Sample records for numerical design fabrication

  1. Digital fabrication in the architectural design process

    E-Print Network [OSTI]

    Seely, Jennifer C. K., 1975-

    2004-01-01T23:59:59.000Z

    Digital fabrication is affecting the architectural design process due to the increasingly important role it has in the fabrication of architectural models. Many design professionals, professors, and students have experienced ...

  2. 4.212 Design Fabrication, Spring 2003

    E-Print Network [OSTI]

    Sass, Lawrence

    Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit ...

  3. Parametric constructs : computational designs for digital fabrication

    E-Print Network [OSTI]

    Araya Goldberg, Sergio

    2006-01-01T23:59:59.000Z

    This thesis explores strategies for building design toolchains in order to design, develop and fabricate architectural forms. The hipothesys of this research is that by embedding ruled based procedures addressing generative, ...

  4. MITG test assembly design and fabrication

    SciTech Connect (OSTI)

    Schock, A.

    1983-01-01T23:59:59.000Z

    The design, analysis, and evaluation of the Modular Isotopic Thermoelectric Generator (MITG), described in an earlier paper, led to a program to build and test prototypical, modules of that generator. Each test module duplicates the thermoelectric converters, thermal insulation, housing and radiator fins of a typical generator slice, and simulates its isotope heat source module by means of an electrical heater encased in a prototypical graphite box. Once the approx. 20-watt MITG module has been developed, it can be assembled in appropriate number to form a generator design yielding the desired power output. The present paper describes the design and fabrication of the MITG test assembly, which confirmed the fabricability of the multicouples and interleaved multifoil insulation called for by the design. Test plans, procedures, instrumentation, results, and post-test analyses, as well as revised designs, fabrication procedures, and performance estimates, are described in subsequent papers in these proceedings.

  5. Patterned Fabric Know - How (Plaids, Stripes, Checks, and Figured Designs).

    E-Print Network [OSTI]

    Anoymous,

    1984-01-01T23:59:59.000Z

    DC \\1\\245.7 '13 Fbiterned Fabric mow-Kbw Contents Design Principles and Patterned Fabrics Pattern Selection Fabric Construction Selecting and Preparing Fabric Kinds of Plaids and Stripes Pri nts Other Patterned Fabrics Combining..., Stripes, Checks and Figured Designs) Extension Clothing Specialists The Texas A&M University System Patterned fabrics provide an interesting di mension to anyone's wardrobe. In a garment or as an accent, patterned fabrics are colorful and ex citing...

  6. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect (OSTI)

    Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

    1993-05-01T23:59:59.000Z

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  7. Design and Fabrication of Nanochannel Devices

    E-Print Network [OSTI]

    Wang, Miao

    2010-10-12T23:59:59.000Z

    /oval cross section efficiently and cost-effectively. 2.2 Background of Fabrication Technique: Basics of Electrospinning In 1934, Anton Formhals invented a spinning technology that produced synthetic fibers with the aid of an electric field.61...

  8. The design and construction of fabric structures

    E-Print Network [OSTI]

    Fang, Rosemarie

    2009-01-01T23:59:59.000Z

    In its short history, fabric structures have fascinated architects and engineers alike. Architects appreciate their unusual shapes and forms while engineers delight in their "pure" structural expression. Capable of spanning ...

  9. Integrating digital design and fabrication and craft production

    E-Print Network [OSTI]

    Kamath, Ayodh Vasant

    2009-01-01T23:59:59.000Z

    This thesis examines if methods of manual craft production can be utilised to overcome the indeterminacies of physical materials and processes that hinder Digital Design and Fabrication (DDF). Indeterminacies in physical ...

  10. Design and fabrication of a multipurpose compliant nanopositioning architecture

    E-Print Network [OSTI]

    Panas, Robert M. (Robert Matthew)

    2013-01-01T23:59:59.000Z

    This research focused on generating the knowledge required to design and fabricate a high-speed application flexible, low average cost multipurpose compliant nanopositioner architecture with high performance integrated ...

  11. 4.510 Digital Design Fabrication, Fall 2005

    E-Print Network [OSTI]

    Sass, Lawrence

    This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, ...

  12. Design and Fabrication of an FEL Injector Cryomodule

    SciTech Connect (OSTI)

    Rathke; A. Ambrosio; M. Cole; E. Peterson; T. Schultheiss; H. Bluem; A.M.M. Todd; I. Campisi; E. Daly; J. Hogan; J. Mammosser; G. Neil; J. Preble; R. Rimmer; C. Rode; J. Sekutowicz; T.Whitlatch; M. Wiseman

    2005-05-16T23:59:59.000Z

    Advanced Energy Systems has recently completed the design of a four cavity cryomodule for use as an FEL injector accelerator on the JLAB Injector Test Stand. Fabrication is nearing completion. Four 748.5 MHz single cell superconducting cavities have been completed and are currently at Jefferson Lab for final processing and test prior to integration in the module. This paper will review the design and fabrication of the cavities and cryomodule.

  13. Assessment of airplane design, fabrication, and repair

    E-Print Network [OSTI]

    Stolar, Lauren (Lauren Elise)

    2009-01-01T23:59:59.000Z

    Engineering programs are most often classes dedicated to how to design things, while the topic of reverse engineering or problem solving is rarely discussed. This unequal presentation of two sides of the same discipline ...

  14. Designing Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A

    2007-01-01T23:59:59.000Z

    repeating features (or tiles), and the rolls are designed bymodeling a small set of unique tiles and then combining themThe modular nature of the tiles also improves the efficiency

  15. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect (OSTI)

    Godfroy, Thomas; Garber, Anne; Martin, James [NASA Marshall Space Flight Center, Nuclear Systems Engineering Analysis, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  16. Co-Design: Fabrication of Unalloyed Plutonium

    SciTech Connect (OSTI)

    Korzekwa, Deniece R. [Los Alamos National Laboratory; Knapp, Cameron M. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Gibbs, John W [Northwestern University

    2012-07-25T23:59:59.000Z

    The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

  17. Knit architecture : low tech fabrication techniques in modern design : thesis

    E-Print Network [OSTI]

    Mennel, Kimberly I. (Kimberly Irene)

    2012-01-01T23:59:59.000Z

    This thesis aims to bring the handicraft of knitting into the realm of architecture as a low-tech means of fabrication in a world of high-tech design. This thesis attempts to break knitting down into its most essential ...

  18. Design - Make : the translation of design intention to fabrication

    E-Print Network [OSTI]

    McLain, James R

    2007-01-01T23:59:59.000Z

    The process of making innovative buildings is stifled by our current methodology of communicating design information. Advances in new techniques, technologies, methods, materials and knowledge for both designers and ...

