, L.E.

1983-01-01T23:59:59.000Z

11

Numerical Modeling of HCCI Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

12

Verification and Validation of Simulation Model  

E-Print Network (OSTI)

Verification and Validation of Simulation Model 1 Verification and Validation 2 #12;Verification · Examples ­ simulation model: open networks with exponential interarrival time distribution and uniform

Shihada, Basem

13

Model Validation with Hybrid Dynamic Simulation  

SciTech Connect

AbstractModel validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation.

Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

2006-06-18T23:59:59.000Z

14

Numerical Modelling of Interaction between  

E-Print Network (OSTI)

plasma in arc furnace used in toxic waste destruction Plasma etching semiconductor High intensity arc lamp Electrode temperature after 1ms of arcing with power density of 3x109 W.m-2 Electrode temperatureNumerical Modelling of Interaction between the Electric Arc and Electrodes Principal researcher: W

Sóbester, András

15

Model Validation with Hybrid Dynamic Simulation  

SciTech Connect

AbstractModel validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation. A few methods to define model quality indices have been proposed to quantify model error for model validation criteria development.

Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

2006-06-22T23:59:59.000Z

16

Numerical  

NLE Websites -- All DOE Office Websites (Extended Search)

of the mean flow, in which turbulence generated currents are investigated in subcritical flows. II. NUMERICAL MODEL The numerical model used in this paper solves the MHD...

17

Numerical-simulation and experimental-validation of the largest Egyptian solar process-heat system  

Science Journals Connector (OSTI)

El-Nasr pharmaceutical solar process heat project is considered as the largest industrial system installed and working in east Cairo Egypt 30N. It was simply constructed from a one-axis tracking parabolic-trough collector that can produce about 1.3 ton/h saturated steam to feed the industrial processes in the company. Twenty-three bar compressed water is heated inside 1958.4 m2 collectors and later on it is flashed in a steam flash-drum to produce saturated steam at 8 bars and 175 C that is fed to the process heat. A mathematical model was developed for the system components to simulate annual performance of the system. The simulation results were verified successfully by the measured data that are monitoring the system performance. First each component of the mathematical model was experimentally validated separately. Accordingly the whole mathematical model was validated under different weather conditions along the year. The validated numerical model was optimized. The optimal number of collectors connected in series was obtained as three collectors not 36 as installed. An economical study of the installed system was provided. The optimal design of the system was economically estimated. The optimal collector area is less than that installed it equals about 538 m2. Annual performance of the system is presented indicating the seasonal variation. It was found that the optimized system can produce about 2 ton/h in average. Moreover that value is more than that was proposed by the system design.

Adel M. Abdel-Dayem

2011-01-01T23:59:59.000Z

18

COMPOSABLE SIMULATION MODELS AND THEIR FORMAL VALIDATION  

E-Print Network (OSTI)

COMPOSABLE SIMULATION MODELS AND THEIR FORMAL VALIDATION CLAUDIA SZABO B. Eng., "POLITEHNICA and simulation, shared models are reused and as- sembled in various combinations to meet different user strings simplifies and facilitates automated syntactic verification and model discovery and selection. An

Teo, Yong-Meng

19

Numerical study on the validity of the diffusion approximation  

E-Print Network (OSTI)

of photons can be accurately modeled by the radiative transport equation (RTE).9,10 Because and the radiative transport as implemented by Monte Carlo simulation in the cases of point and ball sources. Our of the difficulties in handling the RTE directly, the diffusion approximation to the transport equation has been

Virginia Tech

20

Demonstrating and Validating a Next Generation Model-Based Controller...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Demonstrating and Validating a Next Generation Model-Based Controller for...

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

An Examination of the Uncertainty in Interpolated Winds and Its Effect on the Validation and Intercomparison of Forecast Models  

Science Journals Connector (OSTI)

Meteorological models need to be compared to long-term, routinely collected meteorological data. Whenever numerical forecast models are validated and compared, verification winds are normally interpolated to individual model grid points. To be ...

J. Scott Greene; W. Ethan Cook; David Knapp; Patrick Haines

2002-03-01T23:59:59.000Z

22

Validation of Hadronic Models in GEANT4  

SciTech Connect

Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.

Koi, Tatsumi; Wright, Dennis H.; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Truscott,; Lei, Fan; /QinetiQ; Wellisch, Hans-Peter

2007-09-26T23:59:59.000Z

23

Definition: Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Numerical Modeling Jump to: navigation, search Dictionary.png Numerical Modeling A computer model that is designed to simulate and reproduce the mechanisms of a particular system.[1] View on Wikipedia Wikipedia Definition A computer simulation, a computer model, or a computational model is a computer program, run on a single computer, or a network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics, astrophysics, chemistry and biology, human systems in economics, psychology, social science, and engineering. Simulation of a system is represented as the running of the system's model.

24

Comparing Aerodynamic Models for Numerical Simulation of  

E-Print Network (OSTI)

Comparing Aerodynamic Models for Numerical Simulation of Dynamics and Control of Aircraft and simulation of aircraft, yet other aerodynamics models exist that can provide more accurate results for certain simulations without a large increase in computational time. In this paper, sev- eral aerodynamics

Peraire, Jaime

25

Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive  

E-Print Network (OSTI)

Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive Wavelet 2008 #12;This thesis entitled: Numerical Modeling of Acoustic Timescale Detonation Initiation Using. (Ph.D.) Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive Wavelet

Vasilyev, Oleg V.

26

Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design  

SciTech Connect

The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled CFD software validation of jets in crossflow which was designed to investigate the issues pertaining to the validation process.

Richard W. Johnson

2005-09-01T23:59:59.000Z

27

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

28

Experimental analysis and model validation of an opaque ventilated facade  

Science Journals Connector (OSTI)

Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated faade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was created and validated against the experimental data. The experimental results showed that the flow rates induced in the faade cavity were due to mixed driving forces: wind and buoyancy. Depending on the weather conditions one of them was the main driving force, or both were of the same order. When the wind force was the main driving force, higher flow rates were found. In these cases buoyancy acted as supporting driving force. When the wind speed was low and buoyancy prevailed lower flow rates were found. Air and surface temperatures were predicted by the numerical model with a better accuracy than flow and energy rates. The model predicts correctly the influence of the wind and buoyancy driving forces. The experimental OVF module showed potential for free ventilation and air preheating, although it depends on weather and geometrical variables. The use of the numerical model using the right parameters was found viable for analyzing the performance of an OVF.

F. Peci Lpez; R.L. Jensen; P. Heiselberg; M. Ruiz de Adana Santiago

2012-01-01T23:59:59.000Z

29

High performance computing and numerical modelling  

E-Print Network (OSTI)

Numerical methods play an ever more important role in astrophysics. This is especially true in theoretical works, but of course, even in purely observational projects, data analysis without massive use of computational methods has become unthinkable. The key utility of computer simulations comes from their ability to solve complex systems of equations that are either intractable with analytic techniques or only amenable to highly approximative treatments. Simulations are best viewed as a powerful complement to analytic reasoning, and as the method of choice to model systems that feature enormous physical complexity such as star formation in evolving galaxies, the topic of this 43rd Saas Fee Advanced Course. The organizers asked me to lecture about high performance computing and numerical modelling in this winter school, and to specifically cover the basics of numerically treating gravity and hydrodynamics in the context of galaxy evolution. This is still a vast field, and I necessarily had to select a subset ...

,

2014-01-01T23:59:59.000Z

30

Numerical Models of Extragalactic Radio Sources  

Science Journals Connector (OSTI)

...unpublished data. THOMPSON, A...unpublished data. Numerical models...observatories provided an infrastructure that resulted in high-quality data for both the expert...on an Eulerian grid in time and space...magnetic field is a hybrid of the constrained...

JACK O. BURNS; MICHAEL L. NORMAN; DAVID A. CLARKE

1991-08-02T23:59:59.000Z

31

Boron-10 Lined Proportional Counter Model Validation  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.

Lintereur, Azaree T.; Siciliano, Edward R.; Kouzes, Richard T.

2012-06-30T23:59:59.000Z

32

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system  

E-Print Network (OSTI)

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system S [1, 2] widely validated in various rotor-stator cavities with throughflow [3­5] and heat transfer [6: RANS modeling, Reynolds Stress Model, Taylor-Couette-Poiseuille flow, turbulence, heat transfer. hal

Paris-Sud XI, Université de

33

Kinetic model for electrorefining, part I: Model development and validation  

Science Journals Connector (OSTI)

Abstract Electrorefining is the key process of the pryprocessing for treatment of spent nuclear fuels. In the present study, a kinetic model for electrorefining is developed. The model has the capability to predict the kinetic features of materials dissolution/deposition at anodes/cathodes of the electrorefiner and the evolution of the partial currents of the species involved, the potentials of the electrodes, and species concentrations in the molten salt. The model takes into account the changes of the surface areas and the volumes of the electrodes related to materials dissolution and deposition. The model is validated by compared with available experimental data. This article, focusing on the model development and validation, is Part I of the systemic study on development of the pyroprocessing model. Part II of this study will focus on the applications of the model.

Jinsuo Zhang

2014-01-01T23:59:59.000Z

34

Numerical study of the validity of the Boussinesq approximation for a fluid-saturated porous medium  

SciTech Connect

The validity of the Boussinesq approximation is investigated for natural convection in a fluid-saturated porous medium. A perturbation method is utilized to assess the relative importance of individual terms in the differential equations which describe the natural convection process. Specific limits to the validity of the Boussinesq approximation are identified for water and air. For water, it is shown that the restrictions imposed by the classical Boussinesq appoximation can be relaxed by allowing for the variation of thermophysical properties with temperature while still retaining the incompressible form of the continuity relation. Results of the analysis are verified through numerical calculations performed for steady natural convvection in a planar, water-saturated porous region, of unity aspect ratio, subjected to a tempertaure difference imposed between the vertical side walls.

Hickox, C.E.; Gartling, D.K.

1982-01-01T23:59:59.000Z

35

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01T23:59:59.000Z

36

numerical modeling | OpenEI Community  

Open Energy Info (EERE)

07 07 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142233807 Varnish cache server numerical modeling Home Ocop's picture Submitted by Ocop(5) Member 18 April, 2013 - 13:41 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing claims of LCOE, DOE has developed-for its own use-a standardized cost and performance data reporting process to facilitate uniform calculation of LCOE from MHK device developers. This

37

Validating agent based models through virtual worlds.  

SciTech Connect

As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior. Results from our work indicate that virtual worlds have the potential for serving as a proxy in allocating and populating behaviors that would be used within further agent-based modeling studies.

Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E. [North Carolina State University, Raleigh, NC] [North Carolina State University, Raleigh, NC; Bernstein, Jeremy Ray Rhythm [Gaikai, Inc., Aliso Viejo, CA] [Gaikai, Inc., Aliso Viejo, CA

2014-01-01T23:59:59.000Z

38

Numerical Modeling of PCCI Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling of HCCI and PCCI Combustion Processes Numerical Modeling of HCCI Combustion Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines...

39

Validation of Material Models for Automotive Carbon Fiber Composite...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Validation of Material Models for Automotive Carbon Fiber Composite Structures (VMM) Libby Berger (General Motors), Omar Faruque (Ford) Co-Principal Investigators US Automotive...

40

NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION  

SciTech Connect

Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas  

E-Print Network (OSTI)

1 Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink, USA, Fax: 617-432-4122, Abstract Many ice rink arenas have ice resurfacing equipment that uses fossil temperature distributions in ice rinks. The numerical results agree reasonably with the corresponding

Chen, Qingyan "Yan"

42

Cross Validation of Satellite Radiation Transfer Models during SWERA  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil Dataset Summary Description (Abstract): This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the SUNY-Albany. The model cross validation was performed by using two reference sites in Brazil: at Caicó (06°28'01"S - 037°05'05"W,175.8 m), and Florianópolis (27°34'18"S - 048°31'42"W, 10 m), Satellite data were collected by INPE-CPTEC for GOES-8, that also provides for its quality assessment, sectoring, storing and distribution to the participating teams. In this work we show the first results of this cross-validation along with some discussions on model deviations

43

Development and Validation of an Advanced Stimulation Prediction Model for  

Open Energy Info (EERE)

Validation of an Advanced Stimulation Prediction Model for Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Stimulation Prediction Models Project Description The proposal is in response to DOE FOA DE-PS36-08GO99018/DE-FOA-0000075, specifically: the Topic Area: Stimulation Prediction Models - "To develop and validate models to predict a reservoir's response to stimulation and/or to quantitatively compare existing stimulation prediction models," and the Target Specification: "Development of stimulation prediction models capable of accurately predicting the location, spacing, orientation, and flow properties of created fractures."

44

Wave Tank Testing and Model Validation … An Integrated Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Tank Testing and Model Validation - Lessons Learned Wave Tank Testing and Model Validation - Lessons Learned Mirko Previsic 7-7-12 2 Representing the Full-Scale System P, V qv q T u q Generator Guide vanes Turbine Blades Configuration 3 Appropriate Modeling of Physics Run-time is important to make a model useful as an engineering and/or optimization tool. * Have to be selective about how the physics is represented in the model * Different physical phenomena are important to different WEC devices Subscale modeling allows to help us understand and validate the models physics. * Ideally we can isolate physical phenomena to properly debug theoretical model * Focus is on validating fluid-structure interaction * Scaling of mechanical systems needs to represent the physics of the full- scale system (i.e. mooring, power-take-off, control system).

45

Modification of the Physics and Numerics in a Third-Generation Ocean Wave Model  

Science Journals Connector (OSTI)

The ocean wave model WAM was recently upgraded to improve the coupling between the sea state and the air flow and, in particular, enhance the growth of young wind sea over that of old wind sea. Prior to this change, numerous validations of the ...

Leslie C. Bender

1996-06-01T23:59:59.000Z

46

System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report  

SciTech Connect

The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

2013-12-01T23:59:59.000Z

47

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network (OSTI)

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

48

Multi-terminal Subsystem Model Validation for Pacific DC Intertie  

SciTech Connect

this paper proposes to validate dynamic model of Pacific DC Intertie with the concept of hybrid simulation by combing simulation with PMU measurements. The Playback function available in GE PSLF is adopted for hybrid simulation. It is demonstrated for the first time the feasibility of using Playback function on multi-terminal subsystem. Sensitivity studies are also presented as a result of common PMU measurement quality problem, ie, offset noise and time synchronization. Results indicate a good tolerance of PDCI model generally. It is recommended that requirements should apply to phasor measurements in model validation work to ensure better analysis. Key parameters are identified based on impact of value change to model behavior. Two events are employed for preliminary model validation with PMU measurements. Suggestions are made for PDCI model validation work in the future.

Yang, Bo; Huang, Zhenyu; Kosterev, Dmitry

2008-07-20T23:59:59.000Z

49

Fractional Euler-Bernoulli beams: theory, numerical study and experimental validation  

E-Print Network (OSTI)

In this paper the classical Euler-Bernoulli beam (CEBB) theory is reformulated utilising fractional calculus. Such generalisation is called fractional Euler-Bernoulli beams (FEBB) and results in non-local spatial description. The parameters of the model are identified based on AFM experiments concerning bending rigidities of micro-beams made of the polymer SU-8. In experiments both force as well as deflection data were recorded revealing significant size effect with respect to outer dimensions of the specimens. Special attention is also focused on the proper numerical solution of obtained fractional differential equation.

Wojciech Sumelka; Tomasz Blaszczyk; Christian Liebold

2015-02-05T23:59:59.000Z

50

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network (OSTI)

MultiscaleNumericalWeatherPredictionModel. Progressassimilatingnumericalweatherpredictionmodelforsolarcustomizable numericalweatherpredictionmodelthatis

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

51

Numerical Modelling of Geothermal Systems a Short Introduction | Open  

Open Energy Info (EERE)

Numerical Modelling of Geothermal Systems a Short Introduction Numerical Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short Introduction Authors Mauro Cacace, Björn Onno Kaiser and Yvonne Cherubini Published Helmholtz Association, The date "N/A" was not understood.The date "N/A" was not understood. DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Numerical Modelling of Geothermal Systems a Short Introduction Citation Mauro Cacace,Björn Onno Kaiser,Yvonne Cherubini. N/A. Numerical Modelling of Geothermal Systems a Short Introduction. N/A. Helmholtz Association. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modelling_of_Geothermal_Systems_a_Short_Introduction&oldid=688986"

52

Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction  

E-Print Network (OSTI)

Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction Supervisors). Background: Numerical Weather Prediction (NWP) has seen significant gains in accuracy in recent years due is directed at achieving real-world impact in numerical weather prediction by addressing fundamental issues

Wirosoetisno, Djoko

53

Validation of Transient Cooling Modeling for Hypersonic Application  

E-Print Network (OSTI)

Validation of Transient Cooling Modeling for Hypersonic Application Nicolas Gascoin and Philippe and Youssoufi Touré§ Université d'Orléans, 18000 Bourges, France DOI: 10.2514/1.26022 Hypersonic flight

Boyer, Edmond

54

O`ahu Grid Study: Validation of Grid Models  

E-Print Network (OSTI)

O`ahu Grid Study: Validation of Grid Models Prepared for the U.S. Department of Energy Office Resource Technologies for Energy Security Subtask 7.2 Deliverable By GE Global Research Niskayuna, New York

55

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

56

Validation of Climate Model Ice Cloud Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

models are used for understanding the past, present, and future climate. To be able to project future climate it is important that models provide a realistic depiction of the...

57

Parameter-oriented Visualization of a Modelica Model with a Numerical Data Integration Feature  

Science Journals Connector (OSTI)

Abstract In model-based development, designers develop models of complex engineered systems from combinations of building blocks, and then simulate the system behavior. The design process is assisted by multi-domain system modeling and simulation tools. These tools should be able to allow users to understand and validate the simulated behavior in terms of parameters and their dependencies with effective use of quantitative information, such as simulation results, experiments, and catalog data, in the system model. This paper proposes a tool that displays the parameters and their dependencies in system models written in Modelica, and integrates these models with numerical data. The latter feature is useful for evaluating quantitative performance.

Hitoshi Komoto; Shinsuke Kondoh; Keijiro Masui; Akira Tezuka

2014-01-01T23:59:59.000Z

58

Validation of a solid oxide fuel cell model  

Science Journals Connector (OSTI)

The need to study the performance of solid oxide fuel cells (SOFCs) has made mathematical modeling an essential tool for their design. Electrochemical modeling evaluates ohmic activation and concentration overpotentials that affect SOFC operation. A detailed cell model is developed for an SOFC and is validated with experimental data from the open literature.

Christina Charalampidou; Ioannis K. Kookos

2012-01-01T23:59:59.000Z

59

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

60

Sustainable heat extraction from abandoned mine tunnels: A numerical model  

Science Journals Connector (OSTI)

Abandoned mines are often associated with enduring liabilities which involve significant costs for decades after the decommissioning of the mine. Using a decommissioned mine as a geothermal resource can offset the environmental costs by supplying green heat to the communities living in and around the mine area. In this paper a numerical assessment of geothermal heat extraction from underground mine workings using an open loop geothermal system is carried out. In this study our focus is on fully flooded mines where the heat flow from the rock mass to the mine cavities is dominantly controlled by conduction in the rock mass. The sustainable heat flux into the mine workings is assessed using a transient two-dimensional axisymmetric heat transfer model. Finite volume method is applied to solve the model and simulate the transient temperature fields in the rock mass and within the water (flowing through cavities). The model is capable of controlling the rate of heat extraction through continuous adjustment of the rate of water flow through the mine. Sustainable rate of heat extraction is calculated for seasonally varied heat loads and for different project life cycles. It is shown that with proper resource management each kilometre of a typical deep underground mine tunnel can produce about 150?kW of usable heat in a sustainable manner. The model is validated by comparing its results with other published models and realistic data available from Springhill mine Nova Scotia Canada. It is found that the sustainable heat extraction is controlled dominantly by virgin rock temperature thermal conductivity of the rock mass and seasonal heat load variations.

S. A. Ghoreishi Madiseh; Mory M. Ghomshei; F. P. Hassani; F. Abbasy

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Numerical models of phosphate esters in the Chattahoochee River  

E-Print Network (OSTI)

A numerical model was constructed to assess the magnitude of organophosphoric acid triester sinks in the Chattahoochee River and to identify concentration patterns downstream of point source discharges. The model was built ...

Haffey, Samuel Fraad, 1973-

2004-01-01T23:59:59.000Z

62

Electrowetting-based microfluidics: mathematical modeling and numerical simulation  

Science Journals Connector (OSTI)

The work presented in this dissertation focuses on the mathematical modeling and numerical simulation of the dynamics of a liquid droplet undergoing electrowetting, or electrowetting-on-dielectrics (EWOD). A mathematical model is formulated for the two-phase ...

Michael Franklin / Ali Nadim

2013-01-01T23:59:59.000Z

63

Numerical Modeling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling At Coso Geothermal Area (1995) Numerical Modeling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1995 Usefulness useful DOE-funding Unknown Exploration Basis Locate an active fault zone by analyzing seismic guided waves from microearthquake data Notes An active fault zone was located in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling

64

Development of a Two-Fluid Drag Law for Clustered Particles Using Direct Numerical Simulation and Validation through Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Fluid Drag Law Two-Fluid Drag Law for Clustered Particles Using Direct Numerical Simulation and Validation through Experiments Background The Historically Black Colleges and Universities and Other Minority Institutions (HBCU/ OMI) Research and Development (R&D) Program within the U. S. Department of Energy (DOE) Office of Fossil Energy (FE) provides a mechanism for cooperative FE R&D projects between DOE and the HBCU/OMI community. This program encourages

65

Validation of nuclear models used in space radiation shielding applications  

SciTech Connect

A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

Norman, Ryan B., E-mail: Ryan.B.Norman@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Blattnig, Steve R. [NASA Langley Research Center, Hampton, VA 23681 (United States)] [NASA Langley Research Center, Hampton, VA 23681 (United States)

2013-01-15T23:59:59.000Z

66

Experiments for foam model development and validation.  

SciTech Connect

A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

2008-09-01T23:59:59.000Z

67

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

68

24 More Years of Numerical Weather Prediction: A Model Performance Model  

E-Print Network (OSTI)

24 More Years of Numerical Weather Prediction: A Model Performance Model Gerard Cats May 26, 2008 Abstract For two formulations of currently usual numerical weather prediction models the evolution in such a model is much 1 #12;24 More Years of Numerical Weather Prediction Gerard Cats higher than in a sis

Stoffelen, Ad

69

Simulation of Store Separation Scaling Requirements for Wind Tunnel Experiments and Validation of Numerical Simulations  

Science Journals Connector (OSTI)

The results of experimental and numerical investigations on cargo drop tests from a generic military transport aircraft configuration with open cargo bay are presented. The governing equations for experimental sc...

N. Schade

2013-01-01T23:59:59.000Z

70

Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Numerical Modeling Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The numerical modeling of the resistivity data is marginal for changes as small as those observed but the results suggest that changes of a few percent could be expected from a fracture zone extending from depth to within 100 m of the surface. References Sill, W. R. (1 September 1983) Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modeling_At_Raft_River_Geothermal_Area_(1983)&oldid=47387

71

Validation of the Window Model of the Modelica Buildings Library  

E-Print Network (OSTI)

LBNL-5735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University

72

70 MPa Fast-Fill Modeling and Validation Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

0 MPa Fast-Fill Modeling & 0 MPa Fast-Fill Modeling & Validation Experiments Bill Winters Thermal/Fluid Sci. & Eng. Dept. 8365 DOE Tank Safety Workshop April 29, 2010 SAND Number: 2010-2830 P Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sandia modeling and validation methods can be applied to the 70 MPa Fast Fill Problem * Multi year effort to understand flow and heat transfer in compressed gas storage systems - Vessel Blowdown (supplies) - Vessel Fillup (receivers) - Interconnecting systems of tubes, valves and flow branches * Network flow modeling capability - we have developed dedicated

73

Solar swimming pool heating: Description of a validated model  

SciTech Connect

In the framework of a European Demonstration Programme, co-financed by CEC and national bodies, a model was elaborated and validated for open-air swimming pools having a minimal surface of 100 m[sup 2] and a minimal depth of 0.5 m. The model consists of two parts, the energy balance of the pool and the solar plant. The theoretical background of the energy balance of an open-air swimming pool was found to be poor. Special monitoring campaigns were used to validate the dynamic model using mathematical parameter identification methods. The final model was simplified in order to shorten calculation time and to improve the user-friendliness by reducing the input values to the most important one. The programme is commercially available. However, it requires the hourly meteorological data of a test reference year (TRY) as an input. The users are mainly designing engineers.

Haaf, W.; Luboschik, U.; Tesche, B. (IST Energietechnik GmbH, Hauptsitz Wollbach, Kandern (Germany))

1994-07-01T23:59:59.000Z

74

Numerical Modeling At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling At Coso Geothermal Area (2000) Numerical Modeling At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine areas with fault patterns for geothermal development using Poisson's ratio and porosity Notes High-resolution, three-dimensional, compressional and shear wave velocity models, derived from microearthquake travel times, are used to map the distribution of Poisson's ratio and porosity at Coso Geothermal Area. Spatial resolution of the three-dimensional Poisson's ratio and porosity distributions is estimated to be 0.5 km horizontally and 0.8 km vertically. Model uncertainties, + or -1% in the interior and + or -2.3% around the

75

Numerical modelling of MILD combustion for coal  

Science Journals Connector (OSTI)

Emissions of nitrogen oxides from coal combustion are a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog. Moderate and Intensive Low oxygen Dilution (MILD) combustion is a promising technology for decreasing pollutant emissions and improving combustion efficiency. A combination of air preheating and fuel dilution with combustion products of low oxygen concentration are the main features of this technique. In the MILD combustion mode, preheated air and fuel are gradually mixed with large amounts of recirculated exhaust gas. The objective of the present work is to investigate the capability of present fuel NO mechanisms for pulverised coal combustion to predict the observed nitrogen oxide levels in MILD combustion mode. For this purpose, knowledge of the fate of coal nitrogen during the combustion process is vital. The interaction between turbulence and chemistry is modelled by an advanced Eddy Dissipation Concept (EDC). The NOx model is used to predict NO profiles that are compared to measurements obtained from semi-industrial scale experiments.

Ju Pyo Kim; U. Schnell; G. Scheffknecht; A.C. Benim

2007-01-01T23:59:59.000Z

76

Multidimensional numerical modeling of heat exchangers. [LMFBR  

SciTech Connect

A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

Sha, W.T.; Yang, C.I.; Kao, T.T.; Cho, S.M.

1982-01-01T23:59:59.000Z

77

Analytical-Numerical Modeling Of Komatiite Lava Emplacement And Thermal  

Open Energy Info (EERE)

Analytical-Numerical Modeling Of Komatiite Lava Emplacement And Thermal Analytical-Numerical Modeling Of Komatiite Lava Emplacement And Thermal Erosion At Perseverance, Western Australia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analytical-Numerical Modeling Of Komatiite Lava Emplacement And Thermal Erosion At Perseverance, Western Australia Details Activities (0) Areas (0) Regions (0) Abstract: We have applied a thermal-fluid dynamic-geochemical model to investigate the emplacement and erosional potential of Archean komatiite flows at Perseverance, Western Australia. Perseverance has been proposed as a site of large-scale thermal erosion by large-volume komatiite eruption(s), resulting in a 100-150-m-deep lava channel containing one of the world's largest komatiite-hosted Fe-Ni-Cu-(PGE) sulfide deposits. Using

78

Numerical Modeling of Brain Dynamics in Traumatic Situations -Impulsive Translations  

E-Print Network (OSTI)

.S.A. Abstract We numerically model the brain dy- namics during and after impulsive head translations using brain injuries appear among boxers and shaken babies despite minimal rotations of their heads. Modeling head translations also helps understand the brain dynamics during head rotations about an arbitrary

Burtscher, Martin

79

Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory  

SciTech Connect

We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

2014-11-15T23:59:59.000Z

80

Validation of the SUNY Satellite Model in a Meteosat Evironment  

SciTech Connect

The paper presents a validation of the SUNY satellite-to-irradiance model against four ground-truth stations from the Indian solar radiation network located in and around the province of Rajasthan, India. The SUNY model had initially been developed and tested to process US weather satellite data from the GOES series and has been used as part of the production of the US National Solar Resource Data Base (NSRDB). Here the model is applied to processes data from the European weather satellites Meteosat 5 and 7.

