Validation of Erosion Modeling: Physical and Numerical Mehrad Kamalzare1
Franklin, W. Randolph
-3590 ABSTRACT The overall intent of this research is to develop numerical models of erosion of levees, dams is necessary for emergency plans for levee or dam breaches. Griffis, 2007 addressed the overall design and hydraulic shear stress. #12;2 Xu and Zhang (2009) found that in addition to soil type, the degree
Development and validation of a vertically two-dimensional mesoscale numerical model
Walters, Michael Kent
1985-01-01T23:59:59.000Z
DEVELOPMENT AND VALIDATION OF A VERTICALLY TWO-DIMENSIONAL MESOSCALE NUMERICAL MODEL A Thesis by MICHAEL KENT WALTERS Submitted to the Graduate College of Texas AsM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1985 Major Subject: Meteorology DEVELOPMENT AND VALIDATION OF A VERTICALLY TWO-DIMENSIONAL MESOSCALE NUMERICAL MODEL A Thesis by MICHAEL KENT WALTERS Approved as to style and content by: Dusan Djuric (Chair of Committee) WP...
Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University
2011-01-01T23:59:59.000Z
A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.
Bruneau, Steve
in Pack Ice Roelof C. Dragt Offshore Engineering Faculty of Mechanical, Maritime and Material Engineering of experiments to validate a Graphics Processing Unit based numerical modelling of ship operations in 2D pack ice interaction, 2D Model Experiments, Image Processing. I. INTRODUCTION A ship travelling through pack ice
Banerjee, Debjyoti
microfluidics Jonathan Siegrist,*a Mary Amasia,a Navdeep Singh,b Debjyoti Banerjeeb and Marc Madoua Received 1st analysis of microchamber filling in centrifugal microfluidics is presented. In the development of micro on centrifugal microfluidic platforms, numerical modeling using the Volume of Fluids method is performed
Experimental Validation of a Numerical Multizone Airflow and Pollutant Transfer Model
Paris-Sud XI, Université de
and long-term assessment of the performances of ventilation systems, the experimental house MARIA and ventilation systems are modeled in MATLAB/Simulink environment. This paper quickly describes the multi exhaust, balanced and natural ventilation systems. In addition, the virtual laboratory SIMBAD Building
Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical
Washington at Seattle, University of
""r,c,rn The authors are for hel]JfuI #12;Abstract Constructing maps of pollution levels is vital for air quality concentrations. Key tlJords: air pollution, Ba~yesian inference, change of support, likelihood approaches, Matern Resolutions 2.5 Modeling a Nonstationary Covariance . 3 Estimation 3.1 Algorithm 4 Application: Air Pollution
Development and validation of a vertically two-dimensional mesoscale numerical model
Walters, Michael Kent
1985-01-01T23:59:59.000Z
) ds ' ? gHpls1 h s + gHps g the first law of thermodynamics, and the boundary condition s = 0 at the top of the model. The derived equations used are the following: ~ = ? V Vp ? s W + ~ (~) a d as Tp dt 1 D ? V p( Q ) C T s = --(~) 1 7dt 1 Q... are evenly spaced at an interval of 5 x/2, while the vertical grid points are evenly spaced at an increment of Q s/2. . K4&H&&%& . W&H&&& ~ ~ ~ ~ ~ ~ ~ ~ I 12 4 x is equal to 45 km, while 6 s is equivalent to 250 m in the simulations...
Baudouin, Lucie
A controlled distributed parameter model for a fluid-flexible structure system: numerical consider the problem of active reduction of vibrations in a fluid-flexible structure system and the sloshing of the fuel inside the wing's tank. The control is performed using piezoelectric patches
Model Validation Status Review
E.L. Hardin
2001-11-28T23:59:59.000Z
The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.
Feature extraction for structural dynamics model validation
Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO
2010-11-08T23:59:59.000Z
This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.
Model Verification and Validation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville PowerTariff Pages default SignEnergy4 3.4 Myriam Perez De la Rosa1, GillesMode AnalysesU.S.Model
Model Verification and Validation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex andFOUR Los Phase 1Miller winsMission and| Department ofModel
A numerical model of perturbation gas chromatography
DeBarro, Marc Joseph
1985-01-01T23:59:59.000Z
for in the model presented by Glover and Lsu. These mass transfer resistances are accommodated through an overall gss side mass transfer coefficient. Numerically generated peaks are compared to experimental profiles to con- firm the validity to the equations... and the method. Various solvent/polybutadiene systems are explored and individual profiles of the species are examined to under- stand the interaction which occurs between components for multicomponent sys- tems. Both ternary and quaternary systems...
Modeling Fluid Flow in Natural Systems, Model Validation and...
Office of Environmental Management (EM)
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are...
Lattice Boltzmann Model for Numerical Relativity
Ilseven, E
2015-01-01T23:59:59.000Z
In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Laser spark plug numerical design process with experimental validation
McIntyre, D.; Woodruff, S.
2011-01-01T23:59:59.000Z
This work reports the numerical modeling design procedure for a miniaturized laser spark plug. In previous work both side pumped and end pumped laser spark plugs were empirically designed and tested. Experimental data from the previous laser spark plug development cycles is compared to the output predicted by a known set of rate equations. The rate equations are used to develop interrelated inter cavity time dependent waveforms that are then used to identify key variables. These variables are then input to a set of secondary equations for determining the output pulse energy, output power, and output pulse width of the simulated laser system. The physical meaning and the operation of the rate equations is explained in detail. This paper concentrates on the process and decision points needed to successfully design a solid state passively Q-switched laser system, either side pumped or end pumped, that produces the appropriate output needed for use as a laser spark plug for internal combustion engines.
Surussavadee, Chinnawat
2007-01-01T23:59:59.000Z
This thesis develops and validates the MM5/TBSCAT/F([lambda]) model, composed of a mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for ...
Numerical Modeling of Nonlinear Coupling between Lines/Beams with Multiple Floating Bodies
Yang, Chan K.
2010-07-14T23:59:59.000Z
STUDY 1: HYDRO-PNEUMATIC TENSIONER MODEL FOR SPAR GLOBAL PERFORMANCE ANALYSIS ................................................102 4.1 Introduction... ....................................................................................................102 4.2 Principal Dimensions of Spar System............................................................102 4.3 Numerical Model............................................................................................104 4.4 Validation of the Model...
Maui Electrical System Simulation Model Validation
Maui Electrical System Simulation Model Validation Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 9 Deliverable Baseline Model Validation By GE Global Research Niskayuna, New York And University of Hawaii Hawaii Natural
Design, Modeling, and Validation of a Flame Reformer for LNT...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration...
Demonstrating and Validating a Next Generation Model-Based Controller...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Demonstrating and Validating a Next Generation Model-Based Controller for...
Probabilistic Methods for Model Validation
Halder, Abhishek
2014-05-01T23:59:59.000Z
Instead of Moments or Sets . . . . . 6 1.3.4 Methodology and Organization . . . . . . . . . . . . . . . . . 8 1.4 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . . 9 2. UNCERTAINTY PROPAGATION FOR DETERMINISTIC FLOW . . . . 12 2...’s Density Function Based Model Fal- sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 xv 5. CASE STUDY: F-16 CONTROLLER ROBUSTNESS VERIFICATION...
Numerical wind speed simulation model
Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.
1981-09-01T23:59:59.000Z
A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.
INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS
03/10/99 1 INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS Jeffrey D-coupled, ground-source heat pumps, groundwater, heat pump, heat exchanger, heat transfer, numerical models transport of heat by moving groundwater may be an important factor in reducing the necessary size of closed
Low frequency eddy current benchmark study for model validation
Mooers, R. D.; Boehnlein, T. R. [University of Dayton Research Institute, Structural Integrity Division, Dayton, OH, 45469 (United States); Cherry, M. R.; Knopp, J. S. [Air Force Research Lab, NDE Division, Wright Patterson, OH 45433 (United States); Aldrin, J. C. [Computational Tools, Gurnee, IL 60031 (United States); Sabbagh, H. A. [Victor Technologies LLC, Bloomington, IN 47401 (United States)
2011-06-23T23:59:59.000Z
This paper presents results of an eddy current model validation study. Precise measurements were made using an impedance analyzer to investigate changes in impedance due to Electrical Discharge Machining (EDM) notches in aluminum plates. Each plate contained one EDM notch at an angle of 0, 10, 20, or 30 degrees from the normal of the plate surface. Measurements were made with the eddy current probe both scanning parallel and perpendicular to the notch length. The experimental response from the vertical and oblique notches will be reported and compared to results from different numerical simulation codes.
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; /Fermilab; Brueck, H.D.; /DESY
2011-06-10T23:59:59.000Z
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
High performance computing and numerical modelling
,
2014-01-01T23:59:59.000Z
Numerical methods play an ever more important role in astrophysics. This is especially true in theoretical works, but of course, even in purely observational projects, data analysis without massive use of computational methods has become unthinkable. The key utility of computer simulations comes from their ability to solve complex systems of equations that are either intractable with analytic techniques or only amenable to highly approximative treatments. Simulations are best viewed as a powerful complement to analytic reasoning, and as the method of choice to model systems that feature enormous physical complexity such as star formation in evolving galaxies, the topic of this 43rd Saas Fee Advanced Course. The organizers asked me to lecture about high performance computing and numerical modelling in this winter school, and to specifically cover the basics of numerically treating gravity and hydrodynamics in the context of galaxy evolution. This is still a vast field, and I necessarily had to select a subset ...
Boron-10 Lined Proportional Counter Model Validation
Lintereur, Azaree T.; Siciliano, Edward R.; Kouzes, Richard T.
2012-06-30T23:59:59.000Z
The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project “Coincidence Counting With Boron-Based Alternative Neutron Detection Technology” at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.
Validation Analysis of the Shoal Groundwater Flow and Transport Model
A. Hassan; J. Chapman
2008-11-01T23:59:59.000Z
Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d
Gokaltun, Seckin [Florida International Univ., Miami, FL (United States); Munroe, Norman [Florida International Univ., Miami, FL (United States); Subramaniam, Shankar [Iowa State Univ., Ames, IA (United States)
2014-12-31T23:59:59.000Z
This study presents a new drag model, based on the cohesive inter-particle forces, implemented in the MFIX code. This new drag model combines an existing standard model in MFIX with a particle-based drag model based on a switching principle. Switches between the models in the computational domain occur where strong particle-to-particle cohesion potential is detected. Three versions of the new model were obtained by using one standard drag model in each version. Later, performance of each version was compared against available experimental data for a fluidized bed, published in the literature and used extensively by other researchers for validation purposes. In our analysis of the results, we first observed that standard models used in this research were incapable of producing closely matching results. Then, we showed for a simple case that a threshold is needed to be set on the solid volume fraction. This modification was applied to avoid non-physical results for the clustering predictions, when governing equation of the solid granular temperate was solved. Later, we used our hybrid technique and observed the capability of our approach in improving the numerical results significantly; however, improvement of the results depended on the threshold of the cohesive index, which was used in the switching procedure. Our results showed that small values of the threshold for the cohesive index could result in significant reduction of the computational error for all the versions of the proposed drag model. In addition, we redesigned an existing circulating fluidized bed (CFB) test facility in order to create validation cases for clustering regime of Geldart A type particles.
Numerical modeling of vertical cavity semiconductor lasers
Chow, W.W.; Hadley, G.R.
1996-08-01T23:59:59.000Z
A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.
Validating agent based models through virtual worlds.
Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina [Sandia National Laboratories, Livermore, CA; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E. [North Carolina State University, Raleigh, NC; Bernstein, Jeremy Ray Rhythm [Gaikai, Inc., Aliso Viejo, CA
2014-01-01T23:59:59.000Z
As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior. Results from our work indicate that virtual worlds have the potential for serving as a proxy in allocating and populating behaviors that would be used within further agent-based modeling studies.
NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION
Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.
2011-11-01T23:59:59.000Z
Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.
Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys
Grilli, Stéphan T.
Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 are presented for numerical simulations and field experiments using point absorption ocean wave energy and experimental data. Index Terms energy conversion, wave energy harvesting, linear generator, ocean energy
Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...
models were made to analyze the transient behavior of extensional basin and range geothermal systems. Notes Numerical models were made utilizing a range of bulk rock...
Minisymposium on Validated Methods: Applications to Modeling, Analysis,
Kreinovich, Vladik
in Medicine and Engineering Organizers: Andreas Rauh1 and Ekaterina Auer2 During the last decades, computer of the mathematical model of the considered process. In this minisymposium, we focus on validated methods as a meansMinisymposium on Validated Methods: Applications to Modeling, Analysis, and Design of Systems
Bayesian-based simulation model validation for spacecraft thermal systems
Stout, Kevin Dale
2015-01-01T23:59:59.000Z
Over the last several decades of space flight, spacecraft thermal system modeling software has advanced significantly, but the model validation process, in general, has changed very little. Although most thermal systems ...
A numerical model of aerosol scavenging
Bradley, M.M.; Molenkamp, C.R.
1991-10-01T23:59:59.000Z
Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate.
Systematic approach to verification and validation: High explosive burn models
Menikoff, Ralph [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory
2012-04-16T23:59:59.000Z
Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.
System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report
Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.
2013-12-01T23:59:59.000Z
The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.
Fractional Euler-Bernoulli beams: theory, numerical study and experimental validation
Wojciech Sumelka; Tomasz Blaszczyk; Christian Liebold
2015-02-05T23:59:59.000Z
In this paper the classical Euler-Bernoulli beam (CEBB) theory is reformulated utilising fractional calculus. Such generalisation is called fractional Euler-Bernoulli beams (FEBB) and results in non-local spatial description. The parameters of the model are identified based on AFM experiments concerning bending rigidities of micro-beams made of the polymer SU-8. In experiments both force as well as deflection data were recorded revealing significant size effect with respect to outer dimensions of the specimens. Special attention is also focused on the proper numerical solution of obtained fractional differential equation.
Multi-terminal Subsystem Model Validation for Pacific DC Intertie
Yang, Bo; Huang, Zhenyu; Kosterev, Dmitry
2008-07-20T23:59:59.000Z
this paper proposes to validate dynamic model of Pacific DC Intertie with the concept of hybrid simulation by combing simulation with PMU measurements. The Playback function available in GE PSLF is adopted for hybrid simulation. It is demonstrated for the first time the feasibility of using Playback function on multi-terminal subsystem. Sensitivity studies are also presented as a result of common PMU measurement quality problem, ie, offset noise and time synchronization. Results indicate a good tolerance of PDCI model generally. It is recommended that requirements should apply to phasor measurements in model validation work to ensure better analysis. Key parameters are identified based on impact of value change to model behavior. Two events are employed for preliminary model validation with PMU measurements. Suggestions are made for PDCI model validation work in the future.
Numerical Modeling of the Nucleation Conditions of Petal-Centerline...
Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Numerical Modeling of the Nucleation Conditions of...
Ahmed Hassan
2003-01-01T23:59:59.000Z
Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and applied to determine the validity of site-specific groundwater models. This is true for both deterministic and stochastic models, with the latter posing a more difficult and challenging problem when it comes to validation. This report then proposes a general validation approach for the CNTA model, which addresses some of the important issues recognized in previous validation studies, conferences, and symposia as crucial to the process. The proposed approach links model building, model calibration, model predictions, data collection, model evaluations, and model validation in an iterative loop. The approach focuses on use of collected validation data to reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical models. It accounts for the stochastic nature of the numerical CNTA model, which used Monte Carlo simulation approach. The proposed methodology relies on the premise that absolute validity is not even a theoretical possibility and is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of the model as possible and using as many diverse statistical tools as possible for rigorous checking and confidence building in the model and its predictions. It is this confidence that will eventually allow for regulator and public acceptance of decisions based on the model predictions.
Evolution of the Bohemian Massif: Insights from numerical modeling
Cerveny, Vlastislav
Evolution of the Bohemian Massif: Insights from numerical modeling Petra Maierová Supervisor: Doc of Geophysics Faculty of Mathematics and Physics Charles University in Prague #12;February 4, 2013Evolution Conclusions Outline #12;February 4, 2013Evolution of the Bohemian Massif: Insights from numerical modeling 3
Numerical Modeling of Eastern Connecticut's Visual Resources1
Conservation, The University of Connecticut, Storrs, Connecticut. / Abstract: A numerical model capableNumerical Modeling of Eastern Connecticut's Visual Resources1 Daniel L. Civco 2/ l Submitted of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut
Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models
Tackley, Paul J.
Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models John W. Hernlund,1,2 Paul J. Tackley,1,3 and David J. Stevenson4 Received 18 November 2006; revised 18 October 2007 diffusely extending lithosphere is studied using numerical convection models covering a wide range
Starting laminar plumes: Comparison of laboratory and numerical modeling
van Keken, Peter
Starting laminar plumes: Comparison of laboratory and numerical modeling Judith Vatteville Institut, France (davaille@fast.u-psud.fr) [1] A detailed comparison of starting laminar plumes in viscous fluids. Davaille (2009), Starting laminar plumes: Comparison of laboratory and numerical modeling, Geochem. Geophys
A numerical model simulation of longshore transport for Galveston Island
Gilbreath, Stephen Alexander
1995-01-01T23:59:59.000Z
The shoreline changes, deposition patterns, and longshore transport rates were calculated for the coast of Galveston Island using a numerical model simulation. The model only simulated changes due to waves creating longshore currents. East Beach...
NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE
Abdou, Mohamed
NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE Xiao-Yong Luo, Ming-Jiu Ni for multiphase flows. A con- tinuum surface force (CSF) tension model is used in the present cases. Phase change
Numerical models of phosphate esters in the Chattahoochee River
Haffey, Samuel Fraad, 1973-
2004-01-01T23:59:59.000Z
A numerical model was constructed to assess the magnitude of organophosphoric acid triester sinks in the Chattahoochee River and to identify concentration patterns downstream of point source discharges. The model was built ...
Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...
DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS
Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen
2009-07-01T23:59:59.000Z
The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.
Numerical study of energy diffusion in King models
Tom Theuns
1995-11-07T23:59:59.000Z
The energy diffusion coefficients D_n(E) (n=1,2) for a system of equal mass particles moving self-consistently in an N-body realisation of a King model are computed from the probability per unit time, P(E, Delta E), that a star with initial energy E will undergo an energy change Delta E. In turn, P is computed from the number of times during the simulation that a particle in a state of given energy undergoes a transition to another state. These particle states are defined directly from the time evolution of E by identifying them with the event occuring between two local maxima in the E(t) curve. If one assumes next that energy changes are uncorrelated between different states, one can use diffusion theory to compute D_n(E). The simulations employ N=512, 2048,... , 32768 particles and are performed using an implementation of Aarseth's direct integrator N-body1 on a massively parallel computer. The more than seven million transitions measured in the largest N simulation provide excellent statistics. The numerically determined D(E)'s are compared against their theoretical counterparts which are computed from phase-space averaged rates of energy change due to independent binary encounters. The overall agreement between them is impressive over most of the energy range, notwithstanding the very different type of approximations involved, giving considerable support to the valid usage of these theoretical expressions to simulate dynamical evolution in Fokker-Planck type calculations.
Validation of nuclear models used in space radiation shielding applications
Norman, Ryan B., E-mail: Ryan.B.Norman@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Blattnig, Steve R. [NASA Langley Research Center, Hampton, VA 23681 (United States)] [NASA Langley Research Center, Hampton, VA 23681 (United States)
2013-01-15T23:59:59.000Z
A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.
Scan welding: Thermomechanical model and experimental validation
Fourligkas, N.; Doumanidis, C.C. [Tufts Univ., Medford, MA (United States)
1996-12-31T23:59:59.000Z
This article presents a comparative thermomechanical analysis of classical versus the new scan welding methods, that have been recently developed to achieve simultaneous control of multiple weld quality features. Unlike conventional welding with a concentrated heat source in sequential motion, the scan welding torch reciprocates rapidly on dynamic trajectories, and its power is modulated in-process, to provide a regulated heat input distribution on the entire weld surface. The new process was modeled by a real-time analytical, lumped model, consisting of a composite heat source description, double-cell circulation in the weld puddle, dynamic solid conduction and estimation of the mechanical strength of the joint. The process is computationally and experimentally shown to generate a smooth and uniform temperature field, and to deposit the full length of the weld bead simultaneously at a controlled solidification rate. The observed interlacing of grains on the bead interface and the regulated material microstructure yield improved tensile joint strength. The model can be used for design of a closed-loop thermal controller, using temperature feedback from an infrared pyrometer and model-referenced parameter identification.
Vehicle Model Validation | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |Efficiency Â» Searchto IncreaseIntake Event- NTE 4VulnerabilitiesVARIABLE SPEED DRIVESof1|Model
Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction
Wirosoetisno, Djoko
Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction Supervisors). Background: Numerical Weather Prediction (NWP) has seen significant gains in accuracy in recent years due in weather dynamics, e.g., the asymptotic balance seen in high and low pressure systems. Aims of the project
Experiments for foam model development and validation.
Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.
2008-09-01T23:59:59.000Z
A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.
Validation of DWPF MOG dynamics model -- Phase 1
Choi, A.S.
1996-09-23T23:59:59.000Z
The report documents the results of a study to validate the DWPF melter off-gas system dynamics model using the data collected during the Waste Qualification Runs in 1995. The study consisted of: (1) calibration of the model using one set of melter idling data, (2) validation of the calibrated model using three sets of steady feeding and one set of transient data, and (3) application of the validated model to simulate the melter overfeeding incident which took place on 7/5.95. All the controller tuning constants and control logic used in the validated model are identical to those used in the DCS in 1995. However, the model does not reflect any design and/or operational changes made in 1996 to alleviate the glass pouring problem. Based on the results of the overfeeding simulation, it is concluded that the actual feed rates during that incident were about 2.75 times the indicated readings and that the peak concentration of combustible gases remained below 15% of the lower flammable limit during the entire one-hour duration.
Fully kinetic numerical modeling of a plasma thruster
Szabo, James Joseph, 1969-
2001-01-01T23:59:59.000Z
A Hall effect plasma thruster with conductive acceleration channel walls was numerically modeled using 2D3V Particle-in-Cell (PIC) and Monte-Carlo Collision (MCC) methodolo- gies. Electron, ion, and neutral dynamics were ...
Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Li, Nailu; Balas, Mark J.; Yang, Hua; Jiang, Wei; Magar, Kaman T.
2015-01-01T23:59:59.000Z
This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore »case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less
Numerical studies of a simple Coulomb blockade model
Shao, Jianfeng
1991-01-01T23:59:59.000Z
NUMERICAL STUDIES OF A SIMPLE COULOMB BLOCKADE MODEL A Thesis by JIANFENG SHAO Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991... Major Subject: Physics NUMERICAL STUDIES OF A SIMPLE COULOMB BLOCKADE MODEL A Thesis by JIANFENG SHAO Approved as to style and content by: Roland E, Allen (Chair of Committee) /, 1 r oseph H. R s ( Member) Chin B. Su (Member) Richard L...