  19. BioConstructs : methods for bio-inspired and bio-fabricated design

    E-Print Network [OSTI]

    Zolotovsky, Katia

    2012-01-01T23:59:59.000Z

    This work presents experimentation with design and fabrication methods, using biological systems either indirectly (as a source of inspiration and information for design) or directly (as a material production for fabrication). ...

  20. Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements

    SciTech Connect (OSTI)

    Tanabe, Jack; /SLAC, SSRL

    2005-09-19T23:59:59.000Z

    Medium energy electron synchrotrons used for the production of high energy photons from synchrotron radiation is an accelerator growth industry. Many of these accelerators have been built or are under construction to satisfy the needs of synchrotron light users throughout the world. Because of the long beam lifetimes required for these synchrotrons, these medium energy accelerators require the highest quality magnets of various types. Other accelerators, for instance low and medium energy boosters for high energy physics machines and electron/positron colliders, require the same types of magnets. Because of these needs, magnet design lectures, were organized and presented periodically at biennual classes organized under the auspices of the US Particle Accelerator School (USPAS). These classes were divided among areas of magnet design from fundamental theoretical considerations, the design approaches and algorithms for permanent magnet wigglers and undulators and the design and engineering of conventional accelerator magnets. The conventional magnet lectures were later expanded for the internal training of magnet designers at LLNL at the request of Lou Bertolini. Because of the broad nature of magnet design, Dr. S. Y. Lee, the former Director of the Particle Accelerator School, saw the need for a specialized course covering the various aspects of the design, engineering and fabrication of conventional magnets. This section of the class was isolated and augmented using the LLNL developed material resulting in the class on conventional magnet design. Conventional magnets are defined (for the purposes of this publication) as magnets whose field shape is dominated by the shape of the iron magnet yoke and are excited by coils, usually wound from solid or hollow water-cooled copper or aluminum conductors. This publication collects the lecture notes, written for the first course in the USPAS conventional magnet design course and evolved over subsequent presentations of this same course, and organizes the material roughly divided among two parts. One part is theoretical and computational and attempts to provide a foundation for later chapters which exploit the expressions and algorithms for the engineering and design calculations required to specify magnet conceptual designs. A chapter is devoted to the description and use of one of many magnet codes used to characterize the two dimensional field resulting from various magnet cross-sections. A chapter is included which exploits the two-dimensional theory and applies the mathematics to techniques and systems for magnet measurement. The second part of this publication ranges to practical issues associated with the fabrication of components, assembly, installation and alignment of magnets. This section also includes fabrication practices which respond to personnel and equipment protection needs. Required design calculations are supplemented by examples and problems. A CD is included with tools provided to simplify the computation of some of the more tedious relationships. This CD also includes useful photographs and pictures describing the high volume production of typical magnet types, which if included in the publication will add too many pages and increase the cost of publication. Styles among those facing similar problems will result in a wide variation of individual magnet designs. Designs and technologies will evolve and improve. This publication provides a snapshot of the present technology and presents as examples the magnet designs developed in response to the needs of several projects, the Advanced Light Source at LBNL, PEPII Low Energy Ring and SPEAR3 synchrotron light source at SLAC and the Australian Light Source, currently under construction in Melbourne. In each example, the reasons for fabrication design decisions are itemized and rationalized as much as is reasonable. The examples presented in this publication are provided as starting points which can be used as a design basis for magnets required for future projects. It is hoped that the listing of some design choi

  1. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect (OSTI)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05T23:59:59.000Z

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  2. Renaissance robotics : novel applications of multipurpose robotic arms spanning design fabrication, utility, and art

    E-Print Network [OSTI]

    Keating, Steven J. (Steven John)

    2012-01-01T23:59:59.000Z

    This work investigates, defines, and expands on the use of robotic arms in digital fabrication, design, and art through methods including 3D printing, milling, sculpting, functionally graded fabrication, construction-scale ...

  3. Design and Fabrication of a PDMS Microchip Based Immunoassay

    SciTech Connect (OSTI)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01T23:59:59.000Z

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  4. Design, modeling, fabrication and testing of a piezoelectric microvalve for high pressure, high frequency hydraulic applications

    E-Print Network [OSTI]

    Roberts, David C. (David Christopher)

    2002-01-01T23:59:59.000Z

    A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation ...

  5. Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials and systems at the atomic scale.

    E-Print Network [OSTI]

    Glowinski, Roland

    Nanotechnology Nanotechnology comprises measurement, design, modeling and fabrication of materials are able to customize their education by specializing in areas such as nanotechnology, computational

  6. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    SciTech Connect (OSTI)

    Burrill, Andrew [HZB; Anders, W [HZB; Frahm, A. [HZB; Knobloch, Jens [HZB; Neumann, Axel [HZB; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Turlington, Larry D. [JLAB

    2014-12-01T23:59:59.000Z

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.

  7. Design and Fabrication of a Long-range Surface Plasmon Polariton

    E-Print Network [OSTI]

    Weinfurter, Harald

    Design and Fabrication of a Long-range Surface Plasmon Polariton Wave Guide for near-infrared light Diplomarbeit von Johannes Trapp #12;#12;Design and Fabrication of a Long-range Surface Plasmon Polariton Wave to work freely. Secondly, great thanks go to Dr. Markus Weber, who explored the world of surface plasmon

  8. Design and fabrication of microfluidic valves using poly(N-isopropylacrylamide)

    E-Print Network [OSTI]

    Reticker-Flynn, Nathan Edward

    2008-01-01T23:59:59.000Z

    A compact printable microfluidic valve composed of poly(N-isopropylacrylamide) has been designed, fabricated, and tested. The design of the valve consists of filling microwells with poly(NIPAAm) and bonding PDMS channels ...

  9. Public by design : auto-fabrication for a contemporary urban physiognomy

    E-Print Network [OSTI]

    Barone Lumaga, Michela

    2013-01-01T23:59:59.000Z

    The revolution in modes of design and production anticipate a liberalization of material/fabrication that can potentially allow the masses to take control of the design of the urban space. Historically with each technical ...

  10. Digital Design and Fabrication Techniques Using a 3-Axis CNC Mill

    E-Print Network [OSTI]

    Coffman, Ky

    2010-07-14T23:59:59.000Z

    The objective of my research involves an investigation of the relationship between design and production through a case study fabrication project which utilize digital design software and manufacturing technologies, to achieve a better understanding...

  11. Design and fabrication of pressure-compensating compliant tubes

    E-Print Network [OSTI]

    Martin, Ian (Ian P.)

    2014-01-01T23:59:59.000Z

    Different fabrication methods are evaluated for producing pressure-compensating tubes for use in low-pressure drip irrigation systems. Such devices would allow drip irrigation systems to operate at driving pressures much ...

  12. The design and analysis of tension fabric structures

    E-Print Network [OSTI]

    Son, Miriam Euni

    2007-01-01T23:59:59.000Z

    Although tensioned fabric structures are increasingly in demand, since they are comparatively new to the engineering world, there are relatively limited resources available about such structures. This report reviews the ...