Perez, R.; Schlemmer, J.; Renne, D.; Cowlin, S.; George, R.; Bandyopadhyay, B.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT  

Open Energy Info (EERE)

ISES- 2003 ISES- 2003 CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B. Pereira, Fernando R. Martins 1 Brazilian Institute for Space Research - INPE, São José dos Campos, 12245-970, SP, Brazil Phone + 55 12 39456741, Fax + 55 12 39456810, enio@dge.inpe.br Samuel L. Abreu, Hans Georg Beyer, Sergio Colle, and Solar Energy Laboratory - LABSOLAR - Department of Mechanical Engineering, Federal University of Santa Catarina -UFSC, Florianopolis, 88040-900, (SC), Brazil, Richard Perez The University at Albany (SUNY), ASRC-CESTM, Albany, 12203 (NY), USA Abstract - This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the

82

Model validation and uncertainty analysis -- An example using a nitrate percolation model  

SciTech Connect

Model validation and uncertainty analysis are demonstrated using a model previously developed for estimating nitrate-nitrogen (nitrate) concentrations in percolation water from land application of sewage sludge. The objectives are to demonstrate alternate validation techniques and to analyze uncertainty associated with model use following validation. Field data from three published sludge application studies and two separate methods are used for the validation. The first method, point validation, is accomplished by inserting mean values into the model to make point predictions. Model accuracy is then assessed by calculating coefficient of determination (r{sup 2}), relative error and standard error. Statistical accuracy is tested using the Wilcoxon Signed Rank Test. The second method, statistical validation, uses Monte Carlo simulation to obtain distributions of model predictions. The hypothesis that field data represent reasonable samples from the distribution of model predictions is tested by checking whether observed values are within a range bounded by the 5 and 95% quantities of the distribution. Both validation methods demonstrate that the land application model generally overestimates nitrate concentrations. Monte Carlo simulation is used to identify which model input parameters are the largest contributors to the uncertainty in model predictions.

Mummert, M.C. [R.E. Wright Environmental, Inc., Middletown, PA (United States)

1996-12-31T23:59:59.000Z

83

Numerical Modeling At Coso Geothermal Area (2010) | Open Energy Information  

Open Energy Info (EERE)

10) 10) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (2010) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2010 Usefulness useful DOE-funding Unknown Exploration Basis To determine conditions when fractures nucleate Notes A numerical model was developed using Poly3D to simulate the distribution and magnitude of stress concentration in the vicinity of the borehole floor, and determine the conditions under which petal-centerline fractures nucleate. As a whole, the simulations have demonstrated that a borehole under the stress boundary conditions present at the Coso 58A-10 borehole is able to amplify the stress concentration to produce tension below the

84

NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL  

SciTech Connect

The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.

Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau

2014-06-01T23:59:59.000Z

85

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network (OSTI)

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

86

Numerical Modeling of Acoustic Timescale Detonation J.D. Regele  

E-Print Network (OSTI)

Numerical Modeling of Acoustic Timescale Detonation Initiation J.D. Regele , D.R. Kassoy and O to perform one and two-dimensional simulations of acoustic timescale detonation initiation using thermal overdriven detonation wave that decays to a steady-state CJ wave. A 1-D parametric study of acoustic

Vasilyev, Oleg V.

87

Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge  

Science Journals Connector (OSTI)

Internal M2 tides near Hawaii are investigated with a two-dimensional, two-layer numerical model. It is seen that along the Hawaiian Ridge barotropic tidal energy is transformed into baroclinic internal tides that propagate in both northeast and ...

S. K. Kang; M. G. G. Foreman; W. R. Crawford; J. Y. Cherniawsky

2000-05-01T23:59:59.000Z

88

Numerical modeling of magnetohydrodynamic activity in the Swarthmore Spheromak Experiment  

E-Print Network (OSTI)

Numerical modeling of magnetohydrodynamic activity in the Swarthmore Spheromak Experiment V. S resistive magnetohydrodynamic MHD simulation are compared to experimental data from the Swarthmore Spheromak is shown to reproduce global equilibrium magnetic field profiles of the spheromaks as well as much

Brown, Michael R.

89

Friction versus dilation revisited: Insights from theoretical and numerical models  

E-Print Network (OSTI)

Friction versus dilation revisited: Insights from theoretical and numerical models N. Makedonska,1 controlled by the frictional strength of the fault gouge, a granular layer that accumulates between the fault friction coefficient) of such granular layers is the systems resistance to dilation, a byprocess

Einat, Aharonov

90

Deviatoric constitutive model: domain of strain rate validity  

SciTech Connect

A case is made for using an enhanced methodology in determining the parameters that appear in a deviatoric constitutive model. Predictability rests on our ability to solve a properly posed initial boundary value problem (IBVP), which incorporates an accurate reflection of material constitutive behavior. That reflection is provided through the constitutive model. Moreover, the constitutive model is required for mathematical closure of the IBVP. Common practice in the shock physics community is to divide the Cauchy tensor into spherical and deviatoric parts, and to develop separate models for spherical and deviatoric constitutive response. Our focus shall be on the Cauchy deviator and deviatoric constitutive behavior. Discussions related to the spherical part of the Cauchy tensor are reserved for another time. A number of deviatoric constitutive models have been developed for utilization in the solution of IBVPs that are of interest to those working in the field of shock physics, e.g. All of these models are phenomenological and contain a number of parameters that must be determined in light of experimental data. The methodology employed in determining these parameters dictates the loading regime over which the model can be expected to be accurate. The focus of this paper is the methodology employed in determining model parameters and the consequences of that methodology as it relates to the domain of strain rate validity. We shall begin by describing the methodology that is typically employed. We shall discuss limitations imposed upon predictive capability by the typically employed methodology. We shall propose a modification to the typically employed methodology that significantly extends the domain of strain rate validity.

Zocher, Marvin A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

91

Numerical Wave Modeling in Conditions with Strong Currents: Dissipation, Refraction, and Relative Wind  

Science Journals Connector (OSTI)

Currents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and ...

Fabrice Ardhuin; Aron Roland; Franck Dumas; Anne-Claire Bennis; Alexei Sentchev; Philippe Forget; Judith Wolf; Franoise Girard; Pedro Osuna; Michel Benoit

2012-12-01T23:59:59.000Z

92

Numerical Modeling At Coso Geothermal Area (1997) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Develop tool to identify low velocity zones by modeling fault-zone guided waves of microearthquakes Notes A numerical method has been employed to simulate the guided-wave propagation from microearthquakes through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P-wave and S-wave velocity structure have been estimated. It is suggested that the identification and modeling of guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. References Lou, M.; Rial, J.A. ; Malin, P.E. (1 July 1997) Modeling

93

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

94

Analytical thermal model validation for Cassini radioisotope thermoelectric generator  

SciTech Connect

The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

95

Dynamic validated model of a DFIG wind turbine  

Science Journals Connector (OSTI)

This paper presents the development and qualitative validation of a doubly-fed induction generator (DFIG) wind turbine model that is represented in terms of behaviour equations of each of the subsystems, mainly the turbine rotor, the drive train, the induction generator, the power converters and associated control systems and a protection system. Simulation results obtained from the models are compared to the field measurement data in a qualitative manner due to rotor wake and lack of ability of a single anemometer for adequate measurement of wind speed acting on the large surface of the rotor. It is concluded that the model is reasonably accurate and can hence be used for representing wind turbines in power system dynamics simulations.

Md. Ayaz Chowdhury; Nasser Hosseinzadeh; Weixiang Shen

2014-01-01T23:59:59.000Z

96

Numerical Modeling At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

2006) 2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis Determine areas of high permeability using isotope transport and exchange analysis Notes Finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times were developed. Using detailed seismic reflection data and geologic mapping, a regional cross-sectional model was constructed that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The findings suggest that active faults and seismogenic zones in and around the Coso geothermal area have much higher

97

Dual-Bed Gasification of Petcoke: Model Development and Validation  

Science Journals Connector (OSTI)

Dual-Bed Gasification of Petcoke: Model Development and Validation ... A series of sensitivity analyses is performed with regard to a conventional gasifier fed by petcoke, and the effects of residence time and oxygen/carbon mass ratio in the feed are investigated over three process variables: char conversion at the gasifier exit, temperature at the gasifier exit, and amount of useful syngas (H2 and CO) produced, in terms of N?m3 per ton of petcoke. ... Different from most literature publications, such as refs 5 and 6, where coal and/or petcoke gasification models are checked against available data, with respect to the syngas composition obtained, and to the process cold gas efficiency, one of the purposes of our paper is to correlate experimental data to a parameter that is important both for simulation and for reactor design: the value of the residence time of the gasifier. ...

Maria Sudiro; Carlos Zanella; Alberto Bertucco; Luigi Bressan; Marco Fontana

2010-01-15T23:59:59.000Z

98

Numerical Modeling At Coso Geothermal Area (2007) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2007) Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of fracture networks for fluid migration in tectonically active regions such as the Coso Range. Notes A finite element analysis is used to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range

99

ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS  

SciTech Connect

During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

Chiswell, S.; Buckley, R.

2009-01-15T23:59:59.000Z

100

Validation of reduced kinetic models for simulations of non-steady combustion processes  

E-Print Network (OSTI)

In the present work we compare reliability of several most widely used reduced detailed chemical kinetic schemes for hydrogen-air and hydrogen-oxygen combustible mixtures. The validation of the schemes includes detailed analysis of 0D and 1D calculations and comparison with experimental databases containing data on induction time, equilibrium temperature, composition of the combustion products, laminar flame speed and the flame front thickness at different pressures. 1D calculations are carried out using the full gasdynamical system for compressible viscous thermal conductive multicomponent mixture. The proper choice of chemical kinetics models is essential for obtaining reliable quantitative and qualitative insight into combustion phenomena such as flame acceleration and stability, ignition, transition from deflagration-to-detonation (DDT) using a multiscale numerical modeling.

Ivanov, M F; Liberman, M A; Smygalina, A E

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Numerical studies of a simple Coulomb blockade model  

E-Print Network (OSTI)

simple model of the Coulomb blockade is studied. In this model, two interacting electrons tunnel in a one-dimensional structure with two barriers in series. The two-particle, time-dependent Schrodinger equation is solved numerically. It is found... tunneling by the other, and the inside electron tunnels out only after the outside electron tunnels a second time. The distribution of the charge density for the two electrons is shown in a series of three-dimensional figures as a function of time. Also...

Shao, Jianfeng

2012-06-07T23:59:59.000Z

102

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network (OSTI)

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

103

The numerical calculation of single-diode solar-cell modelling parameters  

Science Journals Connector (OSTI)

Abstract The accurate simulation of a photovoltaic solar cell requires the precise determination of modelling parameters specific to the device under study. For the case of the single diode model, five parameters must be determined; Iph, I0, Rs, Rsh, and n. Generally speaking these values may be calculated either by analytical or numerical methods. Although analytical approaches are simple and fast to carry out, the assumptions and simplifications they introduce in order to deal with the non-linear characteristics of a solar cell may result in modelling inaccuracies. In this study a new approach is presented to calculate all five parameter values numerically minimising assumptions and simplifications. The method proposed is based on solving the single diode currentvoltage equation expressed using the Lambert W-function at five experimentally obtained points along the currentvoltage curve. To solve the system of non-linear equations, the multi-dimensional variant of the NewtonRaphson method is applied. All necessary first order partial differential equations are provided in closed form. Experimental validation of the proposed method revealed an improvement in modelling accuracy over one commonly used analytical approach. Furthermore, using TRNSYS software to simulate the annual energy output we show that modelling photovoltaic systems with small variations in solar cell parameters can result in non-trivial variations in annual energy output highlighting the importance of their calculation.

F. Ghani; G. Rosengarten; M. Duke; J.K. Carson

2014-01-01T23:59:59.000Z

104

On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.  

SciTech Connect

In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

2006-01-01T23:59:59.000Z

105

Discussion of methods in building and validating a model: example of amino acid metabolism in ruminants.  

E-Print Network (OSTI)

Discussion of methods in building and validating a model: example of amino acid metabolism with these phenomena is to build a more mechanistic model of the amino acid fluxes in the intermediary metabolism to build and to validate a mechanistic model and of some problems encountered during this model development

Paris-Sud XI, Université de

106

Numerical Modeling At Coso Geothermal Area (1999) | Open Energy Information  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Numerical Modeling Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine three-dimensional P and S waves velocity structures Notes High precision P and S wave travel times for 2104 microearthquakes with focus <6 km are used in a non-linear inversion to derive high-resolution 3-D compressional and shear velocity structures at the Coso Geothermal Area. Block size for the inversion is 0.2 km horizontally and 0.5 km vertically and inversions are investigated in the upper 5 km of the geothermal area. Spatial resolution, calculated by synthetic modeling of a cross model at critical locations, is estimated to be 0.35 km for Vp and 0.5 km for V s . In the 2 km southwest Sugarloaf region, we found low V p

107

Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy  

SciTech Connect

This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed hydrogen pick-up. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFDs storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.

Veena Tikare; Philippe Weck; Peter Schultz; Blythe Clark; John Mitchell; Michael Glazoff; Eric Homer

2014-10-01T23:59:59.000Z

108

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model  

E-Print Network (OSTI)

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model-off dominated. We demonstrate the ability of our cohesive zone model in simulating the hydraulic fracture in all these propagation regimes. Keywords: Hydraulic fracture, Cohesive zone model, Finite element analysis, Hydro

Paris-Sud XI, Université de

109

Numerical Modeling of WECS at Ecole Centrale de Nantes  

NLE Websites -- All DOE Office Websites (Extended Search)

LHEEA LHEEA CNRS UMR 6598 Laboratoire de recherche en Hydrodynamique Énergétique et Environnement Atmosphérique Numerical modelling of Wave Energy Converters at LHEEA Lab Ecole Centrale de Nantes (France) Alain H. CLEMENT Senior researcher Ocean Energy and Ocean Waves Group NREL MHK Workshop - Broomfield (CO) - 9-10 July 2012 LHEEA CNRS UMR 6598 Laboratoire de recherche en Hydrodynamique Énergétique et Environnement Atmosphérique NREL MHK Workshop - Broomfield (CO) - 9-10 July 2012 The Ocean Energy and Waves group @ LHEEA Lab. LHEEA Lab. : Hydrodynamics, Energetics and Atmospheric Environment Staff : 100, Director : Prof. Pierre Ferrant

110

Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools  

Science Journals Connector (OSTI)

Computational modelling of combustion processes has been the subject of coninuous research at the Institute of Process Engineering and Power Plant Technology (IVD) over the last two decades. To this end, finite-volume-based computer codes have been developed. In the present paper, some fundamental ideas and approaches of the applied mathematical models and the numerical methods are described, followed by some examples of typical applications of the procedures with special emphasis on the validation of simulation results. These examples show that the application of combustion simulation codes has been extended to comprise a wide range of several different areas ranging from huge bituminous coal-fired utility boilers for electricity production to decentralised small-scale furnaces and tile stove heating inserts for domestic heating.

Uwe Schnell

2001-01-01T23:59:59.000Z

111

One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust  

Science Journals Connector (OSTI)

Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables.This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results.

Jae-San Yoon; Jae-Hung Han

2014-01-01T23:59:59.000Z

112

Numerical modeling of dish-Stirling reflux solar receivers  

SciTech Connect

Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is currently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, New Mexico. In support of this program, Sandia has developed two numerical models describing the energy transfer within and thermal performance of pool-boiler and heat-pipe receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. In these models, the radiative transfer within the receiver is analyzed using a two-band (solar and infrared) net-radiation formulation for enclosure radiation. Empirical convective correlations describe the convective heat transfer from the cavity to the surroundings. The primary difference between the models is the level of detail in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. 20 refs., 7 figs., 2 tabs.

Hogan, R.E.

1990-01-01T23:59:59.000Z

113

An experimentally validated bimorph cantilever model for piezoelectric energy harvesting  

Science Journals Connector (OSTI)

Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of RayleighRitz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the EulerBernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations and the accuracy of the model is shown in all cases.

A Erturk; D J Inman

2009-01-01T23:59:59.000Z

114

Validation of transport models using additive flux minimization technique  

SciTech Connect

A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile.

Pankin, A. Y.; Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States)] [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)] [General Atomics, San Diego, California 92121 (United States); Hakim, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Kritz, A. H.; Rafiq, T. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)] [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

2013-10-15T23:59:59.000Z

115

Numerical Modeling of Transient Basin and Range Extensional Geothermal  

Open Energy Info (EERE)

Transient Basin and Range Extensional Geothermal Transient Basin and Range Extensional Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Numerical Modeling of Transient Basin and Range Extensional Geothermal Systems Abstract A suite of models utilizing a range of bulkrock permeabilities were developed to analyze thetransient behavior of basin and range extensionalgeothermal systems, and particularly, the evolution ofthe system temperature with time. Each modelconsists of two mountain ranges (~1 km relief fromthe valley floor) separated by a thick sequence (about4 km) of clastic sediments derived from the adjacentranges, and a relatively permeable, high angle faultthat functions as a conduit for subsurface fluids. Thisgeometry is typical of Basin and Range extensionalsystems.We

116

Numerical Modeling of the Nucleation Conditions of Petal-Centerline  

Open Energy Info (EERE)

the Nucleation Conditions of Petal-Centerline the Nucleation Conditions of Petal-Centerline Fractures below a Borehole Floor, A Sensitivity Study and Application to the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Numerical Modeling of the Nucleation Conditions of Petal-Centerline Fractures below a Borehole Floor, A Sensitivity Study and Application to the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: A boundary element model using Poly3D© has been developed to investigate the conditions in which the stress concentration below the floor of a borehole can cause tensile stress necessary to nucleate petal-centerline fractures. The remote stress state, borehole geometry, and traction boundary conditions on the borehole surface are taken from direct

117

Validation of the coupled Eta/SSiB model over South America Sin Chan Chou  

E-Print Network (OSTI)

Validation of the coupled Eta/SSiB model over South America Sin Chan Chou Centro de Previsa~o de with the Simplified Simple Biosphere model (SSiB) over South America. The goal of the present work is to validate of the precipitation annual cycle observed in the central part of South America. The model was integrated continuously

Xue, Yongkang

118

Validated Model-Based Performance Prediction of Multi-Core Software Routers  

E-Print Network (OSTI)

Terms--measurement, simulation, intra-node model, re- source contention, model validation, software components. Leveraged by high flexibility and low costs of software developments in comparison with hardwareValidated Model-Based Performance Prediction of Multi-Core Software Routers Torsten Meyer1

Carle, Georg

119

Title: Modeling, Validation and Verification of Concurrent Behavior in the Panama Canal  

E-Print Network (OSTI)

ABSTRACT Title: Modeling, Validation and Verification of Concurrent Behavior in the Panama Canal architectural model of a canal system, as measured by transportation criteria. Specifically, the Panama Canal the scenario-based specifications, system behavioral model, animated verification and validation of the Panama

Austin, Mark

120

Model Validation at the 204-MW New Mexico Wind Energy Center  

SciTech Connect

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Service quality of mHealth platforms: development and validation of a hierarchical model using PLS  

Science Journals Connector (OSTI)

Advancing research on service quality requires clarifying the theoretical conceptualizations and validating an integrated service quality model. The purpose of this study is to facilitate and elucidate practical ...

Shahriar Akter; John DAmbra; Pradeep Ray

2010-12-01T23:59:59.000Z

122

A Workflow for Parameter Calibration and and Model Validation in SST: Interim Report.  

SciTech Connect

This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.

Pebay, Philippe Pierre; Wilke, Jeremiah J; Sargsyan, Khachik

2014-12-01T23:59:59.000Z

123

The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation  

E-Print Network (OSTI)

A novel tool for tsunami wave modelling is presented. This tool has the potential of being used for operational purposes: indeed, the numerical VOLNA code is able to handle the complete life-cycle of a tsunami (generation, propagation and run-up along the coast). The algorithm works on unstructured triangular meshes and, thus, can be run in arbitrary complex domains. It is often the case since natural coasts tend to be of fractal shape [Sapoval et al, 2004]. This paper contains the detailed description of the finite volume scheme implemented in the code. We explain the numerical treatment of the wet/dry transition. This point is crucial for accurate run-up computation. Most existing tsunami codes use semi-empirical techniques at this stage, which are not always sufficient. The main reason is that people evacuation is decided on the base of inundation maps which are produced with this type of numerical tools. Finally we present several realistic test cases that partially validate our algorithm. Comparisons wit...

Dutykh, Denys; Dias, Frdric

2010-01-01T23:59:59.000Z

124

The Numerical Modelling Research and Development Division is responsible for research into and develop-  

E-Print Network (OSTI)

into and develop- ment of numerical weather prediction models and other meteorological applications, that are opera in the field of numerical weather prediction: atmospheric and oceanographic modelling, physical and statistical132 The Numerical Modelling Research and Development Division is responsible for research

Haak, Hein

125

Evaluating the ability of a numerical weather prediction model to forecast tracer concentrations during ETEX 2  

E-Print Network (OSTI)

Evaluating the ability of a numerical weather prediction model to forecast tracer concentrations an operational numerical weather prediction model to forecast air quality are also investigated. These potential a numerical weather prediction (NWP) model independently of the CTM. The NWP output is typically archived

Dacre, Helen

126

USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS,  

E-Print Network (OSTI)

USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS simulation by means of a Numerical Weather Prediction Model (NWP), Skiron. After that, we have made spatial solar resource map. 2.1. Meteorological simulation The numerical weather prediction model used is SKIRON

Paris-Sud XI, Université de

127

Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model  

E-Print Network (OSTI)

Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid.renard@ifpen.fr * Corresponding author Résumé -- Modélisation numérique d'EOR thermique : couplage complet entre un modèle d of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid Flow and Geomechanics

Paris-Sud XI, Université de

128

Numerical Modeling of Failure in Magnesium Alloys under Axial Compression and Bending for Crashworthiness Applications.  

E-Print Network (OSTI)

??Numerical modeling of failure was performed for magnesium alloys with circular and square cross-sections under axial compression. The failure criterion was employed using material model (more)

Ali, Usman

2012-01-01T23:59:59.000Z

129

Amending Numerical Weather Prediction forecasts using GPS  

E-Print Network (OSTI)

. Satellite images and Numerical Weather Prediction (NWP) models are used together with the synoptic surfaceAmending Numerical Weather Prediction forecasts using GPS Integrated Water Vapour: a case study to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents

Stoffelen, Ad

130

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

131

A numerical model of aerosol scavenging: Part 1, Microphysics parameterization  

SciTech Connect

We have developed a three-dimensional numerical model (OCTET) to simulate the dynamics and microphysics of clouds and the transport, diffusion and precipitation scavenging of aerosol particles. In this paper we describe the cloud microphysics and scavenging parameterizations. The representation of cloud microphysics is a bulk- water parameterization which includes water vapor and five types of hydrometeors (cloud droplets, rain drops, ice crystals, snow, and graupel). A parallel parameterization represents the scavenging interactions between pollutant particles and hydrometeors including collection of particles because of condensation nucleation, Brownian and phoretic attachment, and inertial capture, resuspension because of evaporation and sublimation; and transfer interactions where particles collected by one type of hydrometeor are transferred to another type of freezing, melting, accretion, riming and autoconversion.

Molenkamp, C.R.; Bradley, M.M.

1991-09-01T23:59:59.000Z

132

The Dynamics of Deterministic Chaos in Numerical Weather Prediction Models  

E-Print Network (OSTI)

Atmospheric weather systems are coherent structures consisting of discrete cloud cells forming patterns of rows/streets, mesoscale clusters and spiral bands which maintain their identity for the duration of their appreciable life times in the turbulent shear flow of the planetary Atmospheric Boundary Layer. The existence of coherent structures (seemingly systematic motion) in turbulent flows has been well established during the last 20 years of research in turbulence. Numerical weather prediction models based on the inherently non-linear Navier-Stokes equations do not give realistic forecasts because of the following inherent limitations: (1) the non-linear governing equations for atmospheric flows do not have exact analytic solutions and being sensitive to initial conditions give chaotic solutions characteristic of deterministic chaos (2) the governing equations do not incorporate the dynamical interactions and co-existence of the complete spectrum of turbulent fluctuations which form an integral part of the large coherent weather systems (3) limitations of available computer capacity necessitates severe truncation of the governing equations, thereby generating errors of approximations (4) the computer precision related roundoff errors magnify the earlier mentioned uncertainties exponentially with time and the model predictions become unrealistic. The accurate modelling of weather phenomena therefore requires alternative concepts and computational techniques. In this paper a universal theory of deterministic chaos applicable to the formation of coherent weather structures in the ABL is presented.

A. Mary Selvam

2003-10-07T23:59:59.000Z

133

A Process Modelling Framework for Formal Validation of Panama Canal System Operations  

E-Print Network (OSTI)

1 A Process Modelling Framework for Formal Validation of Panama Canal System Operations John develop a process modeling framework for the evaluation and formal validation of Panama Canal system. The Panama Canal is one of the world's most important waterways. Initially opened for operation in 1914

Austin, Mark

134

NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...  

E-Print Network (OSTI)

Abstract. CO2 sequestration in the underground is a valid alternative approach for mitigat- ing the greenhouse effect. Nevertheless, very little is known about the

gabriela

135

Validation of a model for faster than real time LMFBR core transient analysis  

SciTech Connect

This report briefly describes experimental validation of a computer model used to analyze LMFBR type core transients. This model is used to predict coolant, cladding, and fuel temperature distributions during transient overpower accidents. (JDH)

Tzanos, C.P.

1987-01-01T23:59:59.000Z

136

NUMERICAL MODELING OF SPACE PLASMA FLOWS / ASTRONUM-2007 ASP Conference Series, Vol. 385, c 2008  

E-Print Network (OSTI)

model The ENLIL (Sumerian god of wind) code is a numerical model for simulations of background solar- energetic-particles (SEP) models (Luhmann et al. 2004). 3. Coupling with empirical coronal models Accurate

California at Berkeley, University of

137

Numerical models of black body dominated GRBs: II. Emission properties  

E-Print Network (OSTI)

We extend an existing theoretical model to explain the class of Black-Body Dominated (BBD) gamma-ray bursts (GRBs), long lasting events characterized by the presence of a significant thermal component trailing the GRB prompt emission, and also by an absence of a traditional afterglow. GRB 101225A, the Christmas Burst, is a prototype of such class. It has been suggested that BBD-GRBs could be observed after a merger in a binary system consisting of a neutron star and a Helium core of a main sequence star. Using detailed relativistic hydrodynamic numerical simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In this paper we focus on explaining the emission properties of the jet evolution computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic spectra and light curves are compared with the observational data...

Cuesta-Martnez, Carlos F; Mimica, Petar; Thne, Christina C; de Ugarte-Postigo, Antonio

2014-01-01T23:59:59.000Z

138

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report  

Open Energy Info (EERE)

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Dataset Summary Description (Abstract): This partial report describes the results obtained by two of the core radiative transfer models adopted in the SWERA Project for global horizontal solar irradiation during the cross-validation step. They are BRASIL-SR and SUNY-ALBANY models (Martins, 2001; Stuhlmann et al. 1990; Perez et al., 2002). The results from other two other core models, NREL and DLR, are not yet available. The HELIOSAT was included as a reference model at this stage. The HELIOSAT model is widely employed for solar energy assessment in Europe and is well know by the solar energy community worldwide (Beyer et al., 1996; Cano et al., 1986). (Purpose): SWERA solar cross-validation study

139

NUMERICAL MODELING OF DEFORMATION AND FRACTURE OF WOOD INCLUDING HETEROGENEITY AND ANISOTROPY  

E-Print Network (OSTI)

NUMERICAL MODELING OF DEFORMATION AND FRACTURE OF WOOD INCLUDING HETEROGENEITY AND ANISOTROPY John A. Nairn Wood Science & Engineering, Oregon State University, USA Abstract The challenge in numerical modeling of wood is to have the model closely match the structure of a real specimen. The model

Nairn, John A.

