National Library of Energy BETA

Sample records for numerical design fabrication

  1. DESIGN [fabrication] BUILD

    E-Print Network [OSTI]

    Rader, Nicolas Glen

    2006-01-01

    DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This ...

  2. Digital fabrication in the architectural design process

    E-Print Network [OSTI]

    Seely, Jennifer C. K., 1975-

    2004-01-01

    Digital fabrication is affecting the architectural design process due to the increasingly important role it has in the fabrication of architectural models. Many design professionals, professors, and students have experienced ...

  3. 4.212 Design Fabrication, Spring 2003

    E-Print Network [OSTI]

    Sass, Lawrence

    Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit ...

  4. Parametric constructs : computational designs for digital fabrication

    E-Print Network [OSTI]

    Araya Goldberg, Sergio

    2006-01-01

    This thesis explores strategies for building design toolchains in order to design, develop and fabricate architectural forms. The hipothesys of this research is that by embedding ruled based procedures addressing generative, ...

  5. Patterned Fabric Know - How (Plaids, Stripes, Checks, and Figured Designs). 

    E-Print Network [OSTI]

    Anoymous,

    1984-01-01

    Fabric mow-Kbw Contents Design Principles and Patterned Fabrics Pattern Selection Fabric Construction Selecting and Preparing Fabric Kinds of Plaids and Stripes Pri nts Other Patterned Fabrics Combining Patterned Fabrics Amount of Fabric Needed... Fabric Preparation Pattern Placement For a Pleasi ng Effect For Matching Assembling the Garment Fabric Care References 3 4 4 5 5 5 6 7 7 7 7 7 9 10 10 11 PATTERNED FABRIC KNOW-HOW (Plaids, Stripes, Checks and Figured Designs...

  6. Design and Fabrication of Micromachined Resonators

    E-Print Network [OSTI]

    Chaudhuri, Ritesh Ray; Bhattacharyya, Tarun Kanti

    2012-01-01

    Microelectromechanical system (MEMS) based on-chip resonators offer great potential for sensing and high frequency signal processing applications due to their exceptional features like small size, large frequency-quality factor product, integrability with CMOS ICs, low power consumption etc. This work is mainly aimed at the design, modeling, simulation, and fabrication of micromachined polysilicon disk resonators exhibiting radial-contour mode vibrations. A few other bulk mode modified resonator geometries are also being explored. The resonator structures have been designed and simulated in CoventorWare finite-element platform and fabricated by the PolyMUMPs surface micromachining process.

  7. Design and Fabrication of Complex Flexible Structures and Microarchitectures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Design and Fabrication of Complex Flexible Structures and Microarchitectures The ability to design and fabricate complex flexible structures is becoming increasingly important using flexible structures because design tools for creating them are limited and modeling

  8. Designing Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A

    2007-01-01

    optimization will be validated by applying the rolls in the fabrication of micro-fluidic and fuel cell

  9. Novel terahertz and nanophotonic lasers : theory, design, and fabrication

    E-Print Network [OSTI]

    Lee, Jeong-Won

    2015-01-01

    In this thesis, we will explore numerical modeling and fabrication of laser sources. First, we demonstrate and distinguish experimentally the existence of special type of Fano resonances at k~~0 in a macroscopic two-dimensional ...

  10. The design and construction of fabric structures

    E-Print Network [OSTI]

    Fang, Rosemarie

    2009-01-01

    In its short history, fabric structures have fascinated architects and engineers alike. Architects appreciate their unusual shapes and forms while engineers delight in their "pure" structural expression. Capable of spanning ...

  11. 4.510 Digital Design Fabrication, Fall 2005

    E-Print Network [OSTI]

    Sass, Lawrence

    This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, ...

  12. Design, fabrication and characterisation of graphene electromechanical resonators 

    E-Print Network [OSTI]

    Chen, Tao

    2015-06-29

    In this thesis, the design, fabrication and characterisation of graphene electromechanical resonators have been presented. Graphene features ultrahigh Young’s modulus and large surface to volume ratio that make it ideal ...

  13. Design and fabrication of a multipurpose compliant nanopositioning architecture

    E-Print Network [OSTI]

    Panas, Robert M. (Robert Matthew)

    2013-01-01

    This research focused on generating the knowledge required to design and fabricate a high-speed application flexible, low average cost multipurpose compliant nanopositioner architecture with high performance integrated ...

  14. Assessment of airplane design, fabrication, and repair

    E-Print Network [OSTI]

    Stolar, Lauren (Lauren Elise)

    2009-01-01

    Engineering programs are most often classes dedicated to how to design things, while the topic of reverse engineering or problem solving is rarely discussed. This unequal presentation of two sides of the same discipline ...

  15. Co-Design: Fabrication of Unalloyed Plutonium

    SciTech Connect (OSTI)

    Korzekwa, Deniece R. [Los Alamos National Laboratory; Knapp, Cameron M. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Gibbs, John W [Northwestern University

    2012-07-25

    The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

  16. Design, Fabrication and Measurement of Integrated Bragg Grating Optical Filters

    E-Print Network [OSTI]

    Murphy, Thomas E.

    by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Deparment Committee on Graduate Students #12;#12;Design, Fabrication. The goal of a Ph.D. program is not only to accomplish spe- cific research goals but also to train one professors, the role of academic adviser unfortunately entails little more than signing forms and reminding

  17. Knit architecture : low tech fabrication techniques in modern design : thesis

    E-Print Network [OSTI]

    Mennel, Kimberly I. (Kimberly Irene)

    2012-01-01

    This thesis aims to bring the handicraft of knitting into the realm of architecture as a low-tech means of fabrication in a world of high-tech design. This thesis attempts to break knitting down into its most essential ...

  18. Design and Fabrication of a MEMS Capacitive Chemical Sensor System

    E-Print Network [OSTI]

    Baker, R. Jacob

    Design and Fabrication of a MEMS Capacitive Chemical Sensor System Vishal Saxena, Todd J. Plum-- This paper describes the development of a MEMS sensor system to detect volatile compounds. The sensor consists of a MEMS capacitive sensor element monolithically integrated with a sensing circuit. The sensor

  19. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.; Itoh, Y.

    1989-07-15

    This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.

  20. THE DESIGN AND FABRICATION OF AN OMNI-DIRECTIONAL VEHICLE PLATFORM

    E-Print Network [OSTI]

    Florida, University of

    .....................................................................................................16 2 MOTOR AND GEAR TRAIN DESIGN................................................................................................... 24 Gear Train DesignTHE DESIGN AND FABRICATION OF AN OMNI-DIRECTIONAL VEHICLE PLATFORM By CHRISTOPHER ROBERT FULMER

  1. Micro-turbo-generator design and fabrication: A preliminary study

    SciTech Connect (OSTI)

    Wiegele, T.G.

    1996-12-31

    The size and weight of portable electronic products are often dictated by the physical characteristics of the power supply system. The design of energy storage systems is therefore critical to market competitiveness. An alternative to energy storage is proposed in this paper which relies on a very small power generation system which converts a pressure difference in a gas into electrical power: a micro-turbo-generator. The design of the micro-turbo-generator involved combining two very different machines, a micro-generator and a micro-turbine, into a single device which could be fabricated within the constraints of current microelectronic processing techniques. Research into power generation on the micro-scale has begun to take place in the form of electromagnetic micro-motor design and fabrication. These variable reluctance machines can be transformed into power generation devices by implementing accurate rotor position sensing, high-speed current switching and a means for inducing rotor motion. This leads to the implementation of a switched reluctance generator, which is well-understood on the macro-scale but has not been attempted on the micro-scale. The most significant hurdle facing researchers is the task of coupling a prime mover, such as a micro-turbine, to the rotor of a power generation device efficiently and effectively while maintaining relative simplicity in the fabrication procedures. The design presented here offers a potential solution to this problem.

  2. THE MECHANICAL DESIGN AND FABRICATION OF A CONVECTIVELY COOLED ION ACCELERATOR FOR CONTINUOUSLY OPERATING NEUTRAL BEAM SYSTEMS

    E-Print Network [OSTI]

    Paterson, J.A.

    2012-01-01

    13-16, 1979 THE MECHANICAL DESIGN AND FABRICATION OF AVosen, et al. , "Mechanical Design Criteria for ContinuouslyCalifornia. LBL~10095 THE MECHANICAL DESIGN AND FABRICATION

  3. Design and Fabrication of In-Reactor Experiment to Measure Tritium...

    Office of Environmental Management (EM)

    Design and Fabrication of In-Reactor Experiment to Measure Tritium Release and Speciation from LiAlO2 and LiAlO2Zr Cermets Design and Fabrication of In-Reactor Experiment to...

  4. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect (OSTI)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  5. Design and Fabrication of a PDMS Microchip Based Immunoassay

    SciTech Connect (OSTI)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  6. Renaissance robotics : novel applications of multipurpose robotic arms spanning design fabrication, utility, and art

    E-Print Network [OSTI]

    Keating, Steven J. (Steven John)

    2012-01-01

    This work investigates, defines, and expands on the use of robotic arms in digital fabrication, design, and art through methods including 3D printing, milling, sculpting, functionally graded fabrication, construction-scale ...

  7. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    E-Print Network [OSTI]

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  8. Procedural Design of Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David

    2007-01-01

    optimization will be validated by applying the rolls in the fabrication of micro-?uidic and fuel cell

  9. Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials and systems at the atomic scale.

    E-Print Network [OSTI]

    Glowinski, Roland

    Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials are able to customize their education by specializing in areas such as nanotechnology, computational

  10. Design, modeling, fabrication and testing of a piezoelectric microvalve for high pressure, high frequency hydraulic applications

    E-Print Network [OSTI]

    Roberts, David C. (David Christopher)

    2002-01-01

    A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation ...

  11. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    SciTech Connect (OSTI)

    Burrill, Andrew [HZB; Anders, W [HZB; Frahm, A. [HZB; Knobloch, Jens [HZB; Neumann, Axel [HZB; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Turlington, Larry D. [JLAB

    2014-12-01

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.

  12. Design and Fabrication of a Long-range Surface Plasmon Polariton

    E-Print Network [OSTI]

    Weinfurter, Harald

    Design and Fabrication of a Long-range Surface Plasmon Polariton Wave Guide for near-infrared light Diplomarbeit von Johannes Trapp #12;#12;Design and Fabrication of a Long-range Surface Plasmon Polariton Wave I would like to thank Philipp Altpeter for his patience to explain to me the variety of machinery

  13. Design and fabrication of microfluidic valves using poly(N-isopropylacrylamide)

    E-Print Network [OSTI]

    Reticker-Flynn, Nathan Edward

    2008-01-01

    A compact printable microfluidic valve composed of poly(N-isopropylacrylamide) has been designed, fabricated, and tested. The design of the valve consists of filling microwells with poly(NIPAAm) and bonding PDMS channels ...

  14. Public by design : auto-fabrication for a contemporary urban physiognomy

    E-Print Network [OSTI]

    Barone Lumaga, Michela

    2013-01-01

    The revolution in modes of design and production anticipate a liberalization of material/fabrication that can potentially allow the masses to take control of the design of the urban space. Historically with each technical ...

  15. INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS

    E-Print Network [OSTI]

    -coupled, ground-source heat pumps, groundwater, heat pump, heat exchanger, heat transfer, numerical models-loop ground-coupled heat exchangers. Green and Perry (1961) demonstrated that the value of effective thermal on the design and performance of vertical closed-loop ground heat exchangers. Based on the investigation results

  16. The design and analysis of tension fabric structures

    E-Print Network [OSTI]

    Son, Miriam Euni

    2007-01-01

    Although tensioned fabric structures are increasingly in demand, since they are comparatively new to the engineering world, there are relatively limited resources available about such structures. This report reviews the ...

  17. Designing liquid repellent surfaces for fabrics, feathers and fog

    E-Print Network [OSTI]

    Chhatre, Shreerang S. (Shreerang Sharad)

    2013-01-01

    Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

  18. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  19. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    SciTech Connect (OSTI)

    Ben-Zvi,I.

    2008-11-17

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed.

  20. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect (OSTI)

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  1. Southwest Research Institute (SwRI) designs, analyzes, and fabricates pressure vessels

    E-Print Network [OSTI]

    Chapman, Clark R.

    vessels using: n ASME B&PV Code, Section VIII, Division 1 n ASME B&PV Code, Section VIII, Division 2 n ASME B&PV Code, Section VIII, Division 3 n ASME Pressure Vessels for Human Occupancy n American Bureau for the Design, Fabrication, and Erection of Structural Steel for Buildings" n Fabrication n ASME B&PV Code

  2. Design and numerical simulation of thermionic electron gun

    E-Print Network [OSTI]

    Hosseinzadeh, M

    2015-01-01

    This paper reports the simulation of an electron gun. The effects of some parameters on the beam quality were studied and optimal choices were identified. It gives numerical beam qualities in common electrostatic triode gun, and the dependences on design parameters such as electrode geometries and bias voltages to these electrodes are shown. An electron beam of diameter 5 mm with energy of five kilo electron volt was assumed for simulation process. Some design parameters were identified as variable parameters in the presence of space charge. These parameters are the inclination angle of emission electrode, the applied voltage to focusing electrode, the gap width between the emission electrode and the focusing electrode and the diameter of the focusing electrode. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that the inclination angle ...

  3. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    E-Print Network [OSTI]

    Canizares, Claude R.

    Details of the design, fabrication, and ground and flight calibration of the High Energy Transmission Grating (HETG) on the Chandra X?Ray Observatory are presented after 5 years of flight experience. Specifics include the ...

  4. Design, fabrication, and control of soft robots with fluidic elastomer actuators

    E-Print Network [OSTI]

    Marchese, Andrew D. (Andrew Dominic)

    2015-01-01

    The goal of this thesis is to explore how autonomous robotic systems can be created with soft elastomer bodies powered by fluids. In this thesis we innovate in the design, fabrication, control, and experimental validation ...

  5. The design, fabrication, and implications of a solvothermal vapor annealing chamber

    E-Print Network [OSTI]

    Porter, Nathaniel R., Jr

    2013-01-01

    This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

  6. Robotic design construction : digital fabrication strategies for freeform masonry casting and mobile assembly

    E-Print Network [OSTI]

    Liu, Yuchen, S.M. Massachusetts Institute of Technology

    2009-01-01

    The paradigm shift of digital fabrication encourages architects to incorporate the knowledge of using innovative materials and novel tools to solve problems in design and construction. However, the application of digital ...

  7. The design and small-scale fabrication of precision desktop lathe components

    E-Print Network [OSTI]

    Demers, Brian Philip

    2009-01-01

    An evaluation was carried out on the design and fabrication techniques of the components provided to students in MIT's 2.72 class. These components are used by the students in the production of a fully-functional precision ...

  8. Design and Fabrication of DRIE-Patterned Complex Needlelike Silicon Structures

    E-Print Network [OSTI]

    Gassend, Blaise

    This paper reports the design and fabrication of high-aspect-ratio needlelike silicon structures that can have complex geometry. The structures are hundreds of micrometers tall with submicrometer-sharp protrusions, and ...

  9. Design and fabrication of a device to characterize spindle performance as a function of bearing preload

    E-Print Network [OSTI]

    Turk, Amanda C. (Amanda Christine)

    2012-01-01

    This paper describes the design and fabrication of an apparatus to characterize the performance of lathe spindles as a function of spindle bearing preload. The apparatus will be used to assist undergraduate students enrolled ...

  10. Design of a desktop milling machine for fabrication in an introductory machine shop class

    E-Print Network [OSTI]

    Lorenc, Dan (Daniel P.)

    2010-01-01

    The purpose of this research is to design, fabricate and test the electromechanical subsystem of a CNC milling machine kit. Unlike all other CNC kits on the market, the purpose of this kit is to teach students the principles ...

  11. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    conversion losses for hydro power is power density Designs for four hydro turbines fromconstant power density Designs for four hydro turbines from

  12. Laser spark plug numerical design process with experimental validation

    SciTech Connect (OSTI)

    McIntyre, D.; Woodruff, S.

    2011-01-01

    This work reports the numerical modeling design procedure for a miniaturized laser spark plug. In previous work both side pumped and end pumped laser spark plugs were empirically designed and tested. Experimental data from the previous laser spark plug development cycles is compared to the output predicted by a known set of rate equations. The rate equations are used to develop interrelated inter cavity time dependent waveforms that are then used to identify key variables. These variables are then input to a set of secondary equations for determining the output pulse energy, output power, and output pulse width of the simulated laser system. The physical meaning and the operation of the rate equations is explained in detail. This paper concentrates on the process and decision points needed to successfully design a solid state passively Q-switched laser system, either side pumped or end pumped, that produces the appropriate output needed for use as a laser spark plug for internal combustion engines.

  13. The design and fabrication of two portal vein flow phantoms by different methods

    SciTech Connect (OSTI)

    Yunker, Bryan E. Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S.; Chen, S. James

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  14. Liner/target/CMU cassette design and fabrication

    SciTech Connect (OSTI)

    Griego, Jeffrey Randall

    2011-01-07

    As part of an ongoing collaboration in pulsed power technology and condensed matter shock physics with RFNCNNIIEF, the initial design for the target and central measuring unit (CMU) for a high-pressure, high-precision ({approx}1 %), Hugoniot, equation of state (EOS) experiment is shown. VNIIEF would design and construct the disk explosive magnetic generator (DEMG) with peak currents {approx}100 MA, and cylindrical liner system with peak velocity {approx}10-20 km/s. LANL would design and construct the target and velocimetry diagnostic system. The initial mechanical design features a 2 cm diameter target system and a 1 cm diameter CMU with 32 lines of sight for PDV.

  15. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    SciTech Connect (OSTI)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  16. Design and Fabrication of a Micro Electrostatic Vibration-to-Electricity Energy Converter

    E-Print Network [OSTI]

    Chiu, Yi; Chu, Yu-Shan

    2007-01-01

    This paper presents a micro electrostatic vibration-toelectricity energy converter. For the 3.3 V supply voltage and 1cm2 chip area constraints, optimal design parameters were found from theoretical calculation and Simulink simulation. In the current design, the output power is 200 $\\mu$W/cm2 for the optimal load of 8 M\\Omega. The device was fabricated in a silicon-on-insulator (SOI) wafer. Mechanical and electrical measurements were conducted. Residual particles caused shortage of the variable capacitor and the output power could not be measured. Device design and fabrication processes are being refined.