  13. Designing liquid repellent surfaces for fabrics, feathers and fog

    E-Print Network [OSTI]

    Chhatre, Shreerang S. (Shreerang Sharad)

    2013-01-01T23:59:59.000Z

    Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

  14. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01T23:59:59.000Z

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  15. Southwest Research Institute (SwRI) designs, analyzes, and fabricates pressure vessels

    E-Print Network [OSTI]

    Chapman, Clark R.

    vessels using: n ASME B&PV Code, Section VIII, Division 1 n ASME B&PV Code, Section VIII, Division 2 n ASME B&PV Code, Section VIII, Division 3 n ASME Pressure Vessels for Human Occupancy n American Bureau for the Design, Fabrication, and Erection of Structural Steel for Buildings" n Fabrication n ASME B&PV Code

  16. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect (OSTI)

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30T23:59:59.000Z

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  17. Design computing of complex-curved geometry using digital fabrication methods

    E-Print Network [OSTI]

    Griffith, Kenfield A. (Kenfield Allistair)

    2006-01-01T23:59:59.000Z

    The production of design information for digital fabrication is presented in this thesis. This thesis outlines the research of generating information for physical construction as architectural models of complex curved walls ...

  18. Design of a desktop milling machine for fabrication in an introductory machine shop class

    E-Print Network [OSTI]

    Lorenc, Dan (Daniel P.)

    2010-01-01T23:59:59.000Z

    The purpose of this research is to design, fabricate and test the electromechanical subsystem of a CNC milling machine kit. Unlike all other CNC kits on the market, the purpose of this kit is to teach students the principles ...

  19. Design, Fabrication, and Reliability Assessment of Embedded Resistors and Capacitors on Multilayered

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    circuit, over 80 percent of the electronic components are passives such as resistors, inductors for discrete components and assembly of same, enhance electrical performance and reliability, and potentiallyDesign, Fabrication, and Reliability Assessment of Embedded Resistors and Capacitors

  20. Design, fabrication and mechanical optimization of a flexural high speed nanopositioning imaging stage

    E-Print Network [OSTI]

    Panas, Robert M. (Robert Matthew)

    2009-01-01T23:59:59.000Z

    The intent of this research is to generate the knowledge required to design, fabricate and operate a device capable of high speed nano-scale vertical positioning of microscopy samples. The high speed focusing device (HSFD) ...

  1. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    E-Print Network [OSTI]

    Canizares, Claude R.

    Details of the design, fabrication, and ground and flight calibration of the High Energy Transmission Grating (HETG) on the Chandra X?Ray Observatory are presented after 5 years of flight experience. Specifics include the ...

  2. Design and fabrication of a microfluidies gradient generator system for high-throughput molecular interaction studies

    E-Print Network [OSTI]

    Chen, Guan-Jong, 1981-

    2004-01-01T23:59:59.000Z

    Design and fabrication of a microfluidics system capable of generating reproducible and controlled micro-biochemical environments that can be used as a diagnostic assay and microreactor is important. Here, a simple technique ...

  3. Robotic design construction : digital fabrication strategies for freeform masonry casting and mobile assembly

    E-Print Network [OSTI]

    Liu, Yuchen, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The paradigm shift of digital fabrication encourages architects to incorporate the knowledge of using innovative materials and novel tools to solve problems in design and construction. However, the application of digital ...

  4. The design, fabrication, and implications of a solvothermal vapor annealing chamber

    E-Print Network [OSTI]

    Porter, Nathaniel R., Jr

    2013-01-01T23:59:59.000Z

    This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

  5. Design, fabrication, and testing of a variable focusing micromirror array lens 

    E-Print Network [OSTI]

    Cho, Gyoungil

    2005-08-29T23:59:59.000Z

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs?? surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation...

  6. Design, fabrication, and testing of a variable focusing micromirror array lens

    E-Print Network [OSTI]

    Cho, Gyoungil

    2005-08-29T23:59:59.000Z

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs?? surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation...

  7. Design, fabrication and testing of a bearing test rig and preliminary studies on oil mist lubrication

    E-Print Network [OSTI]

    Shamim, Abdus

    1990-01-01T23:59:59.000Z

    DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1990 Major Subject: Mechanical Engineering DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Approved as to style and content by: C...

  8. Design and fabrication of a digitally reconfigurable surface

    E-Print Network [OSTI]

    Peters, Benjamin J

    2011-01-01T23:59:59.000Z

    The digitally reconfigurable surface is a pin based mechanism for creating physical threedimensional contoured surfaces from a computer aided design (CAD) input. When the digital design is properly downloaded into the ...

  9. The design and fabrication of two portal vein flow phantoms by different methods

    SciTech Connect (OSTI)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States)] [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States)] [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)] [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15T23:59:59.000Z

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  10. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    SciTech Connect (OSTI)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01T23:59:59.000Z

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  11. DESIGN AND FABRICATION OF SCRF CAVITIES FOR THE APT CONTINUOUS-WAVE PROTON LINAC.

    SciTech Connect (OSTI)

    Gentzlinger, R.C. (Robert C.); Haynes, W. B. (William B.); Chan, K. D. (Kwok-Chi D.); Kelley, J. P. (John Patrick); Krawczyk, F. L. (Frank L.); Kuzminski, J. (Jozef); Mitchell R.; Montoya, D. I. (Debbie I.); Rusnak, B. (Brian); Safa, H. (Henri); Schrage, D. L. (Dale L.); Tajima, T. (Tsuyoshi)

    2001-01-01T23:59:59.000Z

    At Los Alamos National Laboratory, a prototype design of proton superconducting cavities has been developed for the Accelerator Production of Tritium (APT) project. These cavities are designed for b=0.64. They have five cells and operate at 700 MHz. They will operate at 2.15 K in a liquid-helium bath contained in an unalloyed, Grade 2 titanium vessel. Six cavities were manufactured with RRR-250 niobium, one by Los Alamos and five by industry. This paper discusses both the design and fabrication of the cavity and helium vessel, and the experience gained during the fabrication process.

  12. Liner/target/CMU cassette design and fabrication

    SciTech Connect (OSTI)

    Griego, Jeffrey Randall [Los Alamos National Laboratory

    2011-01-07T23:59:59.000Z

    As part of an ongoing collaboration in pulsed power technology and condensed matter shock physics with RFNCNNIIEF, the initial design for the target and central measuring unit (CMU) for a high-pressure, high-precision ({approx}1 %), Hugoniot, equation of state (EOS) experiment is shown. VNIIEF would design and construct the disk explosive magnetic generator (DEMG) with peak currents {approx}100 MA, and cylindrical liner system with peak velocity {approx}10-20 km/s. LANL would design and construct the target and velocimetry diagnostic system. The initial mechanical design features a 2 cm diameter target system and a 1 cm diameter CMU with 32 lines of sight for PDV.