140

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

142

Knowledge Provenance: An Approach to Modeling and Maintaining The Evolution and Validity of Knowledge  

E-Print Network (OSTI)

Knowledge Provenance: An Approach to Modeling and Maintaining The Evolution and Validity of Knowledge Mark S. Fox and Jingwei Huang Enterprise Integration Laboratory, University of Toronto 40 St. This paper addresses the problem of how to determine the validity and origin of information/knowledge

Fox, Mark S.

143

Steam generator steady-state model for on-line data validation. [LMFBR  

SciTech Connect

To develop an efficient algorithm for on-line plant-wide data validation and fault identification fast running computer models that adequately describe the different plant processes are required. For example, if the data validation interval is of the order of one second, these models must be running faster than one second. This paper presents a fast running model for steady-state analysis of a once-through LMFBR steam generator. In computer codes like DSNP and SASSYS, the computation time for steady-state analysis of a typical once-through LMFBR steam generator is approx. 5 to 7 seconds. This time imposes excessively long validation intervals.

Tzanos, C.P.

1984-01-01T23:59:59.000Z

144

An Evaluation of Tropical Cyclone Genesis Forecasts from Global Numerical Models  

Science Journals Connector (OSTI)

Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models ...

Daniel J. Halperin; Henry E. Fuelberg; Robert E. Hart; Joshua H. Cossuth; Philip Sura; Richard J. Pasch

2013-12-01T23:59:59.000Z

145

Numerical modeling of mountain building: Interplay between erosion law and crustal rheology  

E-Print Network (OSTI)

Numerical modeling of mountain building: Interplay between erosion law and crustal rheology V. Cattin, and J. Lave´ (2004), Numerical modeling of mountain building: Interplay between erosion law by a 2D finite element model that incorporates the rheological layering of the crust and the main

Demouchy, Sylvie

146

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation  

E-Print Network (OSTI)

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation Cyril a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly@gmail.com #12;Abstract. We propose in this paper an original technique to predict global radiation using

Paris-Sud XI, Université de

147

An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling  

E-Print Network (OSTI)

An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark Williamson Working Paper 83 #12;An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark for long time period simulations and large ensemble studies in Earth system models of intermediate

Williamson, Mark

148

Experimental Validation of Building Vibration Propagation Using a Four Story Laboratory Model  

E-Print Network (OSTI)

Experimental Validation of Building Vibration Propagation Using a Four Story Laboratory Model.White@tufts.edu ABSTRACT A 4-story scale model building was designed and constructed for the purpose of predicting and combined, forming a system model. Each component of the scale model building was tested in order

White, Robert D.

149

Validating an `ns' Simulation Model of the DOCSIS Protocol Department of Computer Science  

E-Print Network (OSTI)

Validating an `ns' Simulation Model of the DOCSIS Protocol Jim Martin Department of Computer Over Cable System Interface Specification (DOCSIS). We have implemented a simulation model analytic and live network evidence that the simulation model is correct. To demonstrate the model, we

Westall, James M.

150

Numerical Methods for Multiphysics, Multiphase, and Multicomponent Models for Fuel Cells.  

E-Print Network (OSTI)

??In this dissertation, we design and analyze efficient numerical methods for obtaining accurate solutions to model problems arising in fuel cells. A basic fuel cell (more)

Xue, Guangri

2008-01-01T23:59:59.000Z

151

A numerical procedure to model and monitor CO2 sequestration in ...  

E-Print Network (OSTI)

Sep 7, 2012 ... analyze storage integrity, providing early warning should any leakage occurs. A numerical procedure to model and monitor CO2 sequestration...

santos

152

Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation  

E-Print Network (OSTI)

self-sustained oscillations. Several physical models (clarinet and saxophone) are formulated the dynamical properties of self-sustained musical instruments using tra- ditional numerical techniques

Boyer, Edmond

153

Numerical model of planar heterojunction organic solar cells  

Science Journals Connector (OSTI)

We present a numerical study of the effects of the energy barrier between the lowest unoccupied molecular orbital of the acceptor layer and the cathode, the thicknesses of the donor layer and acceptor layer on th...

ChaoZhu Ma; YingQuan Peng; RunSheng Wang; RongHua Li

2011-07-01T23:59:59.000Z

154

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

155

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

156

Validation of and enhancements to an operating-speed-based geometric design consistency evaluation model  

E-Print Network (OSTI)

This thesis documents efforts to validate two elements related to an operating-speed-based geometric design consistency evaluation procedure: (1) the speed reduction estimation ability of the model, and (2) assumptions about acceleration...

Collins, Kent Michael

1995-01-01T23:59:59.000Z

157

Biomarker Discovery and Validation for Proteomics and Genomics: Modeling And Systematic Analysis  

E-Print Network (OSTI)

Discovery and validation of protein biomarkers with high specificity is the main challenge of current proteomics studies. Different mass spectrometry models are used as shotgun tools for discovery of biomarkers which is usually done on a small...

Atashpazgargari, Esmaeil

2014-08-27T23:59:59.000Z

158

Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.  

SciTech Connect

The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

Roberts, Jesse D.; Chang, Grace; Jones, Craig

2014-09-01T23:59:59.000Z

159

Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model  

Science Journals Connector (OSTI)

A simple lattice Boltzmann model for numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration, which is of fundamental interest and practical importance in science as well as in engineering, is proposed in this paper. Unlike existing lattice Boltzmann models for such flows, which were based on primitive-variable Navier-Stokes equations, the target macroscopic equations of the present model for the flow field are vorticitystream function equations, inspired by our recent work designed for nonrotating flows [S. Chen, J. Tlke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tlke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)]. The flow field and the temperature field both are solved by the D2Q5 model. Compared with the previous models, the present model is more efficient, more stable, and much simpler. It was found that, even though with a relatively low grid resolution, the present model can still work well when the Grashof number is very high. The advantages of the present model are validated by numerical experiments.

Sheng Chen; Jonas Tlke; Manfred Krafczyk

2009-07-14T23:59:59.000Z

160

SURVEY, ANALYSIS AND VALIDATION OF INFORMATION FOR BUSINESS PROCESS MODELING  

E-Print Network (OSTI)

implementation. In the past, the business has been only represented with hierarchical models business or outsourcing opportunities. ­ To develop an Information systems Architecture, that uses in the future. The process of modeling these two approaches is not the same. The As Is modeling follows a bottom

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Validating an `ns' Simulation Model of the DOCSIS Protocol Jim Martin, Mike Westall  

E-Print Network (OSTI)

Validating an `ns' Simulation Model of the DOCSIS Protocol Jim Martin, Mike Westall Department on the DOCSIS MAC layer. We have implemented a simulation model of the DOCSIS MAC using the `ns' simulation package. In this paper we offer analytic and live network evidence that the simulation model accurately

Martin, Jim

162

Atmospheric Dispersion Model Validation in Low Wind Conditions  

SciTech Connect

Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

Sawyer, Patrick

2007-11-01T23:59:59.000Z

163

Manual sorting of numerals in an inflective language for language modelling  

Science Journals Connector (OSTI)

In speech recognition systems language models are used to estimate the probabilities of word sequences. In this paper special emphasis is given to numerals---words that express numbers. One reason for this is the fact that in a practical application ... Keywords: Language models, Manual sorting, Numerals, Speech recognition

Gregor Donaj; Zdravko Ka?i?

2014-09-01T23:59:59.000Z

164

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Journals Connector (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

165

Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design  

E-Print Network (OSTI)

1973; Oran and Boris 1987; Murray 1989; Gershenfeld 1999). Weather and climate prediction models, which to the initial conditions, which is a major source of uncertainty in Numerical Weather Prediction (NWP; eTime Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error

Judd, Kevin

166

Electrical Model Development and Validation for Distributed Resources  

SciTech Connect

This project focuses on the development of electrical models for small (1-MW) distributed resources at the National Renewable Energy Laboratory's Distributed Energy Resources Test Facility.

Simoes, M. G.; Palle, B.; Chakraborty, S.; Uriarte, C.

2007-04-01T23:59:59.000Z

167

Verification and validation benchmarks.  

SciTech Connect

Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

Oberkampf, William Louis; Trucano, Timothy Guy

2007-02-01T23:59:59.000Z

168

Numerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Boussinesq model  

E-Print Network (OSTI)

Numerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Boussinesq model Philip for the December 26, 2004 Indian Ocean tsunami. Calculations are based on Boussinesq model FUNWAVE and are carried

Kirby, James T.

169

A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology  

Science Journals Connector (OSTI)

Natural land surfaces are usually heterogeneous over the resolvable scales considered in atmospheric numerical models. Therefore, model surface parameterizations that assume surface homogeneity may fail to represent the surface forcing ...

R. Avissar; R. A. Pielke

1989-10-01T23:59:59.000Z

170

NUMERICAL ANALYSIS OF A STEEPEST-DESCENT PDE MODEL FOR SURFACE RELAXATION BELOW THE ROUGHENING  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF A STEEPEST-DESCENT PDE MODEL FOR SURFACE RELAXATION BELOW THE ROUGHENING addresses a widely-used PDE model for the relaxation of a crystalline surface below the roughening

171

Assessment of Wind Power Potential for Two Contrasting Coastlines of South Africa Using a Numerical Model  

Science Journals Connector (OSTI)

A two-dimensional numerical model is used to predict near surface wind velocities, and consequently wind power, for five distinct synoptic regimes for contrasting east and west coasts of South Africa. The model results suggest that no one ...

R. D. Diab; M. Garstang

1984-12-01T23:59:59.000Z

172

Non-smooth Dynamics Using Differential-algebraic Equations Perspective: Modeling and Numerical Solutions  

E-Print Network (OSTI)

mathematical tools. On the other hand, the approach based on differential-algebraic equations gives more insight into the constitutive assumptions of a chosen model and easier to obtain numerical solutions. Bingham-type models in which the force cannot...

Gotika, Priyanka

2012-02-14T23:59:59.000Z

173

A 3D numerical model for Kepler's supernova remnant  

Science Journals Connector (OSTI)

......28, 1428 Buenos Aires, Argentina 3 Facultad de Ciencias Exactas...Universidad de Buenos Aires, Argentina We present new 3D numerical...density of 103 and an explosion energy of 7-1050-erg. The obtained...the gas pressure. The total energy density E is given by where......

J. C. Toledo-Roy; A. Esquivel; P. F. Velzquez; E. M. Reynoso

2014-01-01T23:59:59.000Z

174

A 3D numerical model for Kepler's supernova remnant  

Science Journals Connector (OSTI)

......synthetic X-ray maps from the numerical...considering an AGB mass-loss rate...Mo-yr1, a wind terminal velocity of 10-km-s1...of the AGB wind mass-loss rate, terminal velocity and ISM density...out of the wind bubble considerably...X-ray emission maps, taking into......

J. C. Toledo-Roy; A. Esquivel; P. F. Velzquez; E. M. Reynoso

2014-01-01T23:59:59.000Z

175

Development and Validation of a 3-Dimensional CFB Furnace Model  

Science Journals Connector (OSTI)

At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, ... Analyses of field-test results in industrial-scal...

Arl Vepslinen; Karl Myhnen

2010-01-01T23:59:59.000Z

176

THE FERNALD DOSIMETRY RECONSTRUCTION PROJECT Environmental Pathways -Models and Validation  

E-Print Network (OSTI)

and Deposition Models . 19 Building Wake Effects and Plume Rise . 23 Resuspension of Particulates . . . . . 24 the FMPC N. Soil Data for Locations near the FMPC o. Resuspension of Particulates p. Radon, Radon

177

Experimental validation of different modeling approaches for solid particle receivers.  

SciTech Connect

Solid particle receivers have the potential to provide high-temperature heat for advanced power cycles, thermochemical processes, and thermal storage via direct particle absorption of concentrated solar energy. This paper presents two different models to evaluate the performance of these systems. One model is a detailed computational fluid dynamics model using FLUENT that includes irradiation from the concentrated solar flux, two-band re-radiation and emission within the cavity, discrete-phase particle transport and heat transfer, gas-phase convection, wall conduction, and radiative and convective heat losses. The second model is an easy-to-use and fast simulation code using Matlab that includes solar and thermal radiation exchange between the particle curtain, cavity walls, and aperture, but neglects convection. Both models were compared to unheated particle flow tests and to on-sun heating tests. Comparisons between measured and simulated particle velocities, opacity, particle volume fractions, particle temperatures, and thermal efficiencies were found to be in good agreement. Sensitivity studies were also performed with the models to identify parameters and modifications to improve the performance of the solid particle receiver.

Khalsa, Siri Sahib S.; Amsbeck, Lars (German Aerospace Center (DLR), Spain and Stuttgart, Germany); Roger, Marc (German Aerospace Center (DLR), Spain and Stuttgart, Germany); Siegel, Nathan Phillip; Kolb, Gregory J.; Buck, Reiner (German Aerospace Center (DLR), Spain and Stuttgart, Germany); Ho, Clifford Kuofei

2009-07-01T23:59:59.000Z

178

Numerical simulations and predictive models of undrained penetration in soft soils  

E-Print Network (OSTI)

of rateindependent finite element analyses of pre-embedded penetration depths, and validate the results by upper and lower bound solutions from classical plasticity theory. Furthermore, strain rate effects are modeled by finite element simulations within a framework...

Shi, Han

2005-11-01T23:59:59.000Z

179

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Details Activities (0) Areas (0) Regions (0) Abstract: A two-dimensional numerical model of coupled fluid flow, heat transfer and rock mechanics in naturally fractured rock is developed. The model is applicable to assessments of hot dry rock (HDR) geothermal reservoir characterisation experiments, and to the study of hydraulic stimulations and the heat extraction potential of HDR reservoirs. Modelling assumptions are based on the characteristics of the experimental HDR reservoir in the Carnmenellis granite in Cornwall, S. W. England. In

180

Multi-Modal Modeling, Analysis and Validation of Open Source Software Requirements Processes  

E-Print Network (OSTI)

model of the OSS requirements process requires multiple, comparative project case studies, so our1 Multi-Modal Modeling, Analysis and Validation of Open Source Software Requirements Processes Walt@uci.edu Abstract Understanding the context, structure, activities, and content of software development processes

Scacchi, Walt

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Preliminary Validation Using in vivo Measures of a Macroscopic Electrical Model of the Heart  

E-Print Network (OSTI)

Preliminary Validation Using in vivo Measures of a Macroscopic Electrical Model of the Heart Maxime Antipolis, France 2 National Institutes of Health, National Heart Lung and Blood Institute, Laboratory of the cardiac electrical activity in a canine heart coupled with simulations done using macroscopic models

Coudière, Yves

182

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor  

E-Print Network (OSTI)

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor N. Petra1, J. Zweck1, S. E, Rice University, Houston, TX 77005, USA E-mail: zweck@umbc.edu Abstract: A model for a resonant. At low concentrations, the molecular dynamics of the trace gas do not influence the signal. © 2010

Minkoff, Susan E.

183

Vibration Model Validation for Linear Collider Detector Platforms  

SciTech Connect

The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations, which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.

Bertsche, Kirk; Amann, J.W.; Markiewicz, T.W.; Oriunno, M.; Weidemann, A.; White, G.; /SLAC

2012-05-16T23:59:59.000Z

184

Validation and Application of the Room Model of the Modelica Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation and Application of the Room Model of the Modelica Buildings Validation and Application of the Room Model of the Modelica Buildings Library Title Validation and Application of the Room Model of the Modelica Buildings Library Publication Type Conference Proceedings LBNL Report Number LBNL-5932E Year of Publication 2012 Authors Nouidui, Thierry Stephane, Kaustubh Phalak, Wangda Zuo, and Michael Wetter Conference Name Proc. of the 9th International Modelica Conference Date Published 09/2012 Conference Location Munich, Germany Abstract The Modelica Buildings library contains a package with a model for a thermal zone that computes heat transfer through the building envelope and within a room. It considers various heat transfer phenomena of a room, including conduction, convection, short-wave and long-wave radiation. The first part of this paper describes the physical phenomena considered in the room model. The second part validates the room model by using a standard test suite provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The third part focuses on an application where the room model is used for simulation-based controls of a window shading device to reduce building energy consumption.

185

2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION  

SciTech Connect

Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the scale SGM, whose data were ta

Choi, A.

2014-05-08T23:59:59.000Z

186

EVALUATION OF NUMERICAL WEATHER PREDICTION IN MODELING CLOUD-RADIATION INTERACTIONS OVER THE SOUTHERN GREAT PLAINS  

E-Print Network (OSTI)

EVALUATION OF NUMERICAL WEATHER PREDICTION IN MODELING CLOUD- RADIATION INTERACTIONS OVER.bnl.gov ABSTRACT Numerical weather prediction (NWP) is the basis for present-day weather forecasts, and NWP- and satellite- based observations over the Southern Great Plains to evaluate how well cloud

Johnson, Peter D.

187

Leaky guided waves in generic bars: Numerical prediction and experimental validation by means of ultrasonic underwater testing  

SciTech Connect

Guided Ultrasonic Waves (GUWs) are used in several industrial and civil applications for the non-destructive tests and inspection of mechanical waveguides immersed in fluids. As well known, the impedance mismatch at the fluid-structure interface causes the bulk waves traveling inside the waveguide to be partially refracted in the surrounding fluid. The leakage of bulk waves involves continuous energy radiation along the propagation direction, resulting in high attenuation rates and, consequently, reduced inspection ranges. In this work, the dispersion behaviour of leaky guided waves that propagate in immersed waveguides of general cross-section is investigated. To this end, a Semi-Analytical Finite Element (SAFE) method coupled with a 2.5D Boundary Element method (BEM) is used to extract the wave dispersion equation. The proposed formulation avoids the well known limitations of analytical methods in treating complex geometries as well as those of Finite Element-based methods in representing propagation processes in unbounded domains. Numerical and experimental results are presented, in which the dispersion curves are extracted for different bars of arbitrary shape immersed in water. The results obtained in this paper can be useful for the design of testing conditions in practical applications and to tune experimental set up.

Mazzotti, Matteo; Bartoli, Ivan [Civil, Architectural and Environmental Engineering (CAEE) Department, Drexel University, 3141 Chestnut St., Philadelphia PA 19104 (United States); Marzani, Alessandro [Dipartimento di Ingegneria Civile, Ambientale e dei Materiali (DICAM), Universit degli Studi di Bologna, Viale Risorgimento 2, Bologna 40136 (Italy)

2014-02-18T23:59:59.000Z

188

Mechanical tests for validation of seismic isolation elastomer constitutive models  

SciTech Connect

High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.

Kulak, R.F.; Hughes, T.H.

1992-01-01T23:59:59.000Z

189

Mechanical tests for validation of seismic isolation elastomer constitutive models  

SciTech Connect

High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.

Kulak, R.F.; Hughes, T.H.

1992-05-01T23:59:59.000Z

190

Experimental and numerical modeling of convective proppant transport  

SciTech Connect

Slurry-transport and -settling experiments were conducted to improve current descriptions of proppant transport, and the results were used to formulate a new slurry-transport model incorporated into a fully 3D fracture simulator. The model was tested and verified vs. experimental observations of slurry transport in a 4 x 16-ft slot model. Results of the study indicate that proppant-slurry transport can be modeled accurately by accounting for the effects of single-particle settling, density-driven flow, particle-velocity profiles, and slurry rheology.

Barree, R.D. [Marathon Oil Co., Littleton, CO (United States); Conway, M.W. [Stim-Lab Inc., Duncan, OK (United States)

1995-03-01T23:59:59.000Z

191

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...  

Open Energy Info (EERE)

to the most hydraulically conductive fractures in two orthogonal and vertical fracture sets. The mathematical model representing the hydro-mechanical interactions that are...

192

Numerical Modeling At Dixie Valley Geothermal Area (Benoit, 1999...  

Open Energy Info (EERE)

be interpreted. A large geothermal flow test was performed where there was 6 geothermal wells flowing at once and 8 idle wells being monitored. The conceptual model developed...

193

Numerical Modeling of a Discontinuous Incineration Process with On-line Validation  

Science Journals Connector (OSTI)

The waste, coming from diverse collections, is transferred from the pit into a vertical hopper and enters into the furnace pushed by a discontinuous feeding grate. ... Also the burning waste is discontinuously moved through the primary combustion chamber by reciprocating grates. ... Latest data from FederAmbiente, the Italian environmental federation, show that 35 plants, having incineration capacities from 30000 to 300000 t/y, burn about 2400000 t/y of solid wastes.1 More stringent specifications for correct operation, adopted throughout the European community countries, call for a proper optimal control of those units. ...

Davide Manca; Maurizio Rovaglio

2005-03-24T23:59:59.000Z

194

Numerical modelling of plasticity induced by transcranial magnetic stimulation  

Science Journals Connector (OSTI)

We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be ... Keywords: Modelling, Neural field theory, Plasticity, Theta burst stimulation, Transcranial magnetic stimulation

M. T. Wilson; D. P. Goodwin; P. W. Brownjohn; J. Shemmell; J. N. Reynolds

2014-06-01T23:59:59.000Z

195

Numerical modelling and analysis of a room temperature magnetic  

E-Print Network (OSTI)

are separated by channels of a heat transfer fluid. The time-dependent model solves the momentum and continuity equations of the flow of the heat transfer fluid and the coupled energy equations of the heat transfer and it was concluded that the model has energy conservation and that the solution is independent of the chosen grid

196

Polya Dobreva, Monio Kartalev NUMERICAL MODELING OF THE MAGNETOSPHERE  

E-Print Network (OSTI)

main objective is a description of the magnetosphere. Regions, formed in solar wind flow around magnetic field model Problem formulation Dirichlet #12;Input parameters solar wind parameters ­ Dp, By, Bz(IMF) Dst index dipole inclination (tilt angle) The parameters are needed by Tsyganenko model

Mustakerov, Ivan

197

A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT CAVERN  

E-Print Network (OSTI)

CAVERN SOULEY Mountaka1 , MERCERAT Diego2 , DRIAD-LEBEAU Lynda1 , BERNARD Pascal2 1 INERIS, Ecole des collapse). KEYWORDS: cavern, numerical modelling, continuum-discrete, overburden, damage. R?SUM?: Dans l

Boyer, Edmond

198

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

199

Applying methods of numerical modeling to optimize a plasma burner of atmospheric pressure  

Science Journals Connector (OSTI)

The shape of a plasma burner is optimized by the methods of numerical modeling. Vortex-free flow is created in the burner merely at the expense of selecting the external tube profile rather than by introductio...

S. M. Perminov; V. N. Perminova

1993-09-01T23:59:59.000Z

200

Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical Model.  

E-Print Network (OSTI)

??A two-dimensional numerical model (RiverFLO-2D) has been enhanced to simulate flooding of urban areas by developing an innovative wet and dry surface algorithm, accounting for (more)

Gonzalez-Ramirez, Noemi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow  

E-Print Network (OSTI)

and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluidNumerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative

202

Numerical Modeling of the Propagation Environment in the Atmospheric Boundary Layer over the Persian Gulf  

Science Journals Connector (OSTI)

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the ...

B. W. Atkinson; J-G. Li; R. S. Plant

2001-03-01T23:59:59.000Z

203

Numerical modeling of Persian Gulf salinity variations due to tidal effects  

Science Journals Connector (OSTI)

Numerical modeling of salinity changes in marine environment of Persian Gulf is investigated in this paper. Computer simulation ... in arbitrary and complex geometries, such as Persian Gulf domain. The results of...

S. R. Sabbagh Yazdi

2004-03-01T23:59:59.000Z

204

Numerically Solvable Model for Resonant Collisions of Electronswith Diatomic Molecules  

SciTech Connect

We describe a simple model for electron-molecule collisions that has one nuclear and one electronic degree of freedom and that can be solved to arbitrarily high precision, without making the Born-Oppenheimer approximation, by employing a combination of the exterior complex scaling method and a finite-element implementation of the discrete variable representation. We compare exact cross sections for vibrational excitation and dissociative attachment with results obtained using the local complex potential approximation as commonly applied in the ''boomerang'' model, and suggest how this two-dimensional model can be used to test the underpinnings of contemporary nonlocal approximations to resonant collisions.

Houfek, Karel; Rescigno, T.N.; McCurdy, C.W.

2006-01-27T23:59:59.000Z

205

Evaluation of Tropical Cyclone Center Identification Methods in Numerical Models  

Science Journals Connector (OSTI)

Identifying the center of a tropical cyclone in a high-resolution model simulation has a number of operational and research applications, including constructing a track, calculating azimuthal means and perturbations, and diagnosing vortex tilt. ...

Leon T. Nguyen; John Molinari; Diana Thomas

2014-11-01T23:59:59.000Z

206

A Numerical Model for the Equilibrium Shape of Electrified Raindrops  

Science Journals Connector (OSTI)

The model Beard Chuang, using the differential form of Laplace's formula, has been extended to raindrop shapes under the influence of vertical electric fields and drop charges. A finite volume method was used with a boundary-fitted coordinate ...

Catherine C. Chuang; Kenneth V. Beard

1990-06-01T23:59:59.000Z

207

Numerical modeling of hydrofracturing in a multilayer coal seam  

SciTech Connect

The mathematical model of the process for hydrodynamic fracturing in a multilayer coal seam is proposed. The model is based on the equation of continuity and Darcy's law. The filtration-temperature analogy allows solving the obtained non-linear, non-stationary problem in an axisymmetric statement for the pressure function as the heat-conductivity problem, by the finite-element method. The calculation results yield estimation of the radius of degassing borehole influence zone.

Nasedkina, A.A.; Trufanov, V.N. [Rostov State University, Rostov Na Donu (Russian Federation)

2006-01-15T23:59:59.000Z

208

A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model  

E-Print Network (OSTI)

We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. 'breathing-like' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.

Giovanni Noselli; Antonio DeSimone

2014-08-26T23:59:59.000Z

209

Development and validation of a two-phase, three-dimensional model for PEM fuel cells.  

SciTech Connect

The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.

Chen, Ken Shuang

2010-04-01T23:59:59.000Z

210

A Numerical Model for the Dynamic Simulation of a Recirculation Single-Effect Absorption Chiller  

E-Print Network (OSTI)

A Numerical Model for the Dynamic Simulation of a Recirculation Single- Effect Absorption Chiller A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller. Keywords: absorption; chiller; modelling; transient; water-lithium bromide; falling film hal-00713904

Paris-Sud XI, Université de

211

Experimentally validated models of refrigerant distribution in microchannel heat exchangers used to evaluate charge reduction of various working fluids.  

E-Print Network (OSTI)

??This thesis presents experimentally validated simulation models developed to obtain accurate prediction of microchannel heat exchanger performance and charge. Effects of using various correlations are (more)

Padilla, Yadira

2012-01-01T23:59:59.000Z

212

A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge  

E-Print Network (OSTI)

: 7360 words, 11 figures. Keywords: Mid-ocean ridge processes; hydrothermal cooling; numerical modelA numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge present a steady state numerical representation of the sill model that explicitly includes hydrothermal

Toomey, Doug

213

Validation of a Cognitive Diagnostic Model Across Multiple Forms of a Reading Comprehension Assessment  

E-Print Network (OSTI)

VALIDATION OF A COGNITIVE DIAGNOSTIC MODEL ACROSS MULTIPLE FORMS OF A READING COMPREHENSION ASSESSMENT by Amy K. Clark Submitted to the graduate degree... program in the Department of Psychology and Research in Education and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the...