  17. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish

    E-Print Network [OSTI]

    Wood, Robert

    Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish Kyu and fabrica- tion of a centimeter-scale propulsion system for a robotic fish. The key to the design are customized to provide the necessary work output for the microrobotic fish. The flexure joints, electrical

  18. Design and fabrication of a tin-sulfide annealing furnace

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2011-01-01

    A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

  19. Digital making : exploring design with computer controlled fabrication

    E-Print Network [OSTI]

    Kashyap, Sameer, 1978-

    2004-01-01

    This thesis examines the underlying issues innate to the design process of developing architectural solutions using the digital for "making" architecture, focusing on architectural production. It proposes an alternative ...

  20. Design and fabrication of an RF power LDMOSFET on SOI

    E-Print Network [OSTI]

    Fiorenza, James G. (James George), 1972-

    2002-01-01

    This thesis studied thin-film Silicon-on-Insulator (SOI) LDMOSFET technology for RF power amplifier applications. To conduct this study, two generations of SOI RF power devices for portable wireless systems were designed ...

  1. Design and Fabrication of a Vertical Pump Multiphase Flow Loop 

    E-Print Network [OSTI]

    Kirkland, Klayton 1965-

    2012-08-24

    cavitation. In centrifugal pumps, cavitation occurs when the pump fluid vaporizes due to the local pressure falling below the vapor pressure for the fluid. This typically occurs in the eye (center) of the impeller as the pressure is lowest at this point... is calculated by the pump manufacturer and is called the Net Positive Suction Head Required (NPSHR). To 2 prevent cavitation, the NPSHA (determined by the inlet conditions and intake design) must be greater than the NPSHR (determined by the pump design...

  2. Design, Fabrication, Assembly and Initial Testing of a SMART Rotor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeeting |Design Competitions Designthe 29 th ASME Wind

  3. Rsum -Les mthodologies de Design for Assembly et de Design for Manufacturing visent rendre les produits plus faciles fabriquer et assembler en se basant sur les caractristiques des procds actuels de fabrication, toutefois ces

    E-Print Network [OSTI]

    Boyer, Edmond

    the new capabilities of Additive Manufacturing. This article describes a design methodology for Additive - Fabrication additive, conception, fabrication rapide, prototypage rapide. Keywords ­ Additive manufacturing, design, rapid manufacturing, rapid prototyping. 1 INTRODUCTION La Fabrication Additive (FA) est définie

  4. ETH Zurich, Institute of Design, Materials and Fabrication Laboratory of Composite Materials and Adaptive Structures

    E-Print Network [OSTI]

    Daraio, Chiara

    Structures Motivation for lightweight structures Newton:F=ma saving energy mîî & aèè F îî (smaller forces of Design, Materials and Fabrication Laboratory of Composite Materials and Adaptive Structures renewable energy water, wind, sun, etc. sufficiency less mobility, less living- room, less etc. how to satisfy

  5. 2.810 Manufacturing Processes and Systems Project Report: Design and Fabrication of Radio Controlled Cars

    E-Print Network [OSTI]

    Awtar, Shorya

    Controlled Cars Group D: Team Members Shorya Awtar Jeff Dahmus Hyun Kim Raul Martinez Pat Willoughby James involved in the design and fabrication of the car. These items were: · Car Chassis · Rear Suspension · Front Suspension · Steering Mechanism and Interface · Interface Plate and Electronics · Car Shell

  6. ASME Code requirements for multi-canister overpack design and fabrication

    SciTech Connect (OSTI)

    SMITH, K.E.

    1998-11-03

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified.

  7. Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

  8. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    SciTech Connect (OSTI)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    1997-12-31

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  9. Impact of the University Environment and VLSI Fabrication Services on Mixed-Signal Design in a University Environment

    E-Print Network [OSTI]

    Bibyk, Steven B.

    environments, design libraries, technology process information and VLSI fabrication service will impact library for a specific technology, an FGPA environment, or sometimes the process technology informationImpact of the University Environment and VLSI Fabrication Services on Mixed-Signal Design

  10. DESIGN OF A TRIBOMETER RETROFITTED ONTO A COMPUTER NUMERICAL CONTROLLED MACHINING CENTER FOR ROCK DRILLING STUDIES 

    E-Print Network [OSTI]

    Bahner, Derek w

    2014-09-20

    The objective of this research project is to design the components of a tribometer, instrument the assembly for force data acquisition, and to retrofit it onto an existing computer numerical controlled (CNC) machining center; this design...

  11. Design, Fabrication and Testing of Angled Fiber Suspension for Electrostatic Actuators

    E-Print Network [OSTI]

    Schubert, Bryan Edward

    2011-01-01

    carbon nanotubes (CNTs) fabricated on nickel by angled, dc,carbon nanotubes (CNTs) fabricated on nickel by angled, dc,

  12. Design and fabrication of a 2.5T superconducting dipole prototype based on tilted solenoids

    E-Print Network [OSTI]

    Chen, Yuquan; Wu, Wei; Wu, Beimin; Yang, Tongjun; Liang, Yu

    2015-01-01

    This paper describes a new design of superconducting dipole magnet prototype by the use of tilted solenoids. The magnet prototype, which consists of four layers of superimposed tilted solenoids with operating current of 3708 A, will produce a 2.5 T magnetic field in an aperture of 50 mm diameter. The detailed magnetic field design by using two kinds of software is presented. And their results show a good agree in the magnetic fields. So far we have accomplished the prototype construction and expect a cryogenic test. The process of the magnet fabrication is also reported in detail.

  13. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix

    E-Print Network [OSTI]

    Numerical study on optimal Stirling engine regenerator matrix designs taking into account matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results

  14. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject.0 Classrooms Laboratories #12;*See actual finish and fabric options at the Design Center on Campus. *All prices Halls/Tiered #12;*See actual finish and fabric options at the Design Center on Campus. *All prices

  15. Design, fabrication, and testing of a multichannel microfluidic device to dynamically control oxygen concentration conditions in-vitro

    E-Print Network [OSTI]

    Rodriguez, Rosa H

    2008-01-01

    Multilayer microfluidic devices were designed and fabricated such that an array of different oxygen concentrations could be applied to a testing area in any desired sequence and with unconstraint application times. The ...

  16. THE DESIGN AND FABRICATION OF A LARGE RECTANGULAR MAGNETIC CUSP PLASMA SOURCE FOR HIGH INTENSITY NEUTRAL BEAM INJECTORS

    E-Print Network [OSTI]

    Biagi, L.A.

    2010-01-01

    generator should be replaced with a larger-volume "magnetic bucket" plasma source,-* in which the walls are lined with permanent magnetsgenerator (Fi^. 1). Design and Fabrication Techniq The permanent magnets

  17. Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head

    E-Print Network [OSTI]

    Ramirez, Aaron Eduardo

    2010-01-01

    This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

  18. Design, fabrication, sensor fusion, and control of a micro XY stage media platform for probe-based storage systems

    E-Print Network [OSTI]

    Benmei, Chen

    Design, fabrication, sensor fusion, and control of a micro X­Y stage media platform for probe Yang a , Jianqiang Mou a , Guoxiao Guo a , Ben M. Chen b , Tong Heng Lee b a A Ã STAR Data Storage

  19. Design and fabrication of the vacuum vessel for the Advanced Toroidal Facility

    SciTech Connect (OSTI)

    Chipley, K.K.; Frey, G.N.

    1985-01-01

    The vacuum vessel for the Advanced Toroidal Facility (ATF) is a heavily contoured and very complex formed vessel that is specifically designed to allow for maximum plasma volume in a pure stellarator arrangement. The design of the facility incorporates an internal vessel that is closely fitted to the two helical field coils following the winding law theta = 1/6phi. Metallic seals have been incorporated throughout the system to minimize impurities. The vessel has been fabricated utilizing a comprehensive set of tooling fixtures specifically designed for the task of forming 6-mm stainless steel plate to the complex shape. Computer programs were used to develop a series of ribs that essentially form an internal mold of the vessel. Plates were press-formed with multiple compound curves, fitted to the fixture, and joined with full-penetration welds. 7 refs., 8 figs.

  20. Sandia Energy - Numerical Manufacturing And Design Tool (NuMAD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW DatabaseNuclear FuelsNuclearNumerical

  1. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  2. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  3. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    Eberhardt, Erik

    minimal acceptable dilution criterion. Support for the free-standing stope walls is provided through previously developed openings. In addition, cable bolting techniques and the use of backfill provides extra support and better ground control around the stope. Any design methodology must account for all

  4. Fusion Engineering and Design 81 (2006) 14511458 Numerical study of MHD effect on liquid metal free

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01

    Fusion Engineering and Design 81 (2006) 1451­1458 Numerical study of MHD effect on liquid metal In this paper, we present numerical studies of liquid metal free surface jet characteristic behavior under with experimental observations. A 3D liquid metal MHD code based on an induced magnetic field formulation

  5. Efficient numerical algorithms for surface formulations of mathematical models for biomolecule analysis and design

    E-Print Network [OSTI]

    Bardhan, Jaydeep Porter, 1978-

    2006-01-01

    This thesis presents a set of numerical techniques that extend and improve computational modeling approaches for biomolecule analysis and design. The presented research focuses on surface formulations of modeling problems ...

  6. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  7. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

    2012-07-05

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

  8. Numerical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavyNumerical simulations of current

  9. Design and Fabrication of an Optimum Peripheral Region for Low Gain Avalanche Detectors

    E-Print Network [OSTI]

    Fernandez-Martinez, Pablo; Hidalgo, Salvador; Greco, Virginia; Merlos, Angel; Pellegrini, Giulio; Quirion, David

    2015-01-01

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects when optimising the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral...

  10. GUIDELINES FOR THE DESIGN, FABRICATION, TESTING, INSTALLATION AND OPERATION OF SRF CAVITIES

    SciTech Connect (OSTI)

    Theilacker, J.; Carter, H.; Foley, M.; Hurh, P.; Klebaner, A.; Krempetz, K.; Nicol, T.; Olis, D.; Page, T.; Peterson, T.; Pfund, P.; Pushka, D.; Schmitt, R.; Wands, R. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2010-04-09

    Superconducting Radio-Frequency (SRF) cavities containing cryogens under pressure pose a potential rupture hazard to equipment and personnel. Generally, pressure vessels fall within the scope of the ASME Boiler and Pressure Vessel Code however, the use of niobium as a material for the SRF cavities is beyond the applicability of the Code. Fermilab developed a guideline to ensure sound engineering practices governing the design, fabrication, testing, installation and operation of SRF cavities. The objective of the guideline is to reduce hazards and to achieve an equivalent level of safety afforded by the ASME Code. The guideline addresses concerns specific to SRF cavities in the areas of materials, design and analysis, welding and brazing, pressure relieving requirements, pressure testing and quality control.

  11. Design and Implementation of a Micron-Sized Electron Column Fabricated by Focused Ion Beam Milling

    E-Print Network [OSTI]

    Wicki, Flavio; Escher, Conrad; Fink, Hans-Werner

    2015-01-01

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV.

  12. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  13. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005 1311 Design and Process Considerations for Fabricating

    E-Print Network [OSTI]

    Cetiner, Bedri A.

    --Design considerations and process development for fabricating radio frequency microelectromechanical systems (RF MEMS microelectromechanical systems (RF MEMS) switches. I. INTRODUCTION RECENT advancement in RF MEMS technologies have leadJOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005 1311 Design and Process

  14. Design And Fabrication of Condenser Microphone Using Wafer Transfer And Micro-electroplating Technique

    E-Print Network [OSTI]

    Shu, Zhen-Zhun; Chen, Guan-Wei; Horng, Ray Hua; Chang, Chao-Chih; Tsai, Jean-Yih; Lai, Chung-Ching; Chen, Ji-Liang

    2008-01-01

    A novel fabrication process, which uses wafer transfer and micro-electroplating technique, has been proposed and tested. In this paper, the effects of the diaphragm thickness and stress, the air-gap thickness, and the area ratio of acoustic holes to backplate on the sensitivity of the condenser microphone have been demonstrated since the performance of the microphone depends on these parameters. The microphone diaphragm has been designed with a diameter and thickness of 1.9 mm and 0.6 $\\mu$m, respectively, an air-gap thickness of 10 $\\mu$m, and a 24% area ratio of acoustic holes to backplate. To obtain a lower initial stress, the material used for the diaphragm is polyimide. The measured sensitivities of the microphone at the bias voltages of 24 V and 12 V are -45.3 and -50.2 dB/Pa (at 1 kHz), respectively. The fabricated microphone shows a flat frequency response extending to 20 kHz.

  15. Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs

    E-Print Network [OSTI]

    8 Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple and manufacturing of plumbing products such as ceramic sanitary wares. In order to re-produce the complex/water multiphase flows for ceramic sanitary ware design by multiple GPUs Being a world-wide leading company, TOTO

  16. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  17. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect (OSTI)

    Li, Ying; Yu, Jun, E-mail: junyu@dlut.edu.cn; Wu, Hao; Tang, Zhenan [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ?19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  18. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition

    E-Print Network [OSTI]

    Zhou, Chongwu

    for high-efficiency, low-cost multijunction solar cells. KEYWORDS: Tandem solar cell, Ga so that the efficiency advantage is outweighed by the low cost of Si solar cells for manyTandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage

  19. Design, fabrication and vapor characterization of a microfabricated exural plate resonator sensor and application to integrated sensor arrays

    E-Print Network [OSTI]

    Cunningham, Brian

    reserved. Keywords: Gas sensors; Flexural plate waves; MEMS resonators; Sensor arrays 1. IntroductionDesign, fabrication and vapor characterization of a microfabricated ¯exural plate resonator sensor and application to integrated sensor arrays Brian Cunninghama,* , Marc Weinberga , Jane Peppera,1 , Chris Clappa

  20. Design, Fabrication and Control of Micro-Actuators for Dual-Stage Servo Systems in Magnetic Disk Files

    E-Print Network [OSTI]

    Horowitz, Roberto

    Design, Fabrication and Control of Micro-Actuators for Dual-Stage Servo Systems in Magnetic Disk to achieve such a storage density. A disk drive stores data as magnetic patterns, forming bits, on one of disk on an air-bearing. The VCM actuates the suspensions and sliders about a pivot in the center

  1. 632 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 3, JUNE 2008 Design, Fabrication, and Characterization of a Rotary

    E-Print Network [OSTI]

    Ghodssi, Reza

    , and Characterization of a Rotary Micromotor Supported on Microball Bearings Nima Ghalichechian, Student Member, IEEE, IEEE Abstract--We report the design, fabrication, and characteri- zation of a rotary micromotor supported on microball bearings. This is the first demonstration of a rotary micromachine with a robust

  2. DESIGNING AN INTERNATIONAL VIRTUAL CURRICULUM FOR NUMERICAL CONTROL OF MACHINE TOOLS

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Curriculum, implemented in the Virtual Training Center which aims at setting the standard CNC virtualDESIGNING AN INTERNATIONAL VIRTUAL CURRICULUM FOR NUMERICAL CONTROL OF MACHINE TOOLS 3 Emmanuel Crete, Greece marvel@chania.teicrete.gr Abstract The evolution of CNC machine technology and continuous

  3. Numerical approximation of bang-bang controls for the heat equation: an optimal design approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical approximation of bang-bang controls for the heat equation: an optimal design approach computation of null controls of minimal L -norm for the linear heat equation with a bounded potential. Both and boundary controllability cases, are described within this new approach. Keywords: Linear heat equation

  4. Numerical approximation of bang-bang controls for the heat equation: an optimal design approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical approximation of bang-bang controls for the heat equation: an optimal design approach approximation of null controls of minimal L -norm for the linear heat equation with a bounded potential. Both the internal and boundary controllability problem of a linear heat equation with a bounded potential. Let us

  5. Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques

    E-Print Network [OSTI]

    Tentzeris, Manos

    Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques N. A Abstract The modeling of MEMS structures using MRTD is presented. Many complex RF structures have been communication systems efficiently and accurately. Specifically, micromachined structures such as MEMS

  6. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject prices are subject to change and do not include delivery and installation. Task Seating Staff (non-historic buildings) #12;*See actual finish and fabric options at the Design Center on Campus. *All prices are subject

  7. Design, fabrication, and characterization of a compact deep reactive ion etching system for MEMS processing

    E-Print Network [OSTI]

    Gould, Parker Andrew

    2014-01-01

    A general rule of thumb for new semiconductor fabrication facilities (Fabs) is that revenues from the first year of production must match the capital cost of building the fab itself. With modem Fabs routinely exceeding $1 ...

  8. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    E-Print Network [OSTI]

    Takakuwa, J.

    2011-01-01

    research utilizing a lithium ion (Li+) beam with a currentthe alumina- silicate lithium ion source being, among otherand Fabrication of the Lithium Beam Ion Injector for NDCX-II

  9. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    E-Print Network [OSTI]

    Hafalia, A.R.

    2011-01-01

    and Fabrication of a 16 Tesla Nb 3 Sn Dipole Magnet A .R.ge nerating fields above 16 Tesla in practical acceleratordesign fields above 10 Tesla. In a series of magnet tests,

  10. Design and fabrication of force sensing robotic foot utilizing the volumetric displacement of a hyperelastic polymer

    E-Print Network [OSTI]

    Estrada, Matthew A

    2012-01-01

    This thesis illustrates the fabrication and characterization of a footpad based on an original principle of volumetric displacement sensing. It is intended for use in detecting ground reaction forces in a running quadrupedal ...

  11. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    SciTech Connect (OSTI)

    Koybasi, Ozhan; Bortoletto, Daniela; Hansen, Thor-Erik; Kok, Angela; Hansen, Trond Andreas; Lietaer, Nicolas; Jensen, Geir Uri; Summanwar, Anand; Bolla, Gino; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  12. Design and fabrication of a data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector development

    E-Print Network [OSTI]

    Sahu, S; Rudra, Sharmili; Biswas, S; Mohanty, B; Sahu, P K

    2015-01-01

    A novel instrument has been developed to monitor and record the ambient pa- rameters such as temperature, atmospheric pressure and relative humidity. These parameters are very essential for understanding the characteristics such as gain of gas filled detectors like Gas Electron Multiplier (GEM) and Multi Wire Propor- tional Counter (MWPC). In this article the details of the design, fabrication and operation processes of the device has been presented.