  13. Breaking Down Brick Walls: Design, Construction, and Prototype Fabrication

    E-Print Network [OSTI]

    Lieberman, Henry

    design tools and methodology Figure 1. The IRB-140 robot arm stacking blocks. 1. INTRODUCING ADEON device: a "pick and place" articulating robot arm for constructing architectural models, the IRB-140, the robotic arm picks and stacks brick-sized blocks. Conventional software design tools do not exhibit

  14. Digital making : exploring design with computer controlled fabrication

    E-Print Network [OSTI]

    Kashyap, Sameer, 1978-

    2004-01-01T23:59:59.000Z

    This thesis examines the underlying issues innate to the design process of developing architectural solutions using the digital for "making" architecture, focusing on architectural production. It proposes an alternative ...

  15. Design and fabrication of an RF power LDMOSFET on SOI

    E-Print Network [OSTI]

    Fiorenza, James G. (James George), 1972-

    2002-01-01T23:59:59.000Z

    This thesis studied thin-film Silicon-on-Insulator (SOI) LDMOSFET technology for RF power amplifier applications. To conduct this study, two generations of SOI RF power devices for portable wireless systems were designed ...

  16. Procedural Design of Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David

    2007-01-01T23:59:59.000Z

    repeating features (or tiles), and the rolls are designed bymodeling a small set of unique tiles and then combining themThe modular nature of the tiles also improves the efficiency

  17. Design and fabrication of a tin-sulfide annealing furnace

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2011-01-01T23:59:59.000Z

    A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

  18. Design and fabrication of efficient fiber to chip couplers

    E-Print Network [OSTI]

    Araghchini, Mohammad

    2008-01-01T23:59:59.000Z

    Efficient fiber to chip couplers are essential for overall efficiency of integrated photonic devices. In this thesis new techniques are developed including using an optimization algorithm for designing adiabatic tapers and ...

  19. Accelerating Structure design and fabrication For KIPT and PAL XFEL

    E-Print Network [OSTI]

    Hou, Mi; Pei, Shilun

    2014-01-01T23:59:59.000Z

    ANL and the National Science Center "Kharkov Institute of Physics Technology" (NSC KIPT, Kharkov, Ukraine) jointly proposed to design and build a 100MeV/100KW linear accelerator which will be used to drive the neutron source subcritical assembly. Now the linac was almost assembled in KIPT by the team from Institute of High Energy Physics (IHEP, Beijing, China). The design and measurement result of the accelerating system of the linac will be described in this paper.

  20. LANSCE wire scanner AFE: analysis, design, and fabrication

    SciTech Connect (OSTI)

    Gruchalla, Mike [Los Alamos National Laboratory; Chacon, Phillip [Los Alamos National Laboratory; Gilpatrick, John D [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Smith, Brian [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The goal of the design LANSCE-R Wire-Scanner Analog Front-end Electronics is to develop a high-performance, dual-axis wire-scanner analog front-end system implemented in a single cRIO module. This new design accommodates macropulse widths as wide as 700 {mu}s at a maximum pulse rate of 120Hz. A lossey integrator is utilized as the integration element to eliminate the requirement for providing gating signals to each wire scanner. The long macropulse and the high repetition rate present conflicting requirements for the design of the integrator. The long macropulse requires a long integration time constant to assure minimum integrator droop for accurate charge integration, and the high repetition rate requires a short time constant to assure adequate integrator reset between macropulses. Also, grounding is a serious concern due to the small signal levels. This paper reviews the basic Wire Scanner AFE system design implemented in the cRIO-module form factor to capture the charge information from the wire sensors and the grounding topology to assure minimum noise contamination of the wire signals.

  1. Rsum -Les mthodologies de Design for Assembly et de Design for Manufacturing visent rendre les produits plus faciles fabriquer et assembler en se basant sur les caractristiques des procds actuels de fabrication, toutefois ces

    E-Print Network [OSTI]

    Boyer, Edmond

    the new capabilities of Additive Manufacturing. This article describes a design methodology for Additive - Fabrication additive, conception, fabrication rapide, prototypage rapide. Keywords ­ Additive manufacturing, design, rapid manufacturing, rapid prototyping. 1 INTRODUCTION La Fabrication Additive (FA) est définie

  2. Design, Fabrication, Assembly and Initial Testing of a SMART Rotor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalToDepth ProfileLaboratory Design andFuelsthe

  3. Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

  4. Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and fabrication of photonic crystals in epitaxial free silicon for ultrathin solar cells photovoltaic solar cell. Optical simulations performed on a complete solar cell revealed that patterning to obtain ultrathin patterned solar cells. Keywords: Photonic crystals; Epitaxial crystalline silicon; Thin

  5. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    SciTech Connect (OSTI)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01T23:59:59.000Z

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

  6. A New Book "NUMERICAL METHODS FOR LINEAR CONTROL SYSTEMS DESIGN AND ANALYSIS"

    E-Print Network [OSTI]

    Datta, Biswa

    A New Book "NUMERICAL METHODS FOR LINEAR CONTROL SYSTEMS DESIGN AND ANALYSIS" by Biswa Nath Datta I am pleased to announce publication of my book: "Numerical Methods for Linear Control Systems Design-of-the-art computationally viable algorithms for major tasks arising in linear control systems design and analysis

  7. 1810 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 10, OCTOBER 1997 Design, Fabrication, and Performance of Infrared

    E-Print Network [OSTI]

    1810 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 10, OCTOBER 1997 Design, Fabrication selective oxidation and visible wave- length operation. Index Terms-- Optoelectronic devices, semiconductor device fabrication, semiconductor lasers. I. INTRODUCTION IN THE 1970's, Iga et al. at the Tokyo

  8. Design, fabrication, and testing of a multichannel microfluidic device to dynamically control oxygen concentration conditions in-vitro

    E-Print Network [OSTI]

    Rodriguez, Rosa H

    2008-01-01T23:59:59.000Z

    Multilayer microfluidic devices were designed and fabricated such that an array of different oxygen concentrations could be applied to a testing area in any desired sequence and with unconstraint application times. The ...

  9. Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head

    E-Print Network [OSTI]

    Ramirez, Aaron Eduardo

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

  10. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D. (SuperPower, Inc.)

    2011-06-15T23:59:59.000Z

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). SuperPower's in-kind work for the SFCL will be provided in the following areas: (1) Work with ORNL to develop suitable test platforms for the evaluation of subsystems and components; (2) Provide cryogenic and high voltage subsystem designs for evaluation; (3) Lead the development of the test plans associated with the subsystem and components and participate in test programs at ORNL; and (4) Based on the test results, finalize the subsystem and component designs and incorporate into the respective SFCL prototypes.