Clark, Amy K

2013-12-31T23:59:59.000Z

214

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

215

Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds  

E-Print Network (OSTI)

1 Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds Vinca des Interfaces et Modélisation pour l'Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie substances is not realistic (for reasons of time, costs or ethics in case of tests on animals). Thus

Paris-Sud XI, Université de

216

HVAC filter bypass modelling and experimental validation Jeffrey A. Siegel1,*  

E-Print Network (OSTI)

standards that address HVAC filtration efficacy including ASHRAE Standard 52.2 (ASHRAE, 2007) and EN 779HVAC filter bypass modelling and experimental validation Jeffrey A. Siegel1,* , David B. Chojnowski of filter bypass, an ASHRAE Standard 52.2-2007 compliant apparatus was modified to accept filters

Siegel, Jeffrey

217

Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS)  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Develop a true 3D hydro-thermal fracturing and proppant flow/transport simulator that is particularly suited for EGS reservoir creation. Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator.

218

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network (OSTI)

for large scale grid power applications, but rather for relatively low-power ocean sensor and communicationsExperimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 Island Department of Ocean Engineering Narragansett, RI 02882, USA Abstract-- Methodology and results

Grilli, Stéphan T.

219

Validation and Application of the Room Model of the Modelica Buildings Library  

E-Print Network (OSTI)

LBNL-5932E Validation and Application of the Room Model of the Modelica Buildings Library Authors This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor

220

Introduction Application of numerical models of ground water flow  

E-Print Network (OSTI)

(Portniaguine and Solomon 1998), and ground water temperature (Doussan et al. 1994). Compared to calibration depended on calibration methodology; models calibrated with multiple targets simulated q more accurately of Calibration Methodology on Ground Water Flow Predictions by James E. Saiers1, David P. Genereux2, and Carl H

Saiers, James

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Numerical modeling of an all vanadium redox flow battery.  

SciTech Connect

We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

2014-01-01T23:59:59.000Z

222

Mathematical and Numerical Techniques in Energy and Environmental Modeling  

E-Print Network (OSTI)

and transport of ground- water contaminants and to design in situ remediation strategies. Three basic problem and optimize remediation of groundwater contaminants. Toward that end, one must be able to pre- dict the performance of the reservoir under various remediation schemes. To do this, a model of the reservoir and its

Ewing, Richard E.

223

Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447  

SciTech Connect

Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.

None

2008-05-19T23:59:59.000Z

224

Joint physical and numerical modeling of water distribution networks.  

SciTech Connect

This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei

2009-01-01T23:59:59.000Z

225

Numerically Efficient Water Quality Modeling and Security Applications  

E-Print Network (OSTI)

to consider e ective tools and mitigation strategies to improve water network security. This work presents two components that have been integrated into EPA?s Water Security Toolkit, an open-source software package that includes a set of tools to help water... several advantages and potential uses that are aligned with current emerging water security applications. This computational framework is able to e ciently generate an explicit mathematical model that can be easily embedded into larger mathematical...

Mann, Angelica

2013-02-04T23:59:59.000Z

226

Two- and three-dimensional numerical models of internal tide generation at a continental slope  

Science Journals Connector (OSTI)

Some numerical models of internal tide generation at a continental slope are two-dimensional where the along-slope variation is neglected. The energy flux carried by internal tides computed using such two-dimensional models is often underestimated, compared with three-dimensional simulations of the same region, by a factor of 10 or more. The reason for this difference is investigated using both numerical and analytical models. It is shown that in numerical models, it is not the lack of the along-shelf forcing but the use of sponge or radiating conditions at the cross-shelf boundaries that leads to the severe underestimate of the offshore flux. To obtain realistic estimates of energy flux a three-dimensional model with an along-shelf scale of at least 5 internal tide wave lengths at the depth of maximum forcing is necessary.

K. Katsumata

2006-01-01T23:59:59.000Z

227

Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection  

SciTech Connect

Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve

2013-05-01T23:59:59.000Z

228

Development and validation of detailed controls models of the Nelson River Bipole 1 HVDC system  

SciTech Connect

With the Nelson River Bipole 1 mercury arc valve group replacement project and planning for the expansion of the Nelson River HVDC system with a third bipole underway, it was decided to pursue a program to develop and validate detailed models of the existing HVDC transmission facilities and their associated ac systems for use in system studies. The first phase of the program concentrated on the development of detailed controls models associated with the Bipole 1 transmission facility. Based on previous experience at Manitoba Hydro with the Electromagnetic Transient DC simulation program (EMTDC), it was decided that model development and validation would use this program. This paper presents the reasons behind the development of detailed models, the methods used in developing models related to Bipole 1, results of validation tests, difficulties encountered during the process, and the overall benefits resulting from the project. An example of applying the models to investigate a low frequency oscillation which has occurred on the dc system in the past is also presented.

Kuffel, P.; Kent, K.L.; Mazur, G.B.; Weekes, M.A. (Manitoba Hydro, Winnipeg (Canada))

1993-01-01T23:59:59.000Z

229

Global temperatures using satellite and numerical model assimilated data  

SciTech Connect

The Microwave Sounding Unit (MSU) aboard the National Oceanic and Atmospheric Administration (NOAA) series of polar orbiting satellites (TIROS-N to NOAA-11) have provided stable, precise measurements of vertically integrated, atmospheric temperature since December 1978. In this study, comparisons are made between the MSU channel measurements and those derived from the Global Data Assimilation System (GDAS) at the National Meteorological Center (NMC) over the period 1979 to 1990. Land areas rich in Radiosonde Observations (RAOBS) showed similar magnitudes of spatial variability between the NMC GDAS and the MSU temperatures. Excessive spatial variability can be noted in the GDAS over land areas where conventional data is poor. Over the ocean, however, the assimilation of satellite data into the model improves the spatial variability detected by the GDAS.

Basist, A.; Ropelewski, C.; Grody, N. (NOAA/NWS/NMC, Washington, DC (United States) NOAA/NESDIS, Washington, DC (United States))

1994-01-01T23:59:59.000Z

230

A simple model to predict train-induced vibration: theoretical formulation and experimental validation  

SciTech Connect

No suitable handy tool is available to predict train-induced vibration on environmental impact assessment. A simple prediction model is proposed which has been calibrated for high speed trains. The model input data are train characteristics, train speed and track properties; model output data are soil time-averaged velocity and velocity level. Model results have been compared with numerous vibration data retrieved from measurement campaigns led along the most important high-speed European rail tracks. Model performances have been tested by comparing measured and predicted vibration values.

Rossi, Federico; Nicolini, Andrea

2003-05-01T23:59:59.000Z

231

Calibration and validation of a thermal energy storage model: Influence on simulation results  

Science Journals Connector (OSTI)

Abstract In this paper a 1-D model of a thermal energy storage (TES) was experimentally validated and calibrated. The experimental tests showed an overall heat transfer coefficient for heat losses four times higher than the theoretical value. This was due to the thermal bridges associated with the hydraulic and sensor connections. Moreover, the lack of thermal insulation at the bottom of the TES causes an increase in dissipation through thermal bridges. The experimental data enabled the evaluation of effective TES heat capacity, which differed from the theoretical value instead based on net storage tank volume. By means of an optimization tool, a fictitious value of the TES volume was calculated. In order to model the natural convection heat transfer coefficient of the heat exchanger immersed in the water storage tank, a NusseltRayleigh correlation was experimentally calibrated. The data derived from tests conducted in a test facility of Universit degli Studi del Sannio (Italy) were then compared with a computer simulation based on a calibrated TES model by means of commercial software. The validation procedure showed a satisfactory agreement between experimentally measured temperature values and those predicted by the model. Finally, different dynamic simulations of solar thermal heating systems are carried out in order to highlight the influence of the TES model and its calibration and validation on annual energy performance.

Giovanni Angrisani; Michele Canelli; Carlo Roselli; Maurizio Sasso

2014-01-01T23:59:59.000Z

232

An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical Methods in Engineering  

E-Print Network (OSTI)

PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec

Gracie, Robert

233

NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE  

E-Print Network (OSTI)

NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE M. Gloeckler, A. Consequently specific baseline parameters for CIGS and CdTe are proposed. The modeling results important complications that are often found in experimental CIGS and CdTe solar cells. 1. INTRODUCTION

Sites, James R.

234

Improving the Performance of Mass-Consistent Numerical Models Using Optimization Techniques  

Science Journals Connector (OSTI)

This paper describes a technique of using a mass-consistent model to derive wind speeds over a microscale region (about 4 km2) of complex terrain. A serious limitation of these numerical models is that the calculated wind field is highly ...

J. C. Barnard; H. L. Wegley; T. R. Hiester

1987-06-01T23:59:59.000Z

235

Laboratory experiments and numerical modeling of wave attenuation through artificial vegetation  

E-Print Network (OSTI)

? 5.1. Introduction to COULWAVE Boussinesq Model ................................................. 51? 5.2. Numerical Modeling of Vegetation Friction Factor .............................................. 53? CHAPTER VI - CONCLUSIONS... Additionally, vegetation directly increases the durability of shorelines through the root systems and enhances the storage of sand in dunes (Dean, 1978). Until recently the importance and function of wetlands was not well understood, and the amount...

Augustin, Lauren Nicole

2009-05-15T23:59:59.000Z

236

EXPLICIT SIMULATION OF ICE PARTICLE HABITS IN A NUMERICAL WEATHER PREDICTION MODEL  

E-Print Network (OSTI)

EXPLICIT SIMULATION OF ICE PARTICLE HABITS IN A NUMERICAL WEATHER PREDICTION MODEL by Tempei This study develops a scheme for explicit simulation of ice particle habits in Cloud Resolving Models (CRMs is called Spectral Ice Habit Prediction System (SHIPS), which represents a continuous-property approach

Wisconsin at Madison, University of

237

Two-Dimensional Numerical Modeling of Radio-Frequency Ion Engine Discharge  

E-Print Network (OSTI)

Two-Dimensional Numerical Modeling of Radio-Frequency Ion Engine Discharge Michael Meng-Tsuan Tsay-Frequency Ion Engine Discharge Michael Meng-Tsuan Tsay, Manuel Martinez-Sanchez August 2010 SSL # 14 Modeling of Radio-Frequency Ion Engine Discharge by Michael Meng-Tsuan Tsay Submitted to the Department

238

From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model  

E-Print Network (OSTI)

(secondary eyewall) in coincidence with a local tangential wind max- imum around the pre-existing eyewallFrom concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model Research and Forecasting (WRF) model, the transformation from a non- AH to an AH through a concentric

Wang, Bin

239

Stochastic model for electrical loads in Mediterranean residential buildings: Validation and applications  

Science Journals Connector (OSTI)

Abstract A major issue in modelling the electrical load of residential building is reproducing the variability between dwellings due to the stochastic use of different electrical equipment. In that sense and with the objective to reproduce this variability, a stochastic model to obtain load profiles of household electricity is developed. The model is based on a probabilistic approach and is developed using data from the Mediterranean region of Spain. A detailed validation of the model has been done, analysing and comparing the results with Spanish and European data. The results of the validation show that the model is able to reproduce the most important features of the residential electrical consumption, especially the particularities of the Mediterranean countries. The final part of the paper is focused on the potential applications of the models, and some examples are proposed. The model is useful to simulate a cluster of buildings or individual households. The model allows obtaining synthetic profiles representing the most important characteristics of the mean dwelling, by means of a stochastic approach. The inputs of the proposed model are adapted to energy labelling information of the electric devices. An example case is presented considering a dwelling with high performance equipment.

Joana Ortiz; Francesco Guarino; Jaume Salom; Cristina Corchero; Maurizio Cellura

2014-01-01T23:59:59.000Z

240

A validated dynamic model of the first marine molten carbonate fuel cell  

Science Journals Connector (OSTI)

In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel Viking Lady serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner.

E. Ovrum; G. Dimopoulos

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An active wave generatingabsorbing boundary condition for VOF type numerical model  

Science Journals Connector (OSTI)

The objective of the present work is to discuss the implementation of an active wave generatingabsorbing boundary condition for a numerical model based on the Volume Of Fluid (VOF) method for tracking free surfaces. First an overview of the development of VOF type models with special emphasis in the field of coastal engineering is given. A new type of numerical boundary condition for combined wave generation and absorption in the numerical model \\{VOFbreak2\\} is presented. The numerical boundary condition is based on an active wave absorption system that was first developed in the context of physical wave flume experiments, using a wave paddle. The method applies to regular and irregular waves. Velocities are measured at one location inside the computational domain. The reflected wave train is separated from the incident wave field in front of a structure by means of digital filtering and subsequent superposition of the measured velocity signals. The incident wave signal is corrected, so that the reflected wave is effectively absorbed at the boundary. The digital filters are derived theoretically and their practical design is discussed. The practical use of this numerical boundary condition is compared to the use of the absorption system in a physical wave flume. The effectiveness of the active wave generatingabsorbing boundary condition finally is proved using analytical tests and numerical simulations with VOFbreak2.

Peter Troch; Julien De Rouck

1999-01-01T23:59:59.000Z

242

Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling  

E-Print Network (OSTI)

in the numerical weather prediction (NWP) and climate models through parameterisation. For parameterisation, data. The effect of lakes should be parameterised in numerical weather prediction (NWP) and climate modellingEstimation of the mean depth of boreal lakes for use in numerical weather prediction and climate

Paris-Sud XI, Université de

243

Thermal Modeling and Experimental Validation of Human Hair and Skin Heated by Broadband Light  

E-Print Network (OSTI)

distribution within the hair follicle is highly non-uniform: the minimum temperature occurs at the follicle Sun, PhD,1 Alex Chaney,1 Robert Anderson, PhD,2 and Guillermo Aguilar, PhD 1 * 1 Department:(a)determinetheoveralleffectofPPxonskinhumidi- tyandassociatedskinopticalproperties,and;(b)developaPT numerical model to study the spatial and temporal hair and skin temperature

Aguilar, Guillermo

244

User's Manual for Data for Validating Models for PV Module Performance  

SciTech Connect

This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

2014-04-01T23:59:59.000Z

245

Numerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Higher-order Boussinesq Model  

E-Print Network (OSTI)

Numerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Higher-order Boussinesq of the tsunami, with a higher-order Boussinesq model. We find reasonable agreement of numerical results

Grilli, Stéphan T.

246

A GIS-based open source pre-processor for georesources numerical modeling  

Science Journals Connector (OSTI)

Abstract TOUGH2 is an integral finite differences numerical simulator for non-isothermal multiphase flow in fractured porous media, which can manage complex spatial discretizations. Numerical simulation accuracy is affected, among other things, by grid resolution. Increasing the grid resolution requires computational and operating costs depending on the number of nodes and variables processed. The complexity of the management of the model increases when unstructured grids and local refinement are used. In order to improve the management and optimize the activities to update the model, an open source pre-processor has been developed using the open source codes GRASS GIS, \\{SQLite\\} and AMESH. Operations such as domain discretization, rock type assignment and mesh file generation have been automatized. Graphical interfaces allow for a user-friendly utilization. Operating errors and time required by pre-processing activities to generate and update locally refined unstructured grids have been reduced. Productivity in numerical modeling has been substantially increased.

P. Berry; S. Bondu; V. Bortolotti; C. Cormio; E.M. Vasini

2014-01-01T23:59:59.000Z

247

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Validation and Testing: Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140 Preprint R. Judkoff National Renewable Energy Laboratory J. Neymark J. Neymark & Associates Presented at the ASHRAE 2006 Annual Meeting Quebec City, Canada June 24-29, 2006 Conference Paper NREL/CP-550-40360 July 2006 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

248

Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models  

SciTech Connect

This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible heat fluxes appear to occupy intermediate positions between these extremes, but the existing large observational uncertainties in these processes make this a provisional assessment. In all selected processes as well, the error statistics are found to be sensitive to season and latitude sector, confirming the need for finer-scale analyses which also are in progress.

Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

2005-12-01T23:59:59.000Z

249

Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model  

E-Print Network (OSTI)

We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1].

Baudron, Anne-Marie A -M; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien

2014-01-01T23:59:59.000Z

250

Packed bed thermal energy storage model Generalized approach and experimental validation  

Science Journals Connector (OSTI)

Abstract Packed beds serve as thermal energy storages (TES) and heat exchangers (HEX) in different technological applications. In this paper, a general heterogeneous model of heat transfer in packed beds is developed. It is implemented by lumped element formulation in object-oriented modeling language Modelica and is successful validated with data sets taken from two different experiments reported in literature. The main advantages of the introduced model are the general, theory-based approach and the lumped element formulation in Modelica. The first point mentioned above should allow to simulate a packed bed TES/HEX without the necessity applying measured data for model calibration or to apply specific heat transfer correlations with restricted application. The second point establishes the possibility to integrate the TES/HEX model within plant models of larger scale without increasing the simulation time drastically.

Florian Opitz; Peter Treffinger

2014-01-01T23:59:59.000Z

251

Dynamic customisation, validation and integration of product data models using semantic web tools  

Science Journals Connector (OSTI)

Standard product data models enable information exchange across different organisations, actors, processes and stages in the product lifecycle. These standard models need to support diverse domain-specific requirements from the multitude of disciplines involved during a product's lifecycle. Due to this diversity, challenges are to: 1) develop multidisciplinary models; 2) extend them to support new requirements over time; 3) implement the resulting gigantic information models. ISO 10303, the reference standard for PLM-related data models provides mechanisms to enable specialisation of generic product data to address some of these challenges. In this paper, we introduce the need for dynamic product data models, detail the ISO method and identify its limitations. We present enhancements to that methodology using ontologies and the SPARQL Inference Notation (SPIN) for validating product data. To conclude, we show how these ontologies can be leveraged to ease and strengthen PLM data integration through the use of Linked Data.

Sylvere Krima; Allison Barnard Feeney; Sebti Foufou

2014-01-01T23:59:59.000Z

252

Characterization of Texas lignite and numerical modeling of its in-situ gasification  

E-Print Network (OSTI)

CHARACTERIZATION OF TEXAS LIGNITE AND NUMERICAL MODELING OF ITS IN-SITU GASIFICATION A Thesis by YIH-JY WANG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Geophysics CHARACTERIZATION OF TEXAS LIGNITE AND NUMERICAL MODELING OF ITS IN-SITU GASIFICATION A Thesis by YIH-JY WANG Approved as to style and content by: James E. Russell (Chairman of Committee) M. Caputo...

Wang, Yih-Jy

2012-06-07T23:59:59.000Z

253

A general numerical solution of dispersion relations for the nuclear optical model  

E-Print Network (OSTI)

A general numerical solution of the dispersion integral relation between the real and the imaginary parts of the nuclear optical potential is presented. Fast convergence is achieved by means of the Gauss-Legendre integration method, which offers accuracy, easiness of implementation and generality for dispersive optical model calculations. The use of this numerical integration method in the optical-model parameter search codes allows for a fast and accurate dispersive analysis. PACS number(s): 11.55.Fv, 24.10.Ht, 02.60.Jh

Roberto Capote; Alberto Molina; Jose Manuel Quesada

2001-05-09T23:59:59.000Z

254

Mixture Preparation and Nitric Oxide Formation in a GDI Engine studied by Combined Laser Diagnostics and Numerical Modeling  

SciTech Connect

Through the combination of advanced imaging laser diagnostics with multi-dimensional computer models, a new understanding of the performance of direct-injection gasoline engines is pursuit. The work focuses on the fuel injection process, the breakup of the liquid into a fine spray and the mixing of the fuel with the in-cylinder gases. Non-intrusive laser diagnostics will be used to measure the spatial distribution of droplets and vaporized fuel with very high temporal resolution. These data along with temperature measurements will be used to validate a new spray breakup model for gasoline direct-injection. Experimental data on near wall fuel distributions will be used for comparison with a model that predicts the spray-wall interaction and the dynamics of the liquid film on the surface. Quantitative measurements of local nitric oxide concentrations inside the combustion chamber will provide a critical test for a numerical simulation of the nitric oxide formation process. This model is based on a modified flamelet approach and will be used to study the effects of exhaust gas recirculation.

Volker Sick; Dennis N. Assanis

2002-11-27T23:59:59.000Z

255

Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium  

SciTech Connect

The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

Taylor, S.R.; Kamm, J.R. [eds.

1993-11-01T23:59:59.000Z

256

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network (OSTI)

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

257

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine  

Science Journals Connector (OSTI)

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine ... The major problems associated with diesel engines are the high levels of nitrogen oxides (NOX) and particulate emissions. ... (11)?Flagan, R. C.; Seinfeld, J. H. Fundamentals of Air Pollution Engineering; Prentice Hall Inc.:? New York, 1988. ...

T. L. Chan; X. B. Cheng

2007-04-10T23:59:59.000Z

258

Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics and Kinematics  

E-Print Network (OSTI)

Numerical Modeling of Nonlinear Surface Waves caused by Surface Effect Ships Dynamics problems, particularly for high-speed Surface Effect Ships (SES) such as the recently proposed Harley FastShip and/or a surface-piercing body (ship), within the framework of potential flow theory. The three

Grilli, Stéphan T.

259

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments transport  

E-Print Network (OSTI)

An improved numerical scheme for a coupled system to model soil erosion and polydispersed sediments, the positivity of both water depth and sediment concentrations. Recently, a well-balanced MUSCL-Hancock scheme step is required to ensure the positivity of sediment concentrations. The main result of this paper

Boyer, Edmond

260

LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS  

E-Print Network (OSTI)

1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral

Haller, Merrick

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Numerical modeling of extreme rogue waves generated by directional energy focusing  

E-Print Network (OSTI)

Numerical modeling of extreme rogue waves generated by directional energy focusing Christophe angle of directional energy focusing. We find that an over- turning rogue wave can have different are characterized by their brief occurrence in space and time, resulting from a local focusing of wave energy

Grilli, Stéphan T.

262

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpyporosity approach  

E-Print Network (OSTI)

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy and in the North Sea, the deposition of wax crystals in oil and gas pipelines becomes a major concern operational complexities. To pre- vent blockage of pipelines, wax deposits should be removed periodically

Firoozabadi, Abbas

263

NUMERICAL MODELING OF 3D ORGANIC SOLAR CELLS Presented to the  

E-Print Network (OSTI)

NUMERICAL MODELING OF 3D ORGANIC SOLAR CELLS _______________ A Thesis Presented to the Faculty Solar Cells by Anurag Kaushik Master of Science in Electrical Engineering San Diego State University and nanofabrication technologies offer a unique opportunity for meshing it with organic PV cell technology

Kassegne, Samuel Kinde

264

January 2, 2008 Numerical modeling of the effect of carbon dioxide  

E-Print Network (OSTI)

January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

Boyer, Edmond

265

MODELING AND ADAPTIVE NUMERICAL TECHNIQUES FOR OXI-DATION OF CERAMIC COMPOSITES  

E-Print Network (OSTI)

. INTRODUCTION Oxidation shortens the life of ceramic matrix composites by, e.g., chang- ing the elasticMODELING AND ADAPTIVE NUMERICAL TECHNIQUES FOR OXI- DATION OF CERAMIC COMPOSITES S. Adjerid, M. Ai reaction 1-3 . Composite materials are protected by coatings; however, cracks that form as a result

Adjerid, Slimane

266

Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water  

E-Print Network (OSTI)

for femtosecond laser excitation and time-resolved X-ray probing of gold nanoparticles demonstrates that the vaporNumerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water Alexey, University of Virginia, USA Available online 3 February 2007 Abstract Short pulse laser interaction

Zhigilei, Leonid V.

267

COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS  

E-Print Network (OSTI)

COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS I. DIMOV , K. GEORGIEVy, TZ. OSTROMSKY , R. J. VAN DER PASz, AND Z. ZLATEVx Abstract. The air pollution, and especially the reduction of the air pollution to some acceptable levels, is an important environmental problem, which

Dimov, Ivan

268

Mathematical, physical and numerical principles essential for models of turbulent mixing  

SciTech Connect

We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.

Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV

2009-01-01T23:59:59.000Z

269

Validation of detailed thermal hydraulic models used for LMR safety and for improvement of technical specifications  

SciTech Connect

Detailed steady-state and transient coolant temperatures and flow rates from an operating reactor have been used to validate the multiple pin model in the SASSYS-1 liquid metal reactor systems analysis code. This multiple pin capability can be used for explicit calculations of axial and lateral temperature distributions within individual subassemblies. Thermocouples at a number of axial locations and in a number of different coolant sub-channels m the XXO9 instrumented subassembly in the EBR-II reactor provided temperature data from the Shutdown Heat Removal Test (SHRT) series. Flow meter data for XXO9 and for the overall system are also available from these tests. Results of consistent SASSYS-1 multiple pin analyses for both the SHRT-45 loss-of-flow-without-scram-test and the S14RT-17 protected loss-of-flow test agree well with the experimental data, providing validation of the SASSYS-1 code over a wide range of conditions.

Dunn, F.E.

1995-12-31T23:59:59.000Z

270

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)  

SciTech Connect

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

271

A computational fluid dynamics model for wind simulation: model implementation and experimental validation  

Science Journals Connector (OSTI)

To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed ... analysis and modelling tool (...

Zhuo-dong Zhang; Ralf Wieland; Matthias Reiche

2012-04-01T23:59:59.000Z

272

Modeling On-Grate MSW Incineration with Experimental Validation in a Batch Incinerator  

Science Journals Connector (OSTI)

This knowledge cannot be readily obtained from direct experimental studies on industrial-scale incinerators; in contrast, mathematical modeling and numerical simulation appear to be an attractive approach for quantitative insight into the mechanisms and variables of waste-bed incineration. ... This approach was successfully employed for grate(6) or rotary kiln(7) plants. ... Gasification of carbon (char or coke) by steam is a well-known process for producing syngas. ...

Abhishek Asthana; Yannick Me?nard; Philippe Sessiecq; Fabrice Patisson

2010-07-12T23:59:59.000Z

273

Development and validation of a transition model based on a mechanical approximation  

E-Print Network (OSTI)

A new 3D transition turbulence model, more accurate and faster than an empirical transition model, is proposed. The model is based on the calculation of the pre-transitional u'v' due to mean flow shear. The present transition model is fully described and verified against eight benchmark test cases. Computations are performed for the ERCOFTAC flat-plate T3A, T3C and T3L test cases. Further, the model is validated for bypass, cross-flow and separation induced transition and compared with empirical transition models. The model presents very good results for bypass transition under zero-pressure gradient and with pressure gradient flow conditions. Also the model is able to correctly predict separation induced transition. However, for very low speed and low free-stream turbulence intensity the model delays separation induced transition onset. The model also shows very good results for transition under complex cross-flow conditions in three-dimensional geometries. The 3D tested case was the 6:1 prolate-spheroid und...

Vizinho, R; Silvestre, M

2015-01-01T23:59:59.000Z

274

Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository  

E-Print Network (OSTI)

We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.

Bourgeat, Alain; Smai, Farid

2010-01-01T23:59:59.000Z

275

Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments  

SciTech Connect

A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-{epsilon} turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)

Churl Yoon; Bo Wook Rhee; Byung-Joo Min [Korea Atomic Energy Research Institute, 150, Dukjin-Dong, Yusong-Gu, Taejon 305-353 (Korea, Republic of)

2002-07-01T23:59:59.000Z

276

Numerical estimation model of energy conversion for small hybrid solarwind system  

Science Journals Connector (OSTI)

This article presents a numerical model which can estimate the energy conversions of separate and hybrid solarwind systems under variable weather. The model integrates the equations associated with the characteristics of photovoltaic generation, wind energy conversion, energy balance, and battery bank, and uses the local database for radiation, wind speed, and ambient temperature. Once the equation associated with the characteristics of load is given, the numerical model can estimate the monthly and yearly powers output of the separate and hybrid solarwind systems provided with different configurations. As a fundamental research, the presentations of daily profiles of solar radiation, wind energy, and ambient temperature are explained in detail, and the combination of the characteristics of wind energy conversion and battery bank is determined. The condition of hybrid action is shown, and the solutions are certain to be found. The operation strategies of separate and hybrid systems are also presented.