  13. Accepted Manuscript Rational Design and Direct Fabrication of Multi-walled hollow electrospun fi-

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    -shell structures, hollow fibers, multilayers, tri-axial electrospinning Abstract Multi-walled hollow fibers with a novel architecture are fabricated through utilizing a direct, one-step tri-axial electrospinning process an ideal multi-walled hollow electrospun fiber is shown to be producible by tri-axial electrospinning

  14. DESIGN, FABRICATION, AND CHARACTERIZATION OF A MICROMACHINED GLASS-BLOWN SPHERICAL RESONATOR WITH IN-

    E-Print Network [OSTI]

    Chen, Zhongping

    electrode whose electrostatic gap width, defined during the glass blowing process, is not limited deformation of metallic glasses to achieve spherical structures has been explored by using a blow batch fabrication glass-blowing process developed at the UC Irvine Microsystems Laboratory allows

  15. Towards photonic integrated circuits : design and fabrication of passive InP waveguide bends

    E-Print Network [OSTI]

    Rodriguez, Sarah J. (Sarah Janelle), 1979-

    2004-01-01

    Waveguide bends, in the (In,Ga)(As,P) material system, have been simulated, fabricated and tested. A process is developed for waveguides of 1 [micro]m through 7[micro]m widths. Waveguides containing S-bends of varying ...

  16. Design and fabrication of a two degree-of-freedom hopping robot with parallel architecture using linear Lorentz-force actuators

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2009-01-01

    This thesis presents the design and fabrication of a 2-DOF robotic leg using linear Lorentz-force actuators arranged in a parallel configuration. The decision to use linear actuators, a parallel architecture, and Lorentz-force ...

  17. Design, fabrication and testing of ModBot, the biomimetic, backdrivable, modular finger robot

    E-Print Network [OSTI]

    Kelley, Michael Scott

    2011-01-01

    of the design was the weight of the onboard gear head motorsuse gears. The second contribution is to optimize the design

  18. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick Hong (Livermore, CA); Wu, Kuang Jen J. (Cupertino, CA)

    2007-05-29

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  19. Design, fabrication, and characterization of a multi-condenser loop heat pipe

    E-Print Network [OSTI]

    Hanks, Daniel Frank

    2012-01-01

    A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

  20. Parametric tools and digital fabrication for the design of luminous ceilings

    E-Print Network [OSTI]

    Saad, Rita, 1980-

    2004-01-01

    The digital phenomena constitute a fundamental change in how designers accomplish a wide range of the complex processes of design. This thesis investigates the use of computation in the context of architectural lighting ...

  1. Digital Design and Fabrication Techniques Using a 3-Axis CNC Mill 

    E-Print Network [OSTI]

    Coffman, Ky

    2010-07-14

    as to produce thousands of identical ones (Reffat, 2008). Malbec The digital fabrication tools used in our project Malbec, included the digital modeling tools: Autodesk Maya and Rhino, the manufacturing software, MasterCAM, and our machine used was a 3...-file set-up Since we knew the size of our material stock, we drew a 4? x 8? plane in Rhino and placed the form to be milled in the center of the plane. This ensured that the edges of the form would not be slightly cut off due to inevitable inaccuracies...

  2. Design, fabrication, and bench testing of a solar chemical receiver. Final report

    SciTech Connect (OSTI)

    Summers, W.A.; Pierre, J.F.

    1981-01-01

    Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration.

  3. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation Center on Campus. *All prices are subject to change and do not include delivery and installation

  4. Monolithic Design and Fabrication of a 2-DOF Bio-Inspired Leg Transmission

    E-Print Network [OSTI]

    Wood, Robert

    and manufacturing rules; consequently the addition of assembly scaffolds adds too much complexity to the average manufacturing techniques and monolithic, "pop- up" assembly methods. This is enabled through a new design suite called "popupCAD", a computer-aided design tool which anticipates laminate manufacturing methods

  5. Design and Fabrication of Integrated RF Modules in Liquid Crystalline Polymer (LCP) Substrates

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    -band oscillators, mixers, filters, and baluns. A comparison with the current state-of-the-art is made. The paper, such as baluns, filters, duplexers/diplexers, antennas, and resonant tank of oscillators. The design approach

  6. Design and fabrication of retrofit e-bike powertrain and custom lithium-ion battery pack

    E-Print Network [OSTI]

    Wang, Helena

    2015-01-01

    A chopper-style bicycle was converted to a functional e-bike with electric powertrain, involving a hub motor, a custom power source, and throttle speed control. A custom battery pack was designed to meet system performance ...

  7. Making gestures : design and fabrication through real time human computer interaction

    E-Print Network [OSTI]

    Pinochet Puentes, Diego Ignacio

    2015-01-01

    Design is "something that we do" that is related to our unique human condition as creative individuals, so as "making" is related to how we manifest and impress that uniqueness into our surrounding environment. Nonetheless, ...

  8. Design, fabrication and testing of low-cost vacuum insulated packaging

    E-Print Network [OSTI]

    Ruddy, Bryan P. (Bryan Paul), 1983-

    2004-01-01

    A design for the use of evacuated Perlite insulation in the shipment of perishable goods was analyzed, implemented, and evaluated, with the goal of replacing or reducing the amount of phase-change materials needed to ship ...

  9. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.

    2014-03-06

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  10. An Asymptotic Numerical Method for Inverse Elastic Shape Design Changxi Zheng

    E-Print Network [OSTI]

    Grinspun, Eitan

    ]: Computational Geom- etry and Object Modeling--Physically based modeling; Keywords: elastic fabrication, 3D printing, finite element methods, nonlinear optimization Links: DL PDF VIDEO CODE 1 Introduction Elastic

  11. Design, fabrication, and open-loop control of micro deformable mirrors for astronomical telescopes

    E-Print Network [OSTI]

    to design and build a family of DMs that proved particularly robust and manufac- turable. Within a little still being developed. As a result, in 1999 a former student and I founded a company to make the DMs technology. The family of innovative

  12. Design, fabrication, and test of an SRF cryomodule prototype at Fermilab

    SciTech Connect (OSTI)

    Soyars, W.; Darve, C.; Nicol, T.; Rowe, A.; /Fermilab

    2006-01-01

    In support of the Charged Kaons at the Main Injector (CKM) experiment [1], an SRF cryomodule was designed, assembled, and tested at Fermilab. The cryomodule prototype consists of a single niobium 13-cell 3.9 GHz superconducting RF cavity installed in its horizontal cryostat. The prototype was simplified to hold an additional dummy cavity in place of a second 13-cell SRF cavity. Although this cryomodule was originally intended for beamline deflection in the CKM experiment, this first preliminary test aims to compliment existing vertical 3-cell 3.9 GHz SRF cavity testing and also to gain expertise in the field of SRF testing. The cryomodule's thermal and mechanical design is reported. The test process and instrumentation is described. The first operational cooldown with RF powering is discussed and some cryogenic results are given.

  13. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    SciTech Connect (OSTI)

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony; Hynes, Michael; Blackburn, Brandon; Bernstein, Adam

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  14. The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads

    SciTech Connect (OSTI)

    Huffman, D.S. [Allied-Signal Inc., Metropolis, IL (United States)

    1991-12-31

    Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

  15. Fusion Engineering and Design 81 (2006) 549553 Numerical analysis of MHD flow and heat transfer in a

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01

    Fusion Engineering and Design 81 (2006) 549­553 Numerical analysis of MHD flow and heat transfer January 2006 Abstract MHD flow and heat transfer have been analyzed for a front poloidal channel blanket; Magnetohydrodynamics; Heat transfer 1. Introduction Using flow channel inserts (FCIs) made

  16. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject Center on Campus. *All prices are subject to change and do not include delivery and installation. Public on Campus. *All prices are subject to change and do not include delivery and installation. Public Areas

  17. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject. *All prices are subject to change and do not include delivery and installation. Task Seating Faculty prices are subject to change and do not include delivery and installation. IMPRESS ULTRA by KI Task

  18. *See actual finish and fabric options at the Design Center on Campus. *All prices are subject to change and do not include delivery and installation.

    E-Print Network [OSTI]

    Hung, I-Kuai

    *See actual finish and fabric options at the Design Center on Campus. *All prices are subject. *All prices are subject to change and do not include delivery and installation. Offices Administration prices are subject to change and do not include delivery and installation. Task Seating Administration

  19. DESIGN AND FABRICATION OF A SILICON-BASED MEMS ROTARY ENGINE Kelvin Fu, Aaron J. Knobloch, Fabian C. Martinez, David C. Walther,

    E-Print Network [OSTI]

    Liepmann, Dorian

    Q DESIGN AND FABRICATION OF A SILICON-BASED MEMS ROTARY ENGINE Kelvin Fu, Aaron J. Knobloch, Fabian of a Silicon-based MEMS rotary engine are discussed in this paper. This work is part of an effort currently of this power generation system are small-scale rotary internal combustion engines fueled by high energy density

  20. Design, fabrication, and integration testing of the Garden Banks 388 subsea production template

    SciTech Connect (OSTI)

    Ledbetter, W.R.; Smith, D.W.; Pierce, D.M.; Padilla, J.R.

    1995-12-31

    Enserch Exploration`s Garden Banks 388 development has a production scheme based around a floating drilling and production facility and subsea drilling/production template. The Floating Production Facility (FPF) is a converted semisubmersible drilling rig that will drill and produce through a 24-well slot subsea template. This development is located in Block 388 of the Garden Banks area in the Gulf of Mexico approximately 200 miles southwest of New Orleans, Louisiana. The production system is being installed in an area of known oil and gas reserves and will produce to a shallow water platform 54 miles away at Eugene Island 315. The FPF will be permanently moored above the template. The subsea template has been installed in 2190 feet of water and will produce through a 2,000 foot free-standing production riser system to the FPF. The produced fluids are partially separated on the FPF before oil and gas are pumped through the template to export gathering lines that are connected to the shallow water facility. The system designed through-put is 40,000 BOPD of oil and 120 MMSCFD of gas.

  1. Progress on the Design and Fabrication of the MICE Focusing Magnets

    SciTech Connect (OSTI)

    Green, Michael A; Baynham, D. Elwyn; Bradshaw, Thomas W.; Cobb, John H.; Lau, Wing W.; Yang, Stephanie Q.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) focusing solenoid magnets focus the muon beam within the MICE cooling channel on a liquid or solid absorber that is within the warm bore of solenoid. The focusing magnet has a warm bore of 470 mm. his magnet consists of two coils 210-mm long that is separated by an aluminum mandrel that is 200 mm long. Each of the coils has its own leads. The coils may be operated in either the non-flip mode (solenoid mode with both coils at the same polarity) or the lip mode (quadrupole focusing mode where both coils are at opposite polarity). This report describes the focusing solenoid magnet design that will be built by the vendor. The progress on the construction of the first of the focusing magnets will also be discussed in this report. Ultimately three of these magnets will be built. These magnets will be cooled using a pair 1.5 W (at 4.2 K) pulse tube coolers.

  2. ANALYSIS AND OPTIMIZATION USING NUMERICAL AND EXPERIMENTAL EVALUATION METHODS FOR MULTIDISCIPLINARY DESIGN PROBLEMS 

    E-Print Network [OSTI]

    Oh, Bong T.

    2010-01-16

    , vibration/noise control, and fluid mechanics, simultaneously. Higher product quality, less developing time and lower manufacturing cost will be achieved through a balanced and organic MDO method. In this paper, numerical stress analysis, optimization method...

  3. Numerical and Experimental Analysis of Multi-Stage Axial Turbine Performance at Design and Off-Design Conditions 

    E-Print Network [OSTI]

    Abdelfattah, Sherif Alykadry

    2013-08-07

    (RANS) and Unsteady (URANS) Analyses . . . . . . . . . . 66 7.2 Analysis of Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2.1 Seal Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.2.2 Flow... constants. . . . . . . 162 10.3 Intermittency correlation constants, as listed in Chakka and Schobeiri [53]. 169 10.4 Unsteady plate boundary conditions. . . . . . . . . . . . . . . . . . . . . . 179 10.5 Blade cascade boundary condition for RANS...

  4. Design, Fabrication and Characterization of Micro-Electro-Mechanical Fabry-Perot Interferometer for use in Mid-Wave Infrared

    E-Print Network [OSTI]

    Kozak, Dmitry Alexander

    2013-01-01

    Mechanical Design .from optical and mechanical design have to be broughtimaging. Chapter 4 Mechanical Design 4.1 Introduction While

  5. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect (OSTI)

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J.; Tymicki, E.

    2014-10-06

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  6. Design and fabrication of the MesoMill : a five-axis milling machine for meso-scaled parts

    E-Print Network [OSTI]

    Werkmeister, Jaime Brooke, 1977-

    2004-01-01

    With the increased prevalence of meso-scaled products, new tools are being developed to bridge the gap between fabrication processes tailored for micrometer and millimeter sized features. Compared to its traditional ...

  7. Bench-scale system design to screen catalyst-coated fabric filters for simultaneous NO{sub x} and particulate control

    SciTech Connect (OSTI)

    Ness, S.R.; Ludlow, D.K. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    A bench-scale system was constructed at the Energy and Environmental Research Center (EERC) to screen performance of various types of V/Ti catalyst-coated, high-temperature, fabric filters manufactured at Owens-Corning, Inc. (OCF). This product is targeted for use in utility and industrial facilities for simultaneous NO{sub x} and particulate control. Described in this paper are the bench-scale system design, operation, and validation of the data produced. 9 refs., 3 figs.

  8. Biologically inspired digital fabrication

    E-Print Network [OSTI]

    Han, Sarah (Sarah J.)

    2013-01-01

    Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and ...

  9. Fabricated torque shaft

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Anderson, SC)

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  10. 204 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 1, FEBRUARY 2006 Design and Fabrication of a Novel

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    to a remote reservoir. The fabrication uses standard surface micromachining techniques and materials. Bulk]. These tubular nanopipettes are capable of writing or sampling with critical dimensions in the micrometer or upper submicrometer range. Other tubular nanoprobes just contain fluorescent dyes for near field

  11. Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study

    E-Print Network [OSTI]

    Oosterhuis, Joris P; Wilcox, Douglas; van der Meer, Theo H

    2015-01-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that t...

  12. Numerical Verification and Experimental Validation of Sliding Mode Control Design for

    E-Print Network [OSTI]

    Kearfott, R. Baker

    Thermal SOFC Models Andreas Rauh, Luise Senkel, Thomas D¨otschel , Harald Aschemann Chair of Mechatronics@inf.uni-due.de Abstract The design of reliable and robust control strategies for the automatized operation of SOFC systems for an SOFC system that is available at the Chair of Mechatronics at the University of Rostock. Keywords

  13. Design And Verification of Controllers for Coupled Bunch Instabilities Using Optimal Control Theory And Numerical Simulation: Predictions for PEP II

    SciTech Connect (OSTI)

    Hindi, Haitham; Prabhakar, Shyam; Fox, John D.; Linscott, Ivan; Teytelman, Dmitri; /SLAC

    2011-08-31

    We present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power - one of the most expensive components of a feedback system - and define the limits of the closed loop system performance. Our design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator uses PEP-II parameters and identifies unstable coupled bunch modes, their growth rates and their damping rates with feedback. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II.

  14. A numerical method for the design and analysis of counter-rotating propellers 

    E-Print Network [OSTI]

    Playle, Scott Charles

    1984-01-01

    Pi (3. 141592) p - Ambient Air Density o ? Solidity Resultant Velocity Angle Advance Angle 0 Constant of Calculation go Rotational Velocity Downwash Velocity Subscripts B - Back Propeller Disk F - Front Propeller Disk I. INTRODUCTION Many... and Space Administration Lewis Research Center Grant NAG 3-354. Thanks are extended to Dale Cope for his help in coding the original design method in 1982. TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES...

  15. Numerical design of a transonic airfoil having a Stratford pressure recovery 

    E-Print Network [OSTI]

    Rocholl, Bruce Martin

    1978-01-01

    -8 . . . . . . . . . . . . . . . . . . . 39 Fig. 15 Drag polar for CRAM-109-8 46 Fig. 16 Fig. 17 Variation of drag coefficient with Mach number for CRAM-109-8 at C = . 350. . . . . . . . . . . . ~ 1 Lift/drag ratio as a function of Mach number for CRAM-109-8 47 49 LIST OF FIGURES... Al Analysis O Oesi gn 0. 351 0. 359 0. 0072 -0. 096 -0. 097 CI D I CRAM-109-B = 0. 74 a= 0' Rh = 15. 8 x 10 6 CI D I D O D I CI D D D 0. 5 x/c Fig. 9 Profile shape and comparison of design and analysis pressure distributions...

  16. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    SciTech Connect (OSTI)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  17. Regular Fabrics In Deep Sub-Micron Integrated-Circuit Design Fan Mo and Robert K. Brayton

    E-Print Network [OSTI]

    Brayton, Robert K.

    of gates involves layout design, parameter extraction, SPICE analysis, design rule checking it represents. The result of a Sum-of-Products (SOP) minimization can be mapped directly to a PLA [6 cells via technology mapping. A natural step is to build a network of PLAs (NPLA) from the minimized

  18. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect (OSTI)

    Haque, S.; Frost, F. Dion R.; Groulx, R.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Roe, N. A.; Wang, G.; Yu, Y.

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 ?m × 2 ?m are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup ?} rms at 70 kpixels/sec.

  19. AFIP-6 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore; M. Craig Marshall

    2011-09-01

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  20. The confluence of digital design/fabrication and biological principles : systematic knowledge transfer for the development of integrated architectural systems

    E-Print Network [OSTI]

    Sharif, Shani

    2010-01-01

    In the last century, many of the developed computational theories and methods have been inspired by biological principles. The design generation methods, originating from these theories, along with the advances in digital ...

  1. Mechanical design of a desktop milling machine for fabrication in an introductory machining class by Johannes Schneider.

    E-Print Network [OSTI]

    Schneider, Johannes (Johannes A.)

    2010-01-01

    The purpose of this research is the mechanical design of a miniature desktop milling machine for use as an alternative class project in MIT's introductory machining course 2.670. This research is important, because a ...

  2. Design and fabrication of injection-molded and 3D-printed battery clips for "Chibitronics" Circuit Sticker workbook

    E-Print Network [OSTI]

    Powell, Paelle M

    2015-01-01

    In order to create an injection-molded battery clip for the Chibitronics Circuit Sticker kit, both manufacturing and product design principles were considered to inform product feel and form as well as ensure manufacturability ...

  3. Print preview for the fabrication of physical objects

    E-Print Network [OSTI]

    Carr, David (David Alexander)

    2011-01-01

    This work proposes a new class of design and fabrication interfaces for digitally created objects, which the author terms augmented fabrication machines. By enhancing traditional fabrication machines with rich new input ...

  4. Lithographic fabrication of nanoapertures

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM)

    2003-01-01

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  5. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    SciTech Connect (OSTI)

    Mehdizadeh, S; Sina, S; Karimipourfard, M; Lotfalizadeh, F; Faghihi, R; Babaei, A

    2014-06-01

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapes and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.