  11. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix

    E-Print Network [OSTI]

    Numerical study on optimal Stirling engine regenerator matrix designs taking into account matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results

  12. HD1: Design and Fabrication of a 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect (OSTI)

    Hafalia, A.R.; Bartlett, S.E.; Capsi, S.; Chiesa, L.; Dietderich,D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Highley,H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman,M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-11-10T23:59:59.000Z

    The Lawrence Berkeley National Laboratory (LBNL) Superconducting Magnet Group has completed the design, fabrication and test of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil pre-stress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  13. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect (OSTI)

    Hafalia, A.R.; Barlett, S.E.; Caspi, S.; Chiesa, L.; Dietderich, D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Myman, M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-10-01T23:59:59.000Z

    The Lawrence Berkeley National Laboratory (LBNL) Supcrconducting Magnet Group has completed the design, fabrication and tcst of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil prestress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  14. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K. [Ohio State University; Sun, Xiaodong [Ohio State University; Christensen, Richard N. [Ohio State University; Glosup, Richard E. [Ohio State University; Unocic, Raymond R [ORNL

    2012-01-01T23:59:59.000Z

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  15. Design, Fabrication and Integration of a NaK-Cooled Circuit

    SciTech Connect (OSTI)

    Garber, Anne; Godfroy, Thomas [NASA Marshall Space Flight Center, MSFC, AL 35824 (United States)

    2006-07-01T23:59:59.000Z

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned for use with lithium. Due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped NaK circuit. (authors)

  16. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01T23:59:59.000Z

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  17. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750–800 degrees C is 3 on a 1–10 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors’ experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and mechanical property characterization studies of representative diffusion bonded Alloy 617 specimens are presented. The characterization studies are restricted and less severe from an NGNP perspective but provide sufficient confidence to ensure safe operation of the heat exchangers in the HTHF. The test results are used to determine the design operating conditions for the PCHEs fabricated.

  18. GUIDELINES FOR THE DESIGN, FABRICATION, TESTING, INSTALLATION AND OPERATION OF SRF CAVITIES

    SciTech Connect (OSTI)

    Theilacker, J.; Carter, H.; Foley, M.; Hurh, P.; Klebaner, A.; Krempetz, K.; Nicol, T.; Olis, D.; Page, T.; Peterson, T.; Pfund, P.; Pushka, D.; Schmitt, R.; Wands, R. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2010-04-09T23:59:59.000Z

    Superconducting Radio-Frequency (SRF) cavities containing cryogens under pressure pose a potential rupture hazard to equipment and personnel. Generally, pressure vessels fall within the scope of the ASME Boiler and Pressure Vessel Code however, the use of niobium as a material for the SRF cavities is beyond the applicability of the Code. Fermilab developed a guideline to ensure sound engineering practices governing the design, fabrication, testing, installation and operation of SRF cavities. The objective of the guideline is to reduce hazards and to achieve an equivalent level of safety afforded by the ASME Code. The guideline addresses concerns specific to SRF cavities in the areas of materials, design and analysis, welding and brazing, pressure relieving requirements, pressure testing and quality control.

  19. This paper presents design, fabrication, and experimental results of a wireless induction heating

    E-Print Network [OSTI]

    transdermal patches. The micro-heating element arrays have been fabricated using electrodeposition of nickel

  20. We develop a microprocessor design that tolerates hard faults, including fabrication defects and in-field faults,

    E-Print Network [OSTI]

    Sorin, Daniel J.

    1 Abstract We develop a microprocessor design that tolerates hard faults, including fabrication defects and in-field faults, by leveraging existing microprocessor redundancy. To do this, we must: detect FDUs with hard faults. In our reliable microprocessor design, we use DIVA dynamic verification

  1. Stresa, Italy, 26-28 April 2006 DESIGN AND FABRICATION OF A MICRO ELECTROSTATIC VIBRATION-TO-

    E-Print Network [OSTI]

    Boyer, Edmond

    constraints, optimal design parameters were found from theoretical calculation and Simulink simulation. In the current design, the output power is 200 µW/cm2 for the optimal load of 8 M. The device was fabricated], radioisotope [4] and ambient heat [5], is attracting many recent interests as the self-sustainable power source

  2. Sandia Energy - Numerical Manufacturing And Design Tool (NuMAD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimateNumerical Manufacturing And

  3. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect (OSTI)

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12T23:59:59.000Z

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  4. DESIGN, FABRICATION AND TEST OF THE REACT AND WIND, NB(3)SN, LDX FLOATING COIL CONDUCTOR.

    SciTech Connect (OSTI)

    SMITH,B.A.; MICHAEL,P.C.; MINERVINI,J.V.; TAKAYASU,M.; SCHULTZ,J.H.; GREGORY,E.; PYON,T.; SAMPSON,W.B.; GHOSH,A.; SCANLAN,R.

    2000-09-17T23:59:59.000Z

    The Levitated Dipole Experiment (LDX) is a novel approach for studying magnetic confinement of a fusion plasma. In this approach, a superconducting ring coil is magnetically levitated for up to 8 hours a day in the center of a 5 meter diameter vacuum vessel. The levitated coil, with on-board helium supply, is called the gloating Coil (F-Coil). Although the maximum field at the coil is only 5.3 tesla, a react-and-wind Nb{sub 3}Sn conductor was selected because the relatively high critical temperature will enable the coil to remain levitated while it warms from 5 K to 10 K. Since pre-reacted Nb{sub 3}Sn tape is no longer commercially available, a composite conductor was designed that contains an 18 strand Nb{sub 3}Sn Rutherford cable. The cable was reacted and then soldered into a structural copper channel that completes the conductor and also provides quench protection. The strain state of the cable was continuously controlled during fabrication steps such as: soldering into the copper channel, spooling, and coil winding, to prevent degradation of the critical current. Measurements of strand and cable critical currents are reported, as well as estimates of the effect of fabrication, winding and operating strains on critical current.

  5. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  6. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; /Fermilab; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01T23:59:59.000Z

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  7. Design and Evaluation of Scalable Switching Fabrics for High-Performance Routers

    E-Print Network [OSTI]

    Tzeng, Nian-Feng

    high scalability and low costs. The considered switching fabrics are based on a multistage structure. The buffered switching fabrics under our consideration are scalable and of low costs, ideally suitable's for packets to move from their arrival LC's toward their destined LC's. Switching fabrics naturally affect

  8. Numerical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal RegisterImplementation andNumerical simulations

  9. QA in the design and fabrication of the TMI-2 rail cask

    SciTech Connect (OSTI)

    Hayes, G.R.