Shun Ching Lee

2012-01-01T23:59:59.000Z

277

Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions  

Science Journals Connector (OSTI)

Abstract The present study aims at establishing a methodology for a comprehensive calendar ageing predictive model development, focusing specially on validation procedures. A LFP-based Li-ion cell performance degradation was analysed under different temperature and SOC storage conditions. Five static calendar ageing conditions were used for understanding the ageing trends and modelling the dominant ageing phenomena (SEI growth and the resulting loss of active lithium). The validation process included an additional test under other constant operating conditions (static validation) and other four tests under nonconstant impact factors operating schemes within the same experiment (dynamic validation), in response to battery stress conditions in real applications. Model predictions are in good agreement with experimental results as the residuals are always below 1% for experiments run for 300650 days. The model is able to predict dynamic behaviour close to real operating conditions and the level of accuracy corresponds to a root-mean-square error of 0.93%.

E. Sarasketa-Zabala; I. Gandiaga; L.M. Rodriguez-Martinez; I. Villarreal

2014-01-01T23:59:59.000Z

278

Development and Validation of an In Vitro Pharmacokinetic/Pharmacodynamic Model to Test the Antibacterial Efficacy of Antibiotic Polymer Conjugates.  

Science Journals Connector (OSTI)

...Rights Reserved. 2014 research-article Development and Validation of an In Vitro Pharmacokinetic/Pharmacodynamic Model to Test the Antibacterial Efficacy of Antibiotic Polymer Conjugates. Ernest A. Azzopardi 1 2 * Elaine L. Ferguson 1 David W. Thomas...

Ernest A. Azzopardi; Elaine L. Ferguson; David W. Thomas

2014-12-15T23:59:59.000Z

279

Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine: Preprint  

SciTech Connect

Small wind turbines often use some form of furling (yawing and/or tilting out of the wind) to protect against excessive power generation and rotor speeds in high winds.The verification study demonstrated the correct implementation of FAST's furling dynamics. During validation, the model tends to predict mean rotor speeds higher than measured in spite of the fact that the mean furl motion and rotor thrust are predicted quite accurately. This work has culminated with an enhanced version of FAST that should prove to be a valuable asset to designers of small wind turbines.

Jonkman, J. M.; Hansen, A. C.

2004-12-01T23:59:59.000Z

280

North American SynchroPhasor Initiative (NASPI) Technical Report- Model Validation Using Synchrophasors  

Energy.gov (U.S. Department of Energy (DOE))

This technical report was developed in October, 2013 by members of the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American Electric Reliability Corporation, academics, and the U.S. Department of Energy, to advance and accelerate the development and use of synchrophasor technology for grid reliability and efficiency. The material was produced for a model validation workshop, one of a series of NASPI technical workshops intended to educate and document the stakeholder community on the state of the art for key synchrophasor technology issues.

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140  

SciTech Connect

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2001a, 2004). A summary of the method is included in the 2005 ASHRAE Handbook--Fundamentals (ASHRAE 2005). This paper describes the ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to ASHRAE Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-01-01T23:59:59.000Z

282

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

SciTech Connect

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140 (ANSI/ASHRAE 2001, 2004), Method of Test for the Evaluation of Building Energy Analysis Computer Programs. A summary of the method is included in the ASHRAE Handbook of Fundamentals (ASHRAE 2005). This paper describes the ANSI/ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-07-01T23:59:59.000Z

283

A NEW OPERATIONAL MODEL FOR SATELLITE-DERIVED IRRADIANCES DESCRIPTION AND VALIDATION  

Open Energy Info (EERE)

Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) 1 of 23 A NEW OPERATIONAL MODEL FOR SATELLITE-DERIVED IRRADIANCES DESCRIPTION AND VALIDATION Richard Perez * Pierre Ineichen ** Kathy Moore * Marek Kmiecik * Cyril Chain *** Ray George **** Frank Vignola ***** * ASRC - The University at Albany, Albany, NY, USA ** CUEPE - University of Geneva, Geneva, Switzerland *** Vaulx-en-Velin, France **** NREL, Golden, CO, USA ***** University of Oregon, Eugene, OR, USA Published in Solar Energy - Vol. 73, 5, pp. 307-317, (2002) 2 of 23 ABSTRACT We present a new simple model capable of exploiting geostationary satellite visible images for the production of site/time specific global and direct irradiances The new model features new clear sky global and direct irradiance functions, a new

284

Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison: Preprint  

SciTech Connect

The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior in different environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for each bearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found in simulation and were dependent on the scope of the model and the bearing stiffness model used.

LaCava, W.; Xing, Y.; Guo, Y.; Moan, T.

2012-04-01T23:59:59.000Z

285

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors Part 1: Model development and validation  

Science Journals Connector (OSTI)

Abstract Building-integrated photovoltaicthermal (BIPV/T) systems with unglazed transpired solar collectors (UTCs) can provide a key solution for on-site electricity and thermal energy generation. Although the energy saving potential of this technology is significant, no systematic thermal analysis model has been developed for optimal system design and integration with building operation. This paper is the first of two companion papers focused on modeling and performance analysis of BIPV/T systems with UTC. In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels, to predict the cavity exit air temperature and plate surface temperature with weather (incident solar radiation, ambient air temperature, dew point temperature and wind speed) and design (airflow rate or suction velocity and geometry) parameters used as inputs. Nusselt number and effectiveness correlations, representing both the exterior and interior convective heat transfer processes, have been obtained from experimentally validated, three-dimensional, Reynolds-Averaged NavierStokes (RANS), Computational Fluid Dynamics (CFD) simulations, using high resolution grids and the ReNormalization Group Methods k? (RNG k?) turbulence closure model. The energy models were validated with measurements in an outdoor test-facility. Good agreement was observed between the model prediction and the experimental data, with the root mean square error (RMSE) being within 1C for the UTC-only model and within 2C for the model of UTC with PV modules. In the companion paper, Part 2, the effects of important parameters on system performance are demonstrated based on information from the literature and simulations using CFD and energy models. The optimal geometry is investigated for both configurations and the performance curves, under different levels of solar radiation, wind speed and suction velocity, are presented to provide guidelines for system design.

Siwei Li; Panagiota Karava; Sam Currie; William E. Lin; Eric Savory

2014-01-01T23:59:59.000Z

286

Modeling and simulation of the industrial numerical distance relay aimed at knowledge discovery in resident event reporting  

Science Journals Connector (OSTI)

In the motivation of tapping the strong potential of computational intelligence in discovering knowledge of protective relay operations using data mining, modeling and simulation of an actual industrial numerical distance relay and its recording facility ... Keywords: Distance protection, Knowledge Discovery in Databases, Rough Set Theory, association rule, computational intelligence, data mining, numerical protective relay, relay modeling

Mohammad Lutfi Othman, Ishak Aris, Noor Izzri Abdul Wahab

2014-06-01T23:59:59.000Z

287

A Shallow Water model for the numerical simulation of overland flow on surfaces with ridges and furrows  

E-Print Network (OSTI)

A Shallow Water model for the numerical simulation of overland flow on surfaces with ridges Abstract We introduce a new Shallow Water model for the numerical simulation of overland flow with furrow conservation (decreases soil thickness by erosion and causes nutrient loss), infrastruc- tures (flooding

d'Orléans, Université

288

Mathematical modelling approach for determining optimal machining parameters in turning with computer numerical control (CNC) machines  

Science Journals Connector (OSTI)

Due to advancement in the manufacturing technology the application of computer numerical control (CNC) machines have increased manifolds. The determination of machining parameters for optimal results in machining is a part of computer aided process planning. In computer numerical control (CNC) machining, determining optimum or appropriate cutting parameters can minimise machining errors such as tool breakage, tool deflection and tool wear, thus yielding a high productivity or minimum cost. Different mathematical models have been proposed by various researchers in the past for the determination of optimal machining parameters. The present paper attempt's to review the literature regarding 'machining parameter optimisation' for turning operation in CNC machines. Diverse contributing and important factors in mathematical modelling like, the economic criteria's, single and multi-pass turning, optimisation techniques and practical constraints deployed have been considered. A detailed discussion is presented regarding the topic and in the end conclusions are drawn.

Bhaskar Naithani; Santram Chauhan

2012-01-01T23:59:59.000Z

289

Energy barriers of the Ising model on percolation clusters : a numerical study  

E-Print Network (OSTI)

L- 667 Energy barriers of the Ising model on percolation clusters : a numerical study R. Rammal fini de spins d'Ising ferromagnétiques. Cette méthode est illustrée dans le cas des amas de percolation puissance bien connue dans les réseaux euclidiens. Certaines conséquences de ces résultats pour le modèle d'Ising

Paris-Sud XI, Université de

290

Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond  

SciTech Connect

A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

Sokolov, A. S. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)] [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)

2013-11-15T23:59:59.000Z

291

CASL milestone validates reactor model using TVA data | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Walli Ron Walli Communications 865.576.0226 CASL milestone validates reactor model using TVA data This CASL visualization shows the thermal distribution of neutrons in Watts Bar Unit 1 Cycle 1 reactor core at initial criticality, as calculated by the VERA program. Image courtesy of Oak Ridge National Laboratory. This CASL visualization shows the thermal distribution of neutrons in Watts Bar Unit 1 Cycle 1 reactor core at initial criticality, as calculated by the VERA program. Image courtesy of Oak Ridge National Laboratory. (hi-res image) OAK RIDGE, Tenn., July 10, 2013 -Today, the Consortium for Advanced Simulation of Light Water Reactors announced that its scientists have successfully completed their first full-scale simulation of an operating nuclear reactor. CASL is modeling nuclear reactors on supercomputers to

292

Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report  

SciTech Connect

This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled Validated Models for Radiation Response and Signal Generation in Scintillators (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

2014-12-01T23:59:59.000Z

293

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

SciTech Connect

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

294

Model calibration and validation for OFMSW and sewage sludge co-digestion reactors  

SciTech Connect

Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.

Esposito, G., E-mail: giovanni.esposito@unicas.it [Department of Mechanics, Structures and Environmental Engineering, University of Cassino, via Di Biasio 43, 03043 Cassino (Italy); Frunzo, L., E-mail: luigi.frunzo@unina.it [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples (Italy); Panico, A., E-mail: anpanico@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy); Pirozzi, F., E-mail: francesco.pirozzi@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy)

2011-12-15T23:59:59.000Z

295

Numerical modeling of dust particle configurations in a cylindrical radio-frequency plasma reactor  

Science Journals Connector (OSTI)

In the present work, first, plasma phase variables in a cylindrical radio-frequency (rf) plasma reactor are numerically solved using the local field approximation model. Then, equilibrium configurations of a few interacting (sub-)micron-sized dust particles are obtained by integrating the particles equations for their motion and charge, accounting for the various forces acting on each particle in a three-dimensional Lagrangian framework. Direct comparison of the results with experiment demonstrates excellent qualitative agreement. Based on the ion focus phenomenon, a physical model is formulated and proven successful in simulating the vertically aligned structures.

M. Davoudabadi and F. Mashayek

2007-11-30T23:59:59.000Z

296

Black liquor combustion validated recovery boiler modeling, five-year report  

SciTech Connect

The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1996-08-01T23:59:59.000Z

297

Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Poisson Stochastic Radiative Transfer Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; Kargin and Prigarin 1994; Prigarin and Titov 1996; Marshak et al. 1998; Prigarin et al. 1998, 2001; Evans et al. 1999, 2001). Recently Kassianov (2003a) generalized the Titov's (1990) stochastic model

298

CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications  

SciTech Connect

The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

2014-07-14T23:59:59.000Z

299

Hydraulic model and steam flow numerical simulation of the Cerro Prieto geothermal field, Mexico, pipeline network  

Science Journals Connector (OSTI)

Abstract The development of a hydraulic model and numerical simulation results of the Cerro Prieto geothermal field (CPGF) steam pipeline network are presented. Cerro Prieto is the largest water-dominant geothermal field in the world and its transportation network has 162 producing wells, connected through a network of pipelines that feeds 13 power-generating plants with an installed capacity of 720MWe. The network is about 125km long and has parallel high- and low-pressure networks. Prior to this study, it was suspected that steam flow stagnated or reversed from its planned direction in some segments of the network. Yet, the network complexity and extension complicated the analysis of steam transport for adequate delivery to the power plants. Thus, a hydraulic model of the steam transportation system was developed and implemented numerically using an existing simulator, which allowed the overall analysis of the network in order to quantify the pressure and energy losses as well as the steam flow direction in every part of the network. Numerical results of the high-pressure network were obtained which show that the mean relative differences between measured and simulated pressures and flowrates are less than 10%, which is considered satisfactory. Analysis of results led to the detection of areas of opportunity and to the recommendation of changes for improving steam transport. A main contribution of the present work is having simulated satisfactorily the longest (to our knowledge), and probably the most complex, steam pipeline network in the world.

A. Garca-Gutirrez; A.F. Hernndez; J.I. Martnez; M. Ceceas; R. Ovando; I. Canchola

2015-01-01T23:59:59.000Z

300

Bayes Factor of Model Selection Validates FLMP Dominic W. Massaro, Michael M. Cohen,  

E-Print Network (OSTI)

, using Newton's law of universal gravitation as an analogy, we argue that it might not be valid to expect

Cohen, Michael M.

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration  

SciTech Connect

Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

2014-01-31T23:59:59.000Z

302

Validation of Multiple Tools for Flat Plate Photovoltaic Modeling Against Measured Data  

SciTech Connect

This report expands upon a previous work by the same authors, published in the 40th IEEE Photovoltaic Specialists conference. In this validation study, comprehensive analysis is performed on nine photovoltaic systems for which NREL could obtain detailed performance data and specifications, including three utility-scale systems and six commercial scale systems. Multiple photovoltaic performance modeling tools were used to model these nine systems, and the error of each tool was analyzed compared to quality-controlled measured performance data. This study shows that, excluding identified outliers, all tools achieve annual errors within +/-8% and hourly root mean squared errors less than 7% for all systems. It is further shown using SAM that module model and irradiance input choices can change the annual error with respect to measured data by as much as 6.6% for these nine systems, although all combinations examined still fall within an annual error range of +/-8.5%. Additionally, a seasonal variation in monthly error is shown for all tools. Finally, the effects of irradiance data uncertainty and the use of default loss assumptions on annual error are explored, and two approaches to reduce the error inherent in photovoltaic modeling are proposed.

Freeman, J.; Whitmore, J.; Blair, N.; Dobos, A. P.

2014-08-01T23:59:59.000Z

303

Validation, Proof-of-Concept, and Postaudit of the Groundwater Flow and Transport Model of the Project Shoal Area  

SciTech Connect

The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-year monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.

Ahmed Hassan

2004-09-01T23:59:59.000Z

304

Numerical Modelling of Oxy-Fuel Combustion in a Full-Scale Tangentially-Fired Pulverised Coal Boiler  

Science Journals Connector (OSTI)

Abstract This paper presents a computational fluid dynamics (CFD) modelling study to investigate Victorian brown coal combustion in a 550 MW utility boiler under the air-fired (standard) and three oxy-fuel-fired cases. The standard case was modelled based on the real operating conditions of Loy Yang A power plant located in the state of Victoria, Australia. A level of confidence of the present CFD model was achieved validating four parameters of the standard combustion case, as well as the previous preliminary CFD studies which were conducted on a lab-scale (100kW) unit firing lignite and propane under oxy-fuel-fired scenarios. The oxy-fuel combustion cases are known as OF25 (25vol. % O2 concentration), OF27 (27vol. % O2 concentration), and OF29 (29vol. % O2 concentration). The predictions of OF29 combustion case were considerably similar to the standard firing results in terms of gas temperature levels and radiative heat transfer compared with OF25 and OF27 combustion scenarios. This similarity was because of increasing the residence time of pulverised coal (PC) in the combustion zone and O2 concentration in feed oxidizer gases. Furthermore, a significant increase in the CO2 concentrations and a noticeable decrease in the nitric oxides (NOx) formation were noted under all oxy-fuel combustion conditions. This numerical study of oxy-fuel combustion in a full-scale tangentially-fired PC boiler is important prior to its execution in real-life power plants.

Audai Hussein Al-Abbas; Jamal Naser; David Dodds; Aaron Blicblau

2013-01-01T23:59:59.000Z

305

Coupled numerical modelling of power loss generation in busbar system of low-voltage switchgear  

Science Journals Connector (OSTI)

Abstract This paper presents a coupled mathematical model of the heat transfer processes in an electric switchgear. The considered problem required the computation of the detailed distribution of the power losses and all the heat transfer modes (radiation, convection, and conduction) within a unit. In this complex thermal analysis, different definitions of electric busbar heating were considered and compared. The most advanced model, which couples the thermal and electromagnetic fields in two ways, was also compared with the simplified approaches. First, the direct current loading of the busbar, which neglected the alternating current effects, was considered. Second, models that included only one method of coupling were calculated for different assumed average busbar temperatures. Finally, the model with the two-way coupling, which took the eddy currents and proximity effects into account, was simulated using an iteration loop between the electromagnetic and fluid flow solvers. This study employed a geometrical model of industrial low-voltage switchgear. The presented mathematical model was also validated against temperature measurements carried out by a certified laboratory. The obtained results show that a fully coupled model produces very satisfactory agreement between computed and experimental data.

Mateusz Bedkowski; Jacek Smolka; Krzysztof Banasiak; Zbigniew Bulinski; Andrzej J. Nowak; Tomasz Tomanek; Adam Wajda

2014-01-01T23:59:59.000Z

306

A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits  

SciTech Connect

Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.

Irminger, Philip [ORNL; Starke, Michael R [ORNL; Dimitrovski, Aleksandar D [ORNL; Young II, Marcus Aaron [ORNL; Rizy, D Tom [ORNL; Stovall, John P [ORNL; Overholt, Philip N [U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (OE)

2014-01-01T23:59:59.000Z

307

Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system  

SciTech Connect

NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model in the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.

Teng, Zhenke [ORNL; Zhang, F [CompuTherm LLC, Madison, WI; Miller, Michael K [ORNL; Liu, Chain T [Hong Kong Polytechnic University; Huang, Shenyan [ORNL; Chou, Y.T. [Multi-Phase Services Inc., Knoxville; Tien, R [Multi-Phase Services Inc., Knoxville; Chang, Y A [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

308

Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks  

E-Print Network (OSTI)

Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks I. Treise, N. Fortner, B. Shapiro* and A. Hightower Received 25th June 2004, Accepted409680k This paper presents a model that describes how liquid flow fills micro-fluidic components

Shapiro, Benjamin

309

Development and validation of regression models to predict monthly heating demand for residential buildings  

Science Journals Connector (OSTI)

The present research work concerns development of regression models to predict the monthly heating demand for single-family residential sector in temperate climates, with the aim to be used by architects or design engineers as support tools in the very first stage of their projects in finding efficiently energetic solutions. Another interest to use such simplified models is to make it possible a very quick parametric study in order to optimize the building structure versus environmental or economic criteria. All the energy prediction models were based on an extended database obtained by dynamic simulations for 16 major cities of France. The inputs for the regression models are the building shape factor, the building envelope U-value, the window to floor area ratio, the building time constant and the climate which is defined as function of the sol-air temperature and heating set-point. If the neural network (NN) methods could give precise representations in predicting energy use, with the advantage that they are capable of adjusting themselves to unexpected pattern changes in the incoming data, the multiple regression analysis was also found to be an efficient method, nevertheless with the requirement that an extended database should be used for the regression. The validation is probably the most important level when trying to find prediction models, so 270 different scenarios are analysed in this research work for different inputs of the models. It has been established that the energy equations obtained can do predictions quite well, a maximum deviation between the predicted and the simulated is noticed to be 5.1% for Nice climate, with an average error of 2%. In this paper, we also show that is possible to predict the building heating demand even for more complex scenarios, when the construction is adjacent to non-heated spaces, basements or roof attics.

Tiberiu Catalina; Joseph Virgone; Eric Blanco

2008-01-01T23:59:59.000Z

310

Numerical modelling of sandstone uniaxial compression test using a mix-mode cohesive fracture model  

E-Print Network (OSTI)

A mix-mode cohesive fracture model considering tension, compression and shear material behaviour is presented, which has wide applications to geotechnical problems. The model considers both elastic and inelastic displacements. Inelastic displacement comprises fracture and plastic displacements. The norm of inelastic displacement is used to control the fracture behaviour. Meantime, a failure function describing the fracture strength is proposed. Using the internal programming FISH, the cohesive fracture model is programmed into a hybrid distinct element algorithm as encoded in Universal Distinct Element Code (UDEC). The model is verified through uniaxial tension and direct shear tests. The developed model is then applied to model the behaviour of a uniaxial compression test on Gosford sandstone. The modelling results indicate that the proposed cohesive fracture model is capable of simulating combined failure behaviour applicable to rock.

Gui, Yilin; Kodikara, Jayantha

2015-01-01T23:59:59.000Z

311

Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler  

Science Journals Connector (OSTI)

Abstract In this paper, systematic experimental investigation on the heat flux distribution inside the furnace of a 300MW CFB boiler was presented. Detailed experimental setup and measurement techniques were presented and a finite element method approach was applied to determine the heat flux. The heat flux profile on the rear wall along the horizontal direction shows a significant imbalance at different boiler loads. As a result of the non-uniform layout of the heating surfaces, which is the essential reason, as well as the imbalance and deviation of the temperature field, solid suspension density and solid flow rate, the central section of the furnace possesses higher heat flux distribution compared to the side sections. The heat flux is also found to increase with the increasing boiler load and decrease as the height increases. Heat flux near the roof, where the solid suspension density is rather small, is found to decrease remarkably revealing less heat absorption in this area. In addition, an empirical model of heat transfer coefficient is revised using the average data at different boiler loads. A mechanism heat transfer model based on the membrane water-wall configuration is proposed and validated with the heat flux profile obtained from the measurement. The model provides good accuracy for correlating 85% of the data within 10%.

Ruiqing Zhang; Hairui Yang; Nan Hu; Junfu Lu; Yuxin Wu

2013-01-01T23:59:59.000Z

312

Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models  

SciTech Connect

A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

Weitzel, E.; Hoeschele, M.

2014-09-01T23:59:59.000Z

313

A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras Volcano,  

Open Energy Info (EERE)

For The Dynamics Of Pyroclastic Flows At Galeras Volcano, For The Dynamics Of Pyroclastic Flows At Galeras Volcano, Colombia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras Volcano, Colombia Details Activities (0) Areas (0) Regions (0) Abstract: This paper presents a two-dimensional model for dilute pyroclastic flow dynamics that uses the compressible Navier-Stokes equation coupled with the Diffusion-Convection equation to take into account sedimentation. The model is applied to one of the slopes of Galeras Volcano to show: (1) the temperature evolution with the time; (2) dynamic pressure change; and (3) particle concentration along the computer domain from the eruption to the impact with a topographic barrier located more than 16 km

314

The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations  

E-Print Network (OSTI)

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\\odot}+10M_{\\odot}$ ($50M_{\\odot}+50M_{\\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF

The LIGO Scientific Collaboration; the Virgo Collaboration; the NINJA-2 Collaboration; :; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kflian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

2014-01-05T23:59:59.000Z

315

Assimilation of Satellite Cloud and Precipitation Observations in Numerical Weather Prediction Models: Introduction to the JAS Special Collection  

Science Journals Connector (OSTI)

To date, the assimilation of satellite measurements in numerical weather prediction (NWP) models has focused on the clear atmosphere. But satellite observations in the visible, infrared, and microwave provide a great deal of information on clouds ...

Ronald M. Errico; George Ohring; Fuzhong Weng; Peter Bauer; Brad Ferrier; Jean-Franois Mahfouf; Joe Turk

2007-11-01T23:59:59.000Z

316

Validating the unified theory of acceptance and use of technology in Kuwaiti ministries: a structural equation modelling approach  

Science Journals Connector (OSTI)

The purpose of this article is to describe a test of the validity of the unified theory of acceptance and use of technology (UTAUT) model by applying it to Kuwaiti ministries. Structural equation modelling methods were used to test the relationships ... Keywords: ISU acceptance, Kuwait, UTAUT, developing countries, information systems usage, structural equation modelling, technology acceptance, technology use, unified theory of acceptance and use of technology

Helaiel Almutairi

2009-03-01T23:59:59.000Z

317

A viscous vortex single-mode bubble evolution model of Rayleigh-Taylor instability and its numerical study  

Science Journals Connector (OSTI)

This paper has developed a viscous single-mode bubble evolution model of Rayleigh-Taylor instabilities (RTIs), which is an extension of the single-mode potential models of Jacobs and Rikanati. The viscous vortex model explained the viscous effects of its early stage of RTI development for low Atwood number flow. Furthermore, direct numerical simulations of RTI are studied with Navier-Stokes equations and a transport-diffusive equation. Agreement between the theoretical model and the numerical results shows that simulations of these instabilities is feasible using the mathematical miscible fluid model simulating RTI.

Xu Zhang; Jinhong Liu

2013-01-01T23:59:59.000Z

318

Kinetics Study of Solid Ammonia Borane Hydrogen Release Modeling and Experimental Validation for Chemical Hydrogen Storage  

SciTech Connect

Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

2014-02-24T23:59:59.000Z

319

Numeric-modeling sensitivity analysis of the performance of wind turbine arrays  

SciTech Connect

An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.

Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.

1982-06-01T23:59:59.000Z

320

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation  

E-Print Network (OSTI)

We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly look at the Multi-Layer Perceptron. After optimizing our architecture with ALADIN and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model ANN/ARMA is 14.9% compared to 26.2% for the na\\"ive persistence predictor. Note that in the stand alone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed

Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Simulator for unconventional gas resources multi-dimensional model SUGAR-MD. Volume I. Reservoir model analysis and validation  

SciTech Connect

The Department of Energy, Morgantown Energy Technology Center, has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are: (1) To develop and validate a mathematical model which describes gas flow through Devonian shales. (2) To determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales. (3) To recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales. (4) To analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance. (5) To study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. The flow equations that are the mathematical basis of the two-dimensional model are presented. It is assumed that gas transport to producing wells in Devonian shale reservoirs occurs through a natural fracture system into which matrix blocks of contrasting physical properties deliver contained gas. That is, the matrix acts as a uniformly distributed gas source in a fracture medium. Gas desorption from pore walls is treated as a uniformly distributed source within the matrix blocks. 24 references.

Not Available

1982-01-01T23:59:59.000Z

322

Modeling CHP Descriptions in Labeled Transitions Systems for an Efficient Formal Validation of Asynchronous Circuit Specifications  

Science Journals Connector (OSTI)

This work addresses the analysis and validation of CHP specifications for asynchronous circuits, using property Verification tools. CHP semantics, initially given in terms of Petri...

Menouer Boubekeur; Dominique Borrione

2004-01-01T23:59:59.000Z

323

Comment on "Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design" Teixeira et al. (2007)  

E-Print Network (OSTI)

Comment on "Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design" Teixeira et al.

Lun-Shin Yao; Dan Hughes

2007-04-26T23:59:59.000Z

324

Central South Pacific thermocline water circulation from a high-resolution ocean model validated against satellite data  

E-Print Network (OSTI)

with satellite data. We focus on the upper 500 m, where ocean current variability has been barely documented due processes. [3] Neither ocean currents nor ocean temperature vari- ability are well described becauseCentral South Pacific thermocline water circulation from a high-resolution ocean model validated

Paris-Sud XI, Université de

325

Dynamic modeling of the reactive twin-screw co-rotating extrusion process: experimental validation by using inlet  

E-Print Network (OSTI)

and modification.1 The co-rotating twin-screw extruder is of particular interest due to its modular geometry or removing chemical species.3,4 Furthermore, the co-rotating twin-screw extruder can handle high viscosityDynamic modeling of the reactive twin-screw co-rotating extrusion process: experimental validation

Paris-Sud XI, Université de

326

The effect of simplifying the building description on the numerical modeling of its thermal performance  

SciTech Connect

A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

Stetiu, C.