Direct Methanol Fuel Cell Experimental and Model Validation Study
Wang, Chao-Yang
Direct Methanol Fuel Cell Experimental and Model Validation Study M. Mench, J. Scott, S. Thynell boundary Fuel cell performance Current density distribution measurements Conclusions #12;3 Method, flow rate, species inlet and fuel cell temperature, and humidity. Transparent polycarbonate windows
Foundation Heat Exchanger Model and Design Tool Development and Validation
Foundation Heat Exchanger Model and Design Tool Development and Validation The attached document the following: Lee, E.S., D.E. Fisher and J.D. Spitler. 2013. Efficient Horizontal Ground Heat Exchanger Heat Exchangers. Journal of Building Performance Simulation. 6(2): 81-97. Xing, L., J.R. Cullin and J
Modeling and Validating Hybrid Systems Using VDM and Mathematica
of the state changes discretely, the other part changes continuously over time. Typically, modern control interface and data animation. 1 Introduction Modern control applications are realized throughModeling and Validating Hybrid Systems Using VDM and Mathematica Bernhard K. Aichernig and Reinhold
Validity of numerical trajectories in the synchronization transition of complex systems
R. L. Viana; C. Grebogi; S. E. de S. Pinto; S. R. Lopes; A. M. Batista; J. Kurths
2003-10-07T23:59:59.000Z
We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown {\\it via} unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same non-hyperbolic properties.
Query Based UML Modeling Validation and Verification of the System Model and
Austin, Mark
1 Query Based UML Modeling Validation and Verification of the System Model and Behavior. UML/SysML was designed to provide simple but powerful constructs for modeling a wide range of systems for a Hydraulic Crane Denny Mathew ENPM 643 System Validation and Verification Instructor: Dr. Mark Austin Fall
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-28T23:59:59.000Z
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Validating the BHR RANS model for variable density turbulence
Israel, Daniel M [Los Alamos National Laboratory; Gore, Robert A [Los Alamos National Laboratory; Stalsberg - Zarling, Krista L [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
The BHR RANS model is a turbulence model for multi-fluid flows in which density variation plays a strong role in the turbulence processes. In this paper they demonstrate the usefulness of BHR over a wide range of flows which include the effects of shear, buoyancy, and shocks. The results are in good agreement with experimental and DNS data across the entire set of validation cases, with no need to retune model coefficients between cases. The model has potential application to a number of aerospace related flow problems.
Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory
Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)
2014-11-15T23:59:59.000Z
We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.
Numerical Modeling of Brain Dynamics in Traumatic Situations -Impulsive Translations
Burtscher, Martin
.S.A. Abstract We numerically model the brain dy- namics during and after impulsive head translations using brain injuries appear among boxers and shaken babies despite minimal rotations of their heads. Modeling head translations also helps understand the brain dynamics during head rotations about an arbitrary
Numerical modelling and analysis of a room temperature magnetic
Numerical modelling and analysis of a room temperature magnetic refrigeration system Thomas Frank and analysis of a room temperature magnetic refrigeration system Department: Fuel Cells and Solid State-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration
Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan
Mancini, Simona
Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan LAMA (Laboratoire d'Analyse et de Mathmatiques Appliques) UPEM putu-harry.gunawan@univ.paris-est.fr Abstract Figure 1: Mangrove-Tsunami Model. The role of mangroves (coastal forests) in the mitigation of tsunami impacts is a debated topic
Diffusion and Dispersion Characterization of a Numerical Tsunami Model
Tolkova, Elena
Diffusion and Dispersion Characterization of a Numerical Tsunami Model David Burwell, Elena Tolkova and Arun Chawla February 6, 2007 1 Introduction Method Of Splitting Tsunami (MOST) is a depth averaged long wave tsunami inundation model that was originally developed by Titov and Synolakis (1995) for 1D
Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)
2005-04-01T23:59:59.000Z
Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.
VALIDATION OF EROSION MODELING: PHYSICAL AND Mehrad Kamalzare1
-3590 ABSTRACT The overall intent of this research is to develop numerical models of erosion of levees, dams is necessary for emergency plans for levee or dam breaches. Griffis, 2007 addressed the overall design and hydraulic shear stress. Xu and Zhang (2009) found that in addition to soil type, the degree of compaction
Numerical study and validation of one swirling flame , Sren K. Kr, Chungen Yin
Berning, Torsten
Department of Energy Technology Aalborg University, Pontoppidanstræde 101, 9220 Aalborg, Denmark Abstract-7]. The reliable experimental data are used as model database in TNF and reference for modelling studies. Large
Egorov, I., E-mail: egoris@tpu.ru [Institute of High Technology Physics, Tomsk Polytechnic University, 2a Lenin Avenue, Tomsk 634028 (Russian Federation)
2014-06-15T23:59:59.000Z
This paper describes the development of a computation model of a pulsed voltage generator for a repetitive electron accelerator. The model is based on a principle circuit of the generator, supplemented with the parasitics elements of the construction. Verification of the principle model was achieved by comparison of simulation with experimental results, where reasonable agreement was demonstrated for a wide range of generator load resistance.
NUMERICAL VERIFICATION OF THE RELAP-7 CORE CHANNEL SINGLE-PHASE MODEL
Haihua Zhao; Ling Zou; Hongbin Zhang; Richard Martineau
2014-06-01T23:59:59.000Z
The RELAP-7 code is the next generation of nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). All the physics in RELAP-7 are fully coupled and the errors resulted from the traditional operator-splitting approach are eliminated. By using 2nd order methods in both time and space and eliminating operator-splitting errors, the numerical error of RELAP-7 can be minimized. Numerical verification is the process to verify the orders of numerical methods. It is an important part of modern verification and validation process. The core channel component in RELAP-7 is designed to simulate coolant flow as well as the conjugated heat transfer between coolant flow and the fuel rod. A special treatment at fuel centerline to avoid numerical singularity for the cylindrical heat conduction in the continuous finite element mesh is discussed. One steady state test case and one fast power up transient test case are utilized for the verification of the core channel model with single-phase flow. Analytical solution for the fuel pin temperature and figures of merit such as peak clad temperature and peak fuel temperature are used to define numerical errors. These cases prove that the mass and energy are well conserved and 2nd order convergence rates for both time and space are achieved in the core channel model.
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
D.M. Jolley
2001-12-18T23:59:59.000Z
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas DeliveredStents -(NEI) ScienceNumerical simulations of current
Direct Numerical Simulations and Modeling of Jets in Crossflow
Mahesh, Krishnan
Direct Numerical Simulations and Modeling of Jets in Crossflow A THESIS SUBMITTED TO THE FACULTY. i #12;To my parents and my grandparents, and to Ramnath ii #12;Abstract Jets in crossflow are used to study the different aspects of round jets in a crossflow. The first problem studies
Friction versus dilation revisited: Insights from theoretical and numerical models
Einat, Aharonov
Friction versus dilation revisited: Insights from theoretical and numerical models N. Makedonska,1 controlled by the frictional strength of the fault gouge, a granular layer that accumulates between the fault friction coefficient) of such granular layers is the systems resistance to dilation, a byprocess
Numerical Modeling of the 2011 Tohoku Earthquake Tsunami
Frandsen, Jannette B.
Evolution of Ocean WAVEs) to reconstruct the tsunami across the Pacific and its transformation aroundNumerical Modeling of the 2011 Tohoku Earthquake Tsunami Yoshiki Yamazaki Post-doctoral Research 2011 Tohoku earthquake (Mw 9.0) generated a massive tsunami devastated the entire Pacific coast
Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies
Grilli, Stéphan T.
Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies St´ephan T. Grilli for wave energy harvesting (free-floating or slackly moored), to produce about 1 KW per unit at full scale-contained (water tight) resonating multiple-spar buoy (or Starspar), in which a longer central spar houses the LEG
Robust design and model validation of nonlinear compliant micromechanisms.
Howell, Larry L. (Brigham Young University, Provo, UT); Baker, Michael Sean; Wittwer, Jonathan W. (Brigham Young University, Provo, UT)
2005-02-01T23:59:59.000Z
Although the use of compliance or elastic flexibility in microelectromechanical systems (MEMS) helps eliminate friction, wear, and backlash, compliant MEMS are known to be sensitive to variations in material properties and feature geometry, resulting in large uncertainties in performance. This paper proposes an approach for design stage uncertainty analysis, model validation, and robust optimization of nonlinear MEMS to account for critical process uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness. A fully compliant bistable micromechanism (FCBM) is used as an example, demonstrating that the approach can be used to handle complex devices involving nonlinear finite element models. The general shape of the force-displacement curve is validated by comparing the uncertainty predictions to measurements obtained from in situ force gauges. A robust design is presented, where simulations show that the estimated force variation at the point of interest may be reduced from {+-}47 {micro}N to {+-}3 {micro}N. The reduced sensitivity to process variations is experimentally validated by measuring the second stable position at multiple locations on a wafer.
Numerical Verification and Experimental Validation of Sliding Mode Control Design for
Kearfott, R. Baker
-temperature solid oxide fuel cell systems (SOFC sys- tems) can be described mainly by their thermal, fluidic Thermal SOFC Models Andreas Rauh, Luise Senkel, Thomas D¨otschel , Harald Aschemann Chair of Mechatronics@inf.uni-due.de Abstract The design of reliable and robust control strategies for the automatized operation of SOFC systems
Validation of thermal models for a prototypical MEMS thermal actuator.
Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary
2008-09-01T23:59:59.000Z
This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.
Model Based Test Generation for Microprocessor Architecture Validation
Minnesota, University of
, Minneapolis, MN 55455 CESCA, Virginia Tech, Blacksburg, VA 24061 Validation Technology, Intel Corporation
Integrating Numerical Computation into the Modeling Instruction Curriculum
Caballero, Marcos D; Aiken, John M; Douglas, Scott S; Scanlon, Erin M; Thoms, Brian; Schatz, Michael F
2012-01-01T23:59:59.000Z
We describe a way to introduce physics high school students with no background in programming to computational problem-solving experiences. Our approach builds on the great strides made by the Modeling Instruction reform curriculum. This approach emphasizes the practices of "Developing and using models" and "Computational thinking" highlighted by the NRC K-12 science standards framework. We taught 9th-grade students in a Modeling-Instruction-based physics course to construct computational models using the VPython programming environment. Numerical computation within the Modeling Instruction curriculum provides coherence among the curriculum's different force and motion models, links the various representations which the curriculum employs, and extends the curriculum to include real-world problems that are inaccessible to a purely analytic approach.
Refined numerical models for multidimensional Type Ia supernova simulations
Reinecke, M; Niemeyer, J C
2002-01-01T23:59:59.000Z
Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.
Refined numerical models for multidimensional Type Ia supernova simulations
M. Reinecke; W. Hillebrandt; J. C. Niemeyer
2001-11-26T23:59:59.000Z
Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.
On numerical considerations for modeling reactive astrophysical shocks
Papatheodore, Thomas L.; Messer, O. E. Bronson, E-mail: tpapathe@utk.edu, E-mail: bronson@ornl.gov [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)
2014-02-10T23:59:59.000Z
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.
ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS
Chiswell, S.; Buckley, R.
2009-01-15T23:59:59.000Z
During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12T23:59:59.000Z
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous study of nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.
Validation of reduced kinetic models for simulations of non-steady combustion processes
Ivanov, M F; Liberman, M A; Smygalina, A E
2013-01-01T23:59:59.000Z
In the present work we compare reliability of several most widely used reduced detailed chemical kinetic schemes for hydrogen-air and hydrogen-oxygen combustible mixtures. The validation of the schemes includes detailed analysis of 0D and 1D calculations and comparison with experimental databases containing data on induction time, equilibrium temperature, composition of the combustion products, laminar flame speed and the flame front thickness at different pressures. 1D calculations are carried out using the full gasdynamical system for compressible viscous thermal conductive multicomponent mixture. The proper choice of chemical kinetics models is essential for obtaining reliable quantitative and qualitative insight into combustion phenomena such as flame acceleration and stability, ignition, transition from deflagration-to-detonation (DDT) using a multiscale numerical modeling.
On Numerical Considerations for Modeling Reactive Astrophysical Shocks
Papatheodore, Thomas L [ORNL] [ORNL; Messer, Bronson [ORNL] [ORNL
2014-01-01T23:59:59.000Z
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.
Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)
2006-01-01T23:59:59.000Z
In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.
Fast, J.D.; O'Steen, B.L.
1992-01-01T23:59:59.000Z
An important aspect of the US Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program is the development and evaluation of numerical models that predict transport and diffusion of pollutants in complex terrain. Operational mesoscale modeling of the transport of pollutants in complex terrain will become increasingly practical as computational costs decrease and additional data from high-resolution remote sensing instrumentation networks become available during the 1990s. Four-dimensional data assimilation (4DDA) techniques are receiving a great deal of attention recently not only to improve the initial conditions of mesoscale forecast models, but to create high-quality four-dimensional mesoscale analysis fields that can be used as input to air-quality models. In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the 1991 ASCOT field study along the front range of the Rockies in Colorado. The main objective of this study is to compare the observed surface concentrations with those predicted by a Lagrangian particle dispersion model and to demonstrate the effect of data assimilation on the simulated plume. In contrast to pervious studies in which the smallest horizontal grid spacing was 10 km (Stauffer and Seaman, 1991) and 8 km (Yamada and Hermi, 1991), data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km.
Fast, J.D.; O`Steen, B.L.
1992-11-01T23:59:59.000Z
An important aspect of the US Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program is the development and evaluation of numerical models that predict transport and diffusion of pollutants in complex terrain. Operational mesoscale modeling of the transport of pollutants in complex terrain will become increasingly practical as computational costs decrease and additional data from high-resolution remote sensing instrumentation networks become available during the 1990s. Four-dimensional data assimilation (4DDA) techniques are receiving a great deal of attention recently not only to improve the initial conditions of mesoscale forecast models, but to create high-quality four-dimensional mesoscale analysis fields that can be used as input to air-quality models. In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the 1991 ASCOT field study along the front range of the Rockies in Colorado. The main objective of this study is to compare the observed surface concentrations with those predicted by a Lagrangian particle dispersion model and to demonstrate the effect of data assimilation on the simulated plume. In contrast to pervious studies in which the smallest horizontal grid spacing was 10 km (Stauffer and Seaman, 1991) and 8 km (Yamada and Hermi, 1991), data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km.
De Castro, Carlos Armando
2011-01-01T23:59:59.000Z
In this paper is developed a simple mathematical model of transient heat transfer under soil with plastic mulch in order to determine with numerical studies the influence of different plastic mulches on the soil temperature and the evolutions of temperatures at different depths with time. The governing differential equations are solved by a Galerkin Finite Element Model, taking into account the nonlinearities due to radiative heat exchange between the soil surface, the plastic mulch and the atmosphere. The model was validated experimentally giving good approximation of the model to the measured data. Simulations were run with the validated model in order to determine the optimal combination of mulch optical properties to maximize the soil temperature with a Taguchi's analysis, proving that the material most used nowadays in Colombia is not the optimal and giving quantitative results of the properties the optimal mulch must possess.
Numerical Modeling At Coso Geothermal Area (1995) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical Modeling At
Numerical Modeling At Dixie Valley Geothermal Area (Benoit, 1999) | Open
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical Modeling
Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical Modeling2013)
Numerical Modeling At Coso Geothermal Area (2000) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains WindInformationNVN-079666New look toNotes from the CallNuclearNumerical Modeling At
Numerical Modeling At Coso Geothermal Area (2006) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains WindInformationNVN-079666New look toNotes from the CallNuclearNumerical Modeling
Radiative transfer model for contaminated slabs : experimental validations
Andrieu, François; Schmitt, Bernard; Douté, Sylvain; Brissaud, Olivier
2015-01-01T23:59:59.000Z
This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully described in Andrieu et al. (2015). Two kind of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at the wavelength of $1.5\\,\\mbox{\\mu m}$, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at various geometries, including low phase angles on 61 wavelengths ranging from $0.8\\,\\mbox{\\mu m}$ to $2.0\\,\\mbox{\\mu m}$. In order to validate the model, we made a qualitative test to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a bayesian inversion method in order to estimate the parameters (e.g. sampl...
Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling
Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)
2013-11-28T23:59:59.000Z
We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.
Modeling of a Foamed Emulsion Bioreactor: I. Model Development and Experimental Validation
ARTICLE Modeling of a Foamed Emulsion Bioreactor: I. Model Development and Experimental Validation, a new type of bioreactor for air pollution control referred to as the foamed emulsion bior- eactor (FEBR Introduction Biofilters and biotrickling filters are the most widely used bioreactors for treating low levels
Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy.
Weck, Philippe F; Tikare, Veena; Schultz, Peter Andrew; Clark, B (SNL); Mitchell, J (SNL); Glazoff, Michael V.; Homer, Eric R.
2014-10-01T23:59:59.000Z
This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride ?-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding (Hanson et al., 2011). While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (Birk et al., 2012 and NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. In this work, a model to numerically simulate hydride precipitation at the microstructural scale, in a wide variety of Zr-based claddings, under dry-storage conditions is being developed. It will be used to aid in the evaluation of the mechanical integrity of used fuel rods during dry storage and transportation by providing the structural conditions from the microstructural scale to the continuum scale to engineering component scale models to predict if the used fuel rods will perform without failure under normal and off-normal conditions. The microstructure, especially, the hydride structure is thought to be a primary determinant of cladding failure, thus this component of UFD’s storage and transportation analysis program is critical. The model development, application and validation of the model are documented and the limitations of the current model are discussed. The model has been shown to simulate hydride precipitation in Zircaloy-4 cladding with correct morphology, thermodynamics and kinetics. An unexpected insight obtained from simulations hydride formation in Zircaloy-4 is that small (sub-micron) precipitates need to order themselves to form the larger hydrides typically described as radially-reoriented precipitates. A limitation of this model is that it does not currently solve the stress state that forms dynamically in the precipitate or matrix surrounding the precipitate. A method to overcome the limitations is suggested and described in detail. The necessary experiments to provide key materials physics and to validate the model are also recommended.
Pearce, Fred
2003-01-01T23:59:59.000Z
We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir
A Workflow for Parameter Calibration and and Model Validation in SST: Interim Report.
Pebay, Philippe Pierre; Wilke, Jeremiah J; Sargsyan, Khachik
2014-12-01T23:59:59.000Z
This brief report explains the method used for parameter calibration and model validation in SST/Macro and the set of tools and workflow developed for this purpose.
Model Validation at the 204-MW New Mexico Wind Energy Center
Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.
2006-06-01T23:59:59.000Z
Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.
An independent verification and validation of the Future Theater Level Model conceptual model
Hartley, D.S. III; Kruse, K.L.; Martellaro, A.J.; Packard, S.L.; Thomas, B. Jr.; Turley, V.K.
1994-08-01T23:59:59.000Z
This report describes the methodology and results of independent verification and validation performed on a combat model in its design stage. The combat model is the Future Theater Level Model (FTLM), under development by The Joint Staff/J-8. J-8 has undertaken its development to provide an analysis tool that addresses the uncertainties of combat more directly than previous models and yields more rapid study results. The methodology adopted for this verification and validation consisted of document analyses. Included were detailed examination of the FTLM design documents (at all stages of development), the FTLM Mission Needs Statement, and selected documentation for other theater level combat models. These documents were compared to assess the FTLM as to its design stage, its purpose as an analytical combat model, and its capabilities as specified in the Mission Needs Statement. The conceptual design passed those tests. The recommendations included specific modifications as well as a recommendation for continued development. The methodology is significant because independent verification and validation have not been previously reported as being performed on a combat model in its design stage. The results are significant because The Joint Staff/J-8 will be using the recommendations from this study in determining whether to proceed with develop of the model.
A numerical model of aerosol scavenging: Part 1, Microphysics parameterization
Molenkamp, C.R.; Bradley, M.M.
1991-09-01T23:59:59.000Z
We have developed a three-dimensional numerical model (OCTET) to simulate the dynamics and microphysics of clouds and the transport, diffusion and precipitation scavenging of aerosol particles. In this paper we describe the cloud microphysics and scavenging parameterizations. The representation of cloud microphysics is a bulk- water parameterization which includes water vapor and five types of hydrometeors (cloud droplets, rain drops, ice crystals, snow, and graupel). A parallel parameterization represents the scavenging interactions between pollutant particles and hydrometeors including collection of particles because of condensation nucleation, Brownian and phoretic attachment, and inertial capture, resuspension because of evaporation and sublimation; and transfer interactions where particles collected by one type of hydrometeor are transferred to another type of freezing, melting, accretion, riming and autoconversion.
Effective viscosity of active suspensions: Three-dimensional numerical modeling
Levan Jibuti; Walter Zimmermann; Salima Rafaï; Philippe Peyla
2014-12-10T23:59:59.000Z
A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of its two flagella. The model reveals unusual angular orbits of the active swimmer under a linear shear flow. Namely, the swimmer sustains orientation transiently across the flow when flagella plane is perpendicular to the shear plane, and amplify the shear-induced rotation along the flow. Such behavior is a result of the interplay between shear-induced deformation and swimmer's periodic beating motion that exerts internal torques on the torque-free swimmer. This particular behavior has some significant consequences on the rheological properties of the suspension that tends to confirm previous experimental results [Phys. Rev. Lett. 104, 098102 (2010)]. We calculated the intrinsic viscosity of the suspension with such isolated modeled microswimmers (dilute case) in shear flow using numerical simulations based on Rotne-Prager approximation. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to non-active ones in accordance with previous experimental measurements. A major enhancement of the active swimmer viscosity occurs due to the effectively extended shape of the deformable swimming cells. We also recover the experimentally observed shear thinning behavior.
NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...
gabriela
Abstract. CO2 sequestration in the underground is a valid alternative approach for mitigat- ing the greenhouse effect. Nevertheless, very little is known about the
Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory
Zhihao Ge; Ruihua Li
2015-03-08T23:59:59.000Z
In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.
Adaptation and Validation of an Agent Model of Functional State and Performance for Individuals
Treur, Jan
functional state model to the individual and validation of the resulting model. First, human experiments have mostly qualitative theories from Psychology, but was not validated yet using human experiments been performed by taking a number of steps. First of all, an experiment with 31 human subjects has been
Budny, Robert
predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model JITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model This article has been downloaded from IOPscience. Please scroll down to see the full text
Title: Modeling, Validation and Verification of Concurrent Behavior in the Panama Canal
Austin, Mark
ABSTRACT Title: Modeling, Validation and Verification of Concurrent Behavior in the Panama Canal Professor Mark Austin, Department of Civil and Environmental Engineering and Institute for Systems Research are reactive and concurrent in nature. The procedure to model a concurrent system and the procedure to validate
Development of a Hydraulic Manipulator Servoactuator Model: Simulation and Experimental Validation
Papadopoulos, Evangelos
Development of a Hydraulic Manipulator Servoactuator Model: Simulation and Experimental Validation Abstract In this paper, modelling and identification of a hydraulic servoactuator system is presented, leakage, and load dynamics. System parameters are identified based on a high-performance hydraulic
Development and Validation of a Computer Model for Energy-Efficient Shaded Fenestration Design
Oh, Kie Whan
2000-01-01T23:59:59.000Z
The goal of this study is to develop and validate a computerized model for an energy efficient fenestration system that can easily be incorporated into the architectural design process. This model is for the thermal analysis of a shaded...
AI-Based Simulation: An Alternative to Numerical Simulation and Modeling
Mohaghegh, Shahab
: Numerical Modeling, Simulation, Artificial Intelligence, Data Min- ing, Reservoir Modeling, Reservoir data for brown fields. The run-time of AI-Based reservoir models that provide complete field responses Computational Fluid Dynamics (CFD) to Numer- ical Reservoir Simulation (NRS) most of the computational modeling
Chintala, Rohit
2012-10-19T23:59:59.000Z
Numerical methods of designing control systems are currently an active area of research. Convex optimization with linear matrix inequalities (LMIs) is one such method. Control objectives like minimizing the H_2, H_infinity norms, limiting...
Some guidance on preparing validation plans for the DART Full System Models.
Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy (Sandia National Laboratories, Albuquerque, NM)
2009-03-01T23:59:59.000Z
Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generally applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.