    1988-01-01T23:59:59.000Z

    EGandG Idaho, Inc., acting on behalf of the US Department of Energy, is responsible for transporting core debris from Three Mile Island-Unit 2 to the Idaho National Engineering Laboratory. Transportation of the debris is being accomplished using an NRC licensed container, called the NuPac 125-B. This paper describes the NuPac 125-B Rail Cask and the quality assurance (QA) requirements for that system. Also discussed are the QA roles of the various organizations involved in designing, building, inspecting and testing the NuPac 125-B. The paper presents QA/QC systems implemented during the design, procurement, and fabrication of the cask to assure compliance with all applicable technical codes, standards and regulations. It also goes beyond the requirements aspect and describes unique QA/QC measures employed to assure that the cask was built with minimum QA problems. Finally, the lessons learned from the NuPac 125-B project is discussed. 4 refs., 4 figs.

  10. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect (OSTI)

    Li, Ying; Yu, Jun, E-mail: junyu@dlut.edu.cn; Wu, Hao; Tang, Zhenan [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-15T23:59:59.000Z

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ?19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  11. A Cost-Effective Design for ATM Switching Fabrics* Nian-Feng Tzeng, Kiran Ponnuru, and Kemathat Vibhatavanij

    E-Print Network [OSTI]

    Tzeng, Nian-Feng

    ). The design consists of repeated copies of multiple stages of SEs, that are interconnected according for constructing a larger switching fabric according to a certain interconnection style. A shared-memory ATM switch/Cooperative Agreement No. DAAG55-98-1-0240. standpoint, it is efficient to have buffer storage shared by all the output

  12. B.F.A. in Studio Art Graduation Certification Fabric Design Area of Emphasis Student Name _________________________ SS #______-_____-_______ rev. 04/12

    E-Print Network [OSTI]

    Arnold, Jonathan

    you can graduate. ARST 4710 BFA Project in Fabric Design __3__ _____ __________________ ExhibitionB.F.A. in Studio Art Graduation Certification Fabric Design Area of Emphasis Student Name (542-1522) for a graduation certification appointment at least 2 terms before graduation

  13. Design and Fabrication of a Supporting Structure for 3.6m Long Nb3Sn Racetrack Coils

    SciTech Connect (OSTI)

    Ambrosio, G.; Anerella, M.; Barzi, E.; Caspi, Shlomo; Cheng, Daniel; Dietderich, Daniel; Gourlay, Steve; Hafalia, A. Ray; Hannaford, Charles; Lietzke, Alan; Nobrega, A.R.; Sabbi, GianLuca; Schmalzle, J.; Wanderer, R. J; Zlobin, A.V.; Ferracin, P.

    2007-06-01T23:59:59.000Z

    As part of the LHC Accelerator Research Program (LARP), three US national laboratories (BNL, FNAL, and LBNL) are currently engaged in the development of superconducting magnets for the LHC Interaction Regions (IR) beyond the current design. As a first step towards the development of long Nb{sub 3}Sn quadrupole magnets, a 3.6 m long structure, based on the LBNL Subscale Common-Coil Magnet design, will be fabricated, assembled, and tested with aluminum-plate 'dummy coils'. The structure features an aluminum shell pre-tensioned over iron yokes using pressurized bladders and locking keys (bladder and key technology). Pre-load homogeneity and mechanical responses are monitored with pressure sensitive films and strain gauges mounted on the aluminum shell and the dummy coils. The details of the design and fabrication are presented and discussed, and the expected mechanical behavior is analyzed with finite element models.

  14. Design and fabrication of advanced materials from Illinois coal wastes. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first quarter of the project, the thrust of the work was directed towards setting up the experimental facilities and undertaking preliminary tests to gauge the ability of coal tar derived binder in fabricating the brake skeletons. In addition systematic scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) were conducted on PCC fly ash (Baldwin), fly ash (ADM), FBC fly ash, FBC spent bed bottom ash, bottom ash (ADM), and scrubber sludge residues to characterize their geometrical shape and thermal stability. The PCC fly ash particles being highly spherical in shape and thermally inert up to 1100{degrees}C will make an excellent raw material for our composites. This is born out by fabricating brake skeletons from PCC fly ash colloids. Unlike the PCC fly ash and FBC fly ash, the scrubber sludge particles are not suitable hosts for our brake lining materials because of a whisker-like particle structure. Six different compositions of various combustion residues were tested in the fabrication of brake skeletons, and our tar derived binder shows great promise in the fabrication of composite materials.

  15. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    E-Print Network [OSTI]

    Hafalia, A.R.

    2011-01-01T23:59:59.000Z

    and Fabrication of a 16 Tesla Nb 3 Sn Dipole Magnet A .R.ge nerating fields above 16 Tesla in practical acceleratordesign fields above 10 Tesla. In a series of magnet tests,

  16. Design, fabrication, and characterization of a compact deep reactive ion etching system for MEMS processing

    E-Print Network [OSTI]

    Gould, Parker Andrew

    2014-01-01T23:59:59.000Z

    A general rule of thumb for new semiconductor fabrication facilities (Fabs) is that revenues from the first year of production must match the capital cost of building the fab itself. With modem Fabs routinely exceeding $1 ...

  17. Design and fabrication of force sensing robotic foot utilizing the volumetric displacement of a hyperelastic polymer

    E-Print Network [OSTI]

    Estrada, Matthew A

    2012-01-01T23:59:59.000Z

    This thesis illustrates the fabrication and characterization of a footpad based on an original principle of volumetric displacement sensing. It is intended for use in detecting ground reaction forces in a running quadrupedal ...

  18. Design and fabrication of highly efficient electrooptic modulators using bragg grating reflectors

    E-Print Network [OSTI]

    Kim, Ryoung-Han

    2006-04-12T23:59:59.000Z

    -directional coupling that includes an attenuation coefficient. The Bragg grating spectral characteristics are exploited to fabricate distributed Bragg feedback modulators (DBFM) and Bragg reflector Fabry-Perot modulators (BFPM). The sharp cut-off in transmission...

  19. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS Omkar Jani1 with a band gap of 2.4 eV or greater. InxGa1-xN is one of a few alloys that can meet this key requirement. InGaN.4 eV. InGaN has the appropriate optical properties and has been well demonstrated for light

  20. Design modifications, fabrication and test of HFDB-03 racetrack magnet wound with pre-reacted Nb3Sn Rutherford cable

    SciTech Connect (OSTI)

    Giorgio Ambrosio et al.

    2003-10-07T23:59:59.000Z

    A 10 T racetrack magnet (HFDB-03) wound with pre-reacted Nb{sub 3}Sn Rutherford cable has been fabricated and tested at Fermilab. This magnet is the third one in a proof-of-principle series for the use of the React-and-Wind technology in common-coil dipole magnets for future accelerators. It consists of two flat racetrack coils (28 turns each) separated by 5 mm. The maximum field on the coil, at the short sample limit of 16530 A, is 10 tesla. The cable has 41 strands with 0.7 mm diameter and the minimum bend radius in the magnet ends is 90 mm. The predecessor of this magnet (HFDB-02) reached 78% of the short sample limit at 7.7 T. The mechanical design was improved and the fabrication procedure was slightly modified in order to address possible causes of limitation. In this paper we present the mechanical design and analysis of HFDB-03, the modifications to the fabrication procedure and the test results.