  6. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  7. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  8. Covering Walls With Fabrics

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01

    , grasscloth and many other textures and weaves are available in this type of wall covering. When selecting fabrics to apply to interior walls, consider pattern, color, amount of shrink age and weight. Check to see if the design is printed with the grain... several times over a 12-inch length until fabric is cut through and can be pulled away easily (see Figure 5) . Figure 5 To cover raw edges at top or bottom when . there is no molding, attach an attractive gimp, flat braid or decorative molding...

  9. MOX Fabrication Isolation Considerations

    SciTech Connect (OSTI)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  10. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 4, APRIL 1998 305 Numerically Stable Green Function for Modeling and

    E-Print Network [OSTI]

    California at Berkeley, University of

    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 4, APRIL 1998 305 Numerically Stable Green Function for Modeling and Analysis of Substrate Coupling. Meyer, Fellow, IEEE Abstract-- The Green function over a multilayer substrate is derived by solving

  11. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    SciTech Connect (OSTI)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers an economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.

  12. Update on the CeC PoP 704 MHz 5-cell cavity cryomodule design and fabrication

    SciTech Connect (OSTI)

    Brutus, J. C.; Belomestnykh, S.; Ben-Zvi, I.; Grimm, T.; Huang, Y.; Jecks, R.; Kelly, M.; Litvinenko, V.; Pinayev, I.; Reid, T.; Skaritka, J.; Snydstrup, L.; Than, R.; Tuozzolo, J.; Xu, W.; Yancey, J.; Gerbick, S.

    2015-05-03

    A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22MeV. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.

  13. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  14. Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics

    SciTech Connect (OSTI)

    Skibinski, Jakub; Wejrzanowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02507 Warsaw (Poland); Caban, Piotr [Institute of Electronic Materials Technology, Wolczynska 133, 01919 Warsaw (Poland); Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering Woloska, 141, 02507 Warsaw (Poland)

    2014-10-06

    In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.

  15. Material Science Forum Vols. 505~507, Jan. 2006, pp.1249~1254 Design, Fabrication and Study of Micro-Electrospray Chips

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    are fabricated by using micro-electro-mechanical system (MEMS) technology. The micro electrospray techniques can angels are investigated by using microscopic visualization techniques. Four spray modes are identified. During that transition, the droplets reduce in size by evaporation of the solvent or by "Coulomb

  16. Tool fabrication system for micro/nano milling—function analysis and design of a six-axis Wire EDM machine

    E-Print Network [OSTI]

    Cheng, X.; Wang, Z. G.; Kobayashi, S.; Nakamoto, K.; Yamazaki, K.

    2010-01-01

    nano milling—function analysis and design of a six-axis Wirepaper, a function analysis and design of a six-axis Wireon the function analysis and design of a six-axis WEDM

  17. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  18. Polymorphous computing fabric

    DOE Patents [OSTI]

    Wolinski, Christophe Czeslaw (Los Alamos, NM); Gokhale, Maya B. (Los Alamos, NM); McCabe, Kevin Peter (Los Alamos, NM)

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  19. Fabrics with tunable oleophobicity

    E-Print Network [OSTI]

    McKinley, Gareth H.

    A simple “dip-coating” process that imbues oleophobicity to various surfaces that inherently possess re-entrant texture, such as commercially available fabrics, is reported. These dip-coated fabric surfaces exhibit reversible, ...

  20. Photochemical cutting of fabrics

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM)

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  1. Robust Numerical Simulation of Porosity Evolution in Chemical Vapor Infiltration III: Three Space

    E-Print Network [OSTI]

    Jin, Shi

    is an important technol- ogy to fabricate ceramic matrix composites (CMC's). In this paper, a three) is an important and widely used tech- nology for fabricating fiber reinforced ceramic matrix composite (CMC's). Numerous types of composites can be fabricated by the CVI [1][2]. In the CVI process of fabricating

  2. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  3. Trust in reference to integrated circuits addresses the concern that the design and/or fabrication of the IC may be purposely

    E-Print Network [OSTI]

    Plusquellic, James

    it extremely difficult for chip validation processes, such as manufacturing test, to accidentally discover them-based test- ing techniques designed to uncover the presence of Trojans are not likely to be effective against even the simplest Trojan hid- ing techniques. Techniques that relay on physical inspection

  4. Improving Evolutionary Synthesis of MEMS through Fabrication and Testing Feedback

    E-Print Network [OSTI]

    Agogino, Alice M.

    Improving Evolutionary Synthesis of MEMS through Fabrication and Testing Feedback Raffi Kamalian a microelectromechanical system (MEMS) synthesis characterization study, four modifications to the objectives: MEMS, genetic algorithms, resonator design, evolutionary computer-aided design, validation. 1

  5. Digitally Fabricated Building Delivery

    E-Print Network [OSTI]

    Lab ­ Building Kit S 20 2Summer 2012 Integrated Systems ­ Programming Surfaces a) Exterior -Water production with integrated digital fabrication." Automation in Construction, Vol. 16, No. 3, 298­310, 2007Digitally Fabricated Building Delivery through Kitsthrough Kits Lawrence Sass Associate Professor

  6. Numerical solution of an inverse diffraction grating problem from ...

    E-Print Network [OSTI]

    2013-02-02

    Feb 5, 2013 ... One of its important applications is the design and fabrication of optic elements with periodic structures, often called diffraction gratings.

  7. Device Architecture Simplification of Laser Pattering in High-Volume Crystalline Silicon Solar Cell Fabrication using Intensive Computation for Design and Optimization

    SciTech Connect (OSTI)

    Grupp Mueller, Guenther; Herfurth, Hans; Dunham, Scott; Xu, Baomin

    2013-11-15

    Prices of Si based solar modules have been continuously declining in recent years. Goodrich is pointing out that a significant portion of these cost reductions have come about due to ?economies of scale? benefits, but there is a point of diminishing returns when trying to lower cost by simply expanding production capacity [1]. Developing innovative high volume production technologies resulting in an increase of conversion efficiency without adding significant production cost will be necessary to continue the projected cost reductions. The Foundational Program to Advance Cell Efficiency (F-PACE) is seeking to achieve this by closing the PV efficiency gap between theoretical achievable maximum conversion efficiency - 29% for c-Si - and the current typical production - 18.5% for a typical full area back contact c-Si Solar cell ? while targeting a module cost of $0.50/Watt . The research conducted by SolarWorldUSA and it?s partners within the FPACE framework focused on the development of a Hybrid metal-wrap-through (MWT) and laser-ablated PERC solar cell design employing a extrusion metallization scheme to achieve >20% efficient devices. The project team was able to simulate, develop and demonstrate the technologies necessary to build p-type MWT PERC cells with extruded front contacts. Conversion efficiencies approaching 20% were demonstrated and a path for further efficiency improvements identified. A detailed cost of ownership calculation for such a device was based on a NREL cost model and is predicting a $/Watt cost below 85 cents on a 180 micron substrate. Several completed or planned publications by SolarWorldUSA and our partners are based on the research conducted within this project and are adding to a better understanding of the involved technologies and materials. Several aspects and technologies of the proposed device have been assessed in regards to technical effectiveness and economic feasibility. It has been shown in a pilot demonstration with wafer thicknesses down to 120 micron that further wafer thickness reduction is only economically viable if handling and contact formation limitations are addressed simultaneously. Furthermore the project partners assessed and demonstrated the feasibility of processing wafers with vias connecting front and back sides through a PERC cell process and aligning and connecting those vias with a non-contact metallization. A close cooperation between industry and institutes of higher education in the Pacific Northwest as shown in this project is of direct benefit to the public and is contributing to the education of the next generation of PV engineers and scientist.

  8. Fabrication and Performance of Silicon-Embedded Permanent-Magnet Microgenerators

    E-Print Network [OSTI]

    Herrault, Florian

    This paper focuses on the design, fabrication, and characterization of silicon-packaged permanent-magnet (PM) microgenerators. The use of silicon packaging favors fine control on shape and dimensions in batch fabrication ...

  9. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  10. Fabrication of Diamond Nanowires for Quantum Information Processing Applications

    E-Print Network [OSTI]

    Birgit Hausmann; Mughees Khan; Tom Babinec; Yinan Zhang; Katie Martinick; Murray McCutcheon; Phil Hemmer; Marko Loncar

    2010-02-23

    We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including $\\mathrm{Au}$, $\\mathrm{SiO_{2}}$ and $\\mathrm{Al_2O_3}$) as well as electron beam lithography defined spin-on glass and evaporated $\\mathrm{Au}$ have been used as an etch mask. We found $\\mathrm{Al_2O_3}$ nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are $\\unit[\\approx1]{\\mu m}$ and $\\unit[120-340]{nm}$, respectively, having a $\\unit[200]{nm/min}$ etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were $\\unit[1-2.4]{\\mu m}$ and $\\unit[120-490]{nm}$ with etch rates between $\\unit[190-240]{nm/min}$.

  11. Fabrication and Measurements of 500 MHz Double Spoke Cavity

    SciTech Connect (OSTI)

    Park, HyeKyoung; Hopper, Christopher S.; Delayen, Jean R.

    2014-12-01

    A 500 MHz ?0=1 double spoke cavity has been designed and optimized for a high velocity application such as a compact electron accelerator at the Center for Accelerator Science at Old Dominion University [1] and the fabrication was recently completed at Jefferson Lab. The geometry specific to the double spoke cavity required a variety of tooling and fixtures. Also a number of asymmetric weld joints were expected to make it difficult to maintain minimal geometric deviation from the design. This paper will report the fabrication procedure, resulting tolerance from the design, initial test results and the lessons learned from the first ?0=1 double spoke cavity fabrication.

  12. Fabrication and structural performance of periodic cellular metal sandwich structures

    E-Print Network [OSTI]

    Wadley, Haydn

    are important new structures, enabled by novel fabrication and topology design tools. Fabrication protocols deposition [6] or slurry coating [7]. Others utilize hollow spheres [8­10] or aggregates of soluble particles welding (shown) or with an adhesive.The cores can be cut and adhesively bonded to face sheets to create

  13. Radiation shielding properties of barite coated fabric by computer programme

    SciTech Connect (OSTI)

    Akarslan, F.; Molla, T.; Üncü, I. S.; K?l?ncarslan, S.; Akkurt, I.

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.

  14. Designing Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A

    2007-01-01

    model rolls for applications in fuel cell bipolar plates. Anfor various applications, ranging from fuel cell bipolarfabrication. 2 APPLICATION AREAS 2.1 PEM Fuel Cells PEM (

  15. Design and Fabrication of Nanochannel Devices 

    E-Print Network [OSTI]

    Wang, Miao

    2010-10-12

    Nanochannel devices have been explored over the years with wide applications in bio/chemical analysis. With a dimension comparable to many bio-samples, such as proteins, viruses and DNA, nanochannels can be used as a ...

  16. Design and fabrication of nanotweezers for nanomanipulation

    E-Print Network [OSTI]

    Hashemi, Fardad Ali, 1976-

    2005-01-01

    Experimentation and realization of new product concepts at the nanoscale present new challenges. Due to the diffraction limit of visible light it is not possible to see at this scale using optical microscopes. The Scanning ...

  17. Timber tower : a flexible fabrication method for reconfigurable housing

    E-Print Network [OSTI]

    Coleman, James (James Richard)

    2014-01-01

    "Prefabricating Housing...again", this time it's going to be different. Fabrication machine functionality is bracketed by the physical configuration and componentry of the system. Traditionally, a machine designer engineers ...

  18. Biomaterials 24 (2003) 25332540 Fabrication of PLGA scaffolds using soft lithography and

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    2003-01-01

    -aided design and solid free form fabrication, both 3D-printing and lost mold methods have been developed. 3D-Printing

  19. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS...

  20. Fabrication and Characterization of Nanowires 

    E-Print Network [OSTI]

    Phillips, Francis Randall

    2011-10-21

    into polymeric nano bers as a means to incorporate nanowires within other nanostructures. The knowledge obtained through the analysis of the AAO template fabrication guides the fabrication of SMA nanowires of various diameters. The fabrication of SMA... in learning how to perform molecular dynamic simulations. Further thanks are given to Dr. Jun Kameoka and Miao Wang for their help in fabricating the electrospun polymeric nano bers. Furthermore, I would like to thank the National Science Foundation...

  1. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  2. School of Engineering and Computer Science ECE 471: Antenna Design and Analysis

    E-Print Network [OSTI]

    regarding antenna design and measurement. K-1. Fabricate and measure antenna systems using milling machine

  3. Fabrication and Testing of Deflecting Cavities for APS

    SciTech Connect (OSTI)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  4. Material-based design computation

    E-Print Network [OSTI]

    Oxman, Neri

    2010-01-01

    The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

  5. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  6. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  7. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  8. An automated pipette puller for fabrication of glass micropipettes

    SciTech Connect (OSTI)

    Tamizhanban, R.; Sreejith, K. R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)] [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-05-15

    Glass micropipettes are versatile probing tools for performing micro- and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships.

  9. McDonnell 40-kW Giromill Wind System. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Brulle, R

    1980-06-01

    A 40 kW vertical axis windmill called a ''Giromill'' was fabricated, erected, and tested. The system design is described as well as some design changes made during fabrication. Manufacturing cost estimates are updated. Fabrication of the turbine blades, support arms, and fixed and rotating tower is described as well as the tests. Testing included control systems acceptance tests; Giromill system acceptance tests; structural, mechanical, control system and electric generation operational tests; and performance tests connected to the utility grid. (LEW)

  10. Solid Freeform Fabrication of Aesthetic Objects

    ScienceCinema (OSTI)

    Hart, George [SUNY Stony Brook, Stony Brook, New York, United States

    2009-09-01

    Solid Freeform Fabrication (aka. Rapid Prototyping) equipment can produce beautiful three-dimensional objects of exquisite intricacy. To use this technology to its full potential requires spatial visualization in the designer and new geometric algorithms as tools. As both a sculptor and a research professor in the Computer Science department at Stony Brook University, George Hart is exploring algorithms for the design of elaborate aesthetic objects. In this talk, he will describe this work, show many images, and bring many physical models to display.

  11. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  12. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    SciTech Connect (OSTI)

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 ?m, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devices were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.

  13. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 ?m, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore »were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less

  14. Identify key design elements of desired function

    E-Print Network [OSTI]

    Nawroth, Janna C.

    DESIGN Identify key design elements of desired function Identify functionally equivalent implementation of key design elements (e.g. structure, physiology, kinematics etc.) Quantify functional and standardize fabrication for repeatability . Test phase: Quantify implementation of key design elements

  15. Buffered Crossbar Fabrics Based on Networks on Chip

    E-Print Network [OSTI]

    switching architecture where the buffered crossbar fabric is designed using a Network on Chip (NoC). Instead the switch inputs to its outputs. This results in long delays and consumes high power to drive these wires. In this paper, we propose a novel design for the CICQ switch architecture. Instead of using a dedicated internal

  16. Fabrication of High Efficiency, Printable Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Petta, Jason

    design of OLED: Transparent Anode--ITO Glass substrate Organic layer(s) Metal Cathode Light #12;PRISMFabrication of High Efficiency, Printable Organic Light Emitting Diodes Michael AdamsMichael Adams: Design, fabricate, and characterize high efficiency OLEDs · Introduction · Background on OLEDs · Methods

  17. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  18. Hybrid Reassemblage: An Exploration of Craft, Digital Fabrication and Artifact Uniqueness

    E-Print Network [OSTI]

    Zoran, Amit Shlomo

    Digital fabrication, and especially 3D printing, is an emerging field that is opening up new possibilities for craft, art and design. The process, however, has important limitations; in particular, digitally designed ...

  19. Thermo-mechanical modeling of a micro-fabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Ie, Tze Yung Andrew, 1978-

    2004-01-01

    A micro-fabricated solid oxide fuel cell is currently being designed by the Micro-chemical Power Team(funded under the Multidisciplinary University Research Initiative(MURI) Research Program). In the current design a plate ...

  20. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  1. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  2. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  3. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  4. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect (OSTI)

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  5. Process for fabrication of cermets

    DOE Patents [OSTI]

    Landingham, Richard L. (Livermore, CA)

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  6. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Gibson, J. [ed.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  7. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect (OSTI)

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  8. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-12

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  9. MECS 2006 - Fabricated Metals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supporting documents Manufacturing Energy and Carbon Footprint Fabricated Metals More Documents & Publications Fabricated Metals (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass...

  10. Fabrication of wedged multilayer Laue lenses

    SciTech Connect (OSTI)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  11. Fabrication of wedged multilayer Laue lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more »This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  12. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste...

  13. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services

    E-Print Network [OSTI]

    Hauck, Scott

    A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services Andrew Putnam, Adrian M, Doug Burger Abstract To advance datacenter capabilities beyond what commodity server designs can,632 servers and FPGAs in a production datacenter and successfully used to accelerate the ranking portion

  14. DIELECTRIC RESONATOR FABRICATION AND ASSEMBLY METHODS FOR TERAHERTZ METAMATERIALS

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    DIELECTRIC RESONATOR FABRICATION AND ASSEMBLY METHODS FOR TERAHERTZ METAMATERIALS BY JAMES MARK AND ASSEMBLY METHODS FOR TERAHERTZ METAMATERIALS BY JAMES MARK LELAND CRAMER ABSTRACT OF A DISSERTATION was the design and manufacture of a negative index of refraction metamaterial having an isotropic negative

  15. Controlling self-assembly within nanospace for peptide nanoparticle fabrication

    E-Print Network [OSTI]

    Chau, Ying

    ,5 Moreover, short peptide building blocks can be designed to enable a bottom-up construction of smart provide natural building blocks for the fabrication of well-ordered structures and advanced materials.4 simultaneously be obtained from the same building blocks.9 Different nanostructure morphologies are desired

  16. Author's personal copy Perforated diode neutron detector modules fabricated from

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Author's personal copy Perforated diode neutron detector modules fabricated from high Perforated detectors Perforated diodes a b s t r a c t Compact neutron detectors are being designed that are mass produced from high-purity Si wafers. Each detector has thousands of circular perforations etched

  17. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Allgood, Glenn O. (Powell, TN); Mooney, Larry R. (Knoxville, TN); Duncan, Michael G. (Clinton, TN); Turner, John C. (Clinton, TN); Treece, Dale A. (Knoxville, TN)

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  18. Sketch It, Make It: Freehand Drawing for Precise Rapid Fabrication Gabriel G. Johnson1

    E-Print Network [OSTI]

    domains, including 3D modeling or graphic design. #12; #12;1. INTRODUCTION traditional materials. These "new makers" use rapid fabrication machines like 3D printers, laser cutters, and other CNC machinery. Laser cutters are among the more

  19. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect (OSTI)

    Ariman, T.