An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling
Williamson, Mark
An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark Williamson Working Paper 83 #12;An efficient numerical terrestrial scheme (ENTS) for fast earth system modelling Mark for long time period simulations and large ensemble studies in Earth system models of intermediate
Development and validation of instantaneous risk model in nuclear power plant's risk monitor
Wang, J.; Li, Y.; Wang, F.; Wang, J.; Hu, L. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, Hefei, Anhui, 230031 (China)
2012-07-01T23:59:59.000Z
The instantaneous risk model is the fundament of calculation and analysis in a risk monitor. This study focused on the development and validation of an instantaneous risk model. Therefore the principles converting from the baseline risk model to the instantaneous risk model were studied and separated trains' failure modes modeling method was developed. The development and validation process in an operating nuclear power plant's risk monitor were also introduced. Correctness of instantaneous risk model and rationality of converting method were demonstrated by comparison with the result of baseline risk model. (authors)
Numerical modeling of fluid flow and time-lapse seismograms ...
gabriela
1. Inst. del Gas y del Petr´oleo - FI, Univ. de Buenos Aires, ARGENTINA. 2 .... 1 + i??s ). (9) where ?e > ?s are relaxation times and Mr = KG,µm. Numerical ...
Numerical modelling of hyperbolic conservation laws using bicharacteristics
Hanke-Bourgeois, Martin
volume methods -1- #12;Overview I. Hyperbolic Conservation Laws Theory of bicharacteristics and evolution, bicharacteritsics stability, accuracy, error analysis III. Numerical Experiments: Wave equation system, Euler eqs finite volume methods -2- #12;· airflow · hydraulic schock · meteorological flow Source: efluid
Modelling of Melt Damage of Tungsten Armour under Multiple Transients Expected in ITER and Validations Against JET-ILW Experiments
Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)
Marion, B.
2013-05-01T23:59:59.000Z
Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.
Broader source: Energy.gov [DOE]
Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...
Validity of the WEPP model for predicting infiltration on irrigated lands
Ngang, Fidelis Ndemah
1995-01-01T23:59:59.000Z
The objective of this research was to establish the validity of the hydrologic component of the YVEPP erosion model for predicting infiltration on irrigated lands. WEPP uses the Green and Ampt equation with ponding to compute infiltration...
BRE large compartment fire tests – characterising post-flashover fires for model validation
Welch, Stephen; Jowsey, Allan; Deeny, Susan; Morgan, Richard; Torero, Jose L
2007-01-01T23:59:59.000Z
Reliable and comprehensive measurement data from large-scale fire tests is needed for validation of computer fire models, but is subject to various uncertainties, including radiation errors in temperature measurement. Here, ...
Modelling, Identification and Experimental Validation of a Hydraulic Manipulator Joint for Control
Papadopoulos, Evangelos
Modelling, Identification and Experimental Validation of a Hydraulic Manipulator Joint for Control increase efficiency. However, the control of manipulators interacting with an environment is very complex complicate the control of manipulators in contact with their environment. Unlike electrical actuators
Roberts, Jesse D.; Chang, Grace; Jones, Craig
2014-09-01T23:59:59.000Z
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.
Numerical Modeling At Coso Geothermal Area (2010) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains WindInformationNVN-079666New look toNotes from the CallNuclearNumericalNumerical
Numerical analysis of a one-dimensional elastodynamic model of dry friction and unilateral contact
Renard, Yves - Pôle de Mathématiques, Institut National des Sciences Appliquées de Lyon
.e. hyperbolic) model with dry friction. Since we consider a Coulomb friction law with a slip velocity dependentNumerical analysis of a one-dimensional elastodynamic model of dry friction and unilateral contact in the numerical analysis of more elaborated dynamic purely elastic problems with dry friction. Ó 2001 Elsevier
Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters
Lee, Zhongping
Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters (2005), Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal; Siegel et al., 1995] have demonstrated that the penetration of EVIS in the upper layer of the ocean plays
Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and
Sites, James R.
Thesis Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and Explanation our supervision by Markus Gloeckler entitled "Numerical Modeling of CIGS Solar Cells: Definition. A three-layer structure, simulating a Cu(InGa)Se2 (CIGS) heterojunction solar cell, was set up using
NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE
Sites, James R.
NUMERICAL MODELING OF CIGS AND CdTe SOLAR CELLS: SETTING THE BASELINE M. Gloeckler, A important complications that are often found in experimental CIGS and CdTe solar cells. 1. INTRODUCTION Numerical modeling of polycrystalline thin-film solar cells is an important strategy to test the viability
Wells, Scott A.
792 / JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 1999 NUMERICAL MODEL OF SEDIMENTATION publication on July 20, 1998. This paper is part of the Journal of Environmental Engineering, Vol. 125, No. 9 would enable engineers to optimize the process design. A numerical model of the physics of gravity
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS and analysis of large time step operator splitting algorithms for the numerical simulation of multiphase flow the main ideas behind these novel operator splitting algorithms for a basic twophase flow model. Special
Precise Steps for Choreography Modeling for SOA Validation and Verification
Southampton, University of
as the next evolutionary step to cope with the software complexity of ERP systems where monolithic approaches component models by verification. This fits well into the model-driven development approach practiced at SAP
Numerical Model of a Tensioner System and Flex Joint
Huang, Han
2013-07-27T23:59:59.000Z
Top Tensioned Riser (TTR) and Steel Catenary Riser (SCR) are often used in a floating oil/gas production system deployed in deep water for oil transport. This study focuses on the improvements to the existing numerical code, known as CABLE3D...
Numerical Modeling of Human Effect on Indoor Propagation
Paris-Sud XI, Université de
several types of obstacles such a brick enclosure walls, one metal heater, two metal wardrobes, two metal antenna placed 85 cm above the floor level. The spatial step is /10, or is the wavelength, chosen by the numerical dispersions. The choice of the spatial step is a compromise between the minimization of inaccuracy
Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water
Zhigilei, Leonid V.
Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water Alexey, University of Virginia, USA Available online 3 February 2007 Abstract Short pulse laser interaction modeling; Nanoparticles; Cell targeting; Laser damage 1. Introduction Short pulse laser irradiation
Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling
Xu, Xianfan
Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites
Bardhan, Jaydeep Porter, 1978-
2006-01-01T23:59:59.000Z
This thesis presents a set of numerical techniques that extend and improve computational modeling approaches for biomolecule analysis and design. The presented research focuses on surface formulations of modeling problems ...
Verification and validation benchmarks.
Oberkampf, William Louis; Trucano, Timothy Guy
2007-02-01T23:59:59.000Z
Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.
System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management
Paris-Sud XI, Université de
System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management Tayeb--Modern systems-on-a-chip are equipped with power architectures, allowing to control the consumption of individual; hence the need for early system-level models of power consumption. B. High-Level Models and Simulation
Spiga, Aymeric
A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation) Mesoscale Model is a new versatile simulator of the Martian atmosphere and environment at horizontal scales, and photochemistry cycles. Since LMD-GCM large-scale simulations are also used to drive the mesoscale model
Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development
Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development properties of aerosol and cirrus particles. 3. Model Comparison Retrievals of XCO2 were performed on cloud and compared to the CarbonTracker model. The retrieval averaging kernels were applied to Carbon
Grilli, Stéphan T.
Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity with a two-dimensional 2D fully nonlinear potential flow FNPF model for tsunami generation by two idealized a simple wavemaker formalism, and prescribed as a boundary condition in the FNPF model. Tsunami amplitudes
Numerical modelling of a radio-frequency micro ion thruster
Tsay, Michael Meng-Tsuan
2006-01-01T23:59:59.000Z
A simple performance model is developed for an inductively-coupled radio-frequency micro ion thruster. Methods of particle and energy balance are utilized for modeling the chamber plasma discharge. A transformer model is ...
Electrical Model Development and Validation for Distributed Resources
Simoes, M. G.; Palle, B.; Chakraborty, S.; Uriarte, C.
2007-04-01T23:59:59.000Z
This project focuses on the development of electrical models for small (1-MW) distributed resources at the National Renewable Energy Laboratory's Distributed Energy Resources Test Facility.
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
David A. Benson; Mark M. Meerschaert; Jordan Revielle
2012-01-01T23:59:59.000Z
Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.
Spatial Statistical Procedures to Validate Input Data in Energy Models
Johannesson, G.; Stewart, J.; Barr, C.; Brady Sabeff, L.; George, R.; Heimiller, D.; Milbrandt, A.
2006-01-01T23:59:59.000Z
Energy modeling and analysis often relies on data collected for other purposes such as census counts, atmospheric and air quality observations, economic trends, and other primarily non-energy related uses. Systematic collection of empirical data solely for regional, national, and global energy modeling has not been established as in the abovementioned fields. Empirical and modeled data relevant to energy modeling is reported and available at various spatial and temporal scales that might or might not be those needed and used by the energy modeling community. The incorrect representation of spatial and temporal components of these data sets can result in energy models producing misleading conclusions, especially in cases of newly evolving technologies with spatial and temporal operating characteristics different from the dominant fossil and nuclear technologies that powered the energy economy over the last two hundred years. Increased private and government research and development and public interest in alternative technologies that have a benign effect on the climate and the environment have spurred interest in wind, solar, hydrogen, and other alternative energy sources and energy carriers. Many of these technologies require much finer spatial and temporal detail to determine optimal engineering designs, resource availability, and market potential. This paper presents exploratory and modeling techniques in spatial statistics that can improve the usefulness of empirical and modeled data sets that do not initially meet the spatial and/or temporal requirements of energy models. In particular, we focus on (1) aggregation and disaggregation of spatial data, (2) predicting missing data, and (3) merging spatial data sets. In addition, we introduce relevant statistical software models commonly used in the field for various sizes and types of data sets.
THE FERNALD DOSIMETRY RECONSTRUCTION PROJECT Environmental Pathways -Models and Validation
and Deposition Models . 19 Building Wake Effects and Plume Rise . 23 Resuspension of Particulates . . . . . 24 the FMPC N. Soil Data for Locations near the FMPC o. Resuspension of Particulates p. Radon, Radon
70 MPa Fast-Fill Modeling & Validation Experiments
. 8365 DOE Tank Safety Workshop April 29, 2010 SAND Number: 2010-2830 P Sandia National Laboratories connections (network) One dimensional flow in tubing Vessels modeled as single control volumes
Model Validation Using Simulated Data Swapna S. Gokhale 1 , Michael R. Lyu 2 , Kishor S. Trivedi 1
Lyu, Michael R.
, the complex ity of the real world data might obscure the properties of the reliability models which are based reliability models using ratebased simulation tech nique, and validated the models using the simulated data reliability models that might be revealed by validating these models using simpler data sets. Ratebased
Analysis and verification of a three-dimensional hydrodynamic numerical model
Abraham, David Daniel
1991-01-01T23:59:59.000Z
of Advisory Committee: Dr. W. P. James A three-dimensional hydrodynamic numerical model (RMA10) was analyized and verified. The verification process involved the comparison of model and measured water surface elevations, velocities, and depth averaged... velocities. The verification (measured) data were obtained from a large (200 cfs) flume. The numerical grid was set up such that the spacial location of the computational points was as close as practical to that of the measured data. The model computed...
Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical1984)
Numerical Modeling of Transient Basin and Range Extensional Geothermal
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical1984)Systems |
Numerical Modelling of Geothermal Systems a Short Introduction | Open
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical1984)Systems
Numerical Modeling At Coso Geothermal Area (2007) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains WindInformationNVN-079666New look toNotes from the CallNuclearNumerical
Turbulent Supersonic Channel Flow: Direct Numerical Simulation and Modeling
Heinz, Stefan
modeling: the turbulence frequency production mechanism, wall damping effects on turbulence model frequency production mechanisms and wall damping effects may be explained very well on the basis, Chik w = wall viscosity = kinematic viscosity, = T = turbulent kinematic viscosity, Ck d = pressure
Validity of the [ital t]-[ital J] model
Batista, C.D.; Aligia, A.A. (Comision Nacional de Energia Atomica, Centro Atomico Bariloche, 8400 Bariloche (Argentina))
1993-08-01T23:59:59.000Z
We have diagonalized exactly an effective Hamiltonian [ital H][sub eff] that describes the low-energy eigenstates of Cu[sub 4]O[sub 8] cluster with five holes. Projecting these eigenstates onto Zhang-Rice states we find that for total spin [ital S]=1/2, they have more than 90% of local singlet character for realistic parameters. This percentage depends on [ital S] and the symmetry of the states and is larger for the ground state. The fit of the energy levels using a model similar to the [ital t]-[ital J] model, is improved substantially if the model includes a term that combines a nearest-neighbor exchange with a next-nearest-neighbor hopping.
Numerically Efficient Water Quality Modeling and Security Applications
Mann, Angelica
2013-02-04T23:59:59.000Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 17 2 THE MERLION WATER QUALITY MODEL . . . . . . . . . . . . . . . . 20 2.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Origin... tracking algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Merlion water quality model . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 EFFICIENT MULTI...
Bürger, Raimund
-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2011 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing
Bürger, Raimund
-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing
Automated Validation and Verification of Process Models Darren C. Atkinson
Noll, John
In process programming, processes are modeled as pieces of software, and a process programming language, implementation, and maintenance of software processes [2]. One of the outgrowths of this line of research that resemble, and in some cases are derived from, conventional programming languages [3]. One advantage
NUMERICAL MODELING OF COASTAL TSUNAMI DISSIPATION AND Stphan T. Grilli1
Grilli, Stéphan T.
1 NUMERICAL MODELING OF COASTAL TSUNAMI DISSIPATION AND IMPACT Stéphan T. Grilli1 , Jeffrey C Tehranirad2 Recent observations of the coastal impact of large tsunamis (e.g., Indian Ocean 2004; Tohoku 2011) and related numerical and theoretical works have made it increasingly clear that tsunami waves arrive
NUMERICAL MODELING OF COASTAL TSUNAMI IMPACT DISSIPATION Stphan T. Grilli1
Kirby, James T.
1 NUMERICAL MODELING OF COASTAL TSUNAMI IMPACT DISSIPATION AND IMPACT Stéphan T. Grilli1 , Jeffrey Tehranirad2 Recent observations of the coastal impact of large tsunamis (e.g., Indian Ocean 2004; Tohoku 2011) and related numerical and theoretical works have made it increasingly clear that tsunami waves arrive
Numerical Simulation of Pulse-Tube Refrigerators: 1D model I.A. Lyulina1
Eindhoven, Technische Universiteit
of a piston, an aftercooler (AC), a regenerator, a cold heat exchanger (CHX), a tube, a hot heat exchanger numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section, numerical simulation, high resolution scheme 1 Introduction The pulse tube is a relatively new type
USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS,
Paris-Sud XI, UniversitÃ© de
USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS to develop a methodology to generate solar radiation maps using information from different sources. First with conclusions and next works in the last section. Keywords: Solar Radiation maps, Numerical Weather Predictions
Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent numerical simulations of multiphase (liquid-gas), multicomponent (H2OÂCO2) hydrothermal fluid flow
Empirical Validation of the Thermal Model of a Passive Solar Cell test
Paris-Sud XI, Université de
1 Empirical Validation of the Thermal Model of a Passive Solar Cell test Thierry Alex MARA, two samples of experimental data are required. The first one is used to calibrate our model the second; Calibration; Sensitivity analysis; Spectral analysis; Time- frequency analysis. 1.Introduction
Chapter 13: Model Validation CAPS -ARPS Version 4.0 295
Droegemeier, Kelvin K.
on the solar angle in the surface energy budget equation. Mutually exclusive options such as the warm rain.g., total energy) to comparing model results with known exact solutions of the Navier- Stokes equations, the equations of motion of a viscous fluid. The exact solutions are particularly relevant to model validation
Experimental Validation of Building Vibration Propagation Using a Four Story Laboratory Model
White, Robert D.
Experimental Validation of Building Vibration Propagation Using a Four Story Laboratory Model@acentech.com Robert D. White, Assistant Professor, Tufts University, Dept. of Mechanical Engineering, R vibration levels at each floor. Mathematical models of column, beam, and slab elements were developed
Preliminary Validation Using in vivo Measures of a Macroscopic Electrical Model of the Heart
Coudière, Yves
Preliminary Validation Using in vivo Measures of a Macroscopic Electrical Model of the Heart Maxime Antipolis, France 2 National Institutes of Health, National Heart Lung and Blood Institute, Laboratory of the cardiac electrical activity in a canine heart coupled with simulations done using macroscopic models
Vibration Model Validation for Linear Collider Detector Platforms
Bertsche, Kirk; Amann, J.W.; Markiewicz, T.W.; Oriunno, M.; Weidemann, A.; White, G.; /SLAC
2012-05-16T23:59:59.000Z
The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations, which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.
An Updated Numerical Model Of The Larderello-Travale Geothermal...
been used to conduct a regional modeling study to investigate the production mechanism of superheated steam, the interactions between the geothermal field and the surrounding deep...
Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...
inversion of gravity data, and thermal conductivity contrasts between basin-filling sediments and range-basement rocks. The three dimensional conductive steady state model...
Numerically Estimating Internal Models of Dynamic Virtual Objects
Sekuler, Robert
human subjects to manipulate a computer-animated virtual object. This virtual object (vO) was a high, human cognition, human information processing, ideal performer, internal model, virtual object, virtual, specifically how humans acquire an internal model of a dynamic virtual object. Our methodology minimizes
Numerical model for steel catenary riser on seafloor support
You, Jung Hwan
2007-04-25T23:59:59.000Z
of development of a simplified seafloor support model. This model simulates the seafloor-pipe interaction as a flexible pipe supported on a bed of springs. Constants for the soil springs were derived from finite element studies performed in a separate, parallel...
A/C Model Development and Validation | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankShale_Gas.pdfService on the TargetFY12 DOE -NAT IONA L S T R AT E GIC PL AFrom The Bridge AA-76A/C Model
LDV HVAC Model Development and Validation | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBrakingDepartment of Energyal.Energy KlamathLANL990E|LDV HVAC Model
2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION
Choi, A.
2014-05-08T23:59:59.000Z
Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were ta
Ravago Bastardo, Delmira Cristina
2005-08-29T23:59:59.000Z
The main objective of this research is to compare the performance of cyclic steam injection using horizontal wells based on the analytical model developed by Gunadi against that based on numerical simulation. For comparison, ...
Numerical modeling of elastic wave scattering by near-surface heterogeneities
Al Muhaidib, Abdulaziz
2013-01-01T23:59:59.000Z
A perturbation method for elastic waves and numerical forward modeling are used to calculate the effects of seismic wave scattering from arbitrary shape shallow subsurface heterogeneities. Wave propagation is simulated ...
Numerical modeling of species transport in turbulent flow and experimental study on aerosol sampling
Vijayaraghavan, Vishnu Karthik
2007-04-25T23:59:59.000Z
Numerical simulations were performed to study the turbulent mixing of a scalar species in straight tube, single and double elbow flow configurations. Different Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) models were used...
Mass and charge flow in nanopores: numerical simulation via mesoscale models
Cecconi, Fabio
Mass and charge flow in nanopores: numerical simulation via mesoscale models Mauro Chinappi1 at nanoscale is here addressed via a recent developed mesoscale approach. In particular the flow
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests
Paris-Sud XI, Université de
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests P. Lalousis developed for computing the expansion of pellet-produced clouds in the poloidal plane. The expansion
Seismic Scattering Attributes to Estimate Reservoir Fracture Density: A Numerical Modeling Study
Pearce, Frederick Douglas
We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...
P. Douillet S. Ouillon E. Cordier A numerical model for ne suspended sediment transport
transport á Numerical model á Deposition á Erosion á New Caledonia Introduction In New Caledonia, where open-cast for cohesive particles (e.g., Nicholson and O'Connor 1986; Teisson 1991; Brenon and Le Hir 1999), around sand
Seismic scattering attributes to estimate reservoir fracture density : a numerical modeling study
Pearce, Frederick D. (Frederick Douglas), 1978-
2003-01-01T23:59:59.000Z
We use a 3-D finite difference numerical model to generate synthetic seismograms from a simple fractured reservoir containing evenly-spaced, discrete, vertical fracture zones. The fracture zones are represented using a ...
Moist processes and the quasi-hydrostatic approximation in a mesoscale numerical model
Kennedy, Charles Joseph
1987-01-01T23:59:59.000Z
MOIST PROCESSES AND THE QUASI-HYDROSTATIC APPROXIMATION IN A MESOSCALE NUMERICAL MODEL A Thesis by CHARLES JOSEPH KENNEDY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1987 Major Subject: Meteorology MOIST PROCESSES AND THE QUASI-HYDROSTATIC APPROXIMATION IN A MESOSCALE NUMERICAL MODEL A Thesis by CHARLES JOSEPH KENNEDY Approved as to style and content by: Dusan Djuric (Chair...
Giovanni Noselli; Antonio DeSimone
2014-08-26T23:59:59.000Z
We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. 'breathing-like' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.
NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL
Ghoniem, A.F.
2013-01-01T23:59:59.000Z
1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium
Numerical Modeling of Seafloor Interation with Steel Catenary Riser
You, Jung Hwan
2012-10-19T23:59:59.000Z
degradation it is possible to simulate the trench formation process and estimate deflections and moments along the riser length. The seabed model is used to perform parametric studies to assess the effects of stiffness, soil strength, amplitude of pipe...
Ductile fracture modeling : theory, experimental investigation and numerical verification
Xue, Liang, 1973-
2007-01-01T23:59:59.000Z
The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...
Development and validation of a combustion model for a fuel cell off-gas burner
Collins, William Tristan
2008-10-14T23:59:59.000Z
Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins Magdalene College University of Cambridge A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy June 2008... Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins A low-emissions power generator comprising a solid oxide fuel cell coupled to a gas turbine has been developed by Rolls-Royce Fuel Cell Systems. As part...
Empirical validation of the thermal model of a passive solar cell test
Mara, T A; Boyer, H; Mamode, M
2012-01-01T23:59:59.000Z
The paper deals with an empirical validation of a building thermal model. We put the emphasis on sensitivity analysis and on research of inputs/residual correlation to improve our model. In this article, we apply a sensitivity analysis technique in the frequency domain to point out the more important parameters of the model. Then, we compare measured and predicted data of indoor dry-air temperature. When the model is not accurate enough, recourse to time-frequency analysis is of great help to identify the inputs responsible for the major part of error. In our approach, two samples of experimental data are required. The first one is used to calibrate our model the second one to really validate the optimized model
Numerical models of pressure pulse generation by imploding metal liners
Humphries, S. Jr. [Acceleration Associates, Albuquerque, NM (United States)] [Acceleration Associates, Albuquerque, NM (United States); [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical Engineering; Ekdahl, C.A. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)
1996-12-01T23:59:59.000Z
The authors describe numerical calculations of pressure pulse generation using imploding liners. Liners are metal cylinders that are magnetically compressed by an intense axial current flow from a high-power pulse generator. The simulations cover the acceleration of the liner, collision with an internal diagnostic target, followed by compression and shock wave heating of the target. With the projected current waveform of the Atlas capacitor bank (in development at Los Alamos National Laboratory), initial results suggest that it may be possible to achieve pressures exceeding 3,000 Gpa (30 Mbar) in a 4 mm diameter sample over an interval of 100--200 ns. The simulations were carried out with Crunch, a new one-dimensional hydrodynamics package for advanced personal computers. The program uses finite-element techniques to solve the coupled problems of hydrodynamics and magnetic diffusion. Crunch fully supports loading and interpolating Sesame equation-of-state tables. The program exhibits excellent stability, even for collisions between material shells and shock convergence on axis. In contrast to previous work, the present studies follow the full process through solid target collision and compression. The work supports the High-Energy Density Physics Program of Los Alamos National Laboratory (LANL), a component of the US Department of Energy Stockpile Stewardship Program. The purpose of this program is maintenance of the nuclear weapons stockpile through improved computational ability and above-ground experiments. Imploding liners driven by conventional capacitor banks constitute a portion of the program to study matter at high pressure.