  1. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.

  2. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect (OSTI)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01T23:59:59.000Z

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  3. Development, Design, and Fabrication of Hybrid High-Temperature Superconducting Leads

    SciTech Connect (OSTI)

    Kroeger, D. M. [ORNL; Arakawa, P. E. [American Magnetics, Inc.; Efferson, K. R. [American Magnetics, Inc.; Lee, D. F. [ORNL

    1997-10-01T23:59:59.000Z

    Hybrid high-temperature superconducting (HTS) current leads employing a conventional vapor-cooled lead upper stage and a HTS lead lower stage made from YBCO compound were fabricated and then testing in magnetic fields as high as 9 T, with currents up to 750 A, at liquid helium temperature of 4.2 K. Various current lead performance parameters were measured, however the bulk of the work focused on the fabrication of melt-textured YBCO for use in practical current leads, and testing the HTS material in high background magnetic fields. This work was sponsored by the U.S. Department of Energy (DOE) under a Small Business Innovation Research (SBIR) Phase I grant.

  4. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick Hong (Livermore, CA); Wu, Kuang Jen J. (Cupertino, CA)

    2007-05-29T23:59:59.000Z

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  5. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.

  6. Design, fabrication, and characterization of a multi-condenser loop heat pipe

    E-Print Network [OSTI]

    Hanks, Daniel Frank

    2012-01-01T23:59:59.000Z

    A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

  7. Parametric tools and digital fabrication for the design of luminous ceilings

    E-Print Network [OSTI]

    Saad, Rita, 1980-

    2004-01-01T23:59:59.000Z

    The digital phenomena constitute a fundamental change in how designers accomplish a wide range of the complex processes of design. This thesis investigates the use of computation in the context of architectural lighting ...

  8. Breaking down brick walls: Design, construction, and prototype fabrication knowledge in architecture

    E-Print Network [OSTI]

    Villalon, Rachelle

    Architectural designs are not just collections of 3D objects. Architects have both high-level aesthetic design intent, and intent for the functionality of the building; these must eventually translate into real-world ...

  9. Monolithic Design and Fabrication of a 2-DOF Bio-Inspired Leg Transmission

    E-Print Network [OSTI]

    Wood, Robert

    and manufacturing rules; consequently the addition of assembly scaffolds adds too much complexity to the average manufacturing techniques and monolithic, "pop- up" assembly methods. This is enabled through a new design suite called "popupCAD", a computer-aided design tool which anticipates laminate manufacturing methods

  10. Trends in the design and analysis of components fabricated from CFCCs

    SciTech Connect (OSTI)

    Duffy, S.F.; Palko, J.L. [Cleveland State Univ., OH (United States). Civil Engineering Dept.; Sandifer, J.B.; DeBellis, C.L.; Edwards, M.J. [Babcock and Wilcox, Alliance, OH (United States). Research and Development Div.; Hindman, D.L. [Babcock and Wilcox, Lynchburg, VA (United States). Lynchburg Research Center

    1997-01-01T23:59:59.000Z

    Continuous fiber ceramic composite materials (CFCCs) are being considered for an increasing number of commercial applications. They provide the potential for lighter, stronger, more corrosion-resistant components that can perform at higher temperature for long periods of time. Global competitiveness demands a shortening of the time for CFCC commercialization. Thus, considerable effort has been expended to develop and improve the materials, and to a lesser extent, to develop component design methods and data bases of engineering properties. To shorten the time to commercialization project efforts must be integrated, while balancing project resources between material development and engineering design. Currently a good balance does not exist for most materials development projects. To rectify this imbalance, improvements in engineering design and development technologies must be supported and accelerated, with a focus on component issues. This will require project managers to give increasing emphasis to component design needs in addition to their current focus on material development.

  11. Design, fabrication and testing of low-cost vacuum insulated packaging

    E-Print Network [OSTI]

    Ruddy, Bryan P. (Bryan Paul), 1983-

    2004-01-01T23:59:59.000Z

    A design for the use of evacuated Perlite insulation in the shipment of perishable goods was analyzed, implemented, and evaluated, with the goal of replacing or reducing the amount of phase-change materials needed to ship ...

  12. FABRICATION OF 18 INTEGRATED OPTICAL POWER SPLITTER IN SOI SUBSTRATE WITH OPTIMIZED DESIGN PARAMETERS

    E-Print Network [OSTI]

    Das, Bijoy Krishna

    be realized with large cross-section single-mode rib waveguide (LCRW) structures using conventional], compact design directional coupler [11] and ITU channel interleaver [12] have been demonstrated in our

  13. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    SciTech Connect (OSTI)

    Klein, J.; Estochen, E.

    2014-03-06T23:59:59.000Z

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

  14. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect (OSTI)

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28T23:59:59.000Z

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  15. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    SciTech Connect (OSTI)

    Caspi, S.; Dietderich, D. R.; Ferracin, P.; Finney, N. R.; Fuery, M. J.; Gourlay, S. A.; Hafalia, A. R.

    2007-06-01T23:59:59.000Z

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especially suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.

  16. A microkernel design for component-based parallel numerical software systems.

    SciTech Connect (OSTI)

    Balay, S.

    1999-01-13T23:59:59.000Z

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objects share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.

  17. Design and Fabrication of Integrated Optical Waveguides and Sidewall Bragg Gratings 

    E-Print Network [OSTI]

    Wang, Xin

    2014-11-20T23:59:59.000Z

    In this dissertation, a novel design platform with arsenic tri-sulfide (As2S3) on titanium-diffused lithium niobate substrate (Ti:LiNbO3) is introduced to provide physical foundation for integrated optical device applications. LiNbO3 possesses...

  18. Design and fabrication of a stress-managed Nb3Sn wind and react dipole

    E-Print Network [OSTI]

    Noyes, Patrick Daniel

    2007-09-17T23:59:59.000Z

    A new approach to high-field dipole design is being developed at Texas A&M University. The goal of the development is to facilitate the use of high-field conductors (Nb3 and Bi-2212) and to manage Lorentz stress and magnetization so that field...