    1981-12-01

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  20. Fabrication of implantable microshunt using

    E-Print Network [OSTI]

    Bifano, Thomas

    by multiple thick resist patterning, 3 structural material deposition by electroplating, and 4 an easy fabrication process suitable for mass production. These features were realized using electroplating. The developed method involves using a thin gold seed layer deposited via evaporation prior to electroplating

  1. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  2. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  3. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  4. Microoptical System And Fabrication Method Therefor

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2005-03-15

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  5. Microoptical system and fabrication method therefor

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  6. Environmentally Benign Flame Retardant Nanocoatings for Fabric 

    E-Print Network [OSTI]

    Li, Yu-Chin

    2012-07-16

    A variety of materials were used to fabricate nanocoatings using layer-by-layer (LbL) assembly to reduce the flammability of cotton fabric. The most effective brominated flame retardants have raised concerns related to ...

  7. Mechanical design of a quadruped robot

    E-Print Network [OSTI]

    Ajilo, Deborah (Deborah M.)

    2015-01-01

    This thesis presents the mechanical design and fabrication of the Super Mini Cheetah (SMC) robot, a small ( 9kg) quadruped that is capable of jumping, bounding and trotting. The robot is designed using commercially available ...

  8. Toward standard testbeds for numerical relativity

    E-Print Network [OSTI]

    Miguel Alcubierre; Gabrielle Allen; Carles Bona; David Fiske; Tom Goodale; F. Siddharta Guzman; Ian Hawke; Scott H. Hawley; Sascha Husa; Michael Koppitz; Christiane Lechner; Denis Pollney; David Rideout; Marcelo Salgado; Erik Schnetter; Edward Seidel; Hisa-aki Shinkai; Bela Szilagyi; Deirdre Shoemaker; Ryoji Takahashi; Jeffrey Winicour

    2003-05-06

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods, and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step toward building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources, and can be used with many different approaches used in the relativity community.

  9. Fabrication of boron sputter targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); McKernan, Mark A. (Livermore, CA)

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  10. Removing Stains from Washable Fabrics

    E-Print Network [OSTI]

    Beard, Ann Vanderpoorten

    1988-01-01

    unique treatment be cause of chemical make-up or physical characteristics. (Examples: chewing gum, iodine, lead pencil) Stain Removal Products Bleaches Chlorine bleaches contain a hypochlorite com pound. Do not use them on wool, silk, polyurethane... foam, spandex or blends of these fibers; on finishes which are embossed or flame retardant; or on fabrics labeled no chlorine bleach. Avoid contact with metal. Always follow package instructions for dilu tion. Liquid chlorine bleaches lose strength...

  11. DDE Design Status Report Nov 2011

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson

    2011-11-01

    The National Nuclear Security Agency Global Threat Reduction Initiative employs the Reduced Enrichment for Research and Test Reactors (RERTR) Fuel Development program to facilitate maturation of Low Enriched Uranium (LEU) fuel technology in order to enable conversion of High Power Research Reactors (HPRR) to LEU fuels. The RERTR Fuel Development program has overseen design, fabrication, irradiation, and examination of numerous tests on small to medium sized specimens containing LEU fuels. To enable the three nearest term HPRR conversions, including the Massachusetts Institutes of Technology Reactor (MITR), University of Missouri Research Reactor (MURR), and National Bureau of Standard Reactor (NBSR), the FD pillar is currently focused on qualification of the 'Base Monolithic Design'. The Base Monolithic Design consists of uranium-10 wt% molybdenum alloy (U-10Mo) in the form of a monolithic foil, with thin zirconium interlayers, clad in aluminum by hot isostatic press. The licensing basis of the aforementioned HPRR's restricts them from testing lead test elements of their respective LEU fuel element designs. In order to provide the equivalent of a lead test assembly, one Design Demonstration Experiment (DDE) is planned for each of the three NRC licensed reactors.

  12. DOI: 10.1002/anie.201105439 Fabrication of Large-Area Two-Dimensional Colloidal Crystals**

    E-Print Network [OSTI]

    Asher, Sanford A.

    Polymers DOI: 10.1002/anie.201105439 Fabrication of Large-Area Two-Dimensional Colloidal Crystals-dimensional crystalline colloidal arrays (CCAs) have numerous applications, such as photonic crystal materials and sensors to prepare close-packed 2D colloidal crystals by floating and re-deposit- ing colloidal monolayers at the air

  13. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  14. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  15. Introduction to exact numerical computation

    E-Print Network [OSTI]

    Escardó, Martín

    Introduction to exact numerical computation Notes 2 Floating-point computation 4 3 Exact numerical (called the operational semantics) for computing a syntactical representative of the mathematical entity

  16. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    2000-06-13

    This design package documents design, fabrication, and testing of new stinger tool design. Future revisions will document further development of the stinger tool and incorporate various developmental stages, and final test results.

  17. High Power Metal-Contact and Capacitive Switches with Stress Resilient Designs /

    E-Print Network [OSTI]

    Zareie, Hosein

    2013-01-01

    design was optimized to achieve high power handling under hot switchingswitching conditions. Chapter 4 presents the design, simulation, fabrication and measurement of the high power

  18. Design of database for automatic example-driven design and assembly of man-made objects

    E-Print Network [OSTI]

    Piñera, J. Keneth (Jorge Keneth)

    2013-01-01

    In this project, we have built a database of models that have been designed such that they can be directly fabricated by a casual user. Each of the models in this database has design specifications up to the screw level, ...

  19. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    SciTech Connect (OSTI)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.

  20. Simulating Reionization in Numerical Cosmology

    E-Print Network [OSTI]

    Aaron Sokasian; Tom Abel; Lars E. Hernquist

    2001-05-10

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. Here, we present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by a set of discrete point sources. A diffuse background radiation field is also computed self-consistently in our procedure. The method requires relatively few time steps and can be employed with simulations having high resolution. We describe the details of the algorithm and provide a description of how the method can be applied to the output from a pre-existing cosmological simulation to study the systematic reionization of a particular ionic species. As a first application, we compute the reionization of He II by quasars in the redshift range 3 to 6.

  1. The design, fabrication and testing of micro-fabricated linear and planar colloid thruster arrays

    E-Print Network [OSTI]

    Velásquez García, Luis Fernando, 1976-

    2004-01-01

    New space applications such as orbital control of micro-satellites and precise interferometry have created a demand for high precision, low thrust efficient space engines. Electrospray propulsion is a serious candidate for ...

  2. Process-Based Cost Modeling to Support Target Value Design

    E-Print Network [OSTI]

    Nguyen, Hung Viet

    2010-01-01

    and waste that prevail in construction processes, especiallywaste, and maximize efficiency through all phases of design, fabrication, and construction” (and wastes which are inherent in construction processes,

  3. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, Abraham P. (1428 Whitecliff Way, Walnut Creek, CA 94596); Northrup, M. Allen (923 Creston Rd., Berkeley, CA 94708); Ahre, Paul E. (1299 Gonzaga Ct., Livermore, CA 94550); Dupuy, Peter C. (1736 Waldo Ct., Modesto, CA 95358)

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  4. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  5. GLASS FABRICATION AND ANALYSIS LITERATURE REVIEW AND METHOD SELECTION FOR WTP WASTE FEED QUALIFICATION

    SciTech Connect (OSTI)

    Peeler, D.

    2013-06-27

    Scope of the Report The objective of this literature review is to identify and review documents to address scaling, design, operations, and experimental setup, including configuration, data collection, and remote handling that would be used during waste feed qualification in support of the glass fabrication unit operation. Items addressed include: ? LAW and HLW glass formulation algorithms; ? Mixing and sampling; ? Rheological measurements; ? Heat of hydration; ? Glass fabrication techniques; ? Glass inspection; ? Composition analysis; ? Use of cooling curves; ? Hydrogen generation rate measurement.

  6. High numerical aperture multilayer Laue lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; Krzywinski, Jacek; Meents, Alke; Pennicard, David; Graafsma, Heinz; Barty, Anton; Bean, Richard J.; Barthelmess, Miriam; et al

    2015-06-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore »lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less

  7. Numerical simulation of three-dimensional electrical flow through geomaterials 

    E-Print Network [OSTI]

    Akhtar, Anwar Saeed

    1998-01-01

    95 99 V ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 104 5. 1 INTRODUCTION 5. 2 ANALYTICAL SOLUTION FOR ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 5. 3 NUMERICAL INVESTIGATION 5. 4 COMPARISON OF ANALYTICAL AND NUMERICAL... RESULTS 5. 5 CONCLUSION AND APPLICATION 5. 5. 1 Utilization of Numerical Results 104 106 110 113 115 116 VI EXPERIMENTAL EQUIPMENT DESIGN 121 6. 1 INTRODUCTION 6. 2 ELECTRICAL POWER SOURCE 6. 3 ELECTRICAL RESISTIVITY CONE PENETROMETER 6. 4...

  8. Progress toward a MEMS fabricated 100 GHz oscillator.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Lemp, Thomas; Weyn, Mark L.; Coleman, Phillip Dale; Rowley, James E. (SAIC, Albuquerque, NM)

    2006-02-01

    This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.

  9. Fabrication and Characterization of Suspended Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; AIR; CARBON; COATINGS; FABRICATION; NANOTUBES; REMOVAL; SURFACE TENSION; TRANSISTORS...

  10. Experimental and numerical analysis of a deepwater mini-TLP 

    E-Print Network [OSTI]

    Guichard, Aurelien

    2001-01-01

    As the quest for oil and gas resources drives the industry to ever deeper waters, model testing still represents an essential step after numerical modeling when designing offshore platforms in these hostile environments. ...

  11. NUMERICAL APPROXIMATIONS OF ALLEN-CAHN AND CAHN ...

    E-Print Network [OSTI]

    2010-03-18

    schemes that satisfy a corresponding discrete energy law, or in other words, energy ... Our first objective is to design stabilized semi-implicit schemes that satisfy an energy ...... Numerical analysis of a continuum model of phase transition.

  12. Prefab the FabLab : rethinking the habitability of a fabrication lab by including fixture-based components

    E-Print Network [OSTI]

    Nunez, Joseph Gabriel

    2010-01-01

    This thesis is about defining a fixture-based system that can be adapted into a digital fabrication production system of friction fit assembly. It is inspired by the work and research conducted by the Digital Design ...

  13. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    variable torque_efficiency = (T1loss - setup.bearingloss) %torque losses T1 = rFlow.T1rotor. *torque_efficiency; eta= head_efficiency. *torque_efficiency; %= T1. /( 2*pi*Uo. *

  14. Design of heliostat system for demonstration of fabrication and functionality

    E-Print Network [OSTI]

    Dobson, Adrian A

    2011-01-01

    There has been considerable amount of interest in the use of solar thermal power as an alternative source of energy. A promising option is the use of arrays of heliostats combined with a central receiver. A heliostat is a ...

  15. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    H. J. D. Williamson, "Low head pico hydro turbine selectionA.4.1 GUI –Interface -1: Low Head and high flow Figure A-2:4 Low-Head or Low-Flow River

  16. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    H. J. D. Williamson, "Low head pico hydro turbine selection4 Low-Head or Low-Flow River124 A.4.1 GUI –Interface -1: Low Head and high

  17. Design, fabrication, and characterization of a micro fuel processor

    E-Print Network [OSTI]

    Blackwell, Brandon S. (Brandon Shaw)

    2008-01-01

    The development of portable-power systems employing hydrogen-driven solid oxide fuel cells continues to garner significant interest among applied science researchers. The technology can be applied in fields ranging from ...

  18. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    An organic Rankine or Kalina cycle can be used for efficientAn organic Rankine or Kalina cycle can be used for efficient

  19. Design and Fabrication of the Superconducting Horizontal Bend...

    Office of Scientific and Technical Information (OSTI)

    F. 1 ; Brindza, Paul D. 2 ; Lassiter, Steven R. 2 ; Fowler, Michael J. 2 ; Sun, Qiuli 3 + Show Author Affiliations Michigan State University JLAB (Eric) JLAB...

  20. Procedural Design of Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David

    2007-01-01

    model rolls for applications in fuel cell bipolar plates. Anfor various applications, ranging from fuel cell bipo- larFigure 1. APPLICATION AREAS PEM Fuel Cells PEM (polymer

  1. Procedural Design of Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David

    2007-01-01

    Figure 1. FUEL CELL BIPOLAR PLATE [3] APPLICATION AREAS PEMmodel rolls for applications in fuel cell bipolar plates. Anfor various applications, ranging from fuel cell bipo- lar

  2. Design, fabrication and characterization of polypyrrole trilayer actuators

    E-Print Network [OSTI]

    Ho, Wei Hsuan (Wei Hsuan Jessie)

    2008-01-01

    Conducting polymers are currently studied as artificial muscle materials. They are used instead of traditional actuators because they mimic the movements of animal muscles. They can generate larger active stresses than ...

  3. Makers’ Marks: Physical Markup for Designing and Fabricating Functional Objects

    E-Print Network [OSTI]

    Follmer, Sean; Savage, Valkyrie; Li, Jingy; Hartmann, Bjoern

    2015-01-01

    V. , Chang, C. , and Hartmann, B. Sauron: Embedded single-Jingyi Li ? , Bj¨orn Hartmann ? UC Berkeley EECS, Stanford

  4. Makers’ Marks: Physical Markup for Designing and Fabricating Functional Objects

    E-Print Network [OSTI]

    Follmer, Sean; Savage, Valkyrie; Li, Jingy; Hartmann, Bjoern

    2015-01-01

    other button, joystick, Raspberry Pi, camera, gyroscope, IRlike a potato. It has a Raspberry Pi and camera in- side,

  5. Design and fabrication of quantum-dot lasers

    E-Print Network [OSTI]

    Nabanja, Sheila

    2008-01-01

    Semiconductor lasers using quantum-dots in their active regions have been reported to exhibit significant performance advantages over their bulk semiconductor and quantum-well counterparts namely: low threshold current, ...

  6. Design, fabrication and characterization of terahertz quantum-well photodetectors

    E-Print Network [OSTI]

    Huang, Shengxi, S.M. Massachusetts Institute of Technology

    2013-01-01

    Terahertz (THz) photodetectors are important in the fully exploration and development of electromagnetic spectrum. However, a fast and sensitive THz photodetector ready for array integration is not available. A THz ...

  7. Design and fabrication of evaporators for thermo-adsorptive batteries

    E-Print Network [OSTI]

    Farnham, Taylor A

    2014-01-01

    Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

  8. Design, fabrication, and characterization of controllable conducting polymer actuation systems

    E-Print Network [OSTI]

    Paster, Eli (Eli Travis)

    2010-01-01

    The geometric, hierarchal, multifunctional composition of mammalian skeletal muscle and the neuromuscular system consists of actuation elements, length sensors, force sensors, localized energy storage, controlled energy ...

  9. TECHNICAL PAPER Design and fabrication of microchannel test rig

    E-Print Network [OSTI]

    Müller, Norbert

    : 23 February 2007 Ó Springer-Verlag 2007 Abstract Wave rotor technology has shown a significant that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. At microscale, shock wave compression was shown

  10. Design, Fabrication and Preliminary Testing of Experimental Rock Drilling Rig 

    E-Print Network [OSTI]

    Tingey, Dustin John

    2015-08-03

    law. In order to make a functional drilling rig, much work was put into redesigning and modifying the existing rig to improve performance, reduce cost and to meet updated requirements. The entire rig was analyzed for strength, stability and cost...

  11. Design for the fabrication of high efficiency solar cells

    DOE Patents [OSTI]

    Simmons, Joseph H. (Gainesville, FL)

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  12. Method for fabrication of electrodes

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy

    2004-06-22

    Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.

  13. Fabrication of large area Si cylindric drift detectors

    SciTech Connect (OSTI)

    Chen, W.; Kraner, H.W.; Li, Z.; Rehak, P. [Brookhaven National Lab., Upton, NY (United States); Hess, F. [Heidelberg Univ. (Germany). Dept. of Physics

    1993-04-01

    Advanced Si drift detector, a large area cylindrical drift detector (CDD), processing steps, with the exception of the ion implantation, were carried out in the BNL class 100 cleanroom. The double-side planer process technique was developed for the fabrication of CDD. Important improvements of the double-side planer process in this fabrication are the introduction of Al implantation protection mask and the remaining of a 1000 Angstroms oxide layer in the p-window during the implantation. Another important design of the CDD is the structure called ``river,`` which ,allows the current generated on Si-SiO{sub 2} interface to ``flow`` into the guard anode, and thus can minimize the leakage current at the signed anode. The test result showed that most of the signal anodes have the leakage current about 0.3 nA/cm{sup 2} for the best detector.

  14. Cogeneration System Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01

    The commercial or industrial firm contemplating cogeneration at its facilities faces numerous basic design choices. The possibilities exist for fueling the system with waste materials, gas, oil, coal, or other combustibles. The choice of boiler...

  15. Apparatus and method for fabricating a microbattery

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Kravitz, Stanley H. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); Ingersoll, David (Albuquerque, NM)

    2002-01-01

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  16. Numerical wind tunnels

    E-Print Network [OSTI]

    Souza, Paulo Victor Santos

    2015-01-01

    Flow of viscous fluids are not usually discussed in detail in general and basic courses of physics. This is due in part to the fact that the Navier-Stokes equation has analytical solution only for a few restricted cases, while more sophisticated problems can only be solved by numerical methods. In this text, we present a computer simulation of wind tunnel, i.e., we present a set of programs to solve the Navier-Stokes equation for an arbitrary object inserted in a wind tunnel. The tunnel enables us to visualize the formation of vortices behind object, the so-called von K\\'arm\\'an vortices, and calculate the drag force on the object. We believe that this numerical wind tunnel can support the teacher and allow a more elaborate discussion of viscous flow. The potential of the tunnel is exemplified by the study of the drag on a simplified model of wing whose angle of attack can be controlled. A link to download the programs that make up the tunnel appears at the end.