Predicting Solar Flares by Data Assimilation in Avalanche Models. I. Model Design and Validation
Eric Bélanger; Alain Vincent; Paul Charbonneau
2007-08-14T23:59:59.000Z
Data assimilation techniques, developed in the last two decades mainly for weather prediction, produce better forecasts by taking advantage of both theoretical/numerical models and real-time observations. In this paper, we explore the possibility of applying the data-assimilation techniques known as 4D-VAR to the prediction of solar flares. We do so in the context of a continuous version of the classical cellular-automaton-based self-organized critical avalanche models of solar flares introduced by Lu and Hamilton (Astrophys. J., 380, L89, 1991). Such models, although a priori far removed from the physics of magnetic reconnection and magneto-hydrodynamical evolution of coronal structures, nonetheless reproduce quite well the observed statistical distribution of flare characteristics. We report here on a large set of data assimilation runs on synthetic energy release time series. Our results indicate that, despite the unpredictable (and unobservable) stochastic nature of the driving/triggering mechanism within the avalanche model, 4D-VAR succeeds in producing optimal initial conditions that reproduce adequately the time series of energy released by avalanches/flares. This is an essential first step towards forecasting real flares.
IMPROVED NUMERICAL METHODS FOR MODELING RIVER-AQUIFER INTERACTION.
Tidwell, Vincent C.; Sue Tillery; Phillip King
2008-09-01T23:59:59.000Z
A new option for Local Time-Stepping (LTS) was developed to use in conjunction with the multiple-refined-area grid capability of the U.S. Geological Survey's (USGS) groundwater modeling program, MODFLOW-LGR (MF-LGR). The LTS option allows each local, refined-area grid to simulate multiple stress periods within each stress period of a coarser, regional grid. This option is an alternative to the current method of MF-LGR whereby the refined grids are required to have the same stress period and time-step structure as the coarse grid. The MF-LGR method for simulating multiple-refined grids essentially defines each grid as a complete model, then for each coarse grid time-step, iteratively runs each model until the head and flux changes at the interfacing boundaries of the models are less than some specified tolerances. Use of the LTS option is illustrated in two hypothetical test cases consisting of a dual well pumping system and a hydraulically connected stream-aquifer system, and one field application. Each of the hypothetical test cases was simulated with multiple scenarios including an LTS scenario, which combined a monthly stress period for a coarse grid model with a daily stress period for a refined grid model. The other scenarios simulated various combinations of grid spacing and temporal refinement using standard MODFLOW model constructs. The field application simulated an irrigated corridor along the Lower Rio Grande River in New Mexico, with refinement of a small agricultural area in the irrigated corridor.The results from the LTS scenarios for the hypothetical test cases closely replicated the results from the true scenarios in the refined areas of interest. The head errors of the LTS scenarios were much smaller than from the other scenarios in relation to the true solution, and the run times for the LTS models were three to six times faster than the true models for the dual well and stream-aquifer test cases, respectively. The results of the field application show that better estimates of daily stream leakage can be made with the LTS simulation, thereby improving the efficiency of daily operations for an agricultural irrigation system. ACKNOWLEDGEMENTSThe authors appreciatively acknowledge support for Sue Tillery provided by Sandia National Laboratories' through a Campus Executive Laboratory Directed Research and Development (LDRD) research project.Funding for this study was provided by Directed Research and Development (LDRD) research project.
Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits
Stryk, Oskar von
Efficient Dynamic Modeling, Numerical Optimal Control and Experimental Results for Various Gaits. A fully three- dimensional dynamical model of Sony's four-legged robot is used to state an optimal control model and the algorithm for evaluating the dynamics. The formulation of the optimal control problem
Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable
Vuik, Kees
Numerical Modelling of a Pulse Combustion Burner: Limiting Conditions of Stable Operation P.A. van a mathematical analysis of a simple model for thermal pulse combustion and determines conditions under which this model can describe stable pulse operation. 1 Introduction Compared to conventional combustion, pulse
A CONSISTENT MODELLING METHODOLOGY FOR SECONDARY1 SETTLING TANKS: A RELIABLE NUMERICAL METHOD2
Bürger, Raimund
relations for hindered settling, compression and dispersion can be used within the model, allowing the user, continuous sedimentation, secondary clarifier, simulation5 model, partial differential equation6 NomenclatureA CONSISTENT MODELLING METHODOLOGY FOR SECONDARY1 SETTLING TANKS: A RELIABLE NUMERICAL METHOD2
Numerical Solution of a Free-Boundary Problem for Percussive Deep Drilling Modeling by BEM
Mikhailov, Sergey
Numerical Solution of a Free-Boundary Problem for Percussive Deep Drilling Modeling by BEM S to a stationary-periodic quasi-static model of rock percus- sive deep drilling is presented. The rock is modeled. An auxiliary problem of stationary inden- tation of a rigid drill bit is considered first, where it is assumed
Numerical Experiments of Some Krylov Subspace Methods for Black Oil Model
Lai, Choi-Hong
Numerical Experiments of Some Krylov Subspace Methods for Black Oil Model Jianwen Cao #3; Choi of linear systems originated from the black oil model in oil reservoir simulation. There exists some Krylov subspace algorithms and pre- conditioning techniques for the black oil model as appeared in the literature
Key challenges to model-based design : distinguishing model confidence from model validation
Flanagan, Genevieve (Genevieve Elise Cregar)
2012-01-01T23:59:59.000Z
Model-based design is becoming more prevalent in industry due to increasing complexities in technology while schedules shorten and budgets tighten. Model-based design is a means to substantiate good design under these ...
Numerical Integration Numerical Summation
Cohen, Henri
Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete
Lattice Percolation Approach to Numerical Modeling of Tissue Aging
Privman, Vladimir; Libert, Sergiy
2015-01-01T23:59:59.000Z
We describe a percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Tissues are considered as structures made of regular healthy, senescent, dead (apoptotic) cells, and studied dynamically, with the ongoing processes including regular cell division to fill vacant sites left by dead cells, healthy cells becoming senescent or dying, and other processes. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. An illustrative application of the developed theoretical modeling approach is reported, confirming recent experimental findings that inhibition of senescence can lead to extended lifespan.
Validation of a Hot Water Distribution Model Using Laboratory and Field Data
Backman, C.; Hoeschele, M.
2013-07-01T23:59:59.000Z
Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.
Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies
Grilli, Stéphan T.
-contained (water tight) resonating multiple-spar buoy (or Starspar), in which a longer central spar houses the LEG and is surrounded by shallower, satellite spars, providing both form stability and a reduced overall average draft peak spectral period. For spar buoys, the former is simply controlled by buoy draft. Scale model
THEACCURACY OF NUMERICAL MODELS FOR CONTINUUM STANLY STEINBERG
Steinberg, Stanly
Water Rain Evaporation Figure 1.1. A Lake These notes are directed towards students who have some modest of water in the lake. Water can enter and leave the lake by various means: rain; evaporation; rivers and how much error is there is solving the mathematical model. #12; 2 Lake Ground Ground Water Ground
Numerical Modeling of Seafloor Interation with Steel Catenary Riser
You, Jung Hwan
2012-10-19T23:59:59.000Z
, and moment. Primary outputs from this model include the deflected shape of the riser pipe and bending moments along riser length. The code also provides the location of maximum trench depth and the position where the maximum bending moment occurs and any...
EFFICIENT NUMERICAL SOLUTION TECHNIQUES IN COMPOSITION MODEL 1
for the study of enhanced oil recovery techniques which lower the surface tension between phase and viscosity the compositional effects and mass transfer, must be used to accurately simulate enhanced oil recovery processes Ewing, 2 and Magne Espedal 4 Abstract. A generalized isothermal multiphase model for enhanced oil
Numerical modeling of an all vanadium redox flow battery.
Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.
2014-01-01T23:59:59.000Z
We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.
Oudini, N. [Laboratoire des plasmas de décharges, Centre de Développement des Technologies Avancées, Cité du 20 Aout BP 17 Baba Hassen, 16081 Algiers (Algeria); Taccogna, F. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, via Amendola 122/D, 70126 Bari (Italy); Bendib, A. [Laboratoire d'Electronique Quantique, Faculté de Physique, USTHB, El Alia BP 32, Bab Ezzouar 16111, Algiers (Algeria); Aanesland, A. [Laboratoire de Physique des Plasmas (CNRS, Ecole Polytechnique, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud), École Polytechnique, 91128 Palaiseau Cedex (France)
2014-06-15T23:59:59.000Z
Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of ??=?1, with a parametric study for ? up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.
Joint physical and numerical modeling of water distribution networks.
Zimmerman, Adam; O'Hern, Timothy John; Orear, Leslie Jr.; Kajder, Karen C.; Webb, Stephen Walter; Cappelle, Malynda A.; Khalsa, Siri Sahib; Wright, Jerome L.; Sun, Amy Cha-Tien; Chwirka, J. Benjamin; Hartenberger, Joel David; McKenna, Sean Andrew; van Bloemen Waanders, Bart Gustaaf; McGrath, Lucas K.; Ho, Clifford Kuofei
2009-01-01T23:59:59.000Z
This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.
Calibration and validation of a non-point source pollution model
Grunwald, Sabine
Calibration and validation of a non-point source pollution model S. Grunwalda,* , L.D. Nortonb drainage behavior and sediment yield to develop management strategies for agricultural waters. The objective of this study was to investigate the performance of the Agricultural Non-Point Source Pollution
Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint
Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.
2006-06-01T23:59:59.000Z
In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.
Modeling and Validation of Fuel Cell Water Dynamics using Neutron Imaging
Stefanopoulou, Anna
the gas diffusion layer and flow channels of an operating polymer electrolyte membrane fuel cell (PEMFC. However, polymer electrolyte membrane fuel cells (PEMFCs) operate below the boiling point of water causingModeling and Validation of Fuel Cell Water Dynamics using Neutron Imaging Jason B. Siegel, Denise A
A Process Modelling Framework for Formal Validation of Panama Canal System Operations
Austin, Mark
1 A Process Modelling Framework for Formal Validation of Panama Canal System Operations John) and will even provide for continued operations while sections of the canal system are undergoing maintenance. Design for automation in large-scale system operations is challenging because in addition to making sure
VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY
Perez, Richard R.
VALIDATION OF PV PERFORMANCE MODELS USING SATELLITE-BASED IRRADIANCE MEASUREMENTS: A CASE STUDY Clean Power Research Kirkland, WA e-mail: aparkins@cleanpower.com ABSTRACT Photovoltaic (PV) system and existing PV systems under a wide variety of environmental conditions. Ground based meteorological
Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery
Stefanopoulou, Anna
current density A cm-2 is solid current density A cm-2 e electrolyte potential V s solid potential V ce electrolyte concentration mol cm-3 cs solid concentration mol cm-3 cse solid concentration at electrolyte Identification, Model Validation, Lithium-Ion Battery, SOC Computation. GLOSSARY Symbol Name Unit ie electrolyte
Development of SNL-SWAN, a Validated Wave Energy Converter Array Modeling Tool
Siefert, Chris
Development of SNL-SWAN, a Validated Wave Energy Converter Array Modeling Tool Kelley Ruehl#1 energy will lead to the necessary deployment of Wave Energy Converters (WECs) in arrays, or wave farms state dependent wave energy conversion of WECs. Keywords-- wave energy, wave farm, WEC array, SWAN
Validating a model of colon colouration using an Evolution Strategy with adaptive approximations
Rowe, Jon
Validating a model of colon colouration using an Evolution Strategy with adaptive approximations light interaction with the tissue, is aimed at correlating the histology of the colon and its colours been applied to solve it. An adaptive approximate optimisation method has been developed and applied
VERIFICATION AND VALIDATION OF MODELS IN THE NATIONAL SCIENCE DIGITAL LIBRARY
Stevenson, D. E. "Steve"
VERIFICATION AND VALIDATION OF MODELS IN THE NATIONAL SCIENCE DIGITAL LIBRARY D. E. STEVENSON Abstract. The National Science Digital Library is the Nation's online library for education and re- search Science Digital Library in a Nutshell "The National Science Foundation's (NSF) National Science
MODELING AND VALIDATION OF A HIGH SPEED ROTARY PWM ON/OFF VALVE Haink C. Tu
Li, Perry Y.
MODELING AND VALIDATION OF A HIGH SPEED ROTARY PWM ON/OFF VALVE Haink C. Tu Center for Compact-speed on/off valves are a critical technology for enabling digital control of hydraulic systems via pulse-width- modulation (PWM). High-speed valves, when used in virtually variable displacement pumps (VVDP), increase
CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL
Heinemann, Detlev
CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B-970, SP, Brazil. Phone + 55 12 39456741, Fax + 55 12 39456810, fernando@dge.inpe.br. Samuel L. Abreu, Hans, Federal University of Santa Catarina -UFSC, Florianópolis, 88040-900, (SC), Brazil. Richard Perez
Broader source: Energy.gov [DOE]
Project objectives: Develop a true 3D hydro-thermal fracturing and proppant flow/transport simulator that is particularly suited for EGS reservoir creation. Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator.
Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve
2013-05-01T23:59:59.000Z
Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.
ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
2014-04-18T23:59:59.000Z
This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.
Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques
Tentzeris, Manos
Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques N. A Abstract The modeling of MEMS structures using MRTD is presented. Many complex RF structures have been communication systems efficiently and accurately. Specifically, micromachined structures such as MEMS
Numerical modeling of fiber lasers with long and ultra-long ring cavity
Turitsyn, Sergei K.
Numerical modeling of fiber lasers with long and ultra-long ring cavity I.A. Yarutkina,1,2, O. S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high highlight two important aspects related to a mathematical modeling of pulsed fiber lasers with long
A consistent modelling methodology for secondary settling tanks: a reliable numerical method
Bürger, Raimund
accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solutionA consistent modelling methodology for secondary settling tanks: a reliable numerical method modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE
URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1
Boyer, Edmond
URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1 , L. SOULHAC2 , E. FREJAFON3 , R technologique ALATA BP2, F-60550 Verneuil-en-Halatte, France. Keywords: LIDAR, URBAN AEROSOLS, MODEL, IMPACT SURVEY. INTRODUCTION The impact of particulate matters and aerosols on environment and on radiative
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S modeling of the turbulent flow in a rotor-stator cavity subjected to a superimposed throughflow with heat the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial
NUMERICAL SOLUTION OF RESERVOIR FLOW MODELS BASED ON LARGE TIME STEP OPERATOR SPLITTING ALGORITHMS
processes. A black-oil model is commonly used to describe water injection. This model works well. Special focus is posed on the numerical solution algorithms for the saturation equation, which is a convection dominated, degenerate convection-di#11;usion equation. Both theory and applications are discussed
Gracie, Robert
PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec
Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog
Intercomparison of Single-Column Numerical Models for the Prediction of Radiation Fog THIERRY-term forecasting of fog is a difficult issue that can have a large societal impact. Radiation fog appears layers of the atmosphere. Current NWP models poorly forecast the life cycle of fog, and improved NWP
Nick, F. M.; van der Veen, Cornelis J.; Oerlemans, J.
2007-07-11T23:59:59.000Z
A one-dimensional numerical ice flow model is used to study the advance of a tidewater glacier into deep water. Starting with ice-free conditions, the model simulates glacier growth at higher elevations followed by advance on land to the head...
FOUNDATION, ANALYSIS, AND NUMERICAL INVESTIGATION OF A VARIATIONAL NETWORK-BASED MODEL FOR RUBBER
Boyer, Edmond
FOUNDATION, ANALYSIS, AND NUMERICAL INVESTIGATION OF A VARIATIONAL NETWORK-BASED MODEL FOR RUBBER, many models based on polymer chain statistics have been proposed to describe rubber elasticity. Recently, Alicandro, Cicalese, and the first author rigorously derived a continuum theory of rubber
On the validity of drift-reduced fluid models for tokamak plasma simulation
Leddy, Jarrod; Romanelli, Michele
2015-01-01T23:59:59.000Z
Drift-reduced plasma fluid models are commonly used in plasma physics for analytics and simulations; however, the validity of such models must be veri?ed for the regions of parameter space in which tokamak plasmas exist. By looking at the linear behaviour of drift-reduced and full-velocity models one can determine that the physics lost through the simplification that the drift-reduction provides is important in the core region of the tokamak. It is more acceptable for the edge-region but one must determine speci?cally for a given simulation if such a model is appropriate.
Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical of Mexico, Caribbean Current, Loop Current, eddy shedding, winds and eddies, numerical ocean model Citation of Loop Current eddy shedding: A numerical model study, J. Geophys. Res., 108(C10), 3324, doi:10
Validation of a Hot Water Distribution Model Using Laboratory and Field Data
C. Backman and M. Hoeschele
2013-07-01T23:59:59.000Z
Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.
is used to validate a dust forecast model in the Beijing area. 2. Instrumentation and Methods [3 observations and model validation A. Papayannis,1 H. Q. Zhang,2 V. Amiridis,3 H. B. Ju,2 G. Chourdakis,4 G profiles (65%). Lidar vertical profiles with AOD values from AERONET were used to estimate a typical lidar
Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH
Niemi, A.; Bodvarsson, G.S.; Pruess, K.
1991-11-01T23:59:59.000Z
As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user`s manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented.
Thermal Modeling and Experimental Validation of Human Hair and Skin Heated by Broadband Light
Aguilar, Guillermo
distribution within the hair follicle is highly non-uniform: the minimum temperature occurs at the follicle Sun, PhD,1 Alex Chaney,1 Robert Anderson, PhD,2 and Guillermo Aguilar, PhD 1 * 1 Department:(a)determinetheoveralleffectofPPxonskinhumidi- tyandassociatedskinopticalproperties,and;(b)developaPT numerical model to study the spatial and temporal hair and skin temperature
Characterization of Texas lignite and numerical modeling of its in-situ gasification
Wang, Yih-Jy
1983-01-01T23:59:59.000Z
Modeling Site selection for in-situ gasification projects normally involves application of site screen1ng criteria. Some of these cr1teria were discussed by Russell et al. (1983). Numerical simulation may play an important role in s1te selection...CHARACTERIZATION OF TEXAS LIGNITE AND NUMERICAL MODELING OF ITS IN-SITU GASIFICATION A Thesis by YIH-JY WANG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...
Tice, Julie Anne Goodwin
1996-01-01T23:59:59.000Z
This research used structural equation modeling to test the construct validity of measures I I ion, and work of four global constructs: trait socialization, self-concept, organizational socialization' concept. Using measurement model procedures...
User's Manual for Data for Validating Models for PV Module Performance
Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.
2014-04-01T23:59:59.000Z
This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.
Volker Sick; Dennis N. Assanis
2002-11-27T23:59:59.000Z
Through the combination of advanced imaging laser diagnostics with multi-dimensional computer models, a new understanding of the performance of direct-injection gasoline engines is pursuit. The work focuses on the fuel injection process, the breakup of the liquid into a fine spray and the mixing of the fuel with the in-cylinder gases. Non-intrusive laser diagnostics will be used to measure the spatial distribution of droplets and vaporized fuel with very high temporal resolution. These data along with temperature measurements will be used to validate a new spray breakup model for gasoline direct-injection. Experimental data on near wall fuel distributions will be used for comparison with a model that predicts the spray-wall interaction and the dynamics of the liquid film on the surface. Quantitative measurements of local nitric oxide concentrations inside the combustion chamber will provide a critical test for a numerical simulation of the nitric oxide formation process. This model is based on a modified flamelet approach and will be used to study the effects of exhaust gas recirculation.
Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium
Taylor, S.R.; Kamm, J.R. [eds.
1993-11-01T23:59:59.000Z
The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.
:,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr?czi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I
2014-01-01T23:59:59.000Z
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...
Numerical modelling of avalanches based on Saint-Venant equations using a kinetic scheme
Paris-Sud XI, Université de
avalanches are treated here as a dry granular flow with Coulomb-type behavior. The numerical finite volume of an avalanche over simplified topography. Coulomb-type behavior with constant and variable friction angle modelling, Coulomb friction, Saint-Venant equations, finite volume kinetic scheme. 1 Introduction Granular
Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository $
Paris-Sud XI, Université de
Numerical methods for the simulation of a corrosion model in a nuclear waste deep repository $ C of the French nuclear waste management agency ANDRA, investigations are conducted to optimize and finalize by the Nuclear Waste Management Agency ANDRA Corresponding author. Phone: +49 30 20372 560, Fax: +49 30 2044975
Numerical analysis of electric field formulations of the eddy current model
RodrÃguez, Rodolfo
Numerical analysis of electric field formulations of the eddy current model Alfredo BermÂ´udez1 methods for the numeri- cal solution of the eddy current problem in a bounded conducting domain crossed): 78M10, 65N30 Key words Low-frequency harmonic Maxwell equations, eddy currents, finite elements
Mathematical and numerical analysis of a transient non-linear axisymmetric eddy current model
RodrÃguez, Rodolfo
Mathematical and numerical analysis of a transient non-linear axisymmetric eddy current model the theoretically predicted behavior of the method, are reported. Keywords transient eddy current Â· axisymmetric is the accurate computation of power losses in the ferromagnetic components of the core due to hysteresis and eddy-current
NUMERICAL SOLUTION OF A TRANSIENT NON-LINEAR AXISYMMETRIC EDDY CURRENT MODEL WITH NON-LOCAL
RodrÃguez, Rodolfo
NUMERICAL SOLUTION OF A TRANSIENT NON-LINEAR AXISYMMETRIC EDDY CURRENT MODEL WITH NON@ing-mat.udec.cl This paper deals with an axisymmetric transient eddy current problem in conductive nonlinear magnetic media of the proposed scheme. Keywords: transient eddy current problem; electromagnetic losses; nonlinear magnetic
A simple numerical model of the apparent loss of eddy current conductivity due to surface roughness
Nagy, Peter B.
A simple numerical model of the apparent loss of eddy current conductivity due to surface roughness of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation, the path of the eddy current must follow a more tortuous route in the material, which produces a reduction
Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting
Ribes, Aurélien
Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting SAMUEL RE significant. This led to the implementation of an ensemble Kalman filter (EnKF) within COBEL-ISBA. The new by using an ensemble Kalman filter (EnKF; Evensen 1994, 2003). Theoreti- cally, ensemble filters
NUMERICAL MODELLING OF THE DEEP IMPACT MISSION EXPERIMENT K. Wnnemann1 , and H. J. Melosh1
Collins, Gareth
NUMERICAL MODELLING OF THE DEEP IMPACT MISSION EXPERIMENT K. Wünnemann1 , G. S. Collins2 , and H. J@lpl.arizona.edu, 2 Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK, g.collins@imperial.ac.uk . Introduction: NASA's Deep Impact Mission (launched January 2005) will provide, for the first time ever
Boyer, Edmond
A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT damage on top of an underground solution mining, an in-situ experiment is undertaken above a salt cavity in the Lorraine region (NE of France). The overburden overlying the salt cavity is characterized by a competent
NUMERICAL MODELING OF 3D ORGANIC SOLAR CELLS Presented to the
Kassegne, Samuel Kinde
NUMERICAL MODELING OF 3D ORGANIC SOLAR CELLS _______________ A Thesis Presented to the Faculty and mass equilibrium reactions that occur in the 3D configuration of the organic solar cell. #12;vi TABLE.......................................................................................3 1.3 3-D Organic Solar Cell
Mathematical, physical and numerical principles essential for models of turbulent mixing
Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV
2009-01-01T23:59:59.000Z
We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.