1993-07-01T23:59:59.000Z

327

Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. I. The Numerical Model  

Science Journals Connector (OSTI)

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a ~10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Wei Liu; Vah Petrosian; John T. Mariska

2009-01-01T23:59:59.000Z

328

COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL  

SciTech Connect

Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

Liu Wei [Stanford-Lockheed Institute for Space Research, 466 Via Ortega, Cypress Hall, Stanford, CA 94305-4085 (United States); Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Mariska, John T. [Naval Research Laboratory, Code 7673, Washington, DC 20375-5000 (United States)

2009-09-10T23:59:59.000Z

329

Using numerical models of bow shocks to investigate the circumstellar medium of massive stars  

E-Print Network (OSTI)

Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observati...

van Marle, Allard Jan; Cox, Nick; Meliani, Zakaria

2014-01-01T23:59:59.000Z

330

Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models  

SciTech Connect

A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90 degree elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.

Paik, Joongcheol [University of Minnesota; Sotiropoulos, Fotis [University of Minnesota; Sale, Michael J [ORNL

2005-06-01T23:59:59.000Z

331

An Updated Numerical Model Of The Larderello-Travale Geothermal System,  

Open Energy Info (EERE)

Of The Larderello-Travale Geothermal System, Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Numerical Model Of The Larderello-Travale Geothermal System, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Larderello-Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220-250°C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has

332

Numerical determination of OPE coefficients in the 3D Ising model from off-critical correlators  

E-Print Network (OSTI)

We propose a general method for the numerical evaluation of OPE coefficients in three dimensional Conformal Field Theories based on the study of the conformal perturbation of two point functions in the vicinity of the critical point. We test our proposal in the three dimensional Ising Model, looking at the magnetic perturbation of the $$, $$ and $$ correlators from which we extract the values of $C^{\\sigma}_{\\sigma\\epsilon}=1.07(3)$ and $C^{\\epsilon}_{\\epsilon\\epsilon}=1.45(30)$. Our estimate for $C^{\\sigma}_{\\sigma\\epsilon}$ agrees with those recently obtained using conformal bootstrap methods, while $C^{\\epsilon}_{\\epsilon\\epsilon}$, as far as we know, is new and could be used to further constrain conformal bootstrap analyses of the 3d Ising universality class.

Caselle, M; Magnoli, N

2015-01-01T23:59:59.000Z

333

Groningen Active Living Model (GALM): stimulating physical activity in sedentary older adults; validation of the behavioral change model  

Science Journals Connector (OSTI)

Background A significant proportion of older adults in The Netherlands do not participate regularly in leisure-time physical activity. The Groningen Active Living Model (GALM) was developed to change this situation for the better. Longitudinal results of the validation of the GALM behavioral change model are presented. Methods We obtained data on potentially mediating variables of physical activity behavior change (self-efficacy, social support, perceived fitness, and enjoyment) from 96 participants in a prospective study during the 18 months the GALM strategy lasted. Results Prospective analyses revealed significant differences in several potentially mediating variables, although some of these differences were contrary to our hypothesis. Discriminant analysis resulted in canonical correlations of 0.50 after 6 months and 0.66 after 18 months of program participation between adherers and nonadherers, respectively; 73.8 and 80.0% of the subjects were classified correctly. Conclusions Based on the results, it can be concluded that we partially succeeded in manipulating the potentially mediating variables by means of our GALM strategy. Several mediating variables were identified that reliably discriminated long-term adherers from nonadherers, expanding the generalizability of social cognitive theory-driven variables to a Dutch population.

Martin Stevens; Koen A.P.M Lemmink; Marieke J.G van Heuvelen; Johan de Jong; Piet Rispens

2003-01-01T23:59:59.000Z

334

Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel  

Science Journals Connector (OSTI)

AbstractObjective The paper presents a new concept of building integrated thermal energy storage unit and novel mathematical and numerical models of its operation. This building element is made of gypsum based composite with microencapsulated PCM. The proposed heat storage unit has a form of a ceiling panel with internal channels and is, by assumption, incorporated in a ventilation system. Its task is to reduce daily variations of ambient air temperature through the absorption (and subsequent release) of heat in PCM, without additional consumption of energy. Methods The operation of the ceiling panel was investigated experimentally on a special set-up equipped with temperature sensors, air flow meter and air temperature control system. Mathematical and numerical models of heat transfer and fluid flow in the panel account for air flow in the panel as well as real thermal properties of the PCM composite, i.e.: thermal conductivity variation with temperature and hysteresis of enthalpy vs. temperature curves for heating and cooling. Proposed novel numerical simulator consists of two strongly coupled sub models: the first one 1D which deals with air flowing through the U-shaped channel and the second one 3D which deals with heat transfer in the body of the panel. Results Spatial and temporal air temperature variations, measured on the experimental set-up, were used to validate numerical model as well as to get knowledge of thermal performance of the panel operating in different conditions. Conclusion Preliminary results of experimental tests confirmed the ability of the proposed heat storage unit to effectively control the air temperature inside the building. However, detailed measurement of the temperature of PCM composite have shown some disadvantages of the panel used in the study, e.g. thickness of the walls and distribution of PCM should be optimized. This can be achieved with the aid of the numerical simulator developed in this research. Practical implications The proposed ceiling panel, optimised from the point of view of thermal performance in a given environmental conditions, can be used as a part of ventilation systems in residential and office buildings.

Maciej Jaworski; Piotr ?apka; Piotr Furma?ski

2014-01-01T23:59:59.000Z

335

Equation of State and Constitutive Models for Numerical Simulations of Dust Impacts on the Solar Probe  

E-Print Network (OSTI)

This report presents new EOS and strength models for use in numerical hydrocode simulations of dust impacts on the NASA solar probe space vehicle. This spacecraft will be subjected to impact at velocities up to 300 km/s, producing pressures as high as 100 TPa and temperatures as high as 200 eV. Hence the material models must treat a variety of physical and chemical phenomena, including solid-solid transitions, melting and vaporization, chemical reactions, electronic excitation and ionization. The EOSPro code is used to develop tabular EOS that include these effects. The report discusses the theoretical methods used to create the new EOS tables and constitutive models for six materials--Al2O3, two porous carbon materials, fused SiO2, a silicone elastomer, and germanium--which will be used in the thermal protection shield (TPS) and solar cells, the components most vulnerable to dust impacts. It also presents the results of hydrocode simulations of dust impacts on the TPS and on glass targets. It discusses the i...

Kerley, Gerald I

2013-01-01T23:59:59.000Z

336

Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects  

Science Journals Connector (OSTI)

A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of t...

Yu-Ting Wu; Fernando Port-Agel

2013-02-01T23:59:59.000Z

337

Micro-chamber filling experiments for validation of macro models with applications in capillary driven microfluidics  

E-Print Network (OSTI)

Prediction of bubble formation during filling of microchambers is often critical for determining the efficacy of microfluidic devices in various applications. In this study experimental validation is performed to verify the predictions from a...

Gauntt, Stephen Byron

2009-05-15T23:59:59.000Z

338

Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling  

Science Journals Connector (OSTI)

Abstract Sea waves energy represents a renewable and sustainable energy resource, that nevertheless needs to be further investigated to make it more cost-effective and economically appealing. A key step in the process of Wave Energy Converters (WEC) deployment is the energy resource assessment at a sea site either measured or obtained through numerical model analysis. In these kind of studies, some approximations are often introduced, especially in the early stages of the process, viz. waves are assumed propagating in deep waters without underneath ocean currents. These aspects are discussed and evaluated in the Adriatic Sea and its northern part (Gulf of Venice) using locally observed and modeled wave data. In particular, to account for a state of the art treatment of the WaveCurrent Interaction (WCI) we have implemented the Simulating \\{WAves\\} Nearshore (SWAN) model and the Regional Ocean Modeling System (ROMS), fully coupled within the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) system. COAWST has been applied to a computational grid covering the whole Adriatic Sea and off-line nested to a high-resolution grid in the Gulf of Venice. A 15-year long wave data set collected at the oceanographic tower Acqua Alta, located approximately 15km off the Venice coast, has also been analyzed with the dual purpose of providing a reference to the model estimates and to locally assess the wave energy resource. By using COAWST, we have quantified for the first time to our best knowledge the importance of the WCI effect on wave power estimation. This can vary up to 30% neglecting the current effect. Results also suggest the Gulf of Venice as a suitable testing site for WECs, since it is characterized by periods of calm (optimal for safe installation and maintenance) alternating with severe storms, whose wave energy potentials are comparable to those ordinarily encountered in the energy production sites.

Francesco Barbariol; Alvise Benetazzo; Sandro Carniel; Mauro Sclavo

2013-01-01T23:59:59.000Z

339

Numerical calculation of AC substation grounding systems buried in a vertical multilayered earth model by higher-order basis function  

Science Journals Connector (OSTI)

To study the accuracy of numerical simulations for an AC substation grounding problem embedded in a vertical multilayered earth model, this paper proposes a novel algorithm combining the rapidly convergent one-dimensional Galerkin's BEM with higher-order ... Keywords: Green's function, high-order basic function, vertical multilayered earth model

Zhong-Xin Li; Jian-Bin Fan; Yu Yin

2012-05-01T23:59:59.000Z

340

Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model  

E-Print Network (OSTI)

Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf1, T. Haberkorn, SADCO 2011, March 2nd M. Cerf, T. Haberkorn, E. Tr´elat Continuation from a flat to a round Earth model

Boyer, Edmond

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake  

E-Print Network (OSTI)

Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 2006; published 17 February 2007. [1] A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied

342

Size-velocity correlations in high order moment methods for polydisperse evaporating sprays: modelling and numerical issues  

E-Print Network (OSTI)

, such as internal combustion engine ([1, 2] and references therein), gas turbine [3] or rocket booster [4]. Those developed the Eulerian Multi-Size Moment model (EMSM) which tackles the modelling and the numerical aspects of the disperse phase. The full strategy is evaluated in 1D and 2D cases and shows the ability of the CSVM and its

Paris-Sud XI, Université de

343

Validation of a numerical model for the analysis of thermal-fluid behavior in a solar concentrator vessel  

E-Print Network (OSTI)

The need for innovation in the renewable energy sector is an ever-growing concern. With national-level disasters in the Gulf of Mexico, the necessity to begin the drive to develop effective and practical alternative energy ...

Rodrguez Alvarado, Juan Fernando

2010-01-01T23:59:59.000Z

344

Coastal numerical modelling of tides: Sensitivity to domain size and remotely generated internal tide  

Science Journals Connector (OSTI)

The propagation of remotely generated superinertial internal tides constitutes a difficulty for the modelling of regional ocean tidal variability which we illustrate in several ways. First, the M2 tidal solution inside a control region located along the Southern California Bight coastline is monitored while the extent of the numerical domain is increased (up to 512 512 km). While the amplitude and phase of sea level averaged over the region is quasi-insensitive to domain size, a steady increase of kinetic energy, predominantly baroclinic, is observed with increasing domain size. The increasing flux of energy into the control region suggests that this trend is explained by the growing contribution from remote generation sites of internal tide which can propagate up to the control region. Increasing viscosities confirms this interpretation by lowering baroclinic energy levels and limiting their rate of increase with domain size. Doubling the grid spacing allows consideration of numerical domains 2 times larger. While the coarse grid has lower energy levels than the finer grid, the rate of energy increase with domain size appears to be slowing for the largest domain of the coarse grid simulations. Forcing the smallest domain with depth-varying tidal boundary conditions from the simulation in the largest domain produces energy levels inside the control region comparable to those in the control region for the largest domain, thereby confirming the feasibility of a nested approach. In contrast, simulations forced with a subinertial tidal constituent (K1) show that when the propagation of internal tide is limited, the control region kinetic energy is mostly barotropic and the magnitudes of variations of the kinetic energy with domain size are reduced.

Aurelien L. Ponte; Bruce D. Cornuelle

2013-01-01T23:59:59.000Z

345

Numerical modeling of air?to?sea transmission of light aircraft noise  

Science Journals Connector (OSTI)

Recent experiments at SIO have shown that the acoustic signature of a light aircraft can be detected by sensors in the water column as well as buried in the underlying sediment and a method for extracting the sound speed and attenuation from this Doppler shifted signal has been proposed. To test the accuracy of this geoacoustic inversion technique a numerical model of the air?water?sediment acoustic propagation including the effects of a high?speed airborne source has been developed based on the spectral method. Simulated acoustic data have been generated representing an aircraft flying over a microphone in the atmosphere a vertical line array in the ocean and a hydrophone buried 1?m deep in the sediment. The results of the geoacoustic inversion for sound speed and attenuation are compared to the known input parameter values of the model giving a sense of the relative errors that may be expected when applying the technique to experimental data. [Work supported by ONR.

2003-01-01T23:59:59.000Z

346

Numerical Modeling of Geomechanical Processes Related to CO{sub 2} Injection within Generic Reservoirs  

SciTech Connect

In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ?P{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ?P{sub c} magnitudes, especially for the compressional stress regime.

Eckert, Andreas

2013-05-31T23:59:59.000Z

347

Modelling and simulation of faults in synchronous generators for robust numerical protection  

Science Journals Connector (OSTI)

When an internal fault occurs in a synchronous generator, the symmetry between the parallel paths of the winding is broken and different currents flow in them, due to unsymmetrical magnetic linkage between the stator windings. The aim of this paper is to present a simulation model to investigate the effect of internal fault on the parallel path currents of a large synchronous generator using direct phase quantities. This model is based on a modified winding function approach where the machine inductances are calculated directly from the machine winding distribution using machine electrical parameters instead of the geometrical ones. The simulation results for different cases of internal faults in salient-pole and non-salient-pole synchronous machines have been obtained. Salient-pole synchronous generator has wave winding distribution while the non-salient-pole generator has lap winding arrangement. Due to different stator winding arrangements, the two machines have been simulated individually. By using the simulated fault data, a suitable numerical protection scheme for synchronous generators can be developed.

Amrita Sinha; D.N. Vishwakarma; R.K. Srivastava

2012-01-01T23:59:59.000Z

348

Three-dimensional numerical modeling of thermohaline and wind-driven circulations in the Persian Gulf  

Science Journals Connector (OSTI)

The Persian Gulf circulation is investigated with respect to the relevant forcing mechanism including wind stress and thermohaline surface fluxes by using a three-dimensional numerical hydrodynamic model. The model results show a correlation between the strength of the bottom layer outflow of the Persian Gulf and that of the Indian Ocean Surface Water (IOSW) inflow into the Gulf. The inflow of IOSW into the Gulf attain maximum values in MayJune in conjunction with peak bottom outflow through the Hormuz Strait. The results of sensitivity experiment indicate that circulation is dominated by thermohaline flows at almost all parts of the Gulf. The heat fluxes play an essential role on the general circulation of the Persian Gulf. In spring and summer, the wind stress generates southeast-flowing surface currents of magnitude about 5cm/s along the Saudi Arabia and Iranian coasts on the northern Gulf. In winter and autumn, due to weak static stability, the wind produces mesoscale eddies in most parts of the Gulf. In winter and spring the wind stress acts to reinforce the thermohaline circulation of deep outflow. Conversely, in summer and autumn the wind forcing acts in opposition to the thermohaline forcing and causes a bottom inflow from Oman Sea into the Gulf.

F. Hosseinibalam; S. Hassanzadeh; A. Rezaei-Latifi

2011-01-01T23:59:59.000Z

349

Validation of a Fast-Fluid-Dynamics Model for Predicting Distribution of Particles with Low Stokes Number  

SciTech Connect

To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.

Zuo, Wangda; Chen, Qingyan

2011-06-01T23:59:59.000Z

350

On the validity of 2Dsurface water wave models Guido Schneider, C. Eugene Wayne  

E-Print Network (OSTI)

of long waves with small amplitude. It is used in the numerical simulation of the spreading of tsunamis in the computation of the eigenmodes of Lake Constance in order to explain a documented time­periodic flooding

Wayne, Eugene

351

Verification and Validation of RADTRAN 5.5.  

SciTech Connect

This document contains a description of the verification and validation process used for the RADTRAN 5.5 code. The verification and validation process ensured the proper calculational models and mathematical and numerical methods were used in the RADTRAN 5.5 code for the determination of risk and consequence assessments. The differences between RADTRAN 5 and RADTRAN 5.5 are the addition of tables, an expanded isotope library, and the additional User-Defined meteorological option for accident dispersion. 3

Osborn, Douglas.; Weiner, Ruth F.; Mills, George Scott; Hamp, Steve C.

2005-02-01T23:59:59.000Z

352

Highrate material modelling and validation using the Taylor cylinder impact test  

Science Journals Connector (OSTI)

...validation using the Taylor cylinder impact test P. J. Maudlin G. T. Gray III C. M...topography) with measured shapes from post-test Taylor specimens and quasi-static compression...extracted from the experimental post-test geometries using classical r-value definitions...

1999-01-01T23:59:59.000Z

353

A Validation Fault Model for Timing-Induced Functional Errors Qiushuang Zhang and Ian G. Harris  

E-Print Network (OSTI)

hardware systems in cost-critical and life-critical applications motivates the need for a systematic approach to verify functionality. Hardware verification complexity has increased to the point hardware systems. A practical difficulty in the validation of large hardware systems is choosing the proper

Harris, Ian G.

354

Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration  

SciTech Connect

The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.

Brian P. Somerday; M. I. Baskes

1998-12-01T23:59:59.000Z

355

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

356

UPDATE February 2012 - The Food Crises: Predictive validation of a quantitative model of food prices including speculators and ethanol conversion  

E-Print Network (OSTI)

Increases in global food prices have led to widespread hunger and social unrest---and an imperative to understand their causes. In a previous paper published in September 2011, we constructed for the first time a dynamic model that quantitatively agreed with food prices. Specifically, the model fit the FAO Food Price Index time series from January 2004 to March 2011, inclusive. The results showed that the dominant causes of price increases during this period were investor speculation and ethanol conversion. The model included investor trend following as well as shifting between commodities, equities and bonds to take advantage of increased expected returns. Here, we extend the food prices model to January 2012, without modifying the model but simply continuing its dynamics. The agreement is still precise, validating both the descriptive and predictive abilities of the analysis. Policy actions are needed to avoid a third speculative bubble that would cause prices to rise above recent peaks by the end of 2012.

Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

357

Wind assessment in complex terrain with the numeric model Aiolos implementation of the influence of roughness changes and stability  

E-Print Network (OSTI)

Wind assessment in complex terrain with the numeric model Aiolos ­ implementation of the influence of roughness changes and stability Ulrich Focken, Detlef Heinemann, Hans-Peter Waldl Department of Energy (EWA) gives good results for the wind potential estimation in flat areas. But besides many

Heinemann, Detlev

358

Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of rock strength and precipitation  

E-Print Network (OSTI)

Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of the morphology of mountain belts. Here we investigate the modalities of defor- mation in Central Nepal on a c that the pattern of uplift in Nepal is mainly dependent on both erodability and fault geometry, rather than

Demouchy, Sylvie

359

A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests  

Science Journals Connector (OSTI)

...Numerical predictions and experimental tests David L. George Richard M. Iverson e-mail...software package we call D-Claw. As tests of D-Claw, we compare model output with...our numerical solution technique, and tests of numerical predictions against experimental...

2014-01-01T23:59:59.000Z

360

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Calibration and Validation of a Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool Preprint J.R. Browning University of Colorado-Boulder J. Jonkman and A. Robertson National Renewable Energy Laboratory A.J. Goupee University of Maine Presented at the Science of Making Torque from Wind Oldenburg, Germany October 9-11, 2012 Conference Paper NREL/CP-5000-56138 November 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EnKF Assimilation of High-Resolution, Mobile Doppler Radar Data of the 4 May 2007 Greensburg, Kansas, Supercell into a Numerical Cloud Model  

E-Print Network (OSTI)

Kalman filter (EnKF) technique into a non- hydrostatic, compressible numerical weather prediction model weather prediction (NWP) models to improve under- standing of convective storm dynamics is now a fairly, Kansas, Supercell into a Numerical Cloud Model ROBIN L. TANAMACHI,*,1,# LOUIS J. WICKER,@ DAVID C. DOWELL

Xue, Ming

362

Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines based on nacelle based lidar measurements"  

E-Print Network (OSTI)

Bachelor thesis: "Validation of an engineering model of the near wake wind field of wind turbines, in an early stage of wind farm layout optimisation and wind turbine loading calculation in wind farms developed/validated indirectly. Mainly, based on power measurements of downstream wind turbines, instead

Peinke, Joachim

363

The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global Energy-Environment-Economy CGE Model  

E-Print Network (OSTI)

1 The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global., 2009, `The resilience of the Indian economy to rising oil prices as a validation test for a global so, it compares the modeled and observed responses of the Indian economy to the rise of oil price

Paris-Sud XI, Université de

364

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

Mathematical modeling of thermal energy storage in aquifers:presented at the Thermal Energy storage in aquifers1979; Aquifer thermal energy storagea numerical simulation

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

365

Numerical Experiments on Soft X-ray Emission Optimization of Nitrogen Plasma in 3kJ Plasma Focus SY-1 Using Modified Lee Model  

Science Journals Connector (OSTI)

The X-ray emission properties of nitrogen plasmas are numerically investigated using corona plasma equilibrium model. The X-ray emission intensities... ? , Ly ?

M. Akel; Sh. Al-Hawat; S. Lee

2009-12-01T23:59:59.000Z

366

A Numerical Model Without Truncation Error for a Steady-State Analysis of a Once-Through Steam Generator  

SciTech Connect

To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.

Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)

2005-06-15T23:59:59.000Z

367

Development and Validation of the 3-D Computational Fluid Dynamics Model for CANDU-6 Moderator Temperature Predictions  

SciTech Connect

A computational fluid dynamics (CFD) model for predicting the moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard k-[curly epsilon] turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which anisotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA Technology. The CFD model has been successfully verified and validated against experimental data obtained at Stern Laboratories Inc. in Hamilton, Ontario, Canada.

Yoon, Churl; Rhee, Bo Wook; Min, Byung-Joo [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-12-15T23:59:59.000Z

368

Numerical modeling of combustion processes and pollutant formations in direct-injection diesel engines  

Science Journals Connector (OSTI)

The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection...X formation including thermal NO path, pro...

Seong-Ku Kim; Joon Kyu Lee; Yong-Mo Kim; Jae-Hyun Ahn

2002-07-01T23:59:59.000Z

369

Using GIS and numerical modeling to assess subsidence over abandoned mines  

SciTech Connect

The US Bureau of Mines (USBM) has been developing techniques to assess surface subsidence over abandoned coal mines. One technique has involved estimation of stress acting on every pillar of an abandoned mine then comparing it to pillar strength and floor bearing capacity. This required computations for several thousand pillars for one mine. Mine maps are digitized and saved as a computer drawing file. Then the tributary area loading each pillar was determined graphically and outlined. Geographic Information System (GIS) software was used to compute the ratio of pillar area to tributary area for each pillar and then divide the average overburden stress by this ratio to compute an estimated pillar stress. Numerical modeling was then used to analyze a two-dimensional cross section of the overburden and mine, and provide an independent estimate of stresses. Based on published data for floor bearing capacity and pillar load capacity, GIS was used to perform a mine-wide classification of pillars according to stress level. An example of this analysis and classification is presented in this paper for an abandoned coal mine in the Illinois Basin. The mine had been operated in the Herrin No. 6 Seam at a depth of 60 in with an average overburden stress of 1.4 MPa. It was found that pillars with estimated stresses greater than 5 MPa correlated with historical subsidence events. Due to the greater detail considered in this approach, it provides a fundamental basis for the assessment of subsidence risk since it incorporates the geometry of mine pillars and entries as well as the ultimate strength of the pillars and floor.

O`Connor, K.M. [GeoTDR, Inc., Apple Valley, MN (United States); Siekmeier, J.A. [Braun Intertec Corp., Minneapolis, MN (United States); Stache, J.

1996-12-31T23:59:59.000Z

370

A numerical model of non-equilibrium thermal plasmas. I. Transport properties  

SciTech Connect

A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

2013-03-15T23:59:59.000Z

371

A numerical model of convective heat transfer in a three dimensional channel with baffles  

E-Print Network (OSTI)

to minimize the effects of the temperature. Chandrupatla and Sastri (1977) used a finite difference method to study laminar heat transfer and fluid flow for Non-Newtonian fluids. In the limiting case of Newtonian fluids their results showed good agreement... and Sastri (1977) for developing laminar flow in a rectangular smooth channel. Figure 4. 1 shows the numerically predicted centerline axial velocity compared with the experimental data of Goldstein and Kreid (1967). The agreement between the numerical...

Lopez Buso, Jorge Ricardo

2012-06-07T23:59:59.000Z

372

Validation of a black-box heat pump simulation model by means of field test results from five installations  

Science Journals Connector (OSTI)

Abstract In the residential sector, heat pumps are applied for domestic hot water and space heating. Simulations are widely used for general research in the field of heat pumps and to some extend to plan such installations. The advantages are low expenditure of time and costs compared to laboratory or field tests. Validation of simulation models is mandatory to guarantee a sufficient quality. In the presented paper, the field monitoring results of five ground-source installations are utilised for the validation of a black-box heat pump model. The model is similar to TRNSYS Type 201, but implemented in IDA ICE and then modified to handle the difficulties caused by non-standard mass flow and rampant polynomials. As overall result, deviations between 1% and 32% regarding modelled and measured efficiency are seen on monthly basis. The overall result appears as convincing, taking into account typical inaccuracies of laboratory and field tests as well as tolerances during heat pump production. As a side effect, the influence of standby consumption was quantified. For the five presented installations, standby amounts to fractions between 2 and 5% of the annual electricity consumption of the heat pump units.

Jrn Ruschenburg; Tomislav ?uti?; Sebastian Herkel

2014-01-01T23:59:59.000Z

373

E-Print Network 3.0 - activity model validation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rutgers University Collection: Computer Technologies and Information Sciences 50 Enabling Modeling and Simulation-based Science in the Classroom: Agent-Based Models, Real-World...

374

Numerical modeling of the transient behavior of a thermoelectric Electromagnetic Self-Induced Pump  

E-Print Network (OSTI)

. IMPROVED PUMP MODELS Momentum model theory Transient thermoelectric model theory CHAPTER IV MODELING METHODS AND RESULTS Lumped parameter model Hydraulic model Page ln tv v11 v111 14 18 21 24 29 29 . " 41 41 43 Thermoelectric model Full... " " " " " 17 Magnetic core structure 20 Momentum model component assembly illustration 32 10 Illustration of the effects that act on the thermoelectric elements " """" 37 12 Lumped parameter model flow chart Hydraulic model flow chart 42 44 13 Flow...

Djordjevic, Vladimir

2012-06-07T23:59:59.000Z

375

Open-system respirometry in intensive aquaculture: model validation and application to red drum (Sciaenops ocellatus)  

E-Print Network (OSTI)

bomb and respirometry energy calculations in the biological validation study. 30 6 Initial data and results for tank 3 with full fish-load. . . . . . . 7 Initial data and results for tank 3 with partial fish-load. . . . 40 45 8 Initial data... and results for tank 5 with full fish-load. . 46 9 Initial data and results for tank 5 with partial fish-load. . . 47 LIST OF FIGURES Figure 1 Schematic diagram of BCOD respirometer Page 10 2 Schematic diagram of apparatus for physical validauon...

Oborny, Edmund Lee

1993-01-01T23:59:59.000Z

376

A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.  

SciTech Connect

JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

Park, Byoung Yoon

2013-06-01T23:59:59.000Z

377

Physical modeling and numerical simulation of subcooled boiling in one- and three-dimensional representation of bundle geometry  

SciTech Connect

Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models.

Bottoni, M.; Lyczkowski, R.; Ahuja, S.

1995-07-01T23:59:59.000Z

378

Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)  

SciTech Connect

Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

2014-06-01T23:59:59.000Z

379

Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Holographic Dark Energy Model  

E-Print Network (OSTI)

In this letter, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system- one component is the holographic dark energy model and the other component is in the form of dust.

Nairwita Mazumder; Subenoy Chakraborty

2010-05-19T23:59:59.000Z

380

Calibration and validation of a solar thermal system model in Modelica  

Science Journals Connector (OSTI)

Recent advancements in the domain of modeling physical processes offer opportunities to use equation based modeling environments, such as Modelica, for the simulation of building heating, ... (HVAC) systems. The ...