  17. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  18. Fabrication of a 238Pu target

    SciTech Connect (OSTI)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D

    2010-11-16

    Precision neutron-induced reaction data are important for modeling the network of isotope production and destruction within a given diagnostic chain. This network modeling has many applications such as the design of advanced fuel cycle for reactors and the interpretation of radiochemical data related to the stockpile stewardship and nuclear forensics projects. Our current funded effort is to improve the neutron-induced reaction data on the short-lived actinides and the specific goal is to improve the neutron capture data on {sup 238}Pu with a half-life of 87.7 years. In this report, the fabrication of a {sup 238}Pu target for the proposed measurement using the DANCE array at LANL is described. The {sup 238}Pu target was fabricated from a sample enriched to 99.35%, acquired from ORNL. A total of 395 {micro}g was electroplated onto both sides of a 3 {micro}m thick Ti foil using a custom-made plating cell, shown in Fig 1. The target-material loaded Ti foil is sandwiched between two double-side aluminized mylar foils with a thickness of 1.4 {micro}m. The mylar foil is glued to a polyimide ring. This arrangement is shown partially in Fig. 2. The assembled target is then inserted into an aluminum container with a wall thickness of 0.76 mm, shown in Fig. 3. A derlin ring is used to keep the target assembly in place. The ends of this cylindrical container are vacuum-sealed by two covers with thin Kapton foils as windows for the beam entrance and exit. Shown in Fig. 4 is details of the arrangement. This target is used for phase I of the proposed measurement on {sup 238}Pu scheduled for Nov 2010 together with the DANCE array to address the safety issues raised by LANL. Shown in Fig. 5 is the preliminary results on the yield spectrum as a function of neutron incident energy with a gate on the total {gamma}-ray energy of equivalent Q value. Since no fission PPAC is employed, the distinction between the capture and fission events cannot be made, which is important for the higher neutron incident energy. However, it indicates that a cross section of less than one barn can be measured. The second phase of this experiment will be carried out in 2011 by assembling a PPAC with the {sup 238}Pu target to extend the measurement to higher neutron incident energies by distinguishing the capture from fission events. The fission cross section becomes dominant for neutron incident energies above 30 keV. This PPAC was developed in FY2010 under the NA22 funding and performed very well for the {sup 239}Pu and {sup 241}Pu measurements. A new {sup 238}Pu target will be fabricated for the phase II measurement using the same electroplating technique.

  19. Fabrication of an optical component

    DOE Patents [OSTI]

    Nichols, Michael A. (Livermore, CA); Aikens, David M. (Pleasanton, CA); Camp, David W. (Oakland, CA); Thomas, Ian M. (Livermore, CA); Kiikka, Craig (Livermore, CA); Sheehan, Lynn M. (Livermore, CA); Kozlowski, Mark R. (Livermore, CA)

    2000-01-01

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  20. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect (OSTI)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; Kim, Philseok; Aizenberg, Joanna

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  1. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect (OSTI)

    Shillingford, C; MacCallum, N; Wong, TS; Kim, P; Aizenberg, J

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e. g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  2. Fabrics coated with lubricated nanostructures display robust omniphobicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; Kim, Philseok; Aizenberg, Joanna

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and whenmore »exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.« less

  3. Design of a silicon waver breaker

    E-Print Network [OSTI]

    Mukaddam, Kabir James, 1983-

    2005-01-01

    Usually multiple MEMS or IC devices are fabricated on a single silicon wafer. Manually separating the components from each other involves scribing and fracturing the silicon. This thesis presents a design for a tool to aid ...

  4. FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS

    SciTech Connect (OSTI)

    GIRALDEZ,E; KAAE,J.L

    2003-06-01

    OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper.

  5. Fabrication of Window Saddles for NIF Cryogenic Hohlraums

    SciTech Connect (OSTI)

    Giraldez, Emilio; Kaae, James L. [General Atomics (United States)

    2004-03-15

    A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. We solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this pap0008.

  6. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect (OSTI)

    Atwater, Jackson H; Spinelli, P.; Kosten, Emily D; Parsons, J.; Van Lare, C; Van de Groep, J; Garcia de Abajo, J.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 ?m high and 10 ?m in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  7. Numerical modelling and comparison of MgB_2 bulks fabricated by HIP and infiltration growth

    E-Print Network [OSTI]

    Zou, J.; Ainslie, M. D.; Fujishiro, H.; Bhagurkar, A. G.; Naito, T.; Hari Babu, N.; Fagnard, J.-F.; Vanderbemden, P.; Yamamoto, A.

    2015-05-26

    MgB_2 in bulk form shows great promise as trapped field magnets (TFMs) as an alternative to bulk (RE)BCO materials to replace permanent magnets in applications such as rotating machines, magnetic bearings and magnetic separation, and the relative...

  8. Photonic Device Layout Within the Foundry CMOS Design Environment

    E-Print Network [OSTI]

    Orcutt, Jason Scott

    A design methodology to layout photonic devices within standard electronic complementary metal-oxide-semiconductor (CMOS) foundry data preparation flows is described. This platform has enabled the fabrication of designs ...

  9. 2.72 Elements of Mechanical Design, Fall 2002

    E-Print Network [OSTI]

    Blanco, Ernesto E.

    Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

  10. 2.72 Elements of Mechanical Design, Spring 2006

    E-Print Network [OSTI]

    Frey, Daniel

    Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

  11. Some Books Relevant to Computational Mathematics Numerical Differential Equations

    E-Print Network [OSTI]

    Fasshauer, Greg

    , 1997. 2. Briggs, W., A Multigrid Tutorial, SIAM, 1987. 3. Gear, C. W., Numerical Initial Value Problems and Surfaces for Computer Aided Geometric Design (3rd ed.), Academic Press, 1993. 12. Golub, G. H. and Ortega., Fundamentals of Computer Aided Geometric Design, A K Peters, 1993. 17. Isaacson, E. and Keller, H. B., Analysis

  12. Fabrication, structure and mechanical properties of indium nanopillars

    E-Print Network [OSTI]

    Lee, Gyuhyon

    2010-01-01

    followed by the electroplating fabrication method. TheCompression test; Electroplating; Yield phenomena 1.were fabricated via an electroplating method. 2. Procedure

  13. Conical Nanopores Fabricated via a Pressured-Biased Chemical...

    Office of Scientific and Technical Information (OSTI)

    Conical Nanopores Fabricated via a Pressured-Biased Chemical Etch. Citation Details In-Document Search Title: Conical Nanopores Fabricated via a Pressured-Biased Chemical Etch....

  14. Continuum and discrete models for unbalanced woven fabrics

    E-Print Network [OSTI]

    Angela Madeo; Gabriele Barbagallo; Marco Valerio D'Agostino; Philippe Boisse

    2015-09-15

    The classical models used for describing the behavior of woven fabrics do not fully account for the whole set of phenomena that occur during the testing of such materials. This lack of precision is mainly due to the absence of energy terms related to the microstructural properties of the fabric and, in particular, to the bending stiffness of the yarns. In this paper it is shown that in the unbalanced fabrics the different bending stiffnesses of the warp and weft yarns produce macroscopic effects that are extremely visible as, for example, the asymmetric S-shape during a Bias Extension Test (BET). We propose to introduce a constrained micromorphic model and a discrete model that are able to account for i) the angle variation between warp and weft tows, ii) the unbalance in the bending stiffness of the yarns and iii) the relative slipping of the tows. The constrained micromorphic model is framed in the spirit of the Principle of Virtual Powers for the equilibrium of continuum bodies. A suitable constraint is introduced by means of Lagrange multipliers in the strain energydens ity and the resulting constrained model tends a particular second gradientone. The main advantage of using such constrained micromorphic model is that the kinematical and traction boundary conditions that can be imposed on the boundary of the considered body take a natural and unique meaning. The discrete model is set up by opportunely interconnecting Euler-Bernoulli beams with different bending stiffnesses in the two directions by means of rotational and translational elastic springs. The main advantage of such discrete model is that the slipping of the tows is described in a rather realistic way. Suitable numerical simulations are presented for both the continuum and the discrete models and a comparison between the simulations and the experimental results is made showing a definitely good agreement.

  15. Method for fabricating hafnia films

    DOE Patents [OSTI]

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  16. Flexible aerogel composite for mechanical stability and process of fabrication

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Poco, John F. (Livermore, CA)

    2000-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  17. Flexible aerogel composite for mechanical stability and process of fabrication

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Poco, John F. (Livermore, CA)

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  18. DEVICE FABRICATION Three-dimensional

    E-Print Network [OSTI]

    arrays of the diodes in 3D matrices. 3D printers transform the output files from computer-aided design ability to rapidly print three-dimen- sional (3D) electronic devices would enable myriad applications nanocrystals that exhibit tunable colour emission2­4 . Using a 3D-printing method based on extruding multiple

  19. Fabrication of Niobium sheet for RF cavities 

    E-Print Network [OSTI]

    Balachandran, Shreyas

    2009-05-15

    This thesis investigated the microstructure and mechanical property of RRR( high purity) and RG (low purity) niobium (Nb) sheet material. RRR Nb is used in the fabrication RF cavities. Our method involves processing bulk ...

  20. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, Karan Kartik

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process ...

  1. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  2. Enforcement Letter, Parsons Technology Development & Fabrication...

    Broader source: Energy.gov (indexed) [DOE]

    related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site On April 13, 2010, the U.S....

  3. Fabrication and properties of microporous silicon 

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01

    structure as the wafer from which it was fabricated. Oxidization at 800'C converts the porous silicon totally to amorphous silicon dioxide. Oxidation at 600'C produces a mixture of crystalline silicon and amorphous silicon dioxide. The pore structure...

  4. Metal plasmas for the fabrication of nanostructures

    E-Print Network [OSTI]

    Anders, Andre

    2006-01-01

    by Energetic Condensation of Metal Plasmas André AndersD: Appl. Phys. (2006) Metal plasmas for the fabrication ofA review is provided covering metal plasma production, the

  5. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect (OSTI)

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  6. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  7. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  8. Carbon nanotube collimator fabrication and application

    DOE Patents [OSTI]

    Chow, Lee (Orlando, FL); Chai, Guangyu (Orlando, FL); Schenkel, Thomas (San Francisco, CA)

    2010-07-06

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  9. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  10. Fabrication and evaluation of uniform and gradient density epoxies

    SciTech Connect (OSTI)

    Domeier, L.A.; Skala, D.M.; Goods, S.H. [and others

    1997-11-01

    Filled epoxy materials which vary in density in a designed manner have been fabricated and their mechanical properties evaluated. Density variations were produced by incorporating different volume fractions of either glass microballoons (GMB) or alumina. Several different sample types were evaluated including uniform density (0.8 g/cm{sup 3} < {rho} < 2.0 g/cm{sup 3}) samples and gradient density samples (GMB only, 0.8 g/cm{sup 3} < {rho} < 1.2 g/cm{sup 3}). The uniform density specimens were evaluated for the effects of filler type and concentration on modulus and toughness. Results indicated that addition of alumina filler significantly increased the resulting modulus while addition of GMB had little measurable effect. These differences could be understood in terms of the differing moduli of the additives relative to that of the epoxy matrix. In the former case the alumina particulates had a modulus much greater than that of the epoxy while in the latter case, the modulus of the GMB additive was only slightly greater than that of the matrix. Addition of either filler significantly degraded the toughness of the composite specimens and precluded the use of gradients to enhance toughness performance. Discontinuous {open_quotes}block{close_quotes} gradients used for testing were fabricated by simple sequential pours of formulations with different GMB loadings and were evaluated for modulus, strength and ductility. Continuous gradients were fabricated in process studies by programmed shifts in the peristaltic pumping/mixing ratio of epoxies filled with either alumina or GMB. None of the continuous gradient materials were mechanically tested. These results suggest that applications utilizing gradient materials containing alumina and similar high modulus fillers to provide designed stiffness rather than improved toughness are the most appropriate targets for future investigation.

  11. Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory

    E-Print Network [OSTI]

    Zhihao Ge; Ruihua Li

    2015-03-08

    In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.

  12. Designing a Micro-Mechanical Transistor

    SciTech Connect (OSTI)

    Mainieri, R.

    1999-06-03

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Micro-mechanical electronic systems are chips with moving parts. They are fabricated with the same techniques that are used to manufacture electronic chips, sharing their low cost. Micro-mechanical chips can also contain electronic components. By combining mechanical parts with electronic parts it becomes possible to process signal mechanically. To achieve designs comparable to those obtained with electronic components it is necessary to have a mechanical device that can change its behavior in response to a small input - a mechanical transistor. The work proposed will develop the design tools for these complex-shaped resonant structures using the geometrical ray technique. To overcome the limitations of geometrical ray chaos, the dynamics of the rays will be studied using the methods developed for the study of nonlinear dynamical systems. T his leads to numerical methods that execute well in parallel computer architectures, using a limited amount of memory and no inter-process communication.

  13. 3D electroplated microstructures fabricated by a novel height control method

    E-Print Network [OSTI]

    Lin, Liwei

    is coated and patterned to open the designated areas for electroplating. Nickel electroplating is performed3D electroplated microstructures fabricated by a novel height control method L.-W. Pan, P. Yuen, L. Lin Abstract A 3D electroplating process by means of pixel- wise, step height control of selective

  14. Field Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power

    E-Print Network [OSTI]

    investigate a solar thermal steamdriven turbine system and build and evaluate several versions in fieldField Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power by Amy and repeatability necessary for regular people to design, manufacture, and install a system to convert solar

  15. A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b,

    E-Print Network [OSTI]

    A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b, , Zhen He c microfluidic microbial fuel cell (MFC) platform built by soft-lithography tech- niques. The MFC design includes a unique sub-5 lL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic

  16. Volume Fresnel zone plates fabricated by femtosecond laser direct writing Pornsak Srisungsitthisunti

    E-Print Network [OSTI]

    Xu, Xianfan

    Volume Fresnel zone plates fabricated by femtosecond laser direct writing Pornsak October 2006; accepted 29 November 2006; published online 2 January 2007 In this letter, volume Fresnel. A volume zone plate consists of a number of layers of Fresnel zone plates designed to focus light together

  17. A Case-Based Conceptual Design Information Server for Concurrent Engineering1

    E-Print Network [OSTI]

    Agogino, Alice M.

    the entire life cycle of an artifact: marketing, design, manufacture, distribution, operation, and disposal cycle design costs (including fabrication, construction, energy, maintenance and disposal beyond the direct experience of most practicing engineers. All designers are novices in some contexts

  18. Novel Fabrication of Micromechanical Oscillators with Nanoscale Sensitivity at Room Temperature

    E-Print Network [OSTI]

    Michelle D. Chabot; John M. Moreland; Lan Gao; Sy-Hwang Liou; Casey W. Miller

    2006-08-29

    We report on the design, fabrication, and implementation of ultrasensitive micromechanical oscillators. Our ultrathin single-crystal silicon cantilevers with integrated magnetic structures are the first of their kind: They are fabricated using a novel high-yield process in which magnetic film patterning and deposition are combined with cantilever fabrication. These novel devices have been developed for use as cantilever magnetometers and as force sensors in nuclear magnetic resonance force microscopy (MRFM). These two applications have achieved nanometer-scale resolution using the cantilevers described in this work. Current magnetic moment sensitivity achieved for the devices, when used as magnetometers, is 10^{-15} J/T at room temperature, which is more than a 1000 fold improvement in sensitivity, compared to conventional magnetometers. Current room temperature force sensitivity of MRFM cantilevers is ~10^{-16} N in a 1 Hz bandwidth, which is comparable to the room temperature sensitivities of similar devices of its type. Finite element modeling was used to improve design parameters, ensure that the devices meet experimental demands, and correlate mode shape with observed results. The photolithographic fabrication process was optimized, yielding an average of ~85% and alignment better than 1000 nm. Post-fabrication focused-ion-beam milling was used to further pattern the integrated magnetic structures when nanometer scale dimensions were required.

  19. Design Editorial Design Innovation

    E-Print Network [OSTI]

    Papalambros, Panos

    juxtaposition of innovation versus invention: "Invention is the first occurrence of an idea for a new product such as innovation strategies, product design, service inno- vation, cutting-edge designers, design awards, and green design. Much of that perspective on innovation is then tied to industrial or product design, often

  20. Bio-Inspired Design: An Overview Investigating Open Questions from the Broader Field of Design-by-Analogy

    E-Print Network [OSTI]

    Fu, Katherine

    Bio-inspired design and the broader field of design-by-analogy have been the basis of numerous innovative designs throughout history; yet there remains much to be understood about these practices of design, their underlying ...

  1. Fabrication of wideband optoelectronic differential amplifier using a balanced receiver on a semi-insulating GaAs substrate 

    E-Print Network [OSTI]

    Choi, Kyoo Nam

    1989-01-01

    bandwidth. The monolithic receiver design described here has greatly reduced these undesirable effects and allowed multi-gigshertz performance. Balanced receivers have been fabricated with photoconductive gap widths of 5 pm and 3 Izrn... and supplies and to Jim Gardner for laser scribing and reticle fabrication support. I would especially like to thank Victor Swenson for his help in diagnosing and repairing the many equipment problems and instructions on equipment operation. I would also...

  2. A photocathode rf gun design for a mm-wave linac-based FEL

    SciTech Connect (OSTI)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  3. Integrated Circuit (IC) fabrication technology development over the last few decades has been phenomenal. We have also seen

    E-Print Network [OSTI]

    California at Berkeley, University of

    - neers to capture the full capabilities of the technology. MEMS fab- rication technology has leveraged. As a result, we can all envision MEMS which could be fabricated if they were designed, but which can- nology is the subject of active research in the MEMS CAD commu- nity. To date, MEMS design tools have

  4. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covatch Subsea High Voltage Direct Current Connectors for Environmentally Safe and... Design analysis, computer simulation, and fabrication of mock up high voltage DC...

  5. Design tools and issues of silicon micromachined (MEMS) devices

    SciTech Connect (OSTI)

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-05-01

    This paper describes the design and design issues associated with silicon surface micromachined device design Some of the tools described are adaptations of macro analysis tools. Design issues in the microdomain differ greatly from design issues encountered in the macrodomain. Microdomain forces caused by electrostatic attraction, surface tension, Van der Walls forces, and others can be more significant than inertia, friction, or gravity. Design and analysis tools developed for macrodomain devices are inadequate in most cases for microdomain devices. Microdomain specific design and analysis tools are being developed, but are still immature and lack adequate functionality. The fundamental design process for surface micromachined devices is significantly different than the design process employed in the design of macro-sized devices. In this paper, MEMS design will be discussed as well as the tools used to develop the designs and the issues relating fabrication processes to design. Design and analysis of MEMS devices is directly coupled to the silicon micromachining processes used to fabricate the devices. These processes introduce significant design limitations and must be well understood before designs can be successfully developed. In addition, some silicon micromachining fabrication processes facilitate the integration of silicon micromachines with microelectronics on-chip. For devices requiring on-chip electronics, the fabrication processes introduce additional design constraints that must be taken into account during design and analysis.

  6. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  7. Fabrication of an optically driven 10 GHz ring resonator on a gallium arsenide substrate 

    E-Print Network [OSTI]

    McGregor, Douglas Scott

    1989-01-01

    of the optically excited output power from ring 3 at the first three harmonics revealed microwave power levels of -43 dBm, -52 dBm, and -65 dBm with loaded Q values ol' 53. 5, 75. 43, and 103. 0, respectively. ACKNOWLEDGMENTS I would like to acknowledge.... Preliminary Plating Experiments D. Ring Resonator Fabrication Process . E. Ohmic Contact Fabrication and Analysis F. Design and Analysis of the Substrate Holder G. Testing Apparatus and Procedure for the Microwave Characteristics of the Ring Resonators H...