A numerical modeling study on desert oasis self-supporting mechanisms
Chu, Peter C.
A numerical modeling study on desert oasis self-supporting mechanisms Peter C. Chua, *, Shihua Lub February 2005 Abstract Oasis self-supporting mechanisms due to oasis breeze circulation (OBC) are proposed from the oasis makes the oasis surface colder than the surrounding desert surface. The sensible heat
ENINALS Experimental and Numerical Investigations of Nonlinearity in soils using Advanced of Nonlinearity in Soils Using Advanced Laboratory-scaled Models Concluding Workshop Ispra, May 28-30 2013 IFSTTAR linearity in heterogeneous soil deposits due to strong motion shaking METODOLOGY - engineering
January 2, 2008 Numerical modeling of the effect of carbon dioxide
Boyer, Edmond
January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its
The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows.
Kim, Guebuem
The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows. Seoleun Shin 15. Feb. 2011 Abstract The Hamiltonian Particle-Mesh (HPM) method is an interesting alternative have developed schemes based on the HPM method for the shallow-water equations on the sphere, nonhydro
Numerical modeling of extreme rogue waves generated by directional energy focusing
Grilli, Stéphan T.
Numerical modeling of extreme rogue waves generated by directional energy focusing Christophe angle of directional energy focusing. We find that an over- turning rogue wave can have different are characterized by their brief occurrence in space and time, resulting from a local focusing of wave energy
Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles
Aubertin, Michel
Numerical Modelling of Unsaturated Flow in Uniform and Heterogeneous Waste Rock Piles O Fala1 , M Aubertin1,3 , J Molson1 , B Bussière2,3 , G W Wilson4 , R Chapuis1 and V Martin1 ABSTRACT Waste rock piles these piles, many physical, geochemical and biological processes can contribute to the production of AMD
Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda
Schmeiser, Christian
Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models \\Lambda A. Klar y C. Schmeiser z Abstract Radiative heat transfer equations including heat conduction are considÂ ered situations are presented. Keywords. radiative heat transfer, asymptotic analysis, nonlinear diffusion limit
NUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA-HIGH
Boyer, Edmond
in the cementitious matrix can react with carbon dioxide dissolved in the water filling the crack. Autogenous healingNUMERICAL MODELLING OF AUTOGENOUS HEALING AND RECOVERY OF MECHANICAL PROPERTIES IN ULTRA into the crack and leads to a partial recovery of mechanical properties (Young's modulus, tensile strength
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis
LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY CONVERTERS
Haller, Merrick
1 LABORATORY OBSERVATIONS AND NUMERICAL MODELING OF THE EFFECTS OF AN ARRAY OF WAVE ENERGY of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments absorption is a reasonable predictor of the effect of WECs on the far field. Keywords: wave- energy; spectral
Numerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Boussinesq model
Kirby, James T.
tsunami education or tsunami warning system in the re- gion exaccerbated the number of fatalities, even. Scientists had been warning of the growing exposure of coastal residents to tsunami hazards for yearsNumerical Simulation of the December 26, 2004 Indian Ocean Tsunami using a Boussinesq model Philip
September 25, 2006 Numerical modeling of the effect of carbon dioxide
Paris-Sud XI, Université de
September 25, 2006 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats@obs.ujf- grenoble.fr, marielle.collombet@ujf-grenoble.fr, yleguen@lgit.obs.ujf-grenoble.fr. #12;Abstract When carbon
Numerical model for vibration damping resulting from the first-order phase transformations
Melnik, Roderick
: Martensite transformation; Thermo-mechanical coupling; Vibration damping; GinzburgLandau theory 1Numerical model for vibration damping resulting from the first-order phase transformations L LandauGinzburg theory that couples nonlinear mechanical and thermal fields. The free energy function
NUMERICAL MODELLING OF THERMAL-ELECTRICAL PHENOMENA IN SPARK PLASMA SINTERING
Boyer, Edmond
NUMERICAL MODELLING OF THERMAL-ELECTRICAL PHENOMENA IN SPARK PLASMA SINTERING P. Mondaleka , L'Etudes Structurales), France c Université Paul Sabatier, Toulouse, France Abstract. Spark Plasma Sintering belongs: Finite element method, Spark plasma sintering, powder compaction. INTRODUCTION Spark Plasma Sintering
DROP-SCALE NUMERICAL MODELING OF CHEMICAL PARTITIOING DURING CLOUD HYDROMETEOR FREEZING
Stuart, Amy L.
DROP-SCALE NUMERICAL MODELING OF CHEMICAL PARTITIOING DURING CLOUD HYDROMETEOR FREEZING A.L. Stuart freezing provide greatly varying estimates of the retention efficiency of volatile solutes (e.g., Lamb understanding of the dependence of partitioning on chemical properties and freezing conditions (Stuart
Turova, Varvara
International Series of Numerical Mathematics, Vol. 160, 521540 Freezing of Living Cells, stresses arising due to non-simultaneous freezing of water in- side and outside of cells are modeled and outside of living cells during freezing is derived by applying an appropriate averaging technique
COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS
Ostromsky, Tzvetan
COMPUTATIONAL CHALLENGES IN THE NUMERICAL TREATMENT OF LARGE AIR POLLUTION MODELS I. DIMOV , K. GEORGIEVy, TZ. OSTROMSKY , R. J. VAN DER PASz, AND Z. ZLATEVx Abstract. The air pollution, and especially the reduction of the air pollution to some acceptable levels, is an important environmental problem, which
Nonlinear inverse problem for a model of ion-exchange filter: numerical recovery of parameters
) and pressure (15 MPa) of hot steam [2]. Some units are made of cheap corrosion and heat-resistant steel which1 Nonlinear inverse problem for a model of ion-exchange filter: numerical recovery of parameters]. Power-generating units of TPP operate under severe corrosive conditions: high temperature (515 - 530°C
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.
2012-02-23T23:59:59.000Z
This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.
Anh Bui; Nam Dinh; Brian Williams
2013-09-01T23:59:59.000Z
In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.
Coclite, A; De Palma, P; Pascazio, G
2015-01-01T23:59:59.000Z
The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...
Experimental Validation of Stochastic Wireless Urban Channel Model: Estimation and Prediction
Kuruganti, Phani Teja [ORNL] [ORNL; Ma, Xiao [ORNL] [ORNL; Djouadi, Seddik M [ORNL] [ORNL
2012-01-01T23:59:59.000Z
Stochastic differential equations (SDE) can be used to describe the time-varying nature of wireless channels. This paper validates a long-term fading channel model for estimation and prediction from solely using measured received signal strength measurements. Such channel models can be used for optimizing wireless networks deployed for industrial automation, public access, and communication. This paper uses two different sets of received signal measurement data to estimate an predict the signal strength based on past measurements. The realworld performance of the estimation and prediction algorithm is demonstrated.
Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository
Bourgeat, Alain; Smai, Farid
2010-01-01T23:59:59.000Z
We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.
Guo, Yi
2005-02-17T23:59:59.000Z
fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2004 Major Subject: Information and Operations Management FLOW IN INTERNET SHOPPING: A VALIDITY STUDY AND AN EXAMINATION OF A MODEL SPECIFYING...) ____________________________ ____________________________ Manjit Yadav Dean Wichern (Member) (Head of Department) December 2004 Major Subject: Information and Operations Management iii ABSTRACT Flow in Internet Shopping: A Validity Study and an Examination of a...
Building ventilation: A pressure airflow model computer generation and elements of validation
Boyer, H; Adelard, L; Mara, T A
2012-01-01T23:59:59.000Z
The calculation of airflows is of great importance for detailed building thermal simulation computer codes, these airflows most frequently constituting an important thermal coupling between the building and the outside on one hand, and the different thermal zones on the other. The driving effects of air movement, which are the wind and the thermal buoyancy, are briefly outlined and we look closely at their coupling in the case of buildings, by exploring the difficulties associated with large openings. Some numerical problems tied to the resolving of the non-linear system established are also covered. Part of a detailled simulation software (CODYRUN), the numerical implementation of this airflow model is explained, insisting on data organization and processing allowing the calculation of the airflows. Comparisons are then made between the model results and in one hand analytical expressions and in another and experimental measurements in case of a collective dwelling.
Laboratory experiments and numerical modeling of wave attenuation through artificial vegetation
Augustin, Lauren Nicole
2009-05-15T23:59:59.000Z
). The first hydrodynamic model developed by Price et al. (1968) simulated the effects of seaweed as a high viscous layer. Mork (1996) extended the idea of the high viscous layer and developed a theory for kelp plants that took into account not only viscous... has been validated by artificial laboratory kelp experiments for the species Laminaria Hyperborea, and is assumed appropriate for representing wave transformation and damping over submerged vegetative fields of variable depths. Mork (1996) studied...
Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.
2013-06-01T23:59:59.000Z
To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.
Low frequency eddy current finite element model validation and benchmark studies
Cherry, M.; Knopp, J. [Materials and Manufacturing Directorate, Air Force Research Laboratory (United States); Mooers, R.; Boehnlein, T. [University of Dayton Research Institute, Dayton, OH (United States); Aldrin, J. C. [Computational Tools, Gurnee, IL (United States); Sabbagh, H. A. [Victor Technologies, LLC, Bloomington, IN (United States)
2011-06-23T23:59:59.000Z
A finite element method (FEM) model was created to calculate the change in impedance of a coil due to the presence of a notch in a plate. The rectangular notches were created via electrical discharge machining (EDM) in a thick aluminum plate and were positioned at normal and oblique angles (10, 20, and 30 degrees) with respect to the vertical axis of the coil. The FEM method was chosen for this model due to its ability to solve problems in complicated geometries with the use of irregular mesh elements to discretize the solution domain. The change in impedance was calculated from the field variables in the simulation for each probe position along the parallel axis of the plate. The error between the model and the experimental data was approximately 5% for the majority of cases. The validated model was used to investigate more complex problems.
Preliminary characterization of materials for a reactive transport model validation experiment
Siegel, M.D.; Ward, D.B.; Cheng, W.C.; Bryant, C.; Chocas, C.S.; Reynolds, C.G.
1993-03-01T23:59:59.000Z
The geochemical properties of a porous sand and several tracers (Ni, Br, and Li) have been characterized for use in a caisson experiment designed to validate sorption models used in models of inactive transport. The surfaces of the sand grains have been examined by a combination of techniques including potentiometric titration, acid leaching, optical microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The surface studies indicate the presence of small amounts of carbonate, kaolinite and iron-oxyhydroxides. Adsorption of nickel, lithium and bromide by the sand was measured using batch techniques. Bromide was not sorbed by the sand. A linear (K{sub d}) or an isotherm sorption model may adequately describe transport of Li; however, a model describing the changes of pH and the concentrations of other solution species as a function of time and position within the caisson and the concomitant effects on Ni sorption may be required for accurate predictions of nickel transport.
Development and validation of a transition model based on a mechanical approximation
Vizinho, R; Silvestre, M
2015-01-01T23:59:59.000Z
A new 3D transition turbulence model, more accurate and faster than an empirical transition model, is proposed. The model is based on the calculation of the pre-transitional u'v' due to mean flow shear. The present transition model is fully described and verified against eight benchmark test cases. Computations are performed for the ERCOFTAC flat-plate T3A, T3C and T3L test cases. Further, the model is validated for bypass, cross-flow and separation induced transition and compared with empirical transition models. The model presents very good results for bypass transition under zero-pressure gradient and with pressure gradient flow conditions. Also the model is able to correctly predict separation induced transition. However, for very low speed and low free-stream turbulence intensity the model delays separation induced transition onset. The model also shows very good results for transition under complex cross-flow conditions in three-dimensional geometries. The 3D tested case was the 6:1 prolate-spheroid und...
Value of Laboratory Experiments for Code Validations
Wawersik, W.R.
1998-12-14T23:59:59.000Z
Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.
Slepoy, Alexander; Mitchell, Scott A.; Backus, George A.; McNamara, Laura A.; Trucano, Timothy Guy
2008-09-01T23:59:59.000Z
Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worth of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model evaluation in situations of high consequence decision-making.
Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Haet Exchangers
Muraya, Norman K.
Significance of Terms . . . . . . . . . . . . . . . . . . . . . . . . Computation of Matrices . Time-stepping Scheme Theory . Summary . 37 39 42 49 52 52 52 53 IV VALIDATION OF HEAT TRANSFER MODELS , 54 IV.1 Overall U-value , 54 IV.2 Single Source Heating.......................................... 69 Xlll CHAPTER Page V APPLICATIONS OF THE HEAT TRANSFER MODELS 0 0 0 0 0 0 0 o. iO Vol Equivalent Diameter 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 • 0 • 0 • 0 • 0 0 0 0 0 0 0 o' iO V.2 Short Circuiting and Equivalent Diameter .. 0 • 0 • 0 ••• 0 0 • 0 • 0 i6 V...
Numerical upscaling for the eddy-current model with stochastic magnetic materials
Eberhard, Jens P. [Computer Simulation Technology, Bad Nauheimer Strasse, 19, D-64289 Darmstadt (Germany)], E-mail: jens.eberhard@cst.com; Popovic, Dan [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: dan.popovic@stud.uni-heidelberg.de; Wittum, Gabriel [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: wittum@uni-hd.de
2008-04-01T23:59:59.000Z
This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the eddy-current approximation of Maxwell's equations to describe the electric field for heterogeneous, isotropic magnetic materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model. The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations which contain a Laplacian as well as a curl-curl operator. We present a computational method how the equation of the combined operators can be discretized and solved numerically using an extended variational formulation compared to standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.
Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint
Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.
2013-03-01T23:59:59.000Z
Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.
Numerical study of a slip-link model for polymer melts and nanocomposites
Diego Delbiondo; Elian Masnada; Samy Merabia; Marc Couty; Jean-Louis Barrat
2013-06-10T23:59:59.000Z
We present a numerical study of the slip link model introduced by Likhtman for describing the dy- namics of dense polymer melts. After reviewing the technical aspects associated with the implemen- tation of the model, we extend previous work in several directions. The dependence of the relaxation modulus with the slip link density and the slip link stiffness is reported. Then the nonlinear rheolog- ical properties of the model, for a particular set of parameters, are explored. Finally, we introduce excluded volume interactions in a mean field such as manner in order to describe inhomogeneous systems, and we apply this description to a simple nanocomposite model. With this extension, the slip link model appears as a simple and generic model of a polymer melt, that can be used as an alternative to molecular dynamics for coarse grained simulations of complex polymeric systems.
Experiments to populate and validate a processing model for polyurethane foam :
Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion; Soehnel, Melissa Marie; O'Hern, Timothy J.; Grillet, Anne; Celina, Mathias Christopher; Wyatt, Nicholas B.; Russick, Edward Mark; Bauer, Stephen J.; Hileman, Michael Bryan; Urquhart, Alexander; Thompson, Kyle Richard; Smith, David Michael
2014-03-01T23:59:59.000Z
We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.
Billman, L.; Keyser, D.
2013-08-01T23:59:59.000Z
The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
François, Marianne M.
2015-01-01T23:59:59.000Z
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more »In this paper, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
Prickett, T.A.
1980-04-01T23:59:59.000Z
Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.
Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond
Sokolov, A. S. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)] [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)
2013-11-15T23:59:59.000Z
A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.
An investigation of analytical and numerical sucker rod pumping mathematical models
Schafer, Donald Joseph
1987-01-01T23:59:59.000Z
of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering AN INVESTIGATION OF ANALYTICAL AND NUMERICAL SUCKER ROD PUMPING MATHEMATICAL MODELS A Thesis by DONALD JOSEPH SCHAFER Approved as to style and content by: 7d JW. J ni (Chai... to Sucker Rod Pumping Research, Inc. , developed a method for computing downhole forces and displacements using an analog computer simulation. The procedure that results from this work, commonly called the API method, considers the total sucker rod...
LaCava, W.; Xing, Y.; Guo, Y.; Moan, T.
2012-04-01T23:59:59.000Z
The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior in different environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for each bearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found in simulation and were dependent on the scope of the model and the bearing stiffness model used.
Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |and Terry M.38 4.23Validation DataArchived CERES Surface
Validation of the RRTM Shortwave Radiation Model and Comparison to GCM Shortwave Models
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |and Terry M.38 4.23Validation DataArchived CERES
Experimental validation of a kilovoltage x-ray source model for computing imaging dose
Poirier, Yannick, E-mail: yannick.poirier@cancercare.mb.ca [CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Manitoba R3E 0V9 (Canada)] [CancerCare Manitoba, 675 McDermot Ave, Winnipeg, Manitoba R3E 0V9 (Canada); Kouznetsov, Alexei; Koger, Brandon [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)] [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Tambasco, Mauro, E-mail: mtambasco@mail.sdsu.edu [Department of Physics, San Diego State University, San Diego, California 92182-1233 and Department of Physics and Astronomy and Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)] [Department of Physics, San Diego State University, San Diego, California 92182-1233 and Department of Physics and Astronomy and Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)
2014-04-15T23:59:59.000Z
Purpose: To introduce and validate a kilovoltage (kV) x-ray source model and characterization method to compute absorbed dose accrued from kV x-rays. Methods: The authors propose a simplified virtual point source model and characterization method for a kV x-ray source. The source is modeled by: (1) characterizing the spatial spectral and fluence distributions of the photons at a plane at the isocenter, and (2) creating a virtual point source from which photons are generated to yield the derived spatial spectral and fluence distribution at isocenter of an imaging system. The spatial photon distribution is determined by in-air relative dose measurements along the transverse (x) and radial (y) directions. The spectrum is characterized using transverse axis half-value layer measurements and the nominal peak potential (kVp). This source modeling approach is used to characterize a Varian{sup ®} on-board-imager (OBI{sup ®}) for four default cone-beam CT beam qualities: beams using a half bowtie filter (HBT) with 110 and 125 kVp, and a full bowtie filter (FBT) with 100 and 125 kVp. The source model and characterization method was validated by comparing dose computed by the authors’ inhouse software (kVDoseCalc) to relative dose measurements in a homogeneous and a heterogeneous block phantom comprised of tissue, bone, and lung-equivalent materials. Results: The characterized beam qualities and spatial photon distributions are comparable to reported values in the literature. Agreement between computed and measured percent depth-dose curves is ?2% in the homogeneous block phantom and ?2.5% in the heterogeneous block phantom. Transverse axis profiles taken at depths of 2 and 6 cm in the homogeneous block phantom show an agreement within 4%. All transverse axis dose profiles in water, in bone, and lung-equivalent materials for beams using a HBT, have an agreement within 5%. Measured profiles of FBT beams in bone and lung-equivalent materials were higher than their computed counterparts resulting in an agreement within 2.5%, 5%, and 8% within solid water, bone, and lung, respectively. Conclusions: The proposed virtual point source model and characterization method can be used to compute absorbed dose in both the homogeneous and heterogeneous block phantoms within of 2%–8% of measured values, depending on the phantom and the beam quality. The authors’ results also provide experimental validation for their kV dose computation software, kVDoseCalc.
Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model
Paris-Sud XI, Université de
or radioactive waste [30], geothermal Corresponding author Email address: benoit.carrier@enpc.fr (Benoit Carrier processes. During the last sixty years, numerous papers [3, 7, 14, 21, 35, 34, 41, 25, 27, 22, 38, 36, 1. In the recent years, a scaling and asymptotic framework was built to determine the influence of the physical
Geant4 Model Validation of Compton Suppressed System for Process monitoring of Spent Fuel
Bender, Sarah; Unlu, Kenan; Orton, Christopher R.; Schwantes, Jon M.
2013-05-01T23:59:59.000Z
Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented.
Moist processes and the quasi-hydrostatic approximation in a mesoscale numerical model
Kennedy, Charles Joseph
1987-01-01T23:59:59.000Z
of Committee) James P. McGuirk (Member) J'ohn M. Klinck (Member) James R. Sco ns (Head of Department) December 1987 ABSTRACT Moist Processes and the Ouasi-Hydrostatic Approximation in a Mesoscale Numerical Model. (December 1987) Charles Joseph...HV)ds' ? gHp s + gHps a dg 1 gt = (gt), s 1 1 (19) the pressure tendency at the model top equation: g f V ~ (pHV)ds' ? VS Vp Q ( el 1 + 0 Yp CpT ? V (H0) ds' )' ? ) (20) Richardson's equation for vertical motion: s f , , f Id d'D &DDVdd ' ? 0 D, 0...
Thermo--inertial bouncing of a relativistic collapsing sphere: A numerical model
L. Herrera; A. Di Prisco; W. Barreto
2005-12-05T23:59:59.000Z
We present a numerical model of a collapsing radiating sphere, whose boundary surface undergoes bouncing due to a decreasing of its inertial mass density (and, as expected from the equivalence principle, also of the ``gravitational'' force term) produced by the ``inertial'' term of the transport equation. This model exhibits for the first time the consequences of such an effect, and shows that under physically reasonable conditions this decreasing of the gravitational term in the dynamic equation may be large enough as to revert the collapse and produce a bouncing of the boundary surface of the sphere.
Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report
Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin
2014-12-01T23:59:59.000Z
This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).
Hughes, Patrick [ORNL; Im, Piljae [ORNL
2012-01-01T23:59:59.000Z
Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par
W. Schmidt; J. C. Niemeyer; W. Hillebrandt
2006-01-23T23:59:59.000Z
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the subgrid scale model in this paper as a basis for more advanced applications in numerical simulations of complex astrophysical phenomena involving turbulence.
Black liquor combustion validated recovery boiler modeling, five-year report
Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.
1996-08-01T23:59:59.000Z
The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.
Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.
2014-07-14T23:59:59.000Z
The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.
Bayes Factor of Model Selection Validates FLMP Dominic W. Massaro, Michael M. Cohen,
Cohen, Michael M.
, using Newton's law of universal gravitation as an analogy, we argue that it might not be valid to expect
Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned
2014-01-31T23:59:59.000Z
Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.
From deep TLS validation to ensembles of atomic models built from elemental motions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.
2015-07-28T23:59:59.000Z
The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy severalmore »conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.« less
Validation of Multiple Tools for Flat Plate Photovoltaic Modeling Against Measured Data
Freeman, J.; Whitmore, J.; Blair, N.; Dobos, A. P.
2014-08-01T23:59:59.000Z
This report expands upon a previous work by the same authors, published in the 40th IEEE Photovoltaic Specialists conference. In this validation study, comprehensive analysis is performed on nine photovoltaic systems for which NREL could obtain detailed performance data and specifications, including three utility-scale systems and six commercial scale systems. Multiple photovoltaic performance modeling tools were used to model these nine systems, and the error of each tool was analyzed compared to quality-controlled measured performance data. This study shows that, excluding identified outliers, all tools achieve annual errors within +/-8% and hourly root mean squared errors less than 7% for all systems. It is further shown using SAM that module model and irradiance input choices can change the annual error with respect to measured data by as much as 6.6% for these nine systems, although all combinations examined still fall within an annual error range of +/-8.5%. Additionally, a seasonal variation in monthly error is shown for all tools. Finally, the effects of irradiance data uncertainty and the use of default loss assumptions on annual error are explored, and two approaches to reduce the error inherent in photovoltaic modeling are proposed.