Giuliano Fontanella; Daniele Basciotti; Florian Dubisch

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation  

Science Journals Connector (OSTI)

...?This study describes a new coupled ocean-atmosphere general circulation model (OAGCM) developed for studies of climate change and results from a hindcast experiment. The model includes various physical and te...

T. C. Johns; R. E. Carnell; J. F. Crossley; J. M. Gregory

1997-02-01T23:59:59.000Z

382

The motivations-attributes-skills-knowledge competency cluster validation model an empirical study  

E-Print Network (OSTI)

participants to measure their efforts. In summary, the MIFV is a quantifiable model focused on workforce development and efficiencies....

Stevens, Jeffery Allen

2004-09-30T23:59:59.000Z

383

Identification of a sound-insulation layer modelled by fuzzy structure theory -Experimental validation  

E-Print Network (OSTI)

Identification of a sound-insulation layer modelled by fuzzy structure theory - Experimental.fernandez@univ-paris-est.fr Abstract One proposes a novel approach to model sound-insulation layers based on the use of the fuzzy in computational models. The keypoint of the method is the construction of a mean elastoacoustic sound-insulation

Boyer, Edmond

384

PARAMETERIZATION AND VALIDATION OF AN INTEGRATED ELECTRO-THERMAL CYLINDRICAL LFP BATTERY MODEL  

E-Print Network (OSTI)

with a two-state thermal model to form an electro-thermal model for cylindrical lithium ion batteries- eters. A two-state thermal model is used to approximate the core and surface temperatures of the battery to lithium diffusion in the solid phase and in the electrolyte [13]. These circuit elements depend on state

Stefanopoulou, Anna

385

VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY  

E-Print Network (OSTI)

performance model results are affected when satellite- based weather data is used in place of ground from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e performance models using both ground and satellite-based weather inputs and compare model results

Perez, Richard R.

386

Data Validation  

Science Journals Connector (OSTI)

Data validation is aprocess which ensures the correctness of data, reduces database error rate and ensures an acceptable level of . Data validation is the key to the quality of the database. It is carried ou...

2008-01-01T23:59:59.000Z

387

NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2009 ASP Conference Series, Vol. 4xx, 2010  

E-Print Network (OSTI)

regions in the cold star forming molecular gas on scales from 50 pc down to a few astronomical units operating in the energy cascade in the inertial range of scales (e.g., Kritsuk et al. 2007a). The effective by numerical diffusivity of purely artificial nature. In simulations in- volving magnetic fields, the magnetic

Kritsuk, Alexei

388

Numerical model to determine the composition of H2ONaClCaCl2 fluid inclusions based on  

E-Print Network (OSTI)

Numerical model to determine the composition of H2O­NaCl­CaCl2 fluid inclusions based 2010 Abstract Natural fluids approximated by the H2O­NaCl­CaCl2 system are common in a wide range the compositions of fluid inclusions in the H2O­NaCl­CaCl2 sys- tem based on microthermometric and microanalytical

Bodnar, Robert J.

389

Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994  

SciTech Connect

This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

Hendrickson, S.M. [ed.] [Lawrence Livermore National Lab., CA (United States)] [ed.; Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis] [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

1994-03-01T23:59:59.000Z

390

Modeling and validation of a boost pressure actuation system, for a series sequentially turbocharged SI engine  

Science Journals Connector (OSTI)

An actuation system for flexible control of an advanced turbocharging system is studied. It incorporates a vacuum pump and tank that are connected to pulse width modulation controlled vacuum valves. A methodology for modeling the entire boost pressure actuation system is developed. Emphasis is placed on developing component models that are easily identified from measured data, without the need for expensive measurements.The models have physical interpretations that enable handling of varying surrounding conditions.The component models and integrated system are evaluated on a two stage series sequential turbo system with three actuators having different characteristics.Several applications of the developed system model are presented, including a nonlinear compensator for voltage disturbance rejection where the performance of the compensator is demonstrated on an engine in a test cell. The applicability of the complete system model for control and diagnosis of the vacuum system is also discussed.

Andreas Thomasson; Oskar Leufvn; Ivan Criscuolo; Lars Eriksson

2013-01-01T23:59:59.000Z

391

Modeling of Mitochondria Bioenergetics Using a Composable Chemiosmotic Energy Transduction Rate Law: Theory and Experimental Validation  

E-Print Network (OSTI)

2010) Modeling mitochondrial bioenerget- ics with integrated2009) Mitochondrial bioenergetic deficit precedes alzheimerdiseases. Journal of Bioenergetics and Biomembranes 40: 59

Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre

2011-01-01T23:59:59.000Z

392

A model for cosmological simulations of galaxy formation physics: multi-epoch validation  

Science Journals Connector (OSTI)

......i.e. the growth rates, concentrations, morphologies...highest resolution model passes above most of the low-redshift...2000). The varied physics models impact the simulated...limited by the growth rate of dark matter haloes...implementation of feedback physics (e.g. Springel Hernquist......

Paul Torrey; Mark Vogelsberger; Shy Genel; Debora Sijacki; Volker Springel; Lars Hernquist

2014-01-01T23:59:59.000Z

393

Sheath model for radio-frequency-biased, high-density plasmas valid for all ?/?i  

Science Journals Connector (OSTI)

A model is proposed for sheaths in high-density discharges, with radio-frequency (rf) bias applied at frequencies ? comparable to ?i, the ion plasma frequency at the edge of the sheath. The model treats ion dynamics using fluid equations, including all time-dependent terms. Model predictions for current, impedance, and power were compared to measurements performed in high-density discharges in argon at 1.33 Pa (10 mTorr) at rf bias frequencies from 0.1 to 10 MHz (?/?i from 0.006 to 1.8) and rf bias voltages from 1 to 200 V. Model predictions were in good agreement with measurements, much better than that obtained by models that neglect time-dependent ion dynamics. In particular, differences of as much as 4050 % between power measurements and the power predicted by previous models are now explained and eliminated. The model also explains why methods of extracting plasma parameters from electrical measurements using previous sheath models may fail, and it suggests more accurate methods of extracting these parameters.

Mark A. Sobolewski

2000-12-01T23:59:59.000Z

394

Dynamic Modeling and Validation of a Precombustion CO2 Capture Plant for Control Design  

Science Journals Connector (OSTI)

The models have been implemented by means of the Modelica language into an open source software library. ... Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach; Wiley-IEEE Press: Hoboken, NJ, in press. ...

Carsten Trapp; Francesco Casella; Piero Colonna

2014-07-23T23:59:59.000Z

395

An approach combining SysML and modelica for modelling and validate wireless sensor networks  

Science Journals Connector (OSTI)

Wireless Sensor Networks (WSN) have large industrial applications, however the modelling is still a very complex task in view of the nature of these networks, namely because they are distributed, embedded and have strong interactions between the hardware ... Keywords: SysML, modelica, MDE, WSN, modelling, simulation, virtual verification

Ahmed Hammad; Hassan Mountassir; Samir Chouali

2013-07-01T23:59:59.000Z

396

Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model  

SciTech Connect

The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow-on work using GoldSim to develop 1D equivalent models of the PORFLOW multi-dimensional models was justified. The comparison of GoldSim 1D equivalent models to PORFLOW multi-dimensional models was made at two locations in the model domains - at the unsaturated-saturated zone interface and at the 100m point of compliance. PORFLOW model results from the 2008 PA were utilized to investigate the comparison. By making iterative adjustments to certain water flux terms in the GoldSim models it was possible to produce contaminant mass fluxes and water concentrations that were highly similar to the PORFLOW model results at the two locations where comparisons were made. Based on the ability of the GoldSim 1D trench models to produce mass flux and concentration curves that are sufficiently similar to multi-dimensional PORFLOW models for all of the evaluated radionuclides and their progeny, it is concluded that the use of the GoldSim 1D equivalent Slit and Engineered trenches models for further probabilistic sensitivity and uncertainty analysis of ELLWF trench units is justified. A revision to the original report was undertaken to correct mislabeling on the y-axes of the compliance point concentration graphs, to modify the terminology used to define the ''blended'' source term Case for the saturated zone to make it consistent with terminology used in the 2008 PA, and to make a more definitive statement regarding the justification of the use of the GoldSim 1D equivalent trench models for follow-on probabilistic sensitivity and uncertainty analysis.

Taylor, G. A.; Hiergesell, R. A.

2013-11-12T23:59:59.000Z

397

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network (OSTI)

Multiscale numerical weather prediction model. Progress inassimilating numerical weather prediction model for solarwith numerical weather prediction models. In: Solar Energy

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

398

Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface  

Science Journals Connector (OSTI)

A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/vm=?+(1-?)?, where vm is the maximum expansion velocity, ? is a constant, and ?=x/vmt. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to ?, where 1-? is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, ? is reduced from its value of conventional free expansion. This reduction on ? increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models. The result may provide an explanation for experimental observations of high-expansion front velocities even at low-laser fluence.

K. R. Chen; T. C. King; J. H. Hes; J. N. Leboeuf; D. B. Geohegan; R. F. Wood; A. A. Puretzky; J. M. Donato

1999-09-15T23:59:59.000Z

399

A three-dimensional numerical model of dry convection in an ambient wind field  

E-Print Network (OSTI)

effects of the ambient wind field on convection. Nost of the numerical results are shown to correspond to empirical observations, while some results are unexpected but reasonable. Nechanical and thermal energy equations have been developed... to investigate the effects on convection of an The citations on the following pages follow the tyl of th J* J of ~At * h ' f ambient wind with a vertical shear He also examined the energy interactions between convective flow and nean flows. There were many...

Burgeson, John Carl

2012-06-07T23:59:59.000Z

400

An Efficient Numerical Scheme for Simulating Unidirectional Irregular Waves Based on a Hybrid Wave Model  

E-Print Network (OSTI)

................................................................................ 40 Table 4 NREL 5-MW wind turbine characteristics ................................................ 41 Table 5 Hywind-OC3 Spar dimensions .................................................................. 41 Table 6 Mooring system properties...) for computing the wind loads on a wind turbine. A 5MW wind turbine installed on the top of a classical Spar (Hywind-OC3 Spar) is employed to demonstrate the simulation. The 39 numerical results derived in this study may provide crucial information...

Jia, Dongxing 1984-

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Numerical Modeling of Speckle Fields: Catching the Visible and the Invisible  

Science Journals Connector (OSTI)

The present paper deals with the numerical simulation of the diffracted field emanating from an optically rough surface illuminated by a spatially coherent white?light source. The colored speckle pattern which can be observed under these circumstances visualizes the 3D structure of the diffracted speckle field and whats more it allows us appreciate the differences between diffraction regimes i.e. Fresnel rather than Fraunhofer regime. In the paper the 3D structure of near? and far?field diffraction fully developed speckle fields will be explored by numerical simulation in the Mathematica environment by using few highly?optimized functions implementing the Rayleigh?Sommerfeld formulation into the built?in FFT (Fast Fourier Transform) algorithm. In the applicability range of the Fresnel approximation the dimensionless Fresnel number fully describes the diffraction regime and the results of the numerical simulation can be simply mapped into the physical world by the appropriate scaling parameters at diffraction plane and along the propagation direction.

Andrea Poggialini; Luigi Bruno

2010-01-01T23:59:59.000Z

402

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpyporosity approach and irreversible thermodynamics  

Science Journals Connector (OSTI)

In the last 10 years, there have been a number of studies in modeling of the deposition processes in flowlines. Most of these models: (1) assume empirical or semi-empirical correlations to predict the pressure drop and temperature profile, (2) ignore the radial convection flow in the layer composed of the two-phase wax and oil (that is the gel layer), and (3) use Ficks law to describe the diffusion flux of species towards the wall by using the chain rule to relate concentration gradient to temperature gradient. In this work, a rigorous mathematical model for the prediction of wax deposition in pipelines is presented for laminar flow. The transient deposition of each component is calculated from the solution of the coupled momentum, energy and, species balance equations, and a thermodynamic wax precipitation model at the local level. An enthalpy formulation based on a fixed-grid approach is used to approximate the convection flow in the gel layer. We do not use the chain rule to relate composition gradient to temperature gradient in Ficks law to avoid violating the laws of irreversible thermodynamics. Our diffusion flux expression includes molecular diffusion (concentration gradient is driving force) and thermal diffusion (temperature gradient is driving force) with appropriate diffusion coefficients. This work also includes the description of the numerical solution of the governing equations. Numerical results and features of wax deposition as well as model verification with experimental data are presented in a separate paper.

R. Banki; H. Hoteit; A. Firoozabadi

2008-01-01T23:59:59.000Z

403

Thermo-Mechanical Model Development and Validation of DirectedEnergy Deposition Additive Manufacturing of Ti-6Al-4V  

Science Journals Connector (OSTI)

Abstract A thermo-mechanical model of directed energy deposition additive manufacturing of Ti-6Al-4V is developed using measurements of the surface convection generated by gasses flowing during the deposition. In directed energy deposition, material is injected into a melt pool that is traversed to fill in a cross-section of a part, building it layer-by-layer. This creates large thermal gradients that generate plastic deformation and residual stresses. Finite element analysis (FEA) is often used to study these phenomena using simple assumptions of the surface convection. This work proposes that a detailed knowledge of the surface heat transfer is required to produce more accurate FEA results. The surface convection generated by the deposition process is measured and implemented in the thermo-mechanical model. Three depositions with different geometries and dwell times are used to validate the model using in situ measurements of the temperature and deflection as well as post-process measurements of the residual stress. An additional model is developed using the assumption of free convection on all surfaces. The results show that a measurement-based convection model is required to produce accurate simulation results.

J.C. Heigel; P. Michaleris; E.W. Reutzel

2014-01-01T23:59:59.000Z

404

Validation of a molecular hydrogen penetration model in the electric tokamak  

E-Print Network (OSTI)

chamber of the Electric Tokamak showing bare walls andModel in the Electric Tokamak P. -A. Gourdain a) , L. W.of fusion devices such as tokamaks. In low density plasmas,

Gourdain, P A

2006-01-01T23:59:59.000Z

405

Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger  

E-Print Network (OSTI)

strain of A.niger sequenced by DSM showed that a number ofby JGI and CBS 513.88 by DSM [24]. The JGI sequence inderived from the JGI and DSM model sets using Mascot [25].

Wright, James C.

2014-01-01T23:59:59.000Z

406

Representing Variability in Subgrid Snow Cover and Snow Depth in a Global Land Model: Offline Validation  

Science Journals Connector (OSTI)

Subgrid snow cover is one of the key parameters in global land models since snow cover has large impacts on the surface energy and moisture budgets, and hence the surface temperature. In this study, the Subgrid Snow Distribution (SSNOWD) snow ...

T. Nitta; K. Yoshimura; K. Takata; R. Oishi; T. Sueyoshi; S. Kanae; T. Oki; A. Abe-Ouchi; G. E. Liston

2014-05-01T23:59:59.000Z

407

Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe  

Science Journals Connector (OSTI)

Abstract This article combines and discusses three independent validations of global horizontal irradiance (GHI) multi-day forecast models that were conducted in the US, Canada and Europe. All forecast models are based directly or indirectly on numerical weather prediction (NWP). Two models are common to the three validation efforts the ECMWF global model and the GFS-driven WRF mesoscale model and allow general observations: (1) the GFS-based WRF- model forecasts do not perform as well as global forecast-based approaches such as ECMWF and (2) the simple averaging of models output tends to perform better than individual models.

Richard Perez; Elke Lorenz; Sophie Pelland; Mark Beauharnois; Glenn Van Knowe; Karl Hemker Jr.; Detlev Heinemann; Jan Remund; Stefan C. Mller; Wolfgang Traunmller; Gerald Steinmauer; David Pozo; Jose A. Ruiz-Arias; Vicente Lara-Fanego; Lourdes Ramirez-Santigosa; Martin Gaston-Romero; Luis M. Pomares

2013-01-01T23:59:59.000Z

408

Adjoint Sensitivity Analysis for Numerical Weather Prediction  

E-Print Network (OSTI)

Sep 2, 2011 ... Adjoint Sensitivity Analysis for Numerical Weather Prediction: Applications to ... weather variables using numerical weather prediction models.

Alexandru Cioaca

2011-09-02T23:59:59.000Z

409

Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams.  

SciTech Connect

We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

2015-01-01T23:59:59.000Z

410

Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development  

SciTech Connect

Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation of cloud radiative properties. An examination of the CCM2 simulation characteristics indicated that many surface temperature and warm land precipitation problems were linked to deficiencies in the specification of cloud optical properties, which allowed too much shortwave radiation to reach the surface. In-cloud liquid water path was statically specified in the CCM2 using a "prescribed, meridionally and height varying, but time independent, cloud liquid water density profile, which was analytically determined from a meridionally specified liquid water scale height. Single-column model integrations were conducted to explore alternative formulations for the cloud liquid water path diagnostic, converging on an approach that employs a similar, but state-dependent technique for determining in-cloud liquid water concentration. The new formulation, results in significant improvements to both the top-of- atmosphere and surface energy budgets. In particular, when this scheme is incorporated in the three-dimensional GCM, simulated July surface temperature biases are substantially reduced, where summer precipitation over the northern hemisphere continents, as well as precipitation rates over most all warm land areas, is more consistent with observations". This improved parameterization has been incorporated in the CCM3.

Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.

1997-02-24T23:59:59.000Z

411

Modelling, simulation and validation of the solid biomass combustion in different plants  

Science Journals Connector (OSTI)

For the combustion of biomass, mathematical models have been developed at the LUAT on the basis of models for waste incineration. These models were proven by comparison to experimental date under the same conditions. The optimisation was done for the MARS-plant and for a big biomass fired steam generator. The main focus for the optimisation of the MARS-plant is the air distribution. For the operational plant, the results from the computer simulations have been confirmed by measurements. Based on these results, the plant operation could be improved. From the point of view of the manufacturers, these tools and techniques can also be applied to the basic design of new plants.

K. Goerner; Th. Klasen

2006-01-01T23:59:59.000Z

412

Validation of PV performance models using satellite-based irradiance measurements : a case study.  

SciTech Connect

Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

2010-05-01T23:59:59.000Z

413

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury  

E-Print Network (OSTI)

............................... Denmark...NERI G. Petersen, R. Ebinghaus .................. Germany...GKSS J. Pacyna and Oxidants Model, GKSS Research Center, GermanyADOM MSC-E heavy metal regional model, EMEP MSC

414

Simulation of a Polar Low Case in the North Atlantic with different regional numerical models  

E-Print Network (OSTI)

Matthias Zahn, Hans von Storch University of Hamburg/ GKSS, Matthias.Zahn@gkss.de ABSTRACT In this paper (REgional MOdel) and CLM (CLimate Model) simulations performed at the GKSS with spectral nudging (Feser et

Zahn, Matthias

415

Initial Testing of a Numerical Ocean Circulation Model Using a Hybrid (Quasi-Isopycnic) Vertical Coordinate  

Science Journals Connector (OSTI)

An ocean circulation model, developed for the study of mesoscale to gyre-scale circulation and heat transport, is described and tested. The model employs density as vertical coordinate except in the immediate vicinity of possible coordinate ...

Rainer Bleck; Douglas B. Boudra

1981-06-01T23:59:59.000Z

416

A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics  

Science Journals Connector (OSTI)

A blended model for atmospheric flow simulations is introduced that enables seamless transition from fully compressible to pseudo-incompressible dynamics. The model equations are written in nonperturbation form and integrated using a well-balanced ...

Tommaso Benacchio; Warren P. ONeill; Rupert Klein

2014-12-01T23:59:59.000Z

417

Numerical Modeling At Neal Hot Springs Geothermal Area (U.S....  

Open Energy Info (EERE)

model was created. The model was created on March 24th 2011 by a consulting reservoir engineer and presented to the DOE's independent reservoir engineer. Upon review the final...

418

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

419

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

geothermal reservoir and wellbore model was used in the history-matching simulations for test wells in Cerro Prieto, Mexico,

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

420

Numerical Modeling of Nonlinear Coupling between Lines/Beams with Multiple Floating Bodies  

E-Print Network (OSTI)

spring model and the three(3) dimensional FE beam model. The coupling of the TLP motion with the reaction force at the tie-down clamp is considered by using exact nonlinear dynamic equations of the motion with the reaction forces modeled with the spring...

Yang, Chan K.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NUMERICAL EXPERIMENTS USING MESONH/FOREFIRE COUPLED ATMOSPHERIC-FIRE MODEL  

E-Print Network (OSTI)

model inputting the wind fields and outputting heat and vapour fluxes to the atmospheric model. Fore mesh. Another originality of the approach is the fire rate of spread model that integrates wind effect of has been developed to add locale atmosphere interaction to the family of fire area simulators

Boyer, Edmond

422

Validation of static gravity field models using GRACE K-band ranging and GOCE gradiometry data  

Science Journals Connector (OSTI)

......tides modelled with the Jet Propulsion Laboratory (JPL) DE405 and...product user handbook, Jet Propulsion Laboratory, California Institute...Smith W.H.F. Global marine gravity from retracked Geosat...ephemerides, DE405/LE405, Jet Propulsion Labratoary, IOM 312.F-98-048......

H. Hashemi Farahani; P. Ditmar; R. Klees; J. Teixeira da Encarnao; X. Liu; Q. Zhao; J. Guo

2013-01-01T23:59:59.000Z

423

Validating a Time-Dependent Wave-Turbulence-Driven Model of the Solar Wind  

E-Print Network (OSTI)

Although the mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still being actively investigated, it is largely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process. \\citet{2010ApJ...708L.116V} presented a model for heating and accelerating the solar wind based on the turbulent dissipation of Alfv\\'en waves. We first use a time-dependent model of the solar wind to reproduce one of \\citeauthor{2010ApJ...708L.116V}'s solutions; then we extend its application to the case when the energy equation includes thermal conduction and radiation losses, and the upper chromosphere is part of the computational domain. Using this model, we explore parameter space and describe the characteristics of a fast-solar-wind solution. We discuss how this formulation may be applied to a 3D MHD model of the coron a and solar wind \\citep{2009ApJ...690..902L}.

Lionello, Roberto; Downs, Cooper; Linker, Jon A; Miki?, Zoran; Verdini, Andrea

2014-01-01T23:59:59.000Z

424

Atmospheric and seeing forecast: WRF model validation with in situ measurements at ORM  

Science Journals Connector (OSTI)

......orographic data to initialize WRF. 6 CONCLUSION For the first time, the WRF model, coupled with the...used to forecast not only local meteorological parameters...relative humidity and wind speed at ground level...simultaneous forecasts, the WRF-in situ instrument agreement......

C. Giordano; J. Vernin; H. Vzquez Rami; C. Muoz-Tun; A. M. Varela; H. Trinquet

2013-01-01T23:59:59.000Z

425

Methodology to assess potential glint and glare hazards from concentrating solar power plants : analytical models and experimental validation.  

SciTech Connect

With growing numbers of concentrating solar power systems being designed and developed, glint and glare from concentrating solar collectors and receivers is receiving increased attention as a potential hazard or distraction for motorists, pilots, and pedestrians. This paper provides analytical methods to evaluate the irradiance originating from specularly and diffusely reflecting sources as a function of distance and characteristics of the source. Sample problems are provided for both specular and diffuse sources, and validation of the models is performed via testing. In addition, a summary of safety metrics is compiled from the literature to evaluate the potential hazards of calculated irradiances from glint and glare. Previous safety metrics have focused on prevention of permanent eye damage (e.g., retinal burn). New metrics used in this paper account for temporary flash blindness, which can occur at irradiance values several orders of magnitude lower than the irradiance values required for irreversible eye damage.

Diver, Richard B., Jr.; Ghanbari, Cheryl M.; Ho, Clifford Kuofei

2010-04-01T23:59:59.000Z

426

Evaluation of the numerical stability and sensitivity to material parameter variations for several unified constitutive models  

E-Print Network (OSTI)

Material Constants Used In Bodner's Model For Hastelloy-X at 1800' F . Naterial Constants Used In Walker's Model For Hastelloy-X at 1800' F . Material Constants Used In Krieg's Model For Hastelloy-X at 1800 F . Material Constants Used In Miller...'s Model For Hastelloy-X at 1800' F . Page 18 26 30 35 LIST OF FIGURES Fi gure Plots Used to Obtain Material Parameters For Bodner's Model . Page T6 Back Stress and True Stress-Strain Curve Used in Walker's Theory. Plot Used to Determine...

Imbrie, Peter Kenneth

1985-01-01T23:59:59.000Z

427

Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites  

E-Print Network (OSTI)

1 Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental stresses in fibers and matrix in the undamaged composite interfacial shear stress interfacial shear stress validate a 1D probabilistic model of damage evolution in unidirectional SiC/SiC composites. The key point

Paris-Sud XI, Université de

428

Evaluation of models for numerical simulation of the non-neutral region of sheath plasma  

SciTech Connect

Four different electron models are used to simulate the nonequilibrium plasma flow around a representative cylindrical Faraday probe geometry. Each model is implemented in a two-dimensional axisymmetric hybrid electron fluid and particle in cell method. The geometric shadowing model is derived from kinetic theory on the basis that physical obstruction of part of the velocity distribution leads to many of the expected sheath features. The Boltzmann electron fluid model relates the electron density to the plasma potential through the Boltzmann relation. The non-neutral detailed electron fluid model is derived from the electron conservation equations under the assumption of neutrality, and then modified to include non-neutral effects through the electrostatic Poisson equation. The Poisson-consistent detailed electron fluid model is also derived from the conservation equations and the electrostatic Poisson equation, but uses an alternative method that is inherently non-neutral from the outset. Simulations using the geometric shadowing and non-neutral detailed models do not yield satisfactory sheath structures, indicating that these models are not appropriate for sheath simulations. Simulations using the Boltzmann and Poisson-consistent models produce sheath structures that are in excellent agreement with the planar Bohm sheath solution near the centerline of the probe. The computational time requirement for the Poisson-consistent model is much higher than for the Boltzmann model and becomes prohibitive for larger domains.

Boerner, Jeremiah J.; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, FXB Building, 1320 Beal Avenue, Ann Arbor, Michigan 48109 (United States)

2009-07-15T23:59:59.000Z

429

Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science, 2013, 2(4), 86-92, www.discovery.org.in  

E-Print Network (OSTI)

management approaches. However, there should be no expectation of a single `true' model, and model outputsRESEARCH Kumar, Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science management or impact of new development scenarios. However, if the modelling studies are not well designed

Kumar, C.P.

430

AMPS, a real-time mesoscale modeling system, has provided a decade of service for scientific and logistical needs and has helped advance polar numerical weather prediction  

E-Print Network (OSTI)

and logistical needs and has helped advance polar numerical weather prediction as well as understanding support for the USAP. The concern at the time was the numerical weather prediction (NWP) guidance-time implementation of the Weather Research and Forecasting model (WRF; Skamarock et al. 2008) to support the U

Howat, Ian M.

431

A GIS tool for the evaluation of the precipitation forecasts of a numerical weather prediction model using satellite data  

Science Journals Connector (OSTI)

In this study, the possibility of implementing Geographic Information Systems (GIS) for developing an integrated and automatic operational system for the real-time evaluation of the precipitation forecasts of the numerical weather prediction model BOLAM (BOlogna Limited Area Model) in Greece, is examined. In fact, the precipitation estimates derived by an infrared satellite technique are used for real-time qualitative and quantitative verification of the precipitation forecasts of the model BOLAM through the use of a GIS tool named as precipitation forecasts evaluator (PFE). The application of the developed tool in a case associated with intense precipitation in Greece, suggested that PFE could be a very important support tool for nowcasting and very short-range forecasting of such events.