  8. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, K K; Bruzewicz, C D; Chuang, I L; Ram, R J; Sage, J M; Chiaverini, J

    2014-01-01

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  9. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    K. K. Mehta; A. M. Eltony; C. D. Bruzewicz; I. L. Chuang; R. J. Ram; J. M. Sage; J. Chiaverini

    2014-06-13

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  10. Epoxy bond and stop etch fabrication method

    DOE Patents [OSTI]

    Simmons, Jerry A. (Sandia Park, NM); Weckwerth, Mark V. (Pleasanton, CA); Baca, Wes E. (Albuquerque, NM)

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  11. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  12. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  13. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  14. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  15. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  16. Design of bioaerosol sampling inlets 

    E-Print Network [OSTI]

    Nene, Rohit Ravindra

    2007-09-17

    An experimental investigation involving the design, fabrication, and testing of an ambient sampling inlet and two additional Stokes-scaled inlets is presented here. Testing of each inlet was conducted at wind speeds of 2, 8, and 24 km/h (0.55, 2...

  17. Design Editorial Design Intent

    E-Print Network [OSTI]

    Papalambros, Panos

    Journal of Mechanical Design Editorial Design Intent Is this paper suitable for JMD of criteria to answer the question. As editor of JMD, apart from the obvious criteria of quality and research assumed my editorial duties is the paper's design intent. It was in that spirit that I wrote the Design

  18. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.

  19. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    SciTech Connect (OSTI)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  20. The TPX Cryostat Conceptual Design

    SciTech Connect (OSTI)

    Ravenscroft, D.; Posey, A.; Heitzenroeder, P.; Brown, T.

    1993-10-06

    The TPX (Tokamak Physics Experiment) will be the first tokamak to employ both superconducting TF (toroidal field) and PF (poloidal field) magnets. Consequently, the entire device is located within an evacuated cryostat to provide the necessary thermal barrier between the ambient temperature test cell and the magnets that are cooled by supercritical liquid helium at 5{degrees}K. This paper describes the cryostat design requirements, design concepts, and the cryostat fabrication and installation.

  1. Prototyping Tangible Input Devices with Digital Fabrication

    E-Print Network [OSTI]

    Hartmann, Björn

    . Aside from 3D printers, other classes of digital fabrication hardware, like vinyl cutters, have also have previously investigated the benefits of tangibility in How Bodies Matter. 3D printing holds users of 3D printing can currently create such objects. For example, we surveyed the the online

  2. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  3. Method of fabricating a solar cell

    DOE Patents [OSTI]

    Pass, Thomas; Rogers, Robert

    2014-02-25

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  4. Triangular Profile Imprint Molds in Nanograting Fabrication

    E-Print Network [OSTI]

    Triangular Profile Imprint Molds in Nanograting Fabrication Zhaoning Yu* and Stephen Y. Chou line widths and smooth edges. A wet chemical etching process is employed during mold preparation abandons the use of mold features with vertical sidewalls. Instead, it uses grating molds with triangle

  5. Fabrication Procedures and Process Sensitivities for

    E-Print Network [OSTI]

    This paper details the laboratory processes used to fabricate CdS/CdTe solar cells at the National Renewable with an AM1.5 eciency of 15.4% as verified by the National Renewable Energy Laboratory. SOLAR CELLFabrication Procedures and Process Sensitivities for CdS/CdTe Solar Cells Doug H. Rose*, Falah S

  6. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    E-Print Network [OSTI]

    Teich, Malvin C.

    Polymer microcantilevers fabricated via multiphoton absorption polymerization Z. Bayindir, Y. Sun polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties orders of magnitude smaller than would be predicted from the properties of the bulk polymer.6 If correct

  7. Sandia Energy - Numerical Manufacturing And Design Tool (NuMAD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syria Taiwan Tajikistan Tanzania Thailand Togo Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States...

  8. Design package for vacuum wand for fuel retrieval system

    SciTech Connect (OSTI)

    ROACH, H.L.

    1999-07-28

    This is a design package that contains the details for the design, fabrication, and testing of a vacuum wand that will pick up sludge and corrosion products generated during fuel assembly handling operations at K-Basin. This document contains requirements, development design information, design calculations, tests, and test reports.

  9. Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask

    SciTech Connect (OSTI)

    Shih, Fu-Yu [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shao-Yu; Wu, Tsuei-Shin; Wang, Wei-Hua, E-mail: wwang@sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Liu, Cheng-Hua; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Ho, Po-Hsun; Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-06-15

    Two-dimensional (2D) atomic crystals and their hybrid structures have recently attracted much attention due to their potential applications. The fabrication of metallic contacts or nanostructures on 2D materials is very common and generally achieved by performing electron-beam (e-beam) lithography. However, e-beam lithography is not applicable in certain situations, e.g., cases in which the e-beam resist does not adhere to the substrates or the intrinsic properties of the 2D materials are greatly altered and degraded. Here, we present a residue-free approach for fabricating high-performance graphene devices by patterning a thin film of e-beam resist as a stencil mask. This technique can be generally applied to substrates with varying surface conditions, while causing negligible residues on graphene. The technique also preserves the design flexibility offered by e-beam lithography and therefore allows us to fabricate multi-probe metallic contacts. The graphene field-effect transistors fabricated by this method exhibit smooth surfaces, high mobility, and distinct magnetotransport properties, confirming the advantages and versatility of the presented residue-free technique for the fabrication of devices composed of 2D materials.

  10. Innovative sputtering techniques for CIS and CdTe submodule fabrication

    SciTech Connect (OSTI)

    Armstrong, J.M.; Misra, M.S.; Lanning, B. (Martin Marietta Aerospace, Denver, CO (United States). Astronautics Group)

    1993-03-01

    This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag[trademark]) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.

  11. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect (OSTI)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  12. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  13. EVALUATION OF VARIOUS FABRICATION TECHNIQUES FOR FABRICATION OF FINE FILAMENT NbTi SUPERCONDUCTORS

    E-Print Network [OSTI]

    Scanlan, R.M.

    2010-01-01

    i c Formation in Fine Filament Nb-Ti Superconductors," lEEK~ of closely spaced fine filaments. Refe ~ences "HanufactureFOR FABRICATION OF FINE FILAMENT NbTi SUPERCONDUCTORS R.M.

  14. Safeguards instrumentation for continuous unattended monitoring in plutonium fuel fabrication plants

    SciTech Connect (OSTI)

    Menlove, H.O.; Miller, M.C.; Ohtani, T.; Seya, M.; Takahashi, S.

    1993-06-01

    Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The design, performance characteristics, and authentication of the NDA systems are described. The data related to reliability, precision, and accuracy are presented.

  15. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  16. Dust Defeats Germ-Killing Fabrics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelley speculates that dust protected germs from the fabrics' germ-killing surface. "Microbes grow on the dust. And now, because you have all this dust on the fabric, instead of...

  17. Fabrication of high-quality microflexures using micromilling techniques

    E-Print Network [OSTI]

    Gafford, Joshua B

    2010-01-01

    This research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material ...

  18. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier 

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01

    This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

  19. Development of the Direct Fabrication Process for Plutonium Immobilization

    SciTech Connect (OSTI)

    Congdon, J.W.

    2001-07-10

    The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.

  20. NUMERICAL INVESTIGATION OF AN ANISOTHERMAL TURBULENT FLOW WITH EFFUSION

    E-Print Network [OSTI]

    Nicoud, Franck

    NUMERICAL INVESTIGATION OF AN ANISOTHERMAL TURBULENT FLOW WITH EFFUSION Simon Mendez CFD Team the plate. CONTEXT In gas turbines, the turbine blades and the liner of the combustion chamber are submitted. For economical reasons, computational fluid dynamics is now widely used as a design tool by combustion cham- ber

  1. Validation of Erosion Modeling: Physical and Numerical Mehrad Kamalzare1

    E-Print Network [OSTI]

    Franklin, W. Randolph

    -3590 ABSTRACT The overall intent of this research is to develop numerical models of erosion of levees, dams is necessary for emergency plans for levee or dam breaches. Griffis, 2007 addressed the overall design and hydraulic shear stress. #12;2 Xu and Zhang (2009) found that in addition to soil type, the degree

  2. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  3. Graphene Device Fabrication and Applications in Communication Systems

    E-Print Network [OSTI]

    Liu, Guanxiong

    2012-01-01

    Device Fabrications 2.1 Graphene Samples Preparation We use2.1 Graphene samples preparation ……………………………………………….. 2.2 E-

  4. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower

    2009-07-09

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  5. Abstract --We describe a MEMS-on-CMOS microsystem to encage, culture, and monitor cells. The system was designed

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Abstract -- We describe a MEMS-on-CMOS microsystem to encage, culture, and monitor cells. A MEMS process flow was developed for the fabrication of closeable micro-vials to contain each cell, a custom bio-amplifier CMOS chip was designed, fabricated, and tested, and the fabrication of the MEMS

  6. Method of fabrication of supported liquid membranes

    DOE Patents [OSTI]

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  7. Fabrication of glucose biosensors by inkjet printing

    E-Print Network [OSTI]

    Wang, Tianming; Serban, Simona; Ali, Tarif; Drago, Guido; Derby, Brian

    2012-01-01

    Inkjet printing has been used to fabricate glucose sensors using glucose oxidase and screen printed carbon electrodes. By appropriate selection of printing and drying conditions we are able to fabricate sensor structures that show a good linear response to glucose concentration. In order to achieve these structures we must carefully control the spreading and drying of the enzyme solution on the carbon electrode. Carbon electrode suirfaces are hydrophobic and Triton X was used as a surfactant to allow full coverage of the electrode surface. During drying, under ambient conditions the enzyme solution segregates to form a ring deposit (coffee staining). Coffee staining is shown to be deleterious to sensor performance and it can be removed by drying in a reduced humidity environment.

  8. Method of fabrication of electrodes and electrolytes

    DOE Patents [OSTI]

    Jankowski, Alan F.; Morse, Jeffrey D.

    2004-01-06

    Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.

  9. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  10. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  11. Innovative concepts for fuel plate fabrication

    SciTech Connect (OSTI)

    Domagala, R.F.; Wiencek, T.C.; Thresh, H.R.

    1987-10-01

    A number of fabrication concepts have been and are being explored at ANL. Although specific processes were addressed with silicide fuels in mind, most are applicable to fabrication with any fuel type. Processes include improved comminution procedures for converting U-Si alloy ingots to powder using a roll crusher and an impact mill. Aluminizing of core compacts by ion vapor deposition techniques in vacuum offers prospects for improved plate quality. Other items examined include the possible use of coatings on fuel particles, matrices different from pure Al, and ductile fuel alloys which might be used to produce fuel plates with uranium loadings higher than possible with conventional dispersed-phase powder metallurgy technology.

  12. Fabrication of thorium bearing carbide fuels

    DOE Patents [OSTI]

    Gutierrez, Rueben L. (Los Alamos, NM); Herbst, Richard J. (Los Alamos, NM); Johnson, Karl W. R. (Los Alamos, NM)

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  13. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  14. Method to fabricate hollow microneedle arrays

    DOE Patents [OSTI]

    Kravitz, Stanley H. (Placitas, NM); Ingersoll, David (Albuquerque, NM); Schmidt, Carrie (Los Lunas, NM); Flemming, Jeb (Albuquerque, NM)

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  15. Method for fabricating pixelated silicon device cells

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  16. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  17. Schottky barrier MOSFET systems and fabrication thereof

    DOE Patents [OSTI]

    Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  18. Fabrication of brittle materials -- current status

    SciTech Connect (OSTI)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  19. Planning numerical approximations Richard Power

    E-Print Network [OSTI]

    Williams, Sandra

    Planning numerical approximations Richard Power Sandra Williams 21st September 2009 #12;Table proportions (e.g., more than a quarter, 25.9 per cent) Proportions are a convenient well-defined subproblem Common in factual discourse (e.g., newspaper articles) Important for generating from data (but neglected

  20. Comparison of graded and abrupt junction In,,,Ga,,,As heterojunction Much progress has been made fabricating high speed

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    results of numerically simulating charge transport in graded and abrupt junction n-p-n HBTs lattice diagram of an abrupt junction n-p-n Alo,4sIn,,2As/Ino,s3Ga".~~~ HBT un- der forward bias. (b) Results fabricating high speed n-p-n heterojunction bipolar transistors (HBTs) lattice matched to InP. Very high speed

  1. Engineering tasl plan for the development, fabrication and installation of rotary mode core sample truck bellows

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-06-24

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST).

  2. 4.500 Introduction to Design Computing, Spring 2006

    E-Print Network [OSTI]

    Sass, Lawrence

    This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use ...

  3. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  4. On the design of lithographic interferometers and their application

    E-Print Network [OSTI]

    Walsh, Michael E. (Michael Edward), 1975-

    2004-01-01

    Interference lithography is presented as an ideal technique for fabricating large-area periodic structures with sub-100nm dimensions. A variety of interferometer designs are discussed and implemented, each of which emphasizes ...

  5. Design of ultra precision fixtures for nano-manufacturing

    E-Print Network [OSTI]

    Mangudi Varadarajan, Kartik, 1981-

    2005-01-01

    This thesis presents the design, modeling, fabrication and experimental validation of an active precision fixturing system called the Hybrid Positioning Fixture (HPF). The HPF uses the principles of exact constraint, ...

  6. Very high numerical aperture light transmitting device

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Knoxville, TN)

    1998-01-01

    A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.

  7. Architectural Design 2.0 : An online platform for the mass customization of architectural structures

    E-Print Network [OSTI]

    Smithwick, Daniel J., II (Daniel John)

    2010-01-01

    Not only are there incredible inefficiencies in the current practice of design, fabrication and construction of architecture, but, until now these processes have been limited to costly design professionals, wasteful ...

  8. Graduate Survey of Numerical Methods Background material

    E-Print Network [OSTI]

    Corless, Robert M.

    Numerical Methods, Numerical Analysis, Scientific Computing, Com- putational Mathematics, Computational. Numerical Meth- ods are what one uses to solve a problem from continuous mathematics (vide Nick Trefethen), and in what sense. Scientific Computing is the use of numerical methods to solve problems of scientific

  9. Numerical semigroups Easy bounds on ng

    E-Print Network [OSTI]

    Elizalde, Sergi

    Numerical semigroups Easy bounds on ng Improved bounds on ng The number of numerical semigroups #12;Numerical semigroups Easy bounds on ng Improved bounds on ng Motivation Definitions The tree on ng Improved bounds on ng Motivation Definitions The tree T of numerical semigroups Succession rules

  10. Fundamental development of numerical and

    E-Print Network [OSTI]

    Langendoen, Koen

    Power and Propulsion, Wind Turbine Aeroelasticity, Wind Turbine Design and Site Conditions for Wind Energy combines fundamental and applied research disciplines of aerospace and wind-power systems aerodynamics · Be familiar with the design of wind tunnel experiments, and have experience with modern

  11. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  12. The Hobby-Eberly Telescope Low Resolution Spectrograph: mechanical design

    E-Print Network [OSTI]

    Hill, Gary J.

    The Hobby-Eberly Telescope Low Resolution Spectrograph: mechanical design G. J. Hilla* , H. Nicklas constraints make the LRS a challenging instrument, built on a limited budget. The mechanical design of the mechanical design of the LRS. Fabrication, assembly and testing of the LRS will be completed by mid 1998

  13. The HobbyEberly Telescope Low Resolution Spectrograph: mechanical design

    E-Print Network [OSTI]

    Hill, Gary J.

    The Hobby­Eberly Telescope Low Resolution Spectrograph: mechanical design G. J. Hill a* , H constraints make the LRS a challenging instrument, built on a limited budget. The mechanical design of the mechanical design of the LRS. Fabrication, assembly and testing of the LRS will be completed by mid 1998

  14. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 479 Fabrication of a DRA Array Using Ceramic

    E-Print Network [OSTI]

    Sarabandi, Kamal

    Ceramic Stereolithography Amelia Buerkle, Student Member, IEEE, Karl F. Brakora, Student Member, IEEE fabrication of an array of dielectric resonator antennas (DRAs) using ceramic stereolithography. Design, is mainly responsible for losses in the radiating structure. Index Terms--Antenna arrays, ceramic

  15. Experimental and numerical investigation of an optimized airfoil for vertical axis wind turbines

    E-Print Network [OSTI]

    Experimental and numerical investigation of an optimized airfoil for vertical axis wind turbines and numerical verification of the per- formance of a new airfoil design for lift driven vertical-axis wind-turbines-driven vertical-axis wind-turbines VAWTs, with particular attention to floating installations (see Akimoto et al

  16. Method of fabricating bifacial tandem solar cells

    DOE Patents [OSTI]

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  17. Microelectromechanical resonator and method for fabrication

    SciTech Connect (OSTI)

    Wittwer, Jonathan W. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  18. Microelectromechanical resonator and method for fabrication

    SciTech Connect (OSTI)

    Wittwer, Jonathan W. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2010-01-26

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  19. Batch fabrication of precision miniature permanent magnets

    DOE Patents [OSTI]

    Christenson, Todd R. (Albuquerque, NM); Garino, Terry J. (Albuquerque, NM); Venturini, Eugene L. (Albuquerque, NM)

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  20. Solid freeform fabrication using chemically reactive suspensions

    DOE Patents [OSTI]

    Morisette, Sherry L. (Belmont, MA); Cesarano, III, Joseph (Albuquerque, NM); Lewis, Jennifer A. (Urbana, IL); Dimos, Duane B. (Albuquerque, NM)

    2002-01-01

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  1. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  2. Ceramic nanostructures and methods of fabrication

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  3. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  4. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  5. Fabricated Metals (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans -ORGANIZATION FY 2013MayUncosted3Fabricated Metals

  6. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  7. Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,MICHAEL J.; KRISHNAN,A.S.M.

    2000-07-24

    This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close match between tool width and feature size. Microtools are used to machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workplaces. Micro-grooving tools are also used to fabricate sinusoidal cross-section features in planar metal samples.