Cirpka, Olaf Arie
on Numerical Models for Carbon Dioxide Storage in Geological Formations 6/16 Transport Bacteria in water Hydrosystemmodellierung Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations 1/16 Modelling April 2008 Workshop on Numerical Models for Carbon Dioxide Storage in Geological Formations #12
Schmidt, W; Niemeyer, J C
2006-01-01T23:59:59.000Z
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the sub...
Irminger, Philip [ORNL; Starke, Michael R [ORNL; Dimitrovski, Aleksandar D [ORNL; Young II, Marcus Aaron [ORNL; Rizy, D Tom [ORNL; Stovall, John P [ORNL; Overholt, Philip N [U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (OE)
2014-01-01T23:59:59.000Z
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.
Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system
Teng, Zhenke [ORNL; Zhang, F [CompuTherm LLC, Madison, WI; Miller, Michael K [ORNL; Liu, Chain T [Hong Kong Polytechnic University; Huang, Shenyan [ORNL; Chou, Y.T. [Multi-Phase Services Inc., Knoxville; Tien, R [Multi-Phase Services Inc., Knoxville; Chang, Y A [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK)
2012-01-01T23:59:59.000Z
NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model in the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.
The LIGO Scientific Collaboration; the Virgo Collaboration; the NINJA-2 Collaboration; :; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Díaz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Gräf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kéfélian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski
2014-01-05T23:59:59.000Z
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We also perform a large-scale monte-carlo study to assess the ability to recover each of the 60 hybrid waveforms with early Advanced LIGO and Advanced Virgo sensitivity curves. Our results predict that early Advanced LIGO and Advanced Virgo will have a volume-weighted average sensitive distance of 300Mpc (1Gpc) for $10M_{\\odot}+10M_{\\odot}$ ($50M_{\\odot}+50M_{\\odot}$) binary black hole coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. [Abstract abridged for ArXiv, full version in PDF
Numerical modelling of sandstone uniaxial compression test using a mix-mode cohesive fracture model
Gui, Yilin; Kodikara, Jayantha
2015-01-01T23:59:59.000Z
A mix-mode cohesive fracture model considering tension, compression and shear material behaviour is presented, which has wide applications to geotechnical problems. The model considers both elastic and inelastic displacements. Inelastic displacement comprises fracture and plastic displacements. The norm of inelastic displacement is used to control the fracture behaviour. Meantime, a failure function describing the fracture strength is proposed. Using the internal programming FISH, the cohesive fracture model is programmed into a hybrid distinct element algorithm as encoded in Universal Distinct Element Code (UDEC). The model is verified through uniaxial tension and direct shear tests. The developed model is then applied to model the behaviour of a uniaxial compression test on Gosford sandstone. The modelling results indicate that the proposed cohesive fracture model is capable of simulating combined failure behaviour applicable to rock.
Tesfatsion, Leigh
Validation of an Agent-based Model of Deregulated Electric Power Markets Charles M. Macal model of the electric power market designed to investigate market restructuring and deregulation, deregulated electric power markets Acknowledgments: The authors would like to acknowledge the other members
A phase screen model for simulating numerically the propagation of a laser beam in rain
Lukin, I P; Rychkov, D S; Falits, A V [Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation); Lai, Kin S; Liu, Min R [DSO National Laboratories 20 (Singapore)
2009-09-30T23:59:59.000Z
The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. The 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)
Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri
Rovey, Charles; Gouzie, Douglas; Biagioni, Richard
2013-09-30T23:59:59.000Z
The project titled Monitoring and Numerical Modeling of Shallow CO{sub 2} Injection, Greene County, Missouri provided training for three graduate students in areas related to carbon capture and storage. Numerical modeling of CO{sub 2} injection into the St. Francois aquifer at the Southwest Power Plant Site in Greene County, Missouri indicates that up to 4.1 x 10{sup 5} metric tons of CO{sub 2} per year could be injected for 30 years without exceeding a 3 MPa differential injection pressure. The injected CO{sub 2} would remain sequestered below the top of the overlying caprock (St. Francois confining unit) for more than 1000 years. Geochemical modeling indicates that portions of the injected CO{sub 2} will react rapidly with trace minerals in the aquifer to form various solid carbonate mineral phases. These minerals would store significant portions of injected CO{sub 2} over geologic time scales. Finally, a GIS data base on the pore-fluid chemistry of the overlying aquifer system in Missouri, the Ozark aquifer, was compiled from many sources. This data base could become useful in monitoring for leakage from future CO{sub 2} sequestration sites.
Stochastic models and numerical algorithms for a class of regulatory gene networks
Thomas Fournier; Jean-Pierre Gabriel; Christian Mazza; Jerome Pasquier; Jose Galbete; Nicolas Mermod
2008-10-01T23:59:59.000Z
Regulatory gene networks contain generic modules like those involving feedback loops, which are essential for the regulation of many biological functions. We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady state distributions of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in synthetic biology and in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops
Sobolik, S.R.; Miller, J.D.
1996-09-01T23:59:59.000Z
The U.S. Department of Energy`s (DOE) Yucca Mountain Site Characterization Project (YMP) is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization will be facilitated by the construction of an Exploratory Studies Facility (ESF). The ESF and potential repository will be excavated from both nonwelded and welded ashflow tuff with varying rock quality (degree of welding, rock mass strength, etc.) and fault and fracture characteristics. Design concerns for the construction of these facilities include the integrity of the structure during underground testing operations and, if it occurs, the emplacement and storage of high-level nuclear waste which could increase the local temperatures in the underground rock mass to as high as 300{degrees}C. Because of the associated issues regarding personnel and long-term environmental safety, sophisticated jointed rock mass models will be required to provide a high degree of confidence for decisions regarding the design, site characterization, and licensing of such facilities. The objective of the work documented in this report is to perform code validation calculations for three rock-mass computer models. The three rock-mass computer models used for this report are the discrete element code UDEC, Version 1.82; and the finite element continuum joint models JAC2D Version 5.10 and JAS3D Version 1.1. The rock mass behavior predicted by the models are compared to the results of laboratory experiments on layered polycarbonate (Lexan) and granite plate experiments. These experiments examine the rock mass behavior of well-defined jointed rock structures or models of jointed structures under uniaxial and biaxial loading. The laboratory environment allows control over the boundary conditions, material properties, and quality and quantity of the data obtained.
Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models
Weitzel, E.; Hoeschele, M.
2014-09-01T23:59:59.000Z
A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.
Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM
Robinson, Martin; Ramaioli, Marco
2013-01-01T23:59:59.000Z
We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...
Numerical modeling of the high-temperature geothermal system of Amatitlan, Guatemala
Pham, M.; Menzies, A.J.; Sanyal, S.K. [GeothermEx, Inc., Richmond, CA (United States)] [and others
1996-12-31T23:59:59.000Z
Using the conceptual model of the Amatitlin geothermal system as a guide, a 14 by 10 km numerical model was set up with five layers and a total of 1,220 grid blocks. The number of grid blocks varies from layer to layer, with finer resolution in the two production layers. Boundary blocks for conductive heat transfer, heat and mass recharge, shallow discharge and deep regional fluid flow were added to the model as appropriate. With an inflow of hot fluid (336{degrees}C) at a rate of 450 tones per hour, an inflow of cool fluid (50{degrees}C) at a rate of 620 tons per hour and permeabilities varying from 1.5 to 50 md, the initial state temperatures on all five levels were well matched by the numerical model. The initial state results indicate that highest permeability is present to the southeast of the productive wells, suggesting that considerable additional production potential exists in this area. A two-phase region exists in the upper levels of the reservoir and in the outflow plume; the latter is consistent with the presence of fumaroles along the shoreline of Lago de Amatitlan. To further calibrate the numerical model, enthalpy and pressure data collected during tests of wells AMF-1 and -2 were matched, primarily by varying reservoir storage capacity. Good matches to the observed data were obtained for both wells, although sharp transients could not be matched. Modeling proceeded to the prediction stage under two scenarios: production of 12 and 25 MW (gross) for 30 years. 100% injection of separated water and condensate was assumed to take place in the vicinity of well AMF-3 in both cases. The results show an increase in enthalpy caused by expansion of the two-phase zone during the first year of production, followed by an enthalpy decline as reservoir liquid begins to migrate toward the production area. The two existing production wells (AMF-1 and -2) are predicted to be capable of maintaining output in the 12 MW case throughout the 30-year project life.
Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics
Lynett, Patrick
Tsunami inundation modeling in constructed environments: A physical and numerical comparison April 2013 Available online 17 May 2013 Keywords: Tsunami Inundation Macro-roughness Benchmark COULWAVE Friction factor A laboratory benchmark test for tsunami inundation through an urban waterfront including
HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson
Jamieson, Bruce
HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15T23:59:59.000Z
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions
Giacometti, Achille; Gazzillo, Domenico; Pastore, Giorgio; Das, Tushar Kanti [Istituto Nazionale per la Fisica della Materia and Dipartimento di Chimica Fisica, Universita di Venezia, S. Marta DD 2137, I-30123 Venice (Italy); Dipartimento di Fisica Teorica, Universita di Trieste and INFM-DEMOCRITOS, National Simulation Center, Strada Costiera 11, Miramare, I-34100 Trieste (Italy); ICTP, Diploma Course, Strada Costiera 11, Miramare P.O Box 586, I-34100 Trieste (Italy)
2005-03-01T23:59:59.000Z
The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), of a simple perturbative approximation to the radial distribution functions (RDF's), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent small-angle-scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein ({beta}-lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and Percus-Yevick closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.
Numerical modeling of roll structures in mesoscale vortexes over the Black Sea
Iarova, D A
2014-01-01T23:59:59.000Z
This paper is a case study of horizontal atmospheric rolls that formed over the Black Sea on 16 August 2007. The rolls were discovered in WRF modeling results for a mesoscale cyclone that originated over the sea on 15 August 2007. The roll formation mechanisms, such as Rayleigh-Benard convective instability, dynamic instability, advection and stretching of vertical velocity field inhomogeneities, are considered. It is shown that indeed convective instability played an important role in the roll formation but dynamic instability did not occur. In order to distinguish other possible mechanisms of the roll formation numerical experiments were performed. In these experiments sea surface temperature in the initial conditions was decreased in order to prevent convective instability. Even though convective instability was suppressed roll-like structures still appeared in the modeling results, although their height and circulation velocity were smaller than in the control run. It was found that these structures were ...
Seth A Veitzer
2008-10-21T23:59:59.000Z
Effects of stray electrons are a main factor limiting performance of many accelerators. Because heavy-ion fusion (HIF) accelerators will operate in regimes of higher current and with walls much closer to the beam than accelerators operating today, stray electrons might have a large, detrimental effect on the performance of an HIF accelerator. A primary source of stray electrons is electrons generated when halo ions strike the beam pipe walls. There is some research on these types of secondary electrons for the HIF community to draw upon, but this work is missing one crucial ingredient: the effect of grazing incidence. The overall goal of this project was to develop the numerical tools necessary to accurately model the effect of grazing incidence on the behavior of halo ions in a HIF accelerator, and further, to provide accurate models of heavy ion stopping powers with applications to ICF, WDM, and HEDP experiments.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
Eliasson, B. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Stenflo, L. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Department of Physics, Linkoeping University, SE-581 83 Linkoeping (Sweden); Shukla, P. K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2008-10-15T23:59:59.000Z
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.
place. 2. The basic model can be varied to suit foragers that optimise either their rate of net energy uptake or their foraging ef®ciency. 3. The model requires speci®cation of the time and energy budgetsAn economic model of the limits to foraging range in central place foragers with numerical
Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.
2014-02-24T23:59:59.000Z
Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.
Two-dimensional numerical model of underground oil-shale retorting
Travis, B.J.; Hommert, P.J.; Tyner, C.E.
1983-01-01T23:59:59.000Z
A two-dimensional numerical model of underground oil shale retorting, which fully couples retorting chemistry with fluid and heat flow, has been developed. The model solves the time-dependent, two-dimensional mass, momentum, and energy balance equations for a nine-component fluid (O/sub 2/, N/sub 2/, H/sub 2/, CO/sub 2/, CO, CH/sub 4/, CH/sub x/, H/sub 2/O, and oil). Water and oil can flow in the liquid and/or vapor phases. Retort chemistry includes kerogen pyrolysis, carbonate decomposition, char reactions, and combustion. Also, detailed modeling of heat flow and chemistry inside shale particles allows large rubble sizes as well as small sizes to be considered. The model is compared to one-dimensional experimental data obtained from Lawrence Livermore National Laboratory. The model can be used to examine the effect of two-dimensional variations in shale grade, rubble size, permeability, porosity, geometry, inflow gas composition, etc. on retorting efficiency and process optimization. A sample calculation is presented.
Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.
2006-09-29T23:59:59.000Z
This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.
Stetiu, C.
1993-07-01T23:59:59.000Z
A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.
Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov [Science and Research Staff, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993–0002 (United States); Cross, Kevin P. [Leadscope, Inc., 1393 Dublin Road, Columbus, OH, 43215–1084 (United States)] [Leadscope, Inc., 1393 Dublin Road, Columbus, OH, 43215–1084 (United States)
2012-05-01T23:59:59.000Z
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ? We characterize a new in silico model to predict mutagenicity of drug impurities. ? The model predicts Salmonella mutagenicity and will be useful for safety assessment. ? We examine toxicity fingerprints and toxicophores of this Ames assay model. ? We compare these attributes to those found in drug impurities known to FDA/CDER. ? We validate the model and find it has a desired predictive performance.
Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.
2013-08-24T23:59:59.000Z
Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.
Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model
Paris-Sud XI, Université de
Flow and Geomechanics N. Guy*, G. Enchéry and G. Renard IFP Energies nouvelles, 1-4 avenue de Bois of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid Flow and Geomechanics when both thermal fluid flow and geomechanics are coupled in order to take into account variations
Paris-Sud XI, Université de
Central South Pacific thermocline water circulation from a high-resolution ocean model validated. Introduction [2] Most South Pacific Ocean studies have been focused on its western or eastern part, leaving 12 January 2009; accepted 28 January 2009; published 13 May 2009. [1] The oceanic circulation
A numerical procedure to model and monitor CO2 sequestration in
Santos, Juan
Oceanografia e di Geofisica Sperimentale (OGS), Trieste, ITALY IC-MSQUARE 2012, September 3-7, 2012A numerical
Tidal Downsizing model. I. Numerical methods: saving giant planets from tidal disruptions
Nayakshin, Sergei
2014-01-01T23:59:59.000Z
Tidal Downsizing (TD) is a recently developed planet formation theory that supplements the classical Gravitational disc Instability (GI) model with planet migration inward and tidal disruptions of GI fragments in the inner regions of the disc. Numerical methods for a detailed population synthesis of TD planets are presented here. As an example application, the conditions under which GI fragments collapse faster than they migrate into the inner $a\\sim$ few AU disc are considered. It is found that most gas fragments are tidally or thermally disrupted unless (a) their opacity is $\\sim 3$ orders of magnitude less than the interstellar dust opacity at metallicities typical of the observed giant planets, or (b) the opacity is high but the fragments accrete large dust grains (pebbles) from the disc. Case (a) models produce very low mass solid cores ($M_{\\rm core} < 0.1$ Earth masses) and follow a negative correlation of giant planet frequency with host star metallicity. In contrast, case (b) models produce massiv...
Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun; Roberts, Mindy
2011-07-20T23:59:59.000Z
Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters, but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.
Boyer, Edmond
Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf1, T. Haberkorn, SADCO 2011, March 2nd M. Cerf, T. Haberkorn, E. Tr´elat Continuation from a flat to a round Earth model
Beaumont, Christopher
Numerical Modeling of Salt Tectonics on Passive Continental Margins: Preliminary Assessment Sciences The University of Leeds LS2 9JT Leeds United Kingdom Abstract Salt tectonics in passive model of frictional-plastic sedimentary overburden overlying a linear viscous salt layer. We present
Paris-Sud XI, Université de
Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is applied on a complex computational model of an automotive vehicle. 1 INTRODUCTION This work is performed
Paris-Sud XI, Université de
1 Numerical modelling of hybrid arc/laser welding: a Level Set approach for weld bead formation.Bellet@mines-paristech.fr ABSTRACT The joining of high thickness steel sheets by means of hybrid Laser/GMAW welding processes of the workpiece borders. Two finite elements models are presented to illustrate: (i) A hybrid arc/laser welding
An efficient numerical model for incompressible two-phase flow in fractured media Hussein Hoteit a,1
Firoozabadi, Abbas
in fractured hydrocarbon reservoirs [16]. In this model, the matrixfracture mass transfer is describedAn efficient numerical model for incompressible two-phase flow in fractured media Hussein Hoteit a,1 , Abbas Firoozabadi a,b,* a Reservoir Engineering Research Institute, Palo Alto, CA, USA b Yale
Gauntt, Stephen Byron
2009-05-15T23:59:59.000Z
Prediction of bubble formation during filling of microchambers is often critical for determining the efficacy of microfluidic devices in various applications. In this study experimental validation is performed to verify the predictions from a...
Gauntt, Stephen Byron
2009-05-15T23:59:59.000Z
Prediction of bubble formation during filling of microchambers is often critical for determining the efficacy of microfluidic devices in various applications. In this study experimental validation is performed to verify the predictions from a...
Biomarker Discovery and Validation for Proteomics and Genomics: Modeling And Systematic Analysis
Atashpazgargari, Esmaeil
2014-08-27T23:59:59.000Z
relative to the complexity of the decision boundary. The results show that all the estimation methods lose accuracy as complexity increases. Validation of a set of selected biomarkers from a list of candidates is an important stage in the biomarker...
Bharathan, D.; Parsons, B.K.; Althof, J.A.
1988-10-01T23:59:59.000Z
The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.
A numerical model of aerosol scavenging. Part 2, Simulation of a large city fire
Bradley, M.M.; Molenkamp, C.R.
1991-10-01T23:59:59.000Z
Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate.
Eckert, Andreas
2013-05-31T23:59:59.000Z
In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ?P{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ?P{sub c} magnitudes, especially for the compressional stress regime.
active protection element. Second, if several relay models are in a multi-terminal scenario, the relay digital protective relay data analysis application (DPRDA). It is originally developed for validationAbstract--This paper presents the development of a novel digital relay model and its validation
Hans-Dieter Alber
2015-05-20T23:59:59.000Z
The accurate simulation of phase interfaces in solids requires small model error and small numerical error. If a phase field model is used and the interface carries low interface energy, then the model error is only small if the interface width in the model is chosen small. Yet, for effective numerical computation the interface width should be large. Choosing the parameters, which determine the width, is therefore an optimality problem. We study this problem for the Allen-Cahn equation coupled to the elasticity equations by constructing an asymptotic solution of second order, which yields an expansion for the kinetic relation of the model. This expansion determines the choice of the parameters, however only if the difference between the expansion and the exact kinetic relation is uniformly small with respect to a second parameter controlling the interface energy. To show this uniformity we determine the asymptotics with respect to this second parameter by scaling of the model equations. Our investigations are formal.
SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy
Melchior, M [Terapia Radiante S.A., La Plata, Buenos Aires (Argentina); Salinas Aranda, F [Vidt Centro Medico, Ciudad Autonoma De Buenos Aires (Argentina); 21st Century Oncology, Ft. Myers, FL (United States); Sciutto, S [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Dodat, D [Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina); Larragueta, N [Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina); Centro Medico Privado Dean Funes, La Plata, Buenos Aires (Argentina)
2014-06-01T23:59:59.000Z
Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanning system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.
NUMERICAL MODELING OF THE COAGULATION AND POROSITY EVOLUTION OF DUST AGGREGATES
Okuzumi, Satoshi; Sakagami, Masa-aki [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Hidekazu, E-mail: satoshi.okuzumi@ax2.ecs.kyoto-u.ac.j [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)
2009-12-20T23:59:59.000Z
Porosity evolution of dust aggregates is crucial in understanding dust evolution in protoplanetary disks. In this study, we present useful tools to study the coagulation and porosity evolution of dust aggregates. First, we present a new numerical method for simulating dust coagulation and porosity evolution as an extension of the conventional Smoluchowski equation. This method follows the evolution of the mean porosity for each aggregate mass simultaneously with the evolution of the mass distribution function. This method reproduces the results of previous Monte Carlo simulations with much less computational expense. Second, we propose a new collision model for porous dust aggregates on the basis of our N-body experiments on aggregate collisions. As the first step, we focus on 'hit-and-stick' collisions, which involve neither compression nor fragmentation of aggregates. We first obtain empirical data on porosity changes between the classical limits of ballistic cluster-cluster and particle-cluster aggregation. Using the data, we construct a recipe for the porosity change due to general hit-and-stick collisions as well as formulae for the aerodynamical and collisional cross sections. Our collision model is thus more realistic than a previous model of Ormel et al. based on the classical aggregation limits only. Simple coagulation simulations using the extended Smoluchowski method show that our collision model explains the fractal dimensions of porous aggregates observed in a full N-body simulation and a laboratory experiment. By contrast, similar simulations using the collision model of Ormel et al. result in much less porous aggregates, meaning that this model underestimates the porosity increase upon unequal-sized collisions. Besides, we discover that aggregates at the high-mass end of the distribution can have a considerably small aerodynamical cross section per unit mass compared with aggregates of lower masses. This occurs when aggregates drift under uniform acceleration (e.g., gravity) and their collision is induced by the difference in their terminal velocities. We point out an important implication of this discovery for dust growth in protoplanetary disks.
Menzies, A.J.; Granados, E.E.; Sanyal, .K.; Merida-I., L.; Caicedo-A, A.
1991-01-01T23:59:59.000Z
A significant amount of geoscientific and reservoir engineering data have been collected from the Zunil geothermal field since 1973. The data have been used to define a conceptual model for the field which has formed the basis for the construction of a three dimensional numerical simulation model. The numerical model has successfully matched both the initial state of the reservoir, as indicated by subsurface temperature and pressure distributions within the presently drilled area, and available well test data. The well test data include short and long term discharge tests and a comprehensive pressure interference test. Calibration of the model will continue during 1991 when the results from drilling and testing of three additional deep wells are available. The model will then be used to study various long term production scenarios for the proposed 15 MW power development.
Validation of Finite-Element Models of Persistent-Current Effects in Nb3Sn Accelerator Magnets
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, X.; Ambrosio, G.; Chlachidze, G.; Collings, E. W.; Dietderich, D. R.; DiMarco, J.; Felice, H.; Ghosh, A. K.; Godeke, A.; Gourlay, S. A.; et al
2015-01-06T23:59:59.000Z
Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnet designsmore »and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed.« less
Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.
2012-11-01T23:59:59.000Z
In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.
Kirby, James T.