Haralambos Feidas; Themistoklis Kontos; Nikolaos Soulakellis; Konstantinos Lagouvardos

2007-01-01T23:59:59.000Z

432

Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions  

Science Journals Connector (OSTI)

Abstract We examine the global distribution of energy conversion rates from barotropic to baroclinic tides using a hydrostatic sigma-coordinate numerical model with a special attention to the dependence on the model grid resolution as well as the model topography resolution. A series of numerical experiments shows that the baroclinic tidal energy conversion rate increases almost exponentially with the decrease of the horizontal grid spacing, namely, from 1/5 to 1/20. The baroclinic tidal energy conversion rates for the semidiurnal tidal constituents (M2,S2) are more sensitive to the horizontal grid spacing than those for the diurnal tidal constituents (K1,O1), reflecting the difference of their horizontal wavelengths. The sensitivity of the baroclinic tidal energy conversion rate to the horizontal grid spacing is also dependent on the generation sites of baroclinic tides; it becomes very sensitive in the regions characterized by geologically young seafloor having numerous small-scale rough topographic features such as the Mid-Atlantic Ridges, the eastern Pacific Ridges, and the Mid-Indian Ocean Ridges, whereas it is less sensitive in the regions such as the Indonesian Archipelago, and the western Pacific Ocean. The difference of the sensitivity can be best explained in terms of the value of the forcing function that is proportional to the square of the vertical velocity caused by barotropic tidal currents interacting with high-pass filtered bottom topography. Using the extrapolated value of the forcing function that takes into account all the topographic features generating baroclinic tides, we present the global distribution of the baroclinic tidal energy conversion rates in the limit of zero horizontal grid spacing.

Yoshihiro Niwa; Toshiyuki Hibiya

2014-01-01T23:59:59.000Z

433

Coalescing neutron stars - a step towards physical models III. Improved numerics and different neutron star masses and spins  

E-Print Network (OSTI)

(Abridged) In this paper we present a compilation of results from our most advanced neutron star merger simulations, including a description of the employed numerical procedures and a more complete overview over a large number of computed models. The three-dimensional hydrodynamic simulations were done with a code based on the Piecewise Parabolic Method with up to five levels of nested Cartesian grids. The simulations are basically Newtonian, but gravitational-wave emission and the corresponding back-reaction are taken into account. The use of a physical nuclear equation of state allows us to follow the thermodynamic history of the stellar medium and to compute the energy and lepton number loss due to the emission of neutrinos. The computed models differ concerning the neutron star masses and mass ratios, the neutron star spins, the numerical resolution expressed by the cell size of the finest grid and the number of grid levels, and the calculation of the temperature from the solution of the entropy equation instead of the energy equation. Our simulations show that the details of the gravitational-wave emission are still sensitive to the numerical resolution, even in our highest-quality calculations. The amount of mass which can be ejected from neutron star mergers depends strongly on the angular momentum of the system. Our results do not support the initial conditions of temperature and proton-to-nucleon ratio assumed in recent work for producing a solar r-process pattern for nuclei around and above the A approx 130 peak. The improved models confirm our previous conclusion that gamma-ray bursts are not powered by neutrino emission during the dynamical phase of the merging of two neutron stars.

M. Ruffert; H. -Th. Janka

2001-06-13T23:59:59.000Z

434

Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model  

SciTech Connect

In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

2010-01-15T23:59:59.000Z

435

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

Doughty, 1979a, Aquifer thermal energy storage--a numericalical modeling of thermal energy storage in aquifers.Presented at the Thermal Energy Storage in Aquifers

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

436

Analysis of vadose zone tritium transport from an underground storage tank release using numerical modeling and geostatistics  

SciTech Connect

Numerical and geostatistical analyses show that the artificial smoothing effect of kriging removes high permeability flow paths from hydrogeologic data sets, reducing simulated contaminant transport rates in heterogeneous vadose zone systems. therefore, kriging alone is not recommended for estimating the spatial distribution of soil hydraulic properties for contaminant transport analysis at vadose zone sites. Vadose zone transport if modeled more effectively by combining kriging with stochastic simulation to better represent the high degree of spatial variability usually found in the hydraulic properties of field soils. However, kriging is a viable technique for estimating the initial mass distribution of contaminants in the subsurface.

Lee, K.H.

1997-09-01T23:59:59.000Z

437

Numerical modeling of quasitransient backward Raman amplification of laser pulses in moderately undercritical plasmas with multicharged ions  

SciTech Connect

It was proposed recently that powerful optical laser pulses could be efficiently compressed through backward Raman amplification in ionized low density solids, in spite of strong damping of the resonant Langmuir wave. It was argued that, even for nonsaturated Landau damping of the Langmuir wave, the energy transfer from the pump laser pulse to the amplified seed laser pulse can nevertheless be highly efficient. This work numerically examines such regimes of strong damping, called quasitransient regimes, within the simplest model that takes into account the major effects. The simulations indicate that compression of powerful optical laser pulses in ionized low density solids indeed can be highly efficient.

Balakin, A. A.; Fraiman, G. M. [Institute of Applied Physics RAS, Nizhnii Novgorod 603950 (Russian Federation); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Malkin, V. M. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Toroker, Z. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2011-10-15T23:59:59.000Z

438

Development and Validation of Aggregated Models for Thermostatic Controlled Loads with Demand Response  

SciTech Connect

Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated control models for a population of thermostatically controlled loads. The effects of demand response on the load population dynamics are investigated.

Kalsi, Karanjit; Elizondo, Marcelo A.; Fuller, Jason C.; Lu, Shuai; Chassin, David P.

2012-01-04T23:59:59.000Z

439

VALIDATION OF RAIN RATE RETRIEVALS FROM SEVIRI USING WEATHER RADAR OBSERVATIONS  

E-Print Network (OSTI)

and for improving parameterization cloud processes in numerical weather prediction (NWP) models or assimilation in these models. Although operational networks of Weather Radars are expanding over Europe and the United StatesVALIDATION OF RAIN RATE RETRIEVALS FROM SEVIRI USING WEATHER RADAR OBSERVATIONS R. A. Roebeling

Stoffelen, Ad

440

Establishment of Stress-Permeabilty relationship of fractured rock mass by numerical modeling  

Office of Scientific and Technical Information (OSTI)

Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study Ki-Bok Min *1 , J Rutqvist 2 , Chin-Fu Tsang 2 , and Lanru Jing 1 1 Engineering Geology and Geophysics Research Group, Royal Institute of Technology (KTH), Stockholm, Sweden 2 Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA * corresponding author. Tel.: +46-8-790-7919; fax: +46-8-790-6810. E-mail address: kibok@kth.se (Ki-Bok Min) 1 Abstract We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture  

E-Print Network (OSTI)

The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

2013-01-01T23:59:59.000Z

442

Validation of formability of laminated sheet metal for deep drawing process using GTN damage model  

SciTech Connect

In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo [Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of); Ko, Sangjin [Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)

2013-12-16T23:59:59.000Z

443

CO{sub 2} adsorption: Experimental investigation with kinetics verification and CFD reactor model validation  

SciTech Connect

The National Energy Technology Laboratory is investigating a new process for CO{sub 2} capture from large sources such as utility power generation facilities as an alternative to liquid amine based absorption processes. Many, but not all of these advanced dry processes are based upon sorbents composed of supported polyamines. In this analysis, experiments have been conducted in a small facility at different temperatures and compared to CFD reactor predictions using kinetics obtained from TGA tests. This particular investigation compares the predicted performance and the experimental performance of one of these new class of sorbents in a fluidized bed reactor. In the experiment, the sorbent absorbs CO{sub 2} from simulated flue gas in a riser reactor, separates the carbonated particles from the de-carbonated flue gas in a cyclone and then regenerates the sorbent, creating a concentrated stream of pure CO{sub 2} for sequestration. In this work, experimental measurements of adsorption are compared to predictions from a 3-dimensional non-isothermal reacting multiphase flow model. The effects of the gas flow rate and reactor temperature are explored. It is shown that the time duration for CO{sub 2} adsorption decreased for an increase in the gas flow. The details of the experimental facility and the model as well as the comparative analysis between the data and the simulation results are discussed.

Breault, Ronald W, [U.S. DOE; Huckaby, Ernest D. [U.S. DOE; Shadle, Lawrence J [U.S. DOE; Spenik, James L. [REM Engineering PLLC

2013-01-01T23:59:59.000Z

444

Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog  

E-Print Network (OSTI)

layers of the atmosphere. Current NWP models poorly forecast the life cycle of fog, and improved NWP models exist in the surface boundary layer before the fog onset, particularly in cases with light winds before improving the analysis and prediction of fog (e.g., Benjamin et al. 2004; Fowler et al. 2006

Ribes, Aurélien

445

Geothermics 33 (2004) 457476 Numerical modeling of transient Basin and Range  

E-Print Network (OSTI)

.Drillingindicateshightemperatures(>190 C)at2.5­3.0 kmdepth along a strike length of at least 20 km along the west side of the valley model consists of two mountain ranges (1 km relief from the valley floor) separated by a thick sequence exist on a steady-state basis. The models show some features seen in Dixie Valley, Naveda

Southern Methodist University

446

A two-dimensional numerical model of dry convection with three-dimensional dynamics  

E-Print Network (OSTI)

symmetric model to simulate a bucyant mass of fluid embedded in an ambient The format and style of this thesis follow those of the Journal of Atmos heric Sciences. fluid of uniform density. The results from Ogura's model exhibited the shape preserving...

Weyman, James Charles

1978-01-01T23:59:59.000Z

447

NUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA-HIGH  

E-Print Network (OSTI)

, hydro-chemo- mechanical coupling ABSTRACT Cracks, caused by shrinkage or external loading, reduce. In this study, a hydro-chemo-mechanical model was developed to simulate autogenous healing by further hydration into water was modelled based on micro-mechanical observations. The diffusion process has been simulated

Boyer, Edmond

448

Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation  

SciTech Connect

The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

Niels Gronbech Jensen; Mark Asta; Nigel Browning'Vidvuds Ozolins; Axel van de Walle; Christopher Wolverton

2011-12-29T23:59:59.000Z

449

Operational background air pollution prediction over Slovenia by QualeAria modelling system - validation  

Science Journals Connector (OSTI)

Slovenia is a country of very complex terrain and many problems with air pollution in the valleys, canyons and basins, where industrial air pollution is combined with traffic and domestic heating air pollution, giving rise to problems for the health impact and the ecosystems directly or indirectly. Among indirect effects is also effect on solar radiation budget because of photochemical smog and especially particulate air pollution. To assess air pollutants over the country, a preliminary application of an experimental operational forecast system is presented here, with the aim of exploring its potentials and limitations in modelling the background air quality, and to focus the aspects where improvements are needed for a true operational use.

Marija Zlata Božnar; Primož Mlakar; Boštjan Grašič; Giuseppe Calori; Alessio D'Allura; Sandro Finardi

2014-01-01T23:59:59.000Z

450

Validation of the SEPHIS Program for the Modeling of the HM Process  

SciTech Connect

The SEPHIS computer program is currently being used to evaluate the effect of all process variables on the criticality safety of the HM 1st Uranium Cycle process in H Canyon. The objective of its use has three main purposes. (1) To provide a better technical basis for those process variables that do not have any realistic effect on the criticality safety of the process. (2) To qualitatively study those conditions that have been previously recognized to affect the nuclear safety of the process or additional conditions that modeling has indicated may pose a criticality safety issue. (3) To judge the adequacy of existing or future neutron monitors locations in the detection of the initial stages of reflux for specific scenarios.Although SEPHIS generally over-predicts the distribution of uranium to the organic phase, it is a capable simulation tool as long as the user recognizes its biases and takes special care when using the program for scenarios where the prediction bias is non-conservative. The temperature coefficient used by SEPHIS is poor at predicting effect of temperature on uranium extraction for the 7.5 percent TBP used in the HM process. Therefore, SEPHIS should not be used to study temperature related scenarios. However, within normal operating temperatures when other process variables are being studied, it may be used. Care must be is given to understanding the prediction bias and its effect on any conclusion for the particular scenario that is under consideration. Uranium extraction with aluminum nitrate is over-predicted worse than for nitric acid systems. However, the extraction section of the 1A bank has sufficient excess capability that these errors, while relatively large, still allow SEPHIS to be used to develop reasonable qualitative assessments for reflux scenarios. However, high losses to the 1AW stream cannot be modeled by SEPHIS.

Kyser, E.A.

1998-12-17T23:59:59.000Z

451

HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson  

E-Print Network (OSTI)

and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1. INTRODUCTION Numerical Weather Prediction (NWP) models are widely used by avalanche practitioners. Their de

Jamieson, Bruce

452

Hydrologic Data and Evaluation for Model Validation Wells, MV-1, MV-2, and MV-3 near the Project Shoal Area  

SciTech Connect

In 2006, a drilling campaign was conducted at the Project Shoal Area (PSA) to provide information for model validation, emplace long-term monitoring wells, and develop baseline geochemistry for long term hydrologic monitoring. Water levels were monitored in the vicinity of the drilling, in the existing wells HC-1 and HC-6, as well as in the newly drilled wells, MV-1, MV-2 and MV-3 and their associated piezometers. Periodic water level measurements were also made in existing wells HC-2, HC-3, HC-4, HC-5 and HC-7. A lithium bromide chemical tracer was added to drilling fluids during the installation of the monitoring and validation (MV) wells and piezometers. The zones of interest were the fractured, jointed and faulted horizons within a granitic body. These horizons generally have moderate hydraulic conductivities. As a result, the wells and their shallower piezometers required strenuous purging and development to remove introduced drilling fluids as evidenced by bromide concentrations. After airlift and surging well development procedures, the wells were pumped continuously until the bromide concentration was less then 1 milligram per liter (mg/L). Water quality samples were collected after the well development was completed. Tritium scans were preformed before other analyses to ensure the absence of high levels of radioactivity. Tritium levels were less than 2,000 pico-curies per liter. Samples were also analyzed for carbon-14 and iodine-129, stable isotopes of oxygen and hydrogen, as well as major cations and anions. Aquifer tests were performed in each MV well after the bromide concentration fell below acceptable levels. Water level data from the aquifer tests were used to compute aquifer hydraulic conductivity and transmissivity

B. Lyles; P. Oberlander; D. Gillespie; D. Donithan; J. Chapman; J. Healey

2007-02-14T23:59:59.000Z

453

Efficient Conservative Numerical Schemes for 1D Nonlinear Spherical Diffusion Equations with Applications in Battery Modeling  

E-Print Network (OSTI)

Mathematical models of batteries which make use of the intercalation of a species into a solid phase need to solve the corresponding mass transfer problem. Because solving this equation can significantly add to the ...

Zeng, Yi

454

NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES  

E-Print Network (OSTI)

though, that nutrient limitation coupled with fluid motion may play a key role as a physical control. Under this model, competitions of nutrients were setup among growing microbial communities, which later evolve into specially arranged, 3D mats. However...

Patel, Harsh Jay

2013-09-27T23:59:59.000Z

455

Mathematical Modelling and Numerical Simulation of Marine Ecosystems With Applications to Ice Algae.  

E-Print Network (OSTI)

??Sea-ice ecosystem modelling is a novel field of research. In this thesis, the main organism studied is sea-ice algae. A basic introduction to algae and (more)

Wickramage, Shyamila Iroshi Perera

2013-01-01T23:59:59.000Z

456

Numerical modeling of the ignition of a liquid hydrocarbon layer by a radiant heat pulse  

Science Journals Connector (OSTI)

A gas-phase model of radiative ignition of a flammable liquid is developed, allowing for absorption of the radiant flux in the gas phase. Using motor fuels (gasoline and diesel fuel), as examples, we demonstra...

Yu. V. Agabekov; F. G. Yagafarov

457

Detailed numerical modeling of chemical and thermal nonequilibrium in hypersonic flows  

SciTech Connect

Interest in hypersonic flows has created a large demand for physicochemical models for air flow computations around reentry bodies. Detailed physicochemical models for air in chemical and thermal nonequilibrium are needed for a realistic prediction of hypersonic flowfields. In this paper we develop a model, based on elementary physicochemical processes, for a detailed description of chemical nonequilibrium together with the excitation of internal DOFs. This model is implemented in a 2D Navier-Stokes code in order to show the strong influence of thermal nonequilibrium on the flowfields. The algorithm presented here is based on a fully conservative discretization of the inviscid fluxes in the conservation equations and uses the chain rule conservation law form for the viscous fluxes. The large system of ordinary differential and algebraic equations resulting from the spatial discretization is solved by a time-accurate semiimplicit extrapolation method. 34 refs.

Riedel, U.; Maas, U.; Warnatz, J. (Stuttgart Univ. (Germany))

1993-03-01T23:59:59.000Z

458

A numerical model for ultimate soil resistance to an untrenched pipeline under ocean currents  

Science Journals Connector (OSTI)

One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model ... the partially-embedded pipeli...

Fu-ping Gao ???; Xi-ting Han ???; Shu-ming Yan ???

2012-06-01T23:59:59.000Z

459

Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Haet Exchangers  

E-Print Network (OSTI)

installation separation range. Non-homogenous media were modeled by varying backfill thermal conductivity. Maximum heat transfer was achieved with a fictitious backfill thermal conductivity of 1,000 W/m-K, while measured bentonite backfill conductivities were...

Muraya, Norman K.

460

Photochemical Numerics for Global-Scale Modeling: Fidelity and GCM Testing  

Science Journals Connector (OSTI)

Atmospheric photochemistry lies at the heart of global-scale pollution problems, but it is a nonlinear system embedded in nonlinear transport and so must be modeled in three dimensions. Total earth grids are massive and kinetics require dozens of ...

Scott Elliott; Xuepeng Zhao; Richard P. Turco; Chih-Yue Jim Kao; Mei Shen

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "numerical model validation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development and numerical implementation of nonlinear viscoelastic-viscoplastic model for asphalt materials  

E-Print Network (OSTI)

pavements is illustrated using finite element simulations. The constitutive model developed in this study can describe the behavior of asphalt materials (asphalt binder, asphalt mastic and mixtures) under various testing conditions. This study also achieved...

Huang, Chien-Wei

2009-05-15T23:59:59.000Z

462

Evaluation of Precipitation from Numerical Weather Prediction Models and Satellites Using Values Retrieved from Radars  

Science Journals Connector (OSTI)

Precipitation is evaluated from two weather prediction models and satellites, taking radar-retrieved values as a reference. The domain is over the central and eastern United States, with hourly accumulated precipitation over 21 days for the ...

Slavko Vasi?; Charles A. Lin; Isztar Zawadzki; Olivier Bousquet; Diane Chaumont

2007-11-01T23:59:59.000Z

463

NUMERICAL MODEL OF TRANSIENT TWO-PHASE FLOW IN A WELLBORE  

E-Print Network (OSTI)

Wellbore storage in geothermal wells: presented at 1979two-phase flow in a geothermal well has been modelled with asteam water flow in geothermal wells: Journal of Petroleum

Miller, Constance W.

2012-01-01T23:59:59.000Z

464

Numerical and analytical modeling of heat transfer between fluid and fractured rocks  

E-Print Network (OSTI)

Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

Li, Wei, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

465

Numerical Simulation of Cold Pressing of Armstrong CP-Ti Powders  

SciTech Connect

Numerical simulation results for the cold pressing of Armstrong CP-Ti Powders are presented. The computational model was implemented in the commercial finite element program ABAQUSTM. Several simulation cases were conducted for cylindrical samples with different friction coefficients and different compaction pressures, under both single-action and dual-action uniaxial pressing. Numerical simulation results for the density distribution are compared against experimental data in order to validate the computational model.

Sabau, Adrian S [ORNL] [ORNL; Gorti, Sarma B [ORNL] [ORNL; Peter, William H [ORNL] [ORNL; Chen, Wei [ORNL] [ORNL; Yamamoto, Yukinori [ORNL] [ORNL

2012-01-01T23:59:59.000Z

466

The numerical solution of a nickel-cadmium battery cell model using the method of lines  

E-Print Network (OSTI)

systems of ODE's, this scheme may be preferable. 3. Conduction in Two Connected Slabs with Different Thermal Conductivities The mathematical modeling of the Ni-Cd battery cell results in a multi-domain problem. Solution of multi domain PDE's using... systems of ODE's, this scheme may be preferable. 3. Conduction in Two Connected Slabs with Different Thermal Conductivities The mathematical modeling of the Ni-Cd battery cell results in a multi-domain problem. Solution of multi domain PDE's using...

Hailu, Teshome

2012-06-07T23:59:59.000Z

467

Short term performance comparisons between a solar thermosyphon water heater and two numerical models  

SciTech Connect

An experimental study of a solar thermosyphon domestic water heater was conducted in the indoor solar simulator facility at Colorado State University (Bickford, 1994). The system consisted of a closed-loop collector circuit filled with propylene glycol and water solution and a horizontal storage tank with an annular tank-in-tank heat exchanger. Short-term irradiated tests with and without timed draws were performed to assess overall performance and monitor collector flow rate, storage tank stratification, and heat exchanger temperature distribution. The measured performance was compared with the ``standard`` thermosyphon model in TRNSYS 13.1 (transient system simulation program). A revised TRNSYS model was developed by Graham Morrison at the University of New South Wales, Australia. The revised model specifically addressed the horizontal tank, closed-loop configuration. The standard TRNSYS version predicted solar gain within 17% of the measured values and differed dramatically from experimental collector temperatures, closed-loop flow rate, and tank stratification. This is not surprising since this model does not include the tank and tank heat exchanger. The revised TRNSYS model agreed more closely with experimental results. It predicted closed-loop flow at 8% lower than observed flow and collector temperature rise that was higher than the observed flow by approximately the same amount, resulting in extremely accurate prediction of collector output energy. Losses from the storage tank and piping were significantly underpredicted in both models, however.

Bickford, C.; Hittle, D.C. [Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.

1995-11-01T23:59:59.000Z

468

A Global Time-Dependent Model of Thunderstorm Electricity. Part I: Mathematical Properties of the Physical and Numerical Models  

Science Journals Connector (OSTI)

A time-dependent model that simulates the interaction of a thunderstorm with its electrical environment is introduced. The model solves the continuity equation of the Maxwell current density that includes conduction, displacement, and source ...

G. L. Browning; I. Tzur; R. G. Roble

1987-08-01T23:59:59.000Z

469

Satellite Data Assimilation in Numerical Weather Prediction Models. Part I: Forward Radiative Transfer and Jacobian Modeling in Cloudy Atmospheres  

Science Journals Connector (OSTI)

Satellite data assimilation requires rapid and accurate radiative transfer and radiance gradient models. For a vertically stratified scattering and emitting atmosphere, the vector discrete-ordinate radiative transfer model (VDISORT) was developed ...

Fuzhong Weng; Quanhua Liu

2003-11-01T23:59:59.000Z

470

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents  Near-field (Vicinity of the Device)  Flow redirection  Interaction with marine life  Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

471

Development and Validation of a One-Dimensional Co-Electrolysis Model for Use in Large-Scale Process Modeling Analysis  

SciTech Connect

A one-dimensional chemical equilibrium model has been developed for analysis of simultaneous high-temperature electrolysis of steam and carbon dioxide (coelectrolysis) for the direct production of syngas, a mixture of hydrogen and carbon monoxide. The model assumes local chemical equilibrium among the four process-gas species via the shift reaction. For adiabatic or specified-heat-transfer conditions, the electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. Alternately, for isothermal operation, it allows for determination of outlet composition, mean Nernst potential, operating voltage, electrolyzer power, and the isothermal heat requirement for specified inlet gas flow rates, operating temperature, current density and area-specific resistance. This model has been developed for incorporation into a system-analysis code from which the overall performance of large-scale coelectrolysis plants can be evaluated. The one-dimensional co-electrolysis model has been validated by comparison with results obtained from a 3-D computational fluid dynamics model and by comparison with experimental results.

J. E. O'Brien; M. G. McKellar; G. L. Hawkes; C. M. Stoots

2007-07-01T23:59:59.000Z

472

Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint  

SciTech Connect

During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

Li, Y.; Yu, Y. H.

2012-05-01T23:59:59.000Z

473

Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir  

Science Journals Connector (OSTI)

Contrary to more traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. ... For example, in the petroleum industry, CFD models have been developed since the 1970s to help optimize oil production by steam flooding. ... (2) Since the 1980s, an increasing number of problems in environmental engineering, such as the contamination of groundwater due to subsurface leakage of petroleum products, has been a concern for governments and industries that has led to the development of multiphase multicomponent models to simulate the transport of contaminants in the subsurface. ...

Isaac K. Gamwo; Yong Liu

2010-03-10T23:59:59.000Z

474

Modelling market diffusion of electric vehicles with real world driving data Part I: Model structure and validation  

Science Journals Connector (OSTI)

Abstract The future market diffusion of electric vehicles (EVs) is of great importance for transport related green house gas emissions and energy demand. But most studies on the market diffusion of \\{EVs\\} focus on average driving patters and neglect the great variations in daily driving of individuals present in real-world driving data. Yet these variations are important for \\{EVs\\} since range limitations and the electric driving share of plug-in hybrids strongly impact the economic evaluation and consumer acceptance of EVs. Additionally, studies often focus on private cars only and neglect that commercial buyers account for relevant market shares in vehicle sales. Here, we propose a detailed, user specific model for the market diffusion of \\{EVs\\} and evaluation of EV market diffusion policies based on real-world driving data. The data and model proposed include both private and commercial users in Germany and allow the calculation of realistic electric driving shares for all usage patterns. The proposed model explicitly includes user heterogeneity in driving behaviour, different user groups, psychological aspects and the effect of charge-at-home options. Our results show that the proposed model reproduces group specific market shares, gives confidence bands of market shares and simulates individual electric driving shares.

Patrick Pltz; Till Gnann; Martin Wietschel

2014-01-01T23:59:59.000Z

475

A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects  

Science Journals Connector (OSTI)

Abstract In the context of the current rapid development of large-scale solar power projects, the accuracy of the modeled radiation datasets regularly used by many different interest groups is of the utmost importance. This process requires careful validation, normally against high-quality measurements. Some guidelines for a successful validation are reviewed here, not just from the standpoint of solar scientists but also of non-experts with limited knowledge of radiometry or solar radiation modeling. Hence, validation results and performance metrics are reported as comprehensively as possible. The relationship between a desirable lower uncertainty in solar radiation data, lower financial risks, and ultimately better bankability of large-scale solar projects is discussed. A description and discussion of the performance indicators that can or should be used in the radiation model validation studies are developed here. Whereas most indicators are summary statistics that attempt to synthesize the overall performance of a model with only one number, the practical interest of more elaborate metrics, particularly those derived from the KolmogorovSmirnov test, is discussed. Moreover, the important potential of visual indicators is also demonstrated. An example of application provides a complete performance analysis of the predictions of clear-sky direct normal irradiance obtained with six models of the literature at Tamanrasset, Algeria, where high-turbidity conditions are frequent.

Christian A. Gueymard

2014-01-01T23:59:59.000Z

476

Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits  

E-Print Network (OSTI)

. A fully three- dimensional dynamical model of Sony's four-legged robot is used to state an optimal control robots is still a challenge. For a given gait pattern, landing time and point of each leg are prescribed, i.e. they depend on parameters. The trajectory of each joint between lift-off and landing

Stryk, Oskar von

477

Numerical Modelling of Tide-Surge Interaction in the Bay of Bengal  

Science Journals Connector (OSTI)

...tropical cyclone led to severe inland flooding. This is one of the few events for which...response are correctly reproduced. A model simulation is also made of the surge that occurred...level and eyewitness accounts of inland flooding. The principal requirement for the operational...

1985-01-01T23:59:59.000Z

478

Mathematical Modelling and Numerical Analysis Will be set by the publisher Modelisation Mathematique et Analyse Numerique  

E-Print Network (OSTI)

´ematique et Analyse Num´erique A NULL CONTROLLABILITY DATA ASSIMILATION METHODOLOGY APPLIED TO A LARGE SCALE assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation

Osses, Axel

479

Electrochimica Acta 51 (2006) 31393150 Direct numerical simulation (DNS) modeling of PEFC electrodes  

E-Print Network (OSTI)

Elsevier Ltd. All rights reserved. Keywords: Polymer electrolyte fuel cell; Cathode catalyst layer; Pore. The fuel (i.e. hydrogen) and oxidant (i.e. oxygen) react electrochemically in the active catalyst layers) model is developed to achieve pore-level description of polymer electrolyte fuel cell (PEFC) electrodes