  8. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites

  9. EXPERIMENTAL & NUMERICAL STUDY OF CERAMIC BREEDER PEBBLE BED THERMAL DEFORMATION BEHAVIOR

    E-Print Network [OSTI]

    Abdou, Mohamed

    EXPERIMENTAL & NUMERICAL STUDY OF CERAMIC BREEDER PEBBLE BED THERMAL DEFORMATION BEHAVIOR Zhiyong breeder blanket design, the ceramic breeder pebble bed system, which is typically operated's blanket. Ceramic pebbles are promising candidates because it can overcome the inherent brittleness

  10. Midwest Numerical Analysis Day 2011

    E-Print Network [OSTI]

    Such methods excel in controlling “structural” information losses responsible for ... The second example demonstrates how optimization ideas enable design of .... Calculating mixed cells which produces mixed volume as a by-product is the ...

  11. Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Self--Aligned Processing,Aligned Processing, and Atomic Layerand Atomic Layerand Atomic Layerand Atomic Layer Deposition synthesis by atomic layer deposition (ALD) Significance Realizing nanotechnology benefits requires new combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

  12. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  13. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  14. Method for fabricating a microelectromechanical resonator

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  15. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  16. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  17. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  18. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  19. Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade

    SciTech Connect (OSTI)

    HyeKyoung Park, S.U. De Silva, J.R. Delayen

    2012-07-01

    A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

  20. Numerical Simulations of Bouncing Jets

    E-Print Network [OSTI]

    Bonito, Andrea; Lee, Sanghyun

    2015-01-01

    Bouncing jets are fascinating phenomenons occurring under certain conditions when a jet impinges on a free surface. This effect is observed when the fluid is Newtonian and the jet falls in a bath undergoing a solid motion. It occurs also for non-Newtonian fluids when the jets falls in a vessel at rest containing the same fluid. We investigate numerically the impact of the experimental setting and the rheological properties of the fluid on the onset of the bouncing phenomenon. Our investigations show that the occurrence of a thin lubricating layer of air separating the jet and the rest of the liquid is a key factor for the bouncing of the jet to happen. The numerical technique that is used consists of a projection method for the Navier-Stokes system coupled with a level set formulation for the representation of the interface. The space approximation is done with adaptive finite elements. Adaptive refinement is shown to be very important to capture the thin layer of air that is responsible for the bouncing.

  1. EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM

    SciTech Connect (OSTI)

    Pickenheim, B.; Miller, D.; Burket, P.

    2012-03-08

    Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10, 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly improved over the current design. Test boxes were filled with grout to evaluate the performance of the sheet drain and fabrics in a simulated vault environment. All of the tests produced a similar amount of drain water, between 8-11% of the amount of water in the mix, which is expected with the targeted formulation. All of the collected drain waters contained some amount of solids, although the 10 micron filter did not appear to allow any premix materials to pass through. The solids collected from this box are believed to consist of calcium carbonate based on one ICP-AES measurement. Any of the four candidate fabrics would be an improvement over the sheet drain alone relative to solids removal. The 10 micron fabric is the only candidate that stopped all premix material from passing. The 10 micron fabric will also cause the largest decrease in flux. This decrease in flux was not enough to inhibit the total amount of drain water removed, but may lead to increased time to remove standing water prior to subsequent pours in the facility. The acceptability of reduced liquid flux through the 10 micron fabric will depend on the amount of excess water to be removed, the time available for water removal and the total area of fabric installed at the disposal cell.

  2. Vision Machine & Fabrication Corp. Named Top Small Business Subcontrac...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision Machine & Fabrication Corp. Named Top Small Business Subcontractor at Jefferson Lab for FY 2014 NEWPORT NEWS, VA, Sept. 10, 2015 - Jefferson Science Associates, the...

  3. Automated Process for the Fabrication of Highly Customized Thermally...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Worcester Polytechnic Institute More Documents & Publications Fabricate-on-Demand Vacuum Insulating Glazings Fenestration Software Tools Low Cost Nanostructured Smart Window...

  4. Scalable Model Checking Beyond Safety - A Communication Fabric Perspective

    E-Print Network [OSTI]

    Ray, Sayak

    2013-01-01

    like Petri nets [Murata, 1989] and data-flow networks [Petri nets CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS and data-flow networks.

  5. Computation and Nanotechnology: Toward the Fabrication of Complex Hierarchical Structures

    E-Print Network [OSTI]

    MacLennan, Bruce

    Computation and Nanotechnology: Toward the Fabrication of Complex Hierarchical Structures Technical and Nan- otechnology," for the International Journal of Nanotechnology and Molecular Computation 1, 1

  6. Fabrication of Small Diesel Fuel Injector Orifices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Diesel Fuel Injector Orifices Fabrication of Small Diesel Fuel Injector Orifices Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  7. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is an effective conductor of...

  8. Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates

    E-Print Network [OSTI]

    Lewis, Christina L.

    We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) ...

  9. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers

    E-Print Network [OSTI]

    Barrett, Christopher

    , are established biomaterials finding application as drug delivery systems, enteric coatings for drugs, dental and biomaterial applications. Introduction The fabrication of polyelectrolyte multilayer thin films has received

  10. Characterization and Comparison of Devices Fabricated From Epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Characterization and Comparison of Devices Fabricated From Epitaxial Graphene on SiC and Electrostatically Transferred Graphene. Citation Details In-Document Search Title:...

  11. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  12. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect (OSTI)

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  13. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect (OSTI)

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  14. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect (OSTI)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.

  15. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risø National Laboratory Wind Energy Department Constructing a Numerical Wind Atlas 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The existing procedure at Risø . . . . . . . . . . . . . . . . . . . 13 3 Representing a Wind

  16. An implicit numerical algorithm general relativistic hydrodynamics

    E-Print Network [OSTI]

    A. Hujeirat

    2008-01-09

    An implicit numerical algorithm general relativistic hydrodynamics This article has been replaced by arXiv:0801.1017

  17. Turbine airfoil fabricated from tapered extrusions

    DOE Patents [OSTI]

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  18. Method for fabricating boron carbide articles

    DOE Patents [OSTI]

    Ardary, Zane L. (Oak Ridge, TN); Reynolds, Carl D. (Clinton, TN)

    1980-01-01

    The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.

  19. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, Louis M. (Big Flats, NY); Lipp, G. Daniel (Fort Collins, CO)

    1999-01-01

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

  20. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, L.M.; Lipp, G.D.

    1999-08-03

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

  1. Target Fabrication: A View from the Users

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Barnes, Cris W.; Batha, Steven H.; Christensen, Cindy R.; Cobble, James A.; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael; Swift, Damian; Workman, Jonathan

    2004-03-15

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  2. TARGET FABRICATION: A VIEW FROM THE USERS.

    SciTech Connect (OSTI)

    Kyrala, George A.; Balkey, Matthew M.; Batha, Steven H.; Barnes, Cris W.; Christensen, Cindy; Cobble, James; Fincke, James; Keiter, Paul; Lanier, Nicholas; Paisley, Dennis; Sorem, Michael S.; Swift, Damian; Workman, Jonathan

    2003-07-18

    Targets are used for a variety of purposes, but ultimately we use them to validate codes that help us predict and understand new phenomena or effects. The sophistication and complexity of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) targets has increased in time to match the advances made in modeling complex phenomena. The targets have changed from simple hohlraums, spherical geometries, and planar foils, to 3-dimensional geometries that require precision in construction, alignment, and metrology. Furthermore, material properties, such as surface morphologies and volume texture, have significant impact on the behavior of the targets and must be measured and controlled. In the following we will discuss how experimental physicists view targets and the influence that target construction has on interpreting the experimental results. We review a representative sampling of targets fabricated at the Los Alamos National Laboratory that are used in different experiments in support of ICF and HEDP.

  3. Method of fabricating a catalytic structure

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. Tenth target fabrication specialists` meeting: Proceedings

    SciTech Connect (OSTI)

    Foreman, L.R.; Stark, J.C.

    1995-11-01

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

  5. Method of fabricating a cooled electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  6. Methods for freeform fabrication of structures

    DOE Patents [OSTI]

    Kaufman, Stephen G. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM)

    2000-01-01

    Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

  7. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  8. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  9. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    SciTech Connect (OSTI)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  10. Process for fabricating device structures for real-time process control of silicon doping

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  11. Petroleum Engineering 301 Petroleum Engineering Numerical Methods

    E-Print Network [OSTI]

    10 Petroleum Engineering 301 Petroleum Engineering Numerical Methods Credit 3: (2-3) Required for Juniors Catalog Description: Use of numerical methods in a variety of petroleum engineering problems methods. Prerequisites(s): MATH 308 Textbook Required: Numerical Methods for Engineers, 6th Edition

  12. From Numerical Analysis to Computational Science

    E-Print Network [OSTI]

    Li, Tiejun

    . Numerical computing has, of course, been part of mathematics for a very long time. Al- gorithms by the namesFrom Numerical Analysis to Computational Science Bj¨orn Engquist · Gene Golub 1. Introduction The modern development of numerical computing is driven by the rapid in- crease in computer performance

  13. Fabrication of low-cost Mod-0A wood-composite wind-turbine blades

    SciTech Connect (OSTI)

    Lark, R.F.; Gougeon, M.; Thomas, G.; Zuteck, M.

    1983-02-01

    A contract was awarded to Gougeon Brothers, Inc., by NASA Lewis Research Center, under Department of Energy sponsorship, for the development and fabrication of two 60-foot, low-cost wood composite blades for service on a 200-kW Mod-0A wind turbine machine. The contractural effort consisted of blade design and analysis and fabrication phases. This report provides a brief summary of the design and analysis phase, and an indepth review of the blade fabrication phase. The wood composite blades were fabricated by using epoxy resin-bonded laminates of Douglas fir veneers for the leading edge spar sections and honeycomb-cored birch plywood panels for the blade trailing edge or afterbody sections. The blade was joined to the wind turbine hub assembly by epoxy resin-bonded steel load takeoff studs. The wood composite blades were installed in the newest Mod-0A wind turbine test facility at Kukuku, Hawaii called Makini Huila (wind wheel) by the Hawaiians. The wood composite blades have successfully completed high power (average of 150 kW) operations for an 18-month period (nearly 8000 h) prior to replacement with another set of wood composite blades. The original set of blades were taken out of service because of the failure of the shank on one stud. An inspection of the blades at NASA Lewis showed that the shank failure was caused by a high stress concentration at a corrosion pit on the shank fillet radius which resulted in fatigue stresses in excess of the endurance limit. The remainder of the blade, including the embedded portion of the fractured stud, and the entire wood structure was found to be in excellent condition. All of the remaining studs, with the exception of four studs that showed an onset of corrosion, were also in excellent condition. The failed stud, as well as four of the corroded studs were successfully replaced with new studs. The blade is currently in a service-ready condition.

  14. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  15. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  16. Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics

    E-Print Network [OSTI]

    Meyer, Christian

    Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

  17. Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks

    E-Print Network [OSTI]

    Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks PNNL-16951 DRAFT Authors bottlenecks that may arise in the conversion and fuel fabrication steps when used in conjunction with the U.S.-sponsored Reliable Fuel Supply (RFS) reserve. Paper is also intended to identify pathways for assessing the magnitude

  18. Ultrasonic imaging system for in-process fabric defect detection

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  19. Area E Numerics and Scientific Computing Foundation in Numerical Mathematics F4E1

    E-Print Network [OSTI]

    Sturm, Karl-Theodor

    Area E ­ Numerics and Scientific Computing Foundation in Numerical Mathematics F4E1: · Scientific Selected Topics in Scientific Computing · V5E3 Advanced Topics in Numerical Methods in Science matrices) · Computational Finance (e.g. option pricing, fast numerical methods) · Visualization Methods (e

  20. NUMERICAL ANALYSIS: This refers to the analysis of mathematical problems by numerical means, es-

    E-Print Network [OSTI]

    Atkinson, Kendall

    NUMERICAL ANALYSIS: This refers to the analysis of mathematical problems by numerical means, es- pecially mathematical problems arising from models based on calculus. Effective numerical analysis requires such as rootfinding and numerical integration; but we will also look at the structure of computers and the impli

  1. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2005; 12:683

    E-Print Network [OSTI]

    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2005; 12:683 Published Numerical Linear Algebra and its Applications The fourth workshop of the ERCIM Working Group on `Matrix Computations and Statistics' and the First International workshop on `Numerical Linear Algebra and its

  2. Synergistic diffuser/heat-exchanger design

    E-Print Network [OSTI]

    Lazzara, David S. (David Sergio), 1980-

    2004-01-01

    The theoretical and numerical evaluation of synergistic diffusing heat-exchanger design is presented. Motivation for this development is based on current diffuser and heat-exchange technologies in cogeneration plants, which ...

  3. Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 1 #12;Metal CansMetal Cans ME 4210: Manufacturing and Engineering Prof. J.S. Colton © GIT 2009 3 #12;Metal Cans and BottlesMetal Cans and Bottles ME 4210

  4. Josh Inouye Shows a subset of mechanical design projects and experience.

    E-Print Network [OSTI]

    Valero-Cuevas, Francisco

    setup design and fabrication · 3-D printed part design 1 #12;3-D Model of Engine Transfer System and 3-D Printed Part Design I designed the above multi-fingered robotic hand in SolidWorks and also the 3-D printed piece which is yellow for finger placement. This was for robotic hand research. Skills

  5. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore »device applications.« less

  6. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect (OSTI)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  7. Design of high efficiency blowers for future aerosol applications 

    E-Print Network [OSTI]

    Chadha, Raman

    2007-04-25

    High efficiency air blowers to meet future portable aerosol sampling applications were designed, fabricated, and evaluated. A Centrifugal blower was designed to achieve a flow rate of 100 L/min (1.67 x 10^-3 m^3/s) and a pressure rise of WC " 4...

  8. Method and instrumentation for the measurement and characterization of MEMS fabricated electrical contacts

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2010-01-01

    MEMS fabricated electrical contacts consist of two MEMS fabricated surfaces which are physically separated and brought together for the purpose of carrying current. MEMS fabricated electrical contacts are used in a wide ...

  9. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

    SciTech Connect (OSTI)

    WENDT,JOEL R.; KRYGOWSKI,T.W.; VAWTER,GREGORY A.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; WARREN,MIAL E.; REYES,DAVID NMN

    2000-07-13

    The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

  10. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect (OSTI)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q?=?2.51?×?10{sup 6}) photonic crystal cavities with low mode volume (V{sub m}?=?1.062?×?(?/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05?dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q?=?3?×?10{sup 3}.

  11. Non-Gaussian numerical errors versus mass hierarchy

    E-Print Network [OSTI]

    Y. Meurice; M. B. Oktay

    2000-05-12

    We probe the numerical errors made in renormalization group calculations by varying slightly the rescaling factor of the fields and rescaling back in order to get the same (if there were no round-off errors) zero momentum 2-point function (magnetic susceptibility). The actual calculations were performed with Dyson's hierarchical model and a simplified version of it. We compare the distributions of numerical values obtained from a large sample of rescaling factors with the (Gaussian by design) distribution of a random number generator and find significant departures from the Gaussian behavior. In addition, the average value differ (robustly) from the exact answer by a quantity which is of the same order as the standard deviation. We provide a simple model in which the errors made at shorter distance have a larger weight than those made at larger distance. This model explains in part the non-Gaussian features and why the central-limit theorem does not apply.

  12. Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors...

    Office of Environmental Management (EM)

    injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) 2009 DOE Hydrogen Program and Vehicle...

  13. Fabrication of a Sludge-Conditioning System for Processing Legacy Wastes from the Gunite and Associated Tanks

    SciTech Connect (OSTI)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-08-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS.

  14. Fabrication of a simple apparatus for the Seebeck coefficient measurement in the temperature range of 300-620 K

    E-Print Network [OSTI]

    Singh, Saurabh

    2015-01-01

    A simple apparatus for the measurement of Seebeck coefficient ({\\alpha}) in the temperature range 300-620 K has been fabricated. Our design is appropriate for the characterization of samples with different geometries like disk and rod shaped. The sample holder assembly of the apparatus has been designed in such a way that, single heater used for sample heating purpose is enough to provide a self maintain temperature gradient (1-10 K) across the sample. The value of $\\alpha$ is obtained without explicit measurement of temperature gradient. The whole apparatus is fabricated from the materials, which are commonly available, so that any part can be replaced in case of any damage. Commercially available standard Nickel (Ni) metal sample has been used as a reference material for calibration of the instrument. The experimentally observed value of {\\alpha} by our apparatus gives the similar temperature dependent behavior as reported in the literature.

  15. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect (OSTI)

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel-base alloys, stainless steels and copper-nickel alloys and (2) the effects of heat treatment on localized corrosion. Excellent agreement with experimental data has been obtained for alloys in various environments, including acids, bases, oxidizing species, inorganic inhibitors, etc. Further, a probabilistic model has been established for predicting the long-term damage due to localized corrosion on the basis of short-term inspection results. This methodology is applicable to pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue. Finally, a comprehensive model has been developed for predicting sensitization of Fe-Ni-Cr-Mo-W-N alloys and its effect on localized corrosion. As a vehicle for the commercialization of this technology, OLI Systems has developed the Corrosion Analyzer, a software tool that is already used by many companies in the chemical process industry. In process design, the Corrosion Analyzer provides the industry with (1) reliable prediction of the tendency of base alloys for localized corrosion as a function of environmental conditions and (2) understanding of how to select alloys for corrosive environments. In process operations, the software will help to predict the remaining useful life of equipment based on limited input data. Thus, users will also be able to identify process changes, corrosion inhibition strategies, and other control options before costly shutdowns, energy waste, and environmental releases occur. With the Corrosion Analyzer, various corrosion mitigation measures can be realistically tested in a virtual laboratory.

  16. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support. Annual report, January 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester`s Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  17. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  18. Fabrication of metallic nano-slit waveguides with sharp bends.

    SciTech Connect (OSTI)

    Lu, M.; Ocola, L. E.; Gray, S. K.; Wiederrecht, G.; Center for Nanoscale Materials

    2008-01-01

    Metallic nanoslit waveguides are promising candidates for ultrahigh-density optical interconnections. A variety of devices based on metallic nanoslit waveguides have already been proposed that show a great superiority over conventional photonic devices for compactness. However very few two-dimensional devices have been experimentally demonstrated with in-plane geometries due to fabrication difficulties. In this article, a feasible process is presented using traditional semiconductor fabrication technologies such as mix-and-match lithography and electroplating, which is capable of fabricating complicated 100 nm wide, 800 nm deep gold slit waveguides with multiple sharp right-angle corners. The process can be extended to volume production manufacturing with minor modifications, thus enabling the fabrication of nanoslit photonic circuits and networks.

  19. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration 

    E-Print Network [OSTI]

    Webb, Jacob Douglas

    2011-08-08

    There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

  20. Methods and devices for fabricating three-dimensional nanoscale structures

    DOE Patents [OSTI]

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.