Numerical simulation of the 2011 Tohoku tsunami: Comparison with field observations and sensitivity history, created a major tsunami that caused numerous deaths and enormous destruction on the nearby Hon- shu coast. Various tsunami sources were developed for this event, based on inverting seismic or GPS
The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and
of the finite volume scheme implemented in the code. We explain the numerical treatment of the wet is decided on the base of inundation maps which are produced with this type of numerical tools. Finally we and the perspectives for future research presented. Key words: tsunami waves, shallow water equations, tsunami
Verleysen, Michel
regression (PCR) and partial least squares regression (PLSR). Then, we will propose to incorporate non-linearChemometric calibration of infrared spectrometers: selection and validation of variables by non-linear (step by step) for the selection of spectral variables, using linear regression or neural networks
Fox, Mark S.
with information of unknown sources, and need to interact with "strangers". This makes trust and the validity of information in cyberspace arise as crucial issues. This thesis proposes knowledge provenance (KP) as a formal and maintaining the information sources, information dependencies, and trust structures. We conceptualize
Harrison, Mark
1988-01-01T23:59:59.000Z
IMA Journal of Numerical Analysis (1988) 8, 415-433 Finite Element Methods for a Model for Full are given and then a discrete-time, explicit finite element procedure is defined and analysed, with finite on the existence, uniqueness and finite element approximation of the solution of Biot's equations were given in [15
Occhipinti, Giovanni "Ninto"
LETTER Earth Planets Space, 63, 847851, 2011 Three-dimensional numerical modeling of tsunami, 2011; Accepted June 30, 2011; Online published September 27, 2011) The tremendous tsunami following, to reproduce the tsunami signature observed in the airglow by the imager located in Hawaii and clearly showing
RodrÃguez, Rodolfo
Numerical analysis of a finite element method for the axisymmetric eddy current model, 27002, Lugo, Spain The aim of this paper is to analyze a finite element method to solve an eddy current of the method are reported. Keywords: low-frequency harmonic Maxwell equations, eddy current problems, finite
Demouchy, Sylvie
Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of the morphology of mountain belts. Here we investigate the modalities of defor- mation in Central Nepal on a c that the pattern of uplift in Nepal is mainly dependent on both erodability and fault geometry, rather than
Dadi, Sireesh Kumar
2011-10-21T23:59:59.000Z
-Butler model, which obtained a new drainage function based on a linearized Richard’s equation but limited the variation of soil moisture and hydraulic conductivity in the unsaturated zone to exponential functions. Numerical analysis was conducted with VS2DT...
Tandon, Amit
Segmentation and Tracking of Mesoscale Eddies in Numeric Ocean Models Vishal Sood, Bin John suggested that the mesoscale eddies and mesoscale features play a strong role in carrying heat poleward oceanographers an invaluable tool to assess mesoscale eddies and the Lagrangian characteristics of this mesoscale
Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)
2005-06-15T23:59:59.000Z
To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.
Numerical study of the mass spectrum in the 2D O(3) sigma model with a theta term
B. Alles; A. Papa
2007-11-12T23:59:59.000Z
It has been conjectured that the mass spectrum of the O(3) non-linear sigma model with a theta term in 2 dimensions may possess an excited state, which decays when theta is lowered from pi below a critical value. Since the direct numerical investigation of the model is prevented by a sign problem, we try to infer some information on the mass spectrum at real theta by studying the model at imaginary theta via analytic continuation. A modified Swendsen-Wang cluster algorithm has been introduced to simulate the model with the theta term.
Vršnak, B.; Žic, T.; Dumbovi?, M. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Ka??eva 26, HR-10000 Zagreb (Croatia); Temmer, M.; Möstl, C.; Veronig, A. M. [Kanzelhöhe Observatory—IGAM, Institute of Physics, University of Graz, Universittsplatz 5, A-8010 Graz (Austria); Taktakishvili, A.; Mays, M. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Odstr?il, D., E-mail: bvrsnak@geof.hr, E-mail: tzic@geof.hr, E-mail: mdumbovic@geof.hr, E-mail: manuela.temmer@uni-graz.at, E-mail: christian.moestl@uni-graz.at, E-mail: astrid.veronig@uni-graz.at, E-mail: aleksandre.taktakishvili-1@nasa.gov, E-mail: m.leila.mays@nasa.gov, E-mail: dusan.odstrcil@nasa.gov [George Mason University, Fairfax, VA 22030 (United States)
2014-08-01T23:59:59.000Z
Real-time forecasting of the arrival of coronal mass ejections (CMEs) at Earth, based on remote solar observations, is one of the central issues of space-weather research. In this paper, we compare arrival-time predictions calculated applying the numerical ''WSA-ENLIL+Cone model'' and the analytical ''drag-based model'' (DBM). Both models use coronagraphic observations of CMEs as input data, thus providing an early space-weather forecast two to four days before the arrival of the disturbance at the Earth, depending on the CME speed. It is shown that both methods give very similar results if the drag parameter ? = 0.1 is used in DBM in combination with a background solar-wind speed of w = 400 km s{sup –1}. For this combination, the mean value of the difference between arrival times calculated by ENLIL and DBM is ?-bar =0.09±9.0 hr with an average of the absolute-value differences of |?|-bar =7.1 hr. Comparing the observed arrivals (O) with the calculated ones (C) for ENLIL gives O – C = –0.3 ± 16.9 hr and, analogously, O – C = +1.1 ± 19.1 hr for DBM. Applying ? = 0.2 with w = 450 km s{sup –1} in DBM, one finds O – C = –1.7 ± 18.3 hr, with an average of the absolute-value differences of 14.8 hr, which is similar to that for ENLIL, 14.1 hr. Finally, we demonstrate that the prediction accuracy significantly degrades with increasing solar activity.
Mathiesen, Patrick; Collier, Craig; Kleissl, Jan
2013-01-01T23:59:59.000Z
cycle: The RUC. Monthly Weather Review. 132, 495?518. th Conference on Numerical Weather Prediction. American closure schemes. Monthly Weather Review. 122, 927?945.
Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt
Wilcock, William
for Nu up to 5060. Solutions are characterized by an unstable bottom thermal boundary layer where equation. To avoid classical numerical artifacts such as nonphysical oscillatory behavior and artificial
An evaluation of pocket-model, numerical readout breath alcohol testing instruments
Van Tassel, William Edward
2004-11-15T23:59:59.000Z
Eight small-scale breath alcohol measurement devices were tested for accuracy, precision and the ability to not yield false positive and false negative readings. These pocket-sized breath testers (PMBTs), which provided numerical readout of Br...
Qualification of the ITER CS Quench Detection System using Numerical Modeling
Martovetsky, Nicolai N [ORNL; Radovinsky, Alexey L [ORNL
2013-01-01T23:59:59.000Z
Abstract The ITER Central Solenoid (CS) magnet needs to be protected against overheating of the conductor in the event of the occurrence of a normal zone (NZ). Due to a large amount of stored energy and slow NZ propagation, the NZ needs to be detected and the switchyard needs to open the breakers within 2 s after detection of the NZ. The CS will be discharged on a dump resistor with a time constant of 7.5 s. During operation of the CS and its interaction with the poloidal field (PF) coils and plasma current, the CS experiences large inductive voltages from multiple sources, including nonlinear signals from eddy currents in the vacuum vessel and plasma current variation, that make the task of detecting the resistive signal even more difficult. This inductive voltage needs to be cancelled by quench detection (QD) hardware (e.g., bridges, converters, filters, processors) and appropriate processing of the QD signals to reliably detect NZ initiation and propagation. Two redundant schemes are proposed as the baseline for the CS QD System: 1) A scheme with Regular Voltage Taps (RVT) from triads of Double Pancakes (DP) supplemented by Central Difference Averaging (CDA) and by digital suppression of the inductive voltage from all active coils (the CS and PF coils). Voltage taps are taken from helium outlets at the CS outer diameter. 2)A scheme with Cowound Voltage Taps (CVT) taken from cowound wires routed from the helium inlet at the CS inner diameter. Summary of results of the numerical modeling of the performance of both baseline CS QD systems is presented in this paper. Index Terms Quench detection, Central Solenoid, ITER
Paris-Sud XI, Université de
1 The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global., 2009, `The resilience of the Indian economy to rising oil prices as a validation test for a global so, it compares the modeled and observed responses of the Indian economy to the rise of oil price
Biomarker Discovery and Validation for Proteomics and Genomics: Modeling And Systematic Analysis
Atashpazgargari, Esmaeil
2014-08-27T23:59:59.000Z
and Complexity of Decision Boundary . . . 7 1.1.3 Error Estimation Methods . . . . . . . . . . . . . . . . . . . . 8 1.2 Biomarker Validation: Selected Reaction Monitoring . . . . . . . . . 13 2. A FAST ALGORITHM FOR U-CURVE BRANCH-AND-BOUND FEA- TURE SELECTION... Efficiency of two algorithms vs. nFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8 (a) Plot of the average function evaluations used by each algorithm to find the optimal feature sets, with standard deviation bars. (b) Barplot of the average...
A new strategy for discrete element numerical models: 2. Sandbox applications
Sandiford, Mike
and visualized by the modeler. Reliable modeling of geomechanic processes enables the structural interpreter
Validation of Innovative Exploration Technologies for Newberry Volcano
Broader source: Energy.gov [DOE]
DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.
Mitchell, John Anthony; Epp, David S.; Wittwer, Jonathan W.
2005-10-01T23:59:59.000Z
Damping vibrations is important in the design of some types of inertial sensing devices. One method for adding damping to a device is to use magnetic forces generated by a static magnetic field interacting with eddy currents. In this report, we develop a 2-dimensional finite element model for the analysis of quasistatic eddy currents in a thin sheet of conducting material. The model was used for design and sensitivity analyses of a novel mechanical oscillator that consists of a shuttle mass (thin sheet of conducting material) and a set of folded spring elements. The oscillator is damped through the interaction of a static magnetic field and eddy currents in the shuttle mass. Using a prototype device and Laser Dopler Velocimetry (LDV), measurements were compared to the model in a validation study using simulation based uncertainty analyses. Measurements were found to follow the trends predicted by the model.
An experimental validation of the PRO model for parallel and distributed computation
Boyer, Edmond
model was introduced by Gebremedhin et al. [2002] as a frame- work for the design and analysis. The Parallel Resource-Optimal (PRO) model, introduced in Gebremedhin et al. [2002], is similar to the BSP model discussion of the PRO model, see Gebremedhin et al. [2002]. The PRO model The key features of PRO
Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.
2014-06-01T23:59:59.000Z
Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.
Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes
Kalise, Dante
2011-01-01T23:59:59.000Z
The set of 3D inviscid primitive equations for the atmosphere is dimensionally reduced by a Discontinuous Galerkin discretization in one horizontal direction. The resulting model is a 2D system of balance laws where with a source term depending on the layering procedure and the choice of coupling fluxes, which is established in terms of upwind considerations. The "2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter centered approach. We study four tests cases related to atmospheric phenomena to analyze the physical validity of the model.
Imada, Shinsuke; Watanabe, Tetsuya
2015-01-01T23:59:59.000Z
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases o...
Validation of Global Weather Forecast and Climate Models Over the North
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |and Terry M.38 4.23Validation Data PlanCloud Properties
Holism and Entrenchment in Climate Model Validation J. Lenhard and E. Winsberg, draft March 7, 2008
Winsberg, Eric B.
of complex systems, particularly modelers of the earth's climate, face a deeply entrenched form models--with a particular emphasis on models of the earth's climate. The first claim is about holism. We, on the one hand, and the dynamics of the real world system to be modeled, on the other. To be sure
Mysore, Omar
In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, ...
McKittrick, Joanna
Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation online 15 November 2011 Keywords: Cortical bone Elastic moduli Multi-scale modeling Demineralization include completely demineralized and deproteinized bones as well as untreated bone samples. Porosity
Kenis, Paul J. A.
A three-dimensional numerical model of a micro laminar flow fuel cell with a bridge: Membraneless fuel cell Laminar flow fuel cell Numerical model Convection-diffusion equations Electrode kinetics equations COMSOL a b s t r a c t The operation of a laminar flow fuel cell (LFFC) involves complex interplay
Bradley, M.M.; Peterson, K.R.; Rodriguez, D.J.
1988-11-17T23:59:59.000Z
During the hours immediately following a nuclear exchange, large fires could inject enormous quantities of smoke into the atmosphere. This smoke, together with dust from surface bursts, would severely restrict visibilities and darken the skies over large areas for days. This, in turn, could impact surface and air operations and systems. These effects could be mitigated by various scavenging mechanisms within the convective clouds that form above the fires. In order to evaluate impacts of post-nuclear-exchange smoke injection, we are developing a three-dimensional numerical smoke plume model (OCTET) to simulate the dynamics and microphysical processes within smoke plumes and convective clouds above large fires. This model is based on the dynamic framework of the Klemp-Wilhelmson (1978) convective storm model and includes parameterizations of scavenging processes. In addition, we are combining results of laboratory research, field experiments, and detailed numerical modeling of cloud microphysical processes in order to better understand smoke scavenging mechanisms. In this brief demonstration of capabilities, we present results from the OCTET model and from a three-dimensional mesoscale model. The smoke plume and fire-induced cloud simulations demonstrate the effects of nucleation scavenging, seasonal variation of atmospheric stability, and various fuel sources. The mesoscale simulations (that use the plume model output as input) demonstrate the mesoscale transport and diffusion of smoke and predict optical depths over the hypothetical target area. No dust effects have been included in these simulations. 2 refs., 8 figs.
A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.
Park, Byoung Yoon
2013-06-01T23:59:59.000Z
JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.
Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric
2007-10-07T23:59:59.000Z
The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.
Kiryukhin, A.V.; Sugrobov, V.M.
1986-01-21T23:59:59.000Z
The application of the two-dimensional numerical heat-transfer model to the Pauzhetka hydrothermal system allowed us to establish that: (1) a shallow magma body with the anomalous temperature of 700-1000 C and with a volume of 20-30 km{sup 3} may be a heat source for the formation of the Pauzhetka hydrothermal system. (2) The water feeding source of the Pauzhetka hydrothermal system may be meteoric waters which are infiltrated at an average rate of 5-10 kg/s {center_dot} km{sup 2}. The coupling of the numerical heat-transfer model with hydroisotopic data (D,T,{sup 18}O) obtained from the results of testing of exploitation wells, rivers and springs is the basis to understand more clearly the position of recharge areas and the structure of water flows in the hydrothermal system.
A numerical procedure to model and monitor CO2 sequestration in
Santos, Juan
area of research. o We present a methodology integrating numerical simulation of CO2 -brine o The simultaneous flow of brine and CO2 is described by the well-known Black in the brine but the brine is not allowed to vaporize into the CO2 phase. o This formulation uses
LABORATORY-NUMERICAL MODEL COMPARISONS OF CANYON FLOWS: A PARAMETER STUDY.
, but the enhanced viscosities needed to obtain numerical stability give boundary layers that are too wide along length scales, one the fluid depth and another a more narrow boundary-layer-like thickness [O(RoBu-1 is the interaction of an oscillatory, along-slope background current with an isolated canyon incised in an otherwise
Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock
Boyer, Edmond
and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration. R¨ohle, F. Thiele, B. Noll, The Entropy Wave Generator (EWG): A reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574-598] where an entropy wave is generated upstream of a nozzle
McConnell, Joshua B
2000-01-01T23:59:59.000Z
to produce a temperature profile in the liner thickness. An analytical stress model, using the results of the derived equations and the numerical thermal model, was constructed to determine the magnitude of the stresses the liner is subjected to after...
Scalar-Scalar Ladder Model in the Unequal-Mass Case. III - Numerical Studies of the P-Wave Case -
Ichio Fukui; Noriaki Setoh
1999-01-21T23:59:59.000Z
The eigenvalue problem for the p-wave bound states formed by two unequal-mass scalar particles through the massive scalar particle exchange is analyzed numerically in the framework of the Bethe-Salpeter ladder model. As in the s-wave case, the eigenvalues of the coupling constant are found to become complex for some mass configurations in some range of the bound state mass. The Bethe-Salpeter amplitudes of the low-lying bound states are also investigated.
The motivations-attributes-skills-knowledge competency cluster validation model an empirical study
Stevens, Jeffery Allen
2004-09-30T23:59:59.000Z
participants to measure their efforts. In summary, the MIFV is a quantifiable model focused on workforce development and efficiencies....
Model-Based Validation of QoS Properties of Biomedical Sensor Networks
Yi, Wang
is supported by EC IST project CREDO. All models for the experiments of this work can be found at http
Xu, Tianfu; Pruess, Karsten
1998-09-01T23:59:59.000Z
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.
Field observations and numerical model experiments for the snowmelt process at a field site
Ohara, N; Kawas, M L
2006-01-01T23:59:59.000Z
a one dimensional heat transfer model is introduced in orderone dimensional heat transfer model is con- venient forHowever, the simple heat transfer model is a useful tool to
Deussen, Oliver
from the law of conservation of energy. The state-of-the art mathematical model for road cycling powerValidation of a Model and a Simulator for Road Cycling on Real Tracks Thorsten Dahmen · Roman acquisition, analy- sis, modelling, and simulation of performance parameters in road cycling on real tracks
Behnke, M.; Ellis, A.; Kazachkov, Y.; McCoy, T.; Muljadi, E.; Price, W.; Sanchez-Gasca, J.
2007-09-01T23:59:59.000Z
This paper describes reduced-order, simplified wind turbine models for analyzing the stability impact of large arrays of wind turbines with a single point of network interconnection.
THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES
Wang, J.S.Y.
2013-01-01T23:59:59.000Z
disposal of radioactive waste: The Sandia waste isolation flow and transport (SWIFT) model: Sandia Laboratories Report
NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES
Patel, Harsh Jay
2013-09-27T23:59:59.000Z
determined. A deterministic model includes both a dynamic model, and a static model. Compared to a deterministic solute diffusion model, a stochastic diffusion model has one or more stochastic elements. Concentration diffusion system formulated... solute diffusion equation, which merely appears in the form of a number line, the quasi-2D solute diffusion equation forms a Cartesian grid system. Also, for the explicit quasi-2D solute diffusion equation (Eq. 4), concentration variation is measured...
Instrumentation and procedures for validation of synthetic infrared image generation (SIG) models
Salvaggio, Carl
temperature, relative humidity, wind speed, cloud cover, precipitation type and rate, total insolation models are becoming more complex with the incorporation of radiation propagation, thermodynamic by the model mimic many effects seen in actual imagery. The focus of this paper is the definition
Thévenaz, Jacques
Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental-pulse Brillouin optical time-domain analysis (DP-BOTDA) sensors. The proposed model is a tool that provides a full. Keywords: Stimulated Brillouin scattering, distributed optical fiber sensor, temperature sensing, strain
Validation of the coupled Eta/SSiB model over South America Sin Chan Chou
Xue, Yongkang
the model and to investigate its biases and skill on the simulations of South American climate resolution and 38 vertical layers over the South American continent and part of the adjacent oceans. Analyses of the precipitation annual cycle observed in the central part of South America. The model was integrated continuously
Validation of a STATCOM Transient Stability Model through Small-Disturbance Stability Studies
Cañizares, Claudio A.
. INTRODUCTION Power system operators are constantly striving to keep power networks secure by guaranteeing models. For instance, the TS models proposed for a series of Flexible AC Transmission Systems (FACTS used in small-disturbance stability studies of large, interconnected power grids as well as microgrids
Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model
Taylor, G. A.; Hiergesell, R. A.
2013-11-12T23:59:59.000Z
The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow-on work using GoldSim to develop 1D equivalent models of the PORFLOW multi-dimensional models was justified. The comparison of GoldSim 1D equivalent models to PORFLOW multi-dimensional models was made at two locations in the model domains - at the unsaturated-saturated zone interface and at the 100m point of compliance. PORFLOW model results from the 2008 PA were utilized to investigate the comparison. By making iterative adjustments to certain water flux terms in the GoldSim models it was possible to produce contaminant mass fluxes and water concentrations that were highly similar to the PORFLOW model results at the two locations where comparisons were made. Based on the ability of the GoldSim 1D trench models to produce mass flux and concentration curves that are sufficiently similar to multi-dimensional PORFLOW models for all of the evaluated radionuclides and their progeny, it is concluded that the use of the GoldSim 1D equivalent Slit and Engineered trenches models for further probabilistic sensitivity and uncertainty analysis of ELLWF trench units is justified. A revision to the original report was undertaken to correct mislabeling on the y-axes of the compliance point concentration graphs, to modify the terminology used to define the ''blended'' source term Case for the saturated zone to make it consistent with terminology used in the 2008 PA, and to make a more definitive statement regarding the justification of the use of the GoldSim 1D equivalent trench models for follow-on probabilistic sensitivity and uncertainty analysis.
Validation of nuclear models in Geant4 using the halo of a proton pencil beam stopping in water
Hall, David C; Paganetti, Harald; Gottschalk, Bernard
2015-01-01T23:59:59.000Z
A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Impressive agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment whi...
Spectral modeling of two incline cylinders with validation in the time domain
Oswalt, Aaron Jacob
1999-01-01T23:59:59.000Z
Function. 2. 3 Two Input/Single Output System . 2. 4 Conditioned Spectral Analysis. 2. 5 Partial Coherence 2. 6 Formulation of the Nonlinear Model 2. 6. 1 Nonlinear System Form . . 2. 6. 2 Reverse Dynamic Nonlinear System. 2. 6. 3 SDOF Nonlinear...) . . . . . . . . . . . . . . . 15 5 SVSO model for two-input system used to remove the correlated effects of xr(r) . . 18 6 Conditioned spectral model with noise for a two-input / single-output system . . . . . . 20 7 Classification of interference regions for inline...
Spectral modeling of two incline cylinders with validation in the time domain
Oswalt, Aaron Jacob
1999-01-01T23:59:59.000Z
Function. 2. 3 Two Input/Single Output System . 2. 4 Conditioned Spectral Analysis. 2. 5 Partial Coherence 2. 6 Formulation of the Nonlinear Model 2. 6. 1 Nonlinear System Form . . 2. 6. 2 Reverse Dynamic Nonlinear System. 2. 6. 3 SDOF Nonlinear...) . . . . . . . . . . . . . . . 15 5 SVSO model for two-input system used to remove the correlated effects of xr(r) . . 18 6 Conditioned spectral model with noise for a two-input / single-output system . . . . . . 20 7 Classification of interference regions for inline...
Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical
Numerical Modeling At Lightning Dock Geothermal Area (O'Brien, Et Al.,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical1984) | Open
Numerical Modeling At Neal Hot Springs Geothermal Area (U.S. Geothermal
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaPLawrence County,1980) | OpenAl., 2001) |NewNorthNorwalk,Novomer Jump to:NuPowerNumerical1984) |
Development and validation of an analytical model for the notched pocket damper seal
Kannan Srinivas, Bharathwaj
2004-09-30T23:59:59.000Z
Experiments conducted at the Texas A&M Turbomachinery Laboratory and field applications have shown that pocket damper seals (PDS) can be used to suppress vibrations in compressors. A mathematical model is presented for the notched PDS. The notch...
Validation of a molecular hydrogen penetration model in the electric tokamak
Gourdain, P A
2006-01-01T23:59:59.000Z
chamber of the Electric Tokamak showing bare walls andModel in the Electric Tokamak P. -A. Gourdain a) , L. W.of fusion devices such as tokamaks. In low density plasmas,
Validation of Model Simulations of Anvil Cirrus Properties During TWP-ICE: Final Report
Zipser, Edward J. [University of Utah] [University of Utah
2013-05-20T23:59:59.000Z
This 3-year grant, with two extensions, resulted in a successful 5-year effort, led by Ph.D. student Adam Varble, to compare cloud resolving model (CRM) simulations with the excellent database obtained during the TWP-ICE field campaign. The objective, largely achieved, is to undertake these comparisons comprehensively and quantitatively, informing the community in ways that goes beyond pointing out errors in the models, but points out ways to improve both cloud dynamics and microphysics parameterizations in future modeling efforts. Under DOE support, Adam Varble, with considerable assistance from Dr. Ann Fridlind and others, entrained scientists who ran some 10 different CRMs and 4 different limited area models (LAMs) using a variety of microphysics parameterizations, to ensure that the conclusions of the study will have considerable generality.
Soundfield simulation : the prediction and validation of acoustical behavior with compute models
Saad, Omar, 1974-
2004-01-01T23:59:59.000Z
In the past, acoustical consultants could only try to convince the client/architect that with calculations and geometrical plots they could create an acoustically superb space. Now, by modeling the significant acoustical ...
Dynamic Modeling and Wavelet-Based Multi-Parametric Tuning and Validation for HVAC Systems
Liang, Shuangshuang
2014-07-10T23:59:59.000Z
Dynamic Heating, Ventilation, and Air-Conditioning (HVAC) system models are used for the purpose of control design, fault detection and diagnosis, system analysis, design and optimization. Therefore, ensuring the accuracy ...
Martin, E. S.
Purpose: Effective therapies for KRAS-mutant colorectal cancer (CRC) are a critical unmet clinical need. Previously, we described genetically engineered mouse models (GEMM) for sporadic Kras-mutant and non-mutant CRC ...
Griffith, Daniel Todd
2005-02-17T23:59:59.000Z
The main objective of this work is to demonstrate some new computational methods for estimation, optimization and modeling of dynamical systems that use automatic differentiation. Particular focus will be upon dynamical ...
Experimentally Validated Compatibility Strut and Tie Modeling of Reinforced Concrete Bridge Piers
Scott, Reece Melby
2010-10-12T23:59:59.000Z
as a supplementary tool for capacity analysis purposes. This chapter presents a Compatibility Strut-and-Tie Model (C-STM) that is implemented in commercially available structural analysis software, SAP2000 (1995), to predict the nonlinear response... to the two-point Gauss Truss solution considering the following nonlinear failure mechanisms: (a) flexure steel yielding; (b) transverse steel yielding; and (c) concrete crushing. Each truss is modeled using commercial structural analysis software (SAP2000...
A numerical model for the coupled long-term evolution of salt marshes and tidal flats
Fagherazzi, Sergio
-shore mudflat model that takes into account tidal effects; Waeles et al. [2004] incor- porated in the same
Well-characterized open pool experiment data and analysis for model validation and development.
Sundberg, David W.; Brown, Alexander L.; Blanchat, Thomas K.
2006-12-01T23:59:59.000Z
Four Well-Characterized Open Pool fires were conducted by Fire Science and Technology Department. The focus of the Well-Characterized Open Pool fire series was to provide environmental information for open pool fires on a physics first principal basis. The experiments measured the burning rate of liquid fuel in an open pool and the resultant heat flux to a weapon-sized object and the surrounding environment with well-characterized boundary and initial conditions. Results presented in this report include a general description of test observation (pre- and post-test), wind measurements, fire plume topology, average fuel recession and heat release rates, and incident heat flux to the pool and to the calorimeters. As expected, results of the experiments show a strong correlation between wind conditions, fuel vaporization (mass loss) rate, and incident heat flux to the fuel and ground surface and calorimeters. Numerical fire simulations using both temporally- and spatially-dependant wind boundary conditions were performed using the Vulcan fire code. Comparisons of data to simulation predictions showed similar trends; however, simulation-predicted incident heat fluxes were lower than measured.
Nooij, R.J.W. de [Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands) and Netherlands Centre for River Studies (NCR), P.O. Box 177, 2600 MH Delft (Netherlands)]. E-mail: R.deNooij@science.ru.nl; Lotterman, K.M. [Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Sande, P.H.J. van de [Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Pelsma, T. [Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad (Netherlands); Netherlands Centre for River Studies (NCR), P.O. Box 177, 2600 MH Delft (Netherlands); Leuven, R.S.E.W. [Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Netherlands Centre for River Studies (NCR), P.O. Box 177, 2600 MH Delft (Netherlands); Lenders, H.J.R. [Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Netherlands Centre for River Studies (NCR), P.O. Box 177, 2600 MH Delft (Netherlands)
2006-11-15T23:59:59.000Z
Environmental Impact Assessment (EIA) must account for legally protected and endangered species. Uncertainties relating to the validity and sensitivity of EIA arise from predictions and valuation of effects on these species. This paper presents a validity and sensitivity analysis of a model (BIO-SAFE) for assessment of impacts of land use changes and physical reconstruction measures on legally protected and endangered river species. The assessment is based on links between species (higher plants, birds, mammals, reptiles and amphibians, butterflies and dragon- and damselflies) and ecotopes (landscape ecological units, e.g., river dune, soft wood alluvial forests), and on value assignment to protected and endangered species using different valuation criteria (i.e., EU Habitats and Birds directive, Conventions of Bern and Bonn and Red Lists). The validity of BIO-SAFE has been tested by comparing predicted effects of landscape changes on the diversity of protected and endangered species with observed changes in biodiversity in five reconstructed floodplains. The sensitivity of BIO-SAFE to value assignment has been analysed using data of a Strategic Environmental Assessment concerning the Spatial Planning Key Decision for reconstruction of the Dutch floodplains of the river Rhine, aimed at flood defence and ecological rehabilitation. The weights given to the valuation criteria for protected and endangered species were varied and the effects on ranking of alternatives were quantified. A statistically significant correlation (p < 0.01) between predicted and observed values for protected and endangered species was found. The sensitivity of the model to value assignment proved to be low. Comparison of five realistic valuation options showed that different rankings of scenarios predominantly occur when valuation criteria are left out of the assessment. Based on these results we conclude that linking species to ecotopes can be used for adequate impact assessments. Quantification of sensitivity of impact assessment to value assignment shows that a model like BIO-SAFE is relatively insensitive to assignment of values to different policy and legislation based criteria. Arbitrariness of the value assignment therefore has a very limited effect on assessment outcomes. However, the decision to include valuation criteria or not is very important.
Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.
2015-01-01T23:59:59.000Z
We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.
Testing the validity of the Kirkwood approximation using an extended Sznajd model
Timpanaro, André Martin
2015-01-01T23:59:59.000Z
We revisit the deduction of the exit probability of the one dimensional Sznajd model through the Kirkwood approximation [F. Slanina et al., Europhys. Lett. 82, 18006 (2008)]. This approximation is peculiar in that in spite of the agreement with simulation results [F. Slanina et al., Europhys. Lett. 82, 18006 (2008), R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), A. M. Timpanaro and C. P. C. Prado, 89, 052808 (2014)] the hypothesis about the correlation lenghts behind it are inconsistent and fixing these inconsistencies leads to the same results as a simple mean field. We use an extended version of the Sznajd model to test the Kirkwood approximation in a wider context. This model includes the voter, Sznajd and "United we Stand, Divided we Fall" (USDF) models [R. A. Holley and T. M. Liggett, Ann. Prob. 3, 643 (1975), K. Sznajd-Weron and J. Sznajd, Int. Journ. Mod. Phys. C 11, 1157 (2000)] as different parameter combinations, meaning that some analytical results from these models can be used to ev...
Finite Element Modeling and Validation of Residual Stresses in 304 L Girth Welds
Dike, J.J.; Ortega, A.R.; Cadden, C.H.; Rangaswamy, P. Brown, D.
1998-06-01T23:59:59.000Z
Three dimensional finite element simulations of thermal and mechanical response of a 304 L stainless steel pipe subjected to a circumferential autogenous gas tungsten arc weld were used to predict residual stresses in the pipe. Energy is input into the thermal model using a volumetric heat source. Temperature histories from the thermal analysis are used as loads in the mechanical analyses. In the mechanical analyses, a state variable constitutive model was used to describe the material behavior. The model accounts for strain rate, temperature, and load path histories. The predicted stresses are compared with x-ray diffraction determinations of residual stress in the hoop and circumferential directions on the outside surface of the pipe. Calculated stress profiles fell within the measured data. Reasons for observed scatter in measured stresses are discussed.
Molenkamp, C.R.; Grossman, A.
1999-12-20T23:59:59.000Z
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show that reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.
Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences
1995-08-01T23:59:59.000Z
Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.
Grossman, A; Molenkamp, C R
1999-08-25T23:59:59.000Z
A proposal has been made to establish a high density global network of atmospheric micro transponders to record time, temperature, and wind data with time resolution of {le} 1 minute, temperature accuracy of {+-} 1 K, spatial resolution no poorer than {approx}3km horizontally and {approx}0.1km vertically, and 2-D speed accuracy of {le} 1m/s. This data will be used in conjunction with advanced numerical weather prediction models to provide increases in the reliability of long range weather forecasts. Major advances in data collection technology will be required to provide the proposed high-resolution data collection network. Systems studies must be undertaken to determine insertion requirements, spacing, and evolution of the transponder ensemble, which will be used to collect the data. Numerical models which provide realistic global weather pattern simulations must be utilized in order to perform these studies. A global circulation model with a 3{sup o} horizontal resolution has been used for initial simulations of the generation and evolution of transponder distributions. These studies indicate that reasonable global coverage of transponders can be achieved by a launch scenario consisting of the sequential launch of transponders at specified heights from a globally distributed set of launch sites.
EXPERIMENTAL VALIDATION OF A DYNAMIC MODEL FOR A MONO-TUBE CAVITY RECEIVER
dish is the heat source for a mono-tube steam cavity receiver that generates superheated steam at 500, Australia Keywords: solar-thermal, direct steam generation, moving-boundary formulation, ANU Abstract This paper describes a dynamic model of a steam cavity receiver and presents results from simulations
VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT Richard Perez
Perez, Richard R.
]. In this paper we evaluate the model's performance with another set of satellites: the European Meteosat 5 and 7 NREL, 1617 Cole Blvd. Golden, CO 80847 David_renne@nrel.gov Shannon Cowlin NREL Shannon_cowlin@nrel.gov Ray George NREL Ray_george@nrel.gov Bibek Bandyopadhyay Solar Energy Centre New Delhi, India bbibek
Relap 5-3d model validation and benchmark exercises for advanced gas cooled reactor application
Moore, Eugene James Thomas
2006-08-16T23:59:59.000Z
abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP 5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark...
Validation of winter chill models using historic records of walnut phenology Eike Luedeling a,
Zhang, Minghua
is only possible under certain conditions using labor-intensive cultural practices (Balandier et al., 1993 models yielded good predictions, or where their failure was not obvious, growers rarely transitioned stage dates. This method simultaneously estimates Agricultural and Forest Meteorology 149 (2009) 1854
Collins, Kent Michael
1995-01-01T23:59:59.000Z
.05 significance level. Analysis of observed 85th percentile speeds revealed that the current speed-profile model fits the observed data reasonably well. Hypothesis tests of mean observed 85th percentile speeds on tangents resulted in the conclusion that the mean...
Validating a physics-based back-of-the-envelope climate model with state-of-the-art data
Benestad, Rasmus E
2013-01-01T23:59:59.000Z
An old conceptual physics-based back-of-the-envelope model for greenhouse effect is revisited and validated against state-of-the-art reanalyses. Untraditional diagnostics show a physically consistent picture, for which the state of earth's climate is constrained by well-known physical principles, such as energy balance, flow and, conservation. Greenhouse gas concentrations affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place without being re-absorbed. Such increase is seen in the reanalyses. There has also been a reduction in the correlation between the spatial structure of outgoing long-wave radiation and surface temperature, consistent with increasingly more processes interfering with the upwelling infrared light before it reaches the top of the atmosphere. State-of-the-art reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical e...
Not Available
1980-09-01T23:59:59.000Z
Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.
Tesfatsion, Leigh
Data gathering to build and validate small-scale social models for simulation. Two ways: strict. Nowadays, it has become a norm to assess results with actually comparable data and to build the hypothesis for the right use of empirical data in the building of models (Moss and Edmonds, 2005). In this paper, we focus
Tesfatsion, Leigh
Data gathering to build and validate small-scale social models for simulation. Two ways: strict.rouchier@univmed.fr Kyoto, 2005 - 10 - 13 Modelling and the search for realism Social simulation using multi-agent paradigm (sometimes called "agent-based simulation" or "simulation with agents") has developed quickly in the last
/ free-slip / free-slip Numerical models of slab deformation in the upper mantle
Cerveny, Vlastislav
of the plate. Model: Model domain: Results: Effect of decoupling mechanism 410 km 660 km oceánska doska nadlozná doska Results: Effect of boundary condition Effect of yield stress Plate velocity Kinematic, crust.s 1020 Pa.s 1021 Pa.s Free-slip, crust = 1020 Pas, y = 108 Pa Kinematic, crust = 1020 Pas, y = 109 Pa
Griffith, Daniel Todd
2005-02-17T23:59:59.000Z
computation and evaluation of partial derivatives with minimal user coding. The key results in this dissertation details the use of OCEA through a number of computational studies in estimation and dynamical modeling. Several prototype problems are studied... Embedding Method), has been recently developed which shows promise for efficient computation and evaluation of partial derivatives. For a rather arbitrary sequentially substituted set of functions, coded in FORTRAN 90, OCEA invokes operator overloading...
Dooley, S.; Curran, H.J.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland)
2008-04-15T23:59:59.000Z
The autoignition of methyl butanoate has been studied at 1 and 4 atm in a shock tube over the temperature range 1250-1760 K at equivalence ratios of 1.5, 1.0, 0.5, and 0.25 at fuel concentrations of 1.0 and 1.5%. These measurements are complemented by autoignition data from a rapid compression machine over the temperature range 640-949 K at compressed gas pressures of 10, 20, and 40 atm and at varying equivalence ratios of 1.0, 0.5, and 0.33 using fuel concentrations of 1.59 and 3.13%. The autoignition of methyl butanoate is observed to follow Arrhenius-like temperature dependence over all conditions studied. These data, together with speciation data reported in the literature in a flow reactor, a jet-stirred reactor, and an opposed-flow diffusion flame, were used to produce a detailed chemical kinetic model. It was found that the model correctly simulated the effect of change in equivalence ratio, fuel fraction, and pressure for shock tube ignition delays. The agreement with rapid compression machine ignition delays is less accurate, although the qualitative agreement is reasonable. The model reproduces most speciation data with good accuracy. In addition, the important reaction pathways over each regime have been elucidated by both sensitivity and flux analyses. (author)
Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)
2010-01-15T23:59:59.000Z
In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)
A simplified numerical model of coronal energy dissipation based on reduced MHD
E. Buchlin; V. Aletti; S. Galtier; M. Velli; G. Einaudi; J. -C. Vial
2003-03-27T23:59:59.000Z
A 3D model intermediate between cellular automata (CA) models and the reduced magnetohydrodynamic (RMHD) equations is presented to simulate solar impulsive events generated along a coronal magnetic loop. The model consists of a set of planes distributed along a magnetic loop between which the information propagates through Alfven waves. Statistical properties in terms of power-laws for energies and durations of dissipative events are obtained, and their agreement with X-ray and UV flares observations is discussed. The existence of observational biases is also discussed.
Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael
2003-02-01T23:59:59.000Z
This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health care, airport, and manufacturing facilities.
Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids
Olorode, Olufemi Morounfopefoluwa
2012-02-14T23:59:59.000Z
Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...
A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras...
model is applied to one of the slopes of Galeras Volcano to show: (1) the temperature evolution with the time; (2) dynamic pressure change; and (3) particle concentration along the...
Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids
Olorode, Olufemi Morounfopefoluwa
2012-02-14T23:59:59.000Z
Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...
Numerical and analytical modeling of heat transfer between fluid and fractured rocks
Li, Wei, S.M. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...
Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Haet Exchangers
Muraya, Norman K.
1994-01-01T23:59:59.000Z
Non-linear finite element models were developed to simulate transient heat and mass transfer in the soil surrounding the ground heat exchangers of ground-coupled heat pumps (GCHPs) operating in the cooling mode. Parametric ...
Numerical modeling of alongshore sediment transport and shoreline change along the Galveston coast
Sitanggang, Khairil Irfan
2005-02-17T23:59:59.000Z
An alongshore sediment transport and shoreline change analysis on Galveston Island in the period of 1990-2001 is conducted in this study using the Generalized Model for Simulating Shoreline Change (GENESIS). The study is divided into three main...
NUMERICAL MODELING FOR THE FORMATION MECHANISM OF 3D TOPOGRAPHY ON MICROBIAL MAT SURFACES
Patel, Harsh Jay
2013-09-27T23:59:59.000Z
, an innovative modeling approach was employed that focuses on the interface growth of the microbial mat surfaces using a combined stochastic and deterministic approach. A range of different initial conditions were simulated to evaluate the 3D topography evolution...
Airborne observations and numerical modeling of fetch- limited waves in the Gulf of Tehuantepec
Romero, Leonel
2008-01-01T23:59:59.000Z
velocity scaling in wind wave generation. Boundary-Layerlinear theory of of wind wave generation applied to waveSource terms in a third-generation wind wave model. J. Phys.
Thermodynamic Modeling and Numerical Simulation of Single-Shaft Microturbine Performance
Hao, X.; Zhang, G.; Zhou, J.; Chen, Y.
2006-01-01T23:59:59.000Z
the energy saving potential and economical benefits of microturbine and its combined production system, a simple mathematical model of microturbine is proposed. Part-load characteristics of main components are also considered for analyzing the unit...
THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES
Wang, J.S.Y.
2013-01-01T23:59:59.000Z
studies related to the Cerro Prieto Field: Proceedings, 1stSymposium on the Cerro Prieto Geothermal Field, San Diego,modeling studies of the Cerro Prieto Reservoir--A progress
Lusk, Miriam Beatriz
2011-12-31T23:59:59.000Z
To capture the fracture process and non-linear behavior at the element and structural level of granular materials, concrete, under the presence of pre-existing imperfections, a constitutive model and a mesh free method is ...
Jia, Dongxing 1984-
2012-11-15T23:59:59.000Z
The Unidirectional Hybrid Wave Model (UHWM) predicts irregular wave kinematics and pressure accurately in comparison with its linear counterpart and modification, especially near the free surface. Hence, in using the ...
Numerical modeling of fluid flow and time-lapse seismics to monitor ...
santos
May 30, 2014 ... including the presence of shale seals and fractures and fractal variations of the ... In the Black-Oil model employed, brine is NOT present, OIL is.
Final Report: A Model Management System for Numerical Simulations of Subsurface Processes
Zachmann, David
2013-10-07T23:59:59.000Z
The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.
A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture
Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S
2013-01-01T23:59:59.000Z
The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...
Breault, Ronald W, [U.S. DOE; Huckaby, Ernest D. [U.S. DOE; Shadle, Lawrence J [U.S. DOE; Spenik, James L. [REM Engineering PLLC
2013-01-01T23:59:59.000Z
The National Energy Technology Laboratory is investigating a new process for CO{sub 2} capture from large sources such as utility power generation facilities as an alternative to liquid amine based absorption processes. Many, but not all of these advanced dry processes are based upon sorbents composed of supported polyamines. In this analysis, experiments have been conducted in a small facility at different temperatures and compared to CFD reactor predictions using kinetics obtained from TGA tests. This particular investigation compares the predicted performance and the experimental performance of one of these new class of sorbents in a fluidized bed reactor. In the experiment, the sorbent absorbs CO{sub 2} from simulated flue gas in a riser reactor, separates the carbonated particles from the de-carbonated flue gas in a cyclone and then regenerates the sorbent, creating a concentrated stream of pure CO{sub 2} for sequestration. In this work, experimental measurements of adsorption are compared to predictions from a 3-dimensional non-isothermal reacting multiphase flow model. The effects of the gas flow rate and reactor temperature are explored. It is shown that the time duration for CO{sub 2} adsorption decreased for an increase in the gas flow. The details of the experimental facility and the model as well as the comparative analysis between the data and the simulation results are discussed.
Aghdam, E. Abdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran); Kabir, M.M. [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran); Department of Engineering, Islamic Azad University, Aliabad Katoul Branch, Golestan (Iran)
2010-02-15T23:59:59.000Z
Blowby and gas flow through the cylinder-piston-ring crevices are phenomena that affect the engine performance and exhaust emissions. Also these phenomena influence the cylinder pressure and temperature and the charge amount during a cycle. The study and validation of a sub-model for these phenomena in the absence of engine combustion deducts all effects arisen from the combustion event. During the current study, blowby sub-model and gas flow through crevices under motoring conditions has been noticed using a volume-orifice theory and the experimental results measured from a research engine. Blowby geometric parameters, consisting of a few critical cross-section areas (orifice areas) and volumes (top land and inter-ring crevice volumes), were measured in ambient temperature and corrected for hot running conditions. The cylinder pressure during cycle was measured by a piezoelectric pressure transducer and the low pressure parts of the cycle were measured using a piezoresistive pressure transducer for referencing purposes. The obtained results show a very good agreement between experimentally measured pressure data and model output for three compression ratios of 7.6, 10.2, 12.4 and three engine speeds of 750, 1500 and 2000 rpm, so that the maximum deviation was almost 5%. The model predicted that the maximum mass loss increased with increase of compression ratio and decreased with increase of engine speed. Also the peak mass loss position happened within the range of 3-9 CA after top dead center. After occurrence of the maximum loss, a reverse flow from the top land crevice into the cylinder was predicted in the model. (author)
and free surface models and a global heat transfer model, with moving boundaries. An axisymmetric fluid to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite field, from which temperature gradients are determined. The heat transfer model is furthermore expanded
Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area
A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann
2006-09-30T23:59:59.000Z
The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.
You, Xinli; Pratt, Lawrence R; Pesika, Noshir; Aritakula, Kalika M; Rick, Steven W
2012-01-01T23:59:59.000Z
Reported here are experimental and molecular dynamics simulation results for propylene carbonate as a solvent for electrochemical double-layer capacitors based on carbon nanotube forests. Propylene carbonate (PC) wets graphite with a contact angle of 31{\\deg}. Molecular dynamics results agree with this result after reduction of the strength of dispersion attractions to the graphite C atoms by 40%, relative to the models used initially. A simulated nano-scale PC droplet on graphite displays a pronounced layering tendency and an Aztex pyramid structure for the droplet. Computed surface tensions of the PC liquid-vapor interface permit an extrapolative estimate of the critical temperature of PC that is accurate to about 3%. Average PC molecule binding energies, and their variances, are evaluated, and the distribution of binding energies is closely Gaussian. Evaluation of the density of the coexisting vapor then permits estimation of the excluded volume contribution to the PC chemical potential, and that contribut...
Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation
Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher
2011-12-29T23:59:59.000Z
The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.
Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint
Li, Y.; Yu, Y. H.
2012-05-01T23:59:59.000Z
During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.
None
2005-07-01T23:59:59.000Z
This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.
Modeling and numerical techniques for high-speed digital simulation of nuclear power plants
Wulff, W.; Cheng, H.S.; Mallen, A.N.
1987-01-01T23:59:59.000Z
Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses.
Dark matter, neutrino masses and high scale validity of an inert Higgs doublet model
Nabarun Chakrabarty; Dilip Kumar Ghosh; Biswarup Mukhopadhyaya; Ipsita Saha
2015-01-15T23:59:59.000Z
We consider a two-Higgs doublet scenario containing three $SU(2)_L$ singlet heavy neutrinos with Majorana masses. The second scalar doublet as well as the neutrinos are odd under a $Z_2$ symmetry. This scenario not only generates Majorana masses for the light neutrinos radiatively but also makes the lighter of the neutral $Z_2$-odd scalars an eligible dark matter candidate, in addition to triggering leptogenesis at the scale of the heavy neutrino masses. Taking two representative values of this mass scale, we identify the allowed regions of the parameter space of the model, which are consistent with all dark matter constraints. At the same time, the running of quartic couplings in the scalar potential to high scales is studied, thus subjecting the regions consistent with dark matter constraints to further requirements of vacuum stability, perturbativity and unitarity. It is found that part of the parameter space is consistent with all of these requirements all the way up to the Planck scale, and also yields the correct signal strength in the diphoton channel for the scalar observed at the Large Hadron Collider.