  19. Design, fabrication, and test of an SRF cryomodule prototype at Fermilab

    SciTech Connect (OSTI)

    Soyars, W.; Darve, C.; Nicol, T.; Rowe, A.; /Fermilab

    2006-01-01T23:59:59.000Z

    In support of the Charged Kaons at the Main Injector (CKM) experiment [1], an SRF cryomodule was designed, assembled, and tested at Fermilab. The cryomodule prototype consists of a single niobium 13-cell 3.9 GHz superconducting RF cavity installed in its horizontal cryostat. The prototype was simplified to hold an additional dummy cavity in place of a second 13-cell SRF cavity. Although this cryomodule was originally intended for beamline deflection in the CKM experiment, this first preliminary test aims to compliment existing vertical 3-cell 3.9 GHz SRF cavity testing and also to gain expertise in the field of SRF testing. The cryomodule's thermal and mechanical design is reported. The test process and instrumentation is described. The first operational cooldown with RF powering is discussed and some cryogenic results are given.

  20. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    SciTech Connect (OSTI)

    Erickson, Anna S.; Lanza, Richard [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Galaitsis, Anthony; Hynes, Michael; Blackburn, Brandon [Raytheon IDS, 50 Apple Hill Drive, Tewksbury, MA 01876 (United States); Bernstein, Adam [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-12-13T23:59:59.000Z

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  1. The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads

    SciTech Connect (OSTI)

    Huffman, D.S. [Allied-Signal Inc., Metropolis, IL (United States)

    1991-12-31T23:59:59.000Z

    Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

  2. Progress on the Design and Fabrication of the MICE Focusing Magnets

    SciTech Connect (OSTI)

    Green, Michael A; Baynham, D. Elwyn; Bradshaw, Thomas W.; Cobb, John H.; Lau, Wing W.; Yang, Stephanie Q.

    2009-10-19T23:59:59.000Z

    The Muon Ionization Cooling Experiment (MICE) focusing solenoid magnets focus the muon beam within the MICE cooling channel on a liquid or solid absorber that is within the warm bore of solenoid. The focusing magnet has a warm bore of 470 mm. his magnet consists of two coils 210-mm long that is separated by an aluminum mandrel that is 200 mm long. Each of the coils has its own leads. The coils may be operated in either the non-flip mode (solenoid mode with both coils at the same polarity) or the lip mode (quadrupole focusing mode where both coils are at opposite polarity). This report describes the focusing solenoid magnet design that will be built by the vendor. The progress on the construction of the first of the focusing magnets will also be discussed in this report. Ultimately three of these magnets will be built. These magnets will be cooled using a pair 1.5 W (at 4.2 K) pulse tube coolers.

  3. Design, fabrication, and analysis of crystalline Si-SiGe heterostructure thin-film solar cells

    SciTech Connect (OSTI)

    Said, K.; Poortmans, J.; Caymax, M.; Nijs, J.; Debarge, L.; Christoffel, E.; Slaoui, A.

    1999-10-01T23:59:59.000Z

    One possible method to improve the efficiency of crystalline silicon (Ci) solar cells is by alloying with germanium (Ge). Although the improved absorption of the alloy leads to a gain in the current, the reduction of the alloy bandgap causes a loss in voltage, which overrides the increased current of the SiGe alloy solar cell. There has been a number of theoretical studies to circumvent this behavior. However, to date there has been no detailed study, which discusses the technological implementation of these concepts in solar cells. In this paper, the design issues of crystalline Si-SiGe heterostructure will be dealt with in an attempt to reduce the effect of the increased dark current of the alloyed cells, while at the same time sustaining the enhancement in the current. The enhanced back surface field at the back p{sup +}-Si/p-SiGe interface reduces the base component of the recombination current of the heterostructure cell if recombination caused by dislocations is neglected. A higher infrared (IR) response which results in a higher short-circuit current (2 mA/cm{sup 2} higher than a reference Si cell) has been recorded for the Si-Si{sub .9}Ge{sub .1}-thin-film structure of 15 {micro}m thickness. The reduction in dark saturation current, which has been predicted based on the theoretical calculations could not be realized in the heterostructure SiGe/Si cell due to the degradation effect of the misfit dislocations that decreases the bulk lifetime, and increases the interface recombination velocity. In a structure which contains a p{sup +}-SiGe buffer layer, and efficiency of 12.5% is achieved for a SiGe cell with 15 {micro}m thickness without texturing or optical confinement, which is about the same as the Si reference cell with equal active thickness, but with a higher short-circuit current. These results, for the first time, experimentally prove that alloying with Ge offers a higher current and might have a room for improving the efficiency of the multijunction solar cells or dual bandgap cells when SiGe is used to convert the IR-part of the spectrum.

  4. Numerical Integration Numerical Summation

    E-Print Network [OSTI]

    Cohen, Henri

    Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete

  5. Design and fabrication of the MesoMill : a five-axis milling machine for meso-scaled parts

    E-Print Network [OSTI]

    Werkmeister, Jaime Brooke, 1977-

    2004-01-01T23:59:59.000Z

    With the increased prevalence of meso-scaled products, new tools are being developed to bridge the gap between fabrication processes tailored for micrometer and millimeter sized features. Compared to its traditional ...

  6. Biologically inspired digital fabrication

    E-Print Network [OSTI]

    Han, Sarah (Sarah J.)

    2013-01-01T23:59:59.000Z

    Objects and systems in nature are models for the practice of sustainable design and fabrication. From trees to bones, natural systems are characterized by the constant interplay of creation, environmental response, and ...

  7. SRC burn test in 700-hp oil-designed boiler. Annex Volume E. Evaluation of fabric filter for particulate emission control. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    Three types of Solvent Refined Coal Fuels namely, Pulverized SRC Fuel Solids, SRC Residual Fuel Oil and SRC Fuel Water Slurry were fired, one at a time, in a 700 HP boiler designed for oil firing. The purpose was to demonstrate the suitability of SRC Fuels in serving as an alternative to fuel oil and to evaluate the feasibility of fabric filters for control of emissions from SRC fuel fired boilers. Two types of fabric filters, namely a Pulse Jet, full scale Baghouse and a Reverse Air, pilot scale filter were tested. The Pulse Jet Baghouse was an existing full scale unit with a cloth area of 1924 square feet and a gas flow capacity of approximately 10,000 ACFM at 400/sup 0/F. The Reverse Air Pilot Filter was a bench scale, portable unit with a cloth area of 1 square foot and a gas flow capacity of up to 6 ACFM at 400/sup 0/F. This report presents the results of particulate mass emission rates, operating conditions and performance of the two fabric filters. The particulate emissions from all fuel types were easily controlled to less than 0.01 lb/million Btu within normal and conventional working range of the fabric filters and with no special or restrictive operating conditions.

  8. ANALYSIS AND OPTIMIZATION USING NUMERICAL AND EXPERIMENTAL EVALUATION METHODS FOR MULTIDISCIPLINARY DESIGN PROBLEMS

    E-Print Network [OSTI]

    Oh, Bong T.

    2010-01-16T23:59:59.000Z

    The Multidisciplinary Design Optimization (MDO) system is needed to reduce the developing time and production cost in most industries. The MDO is the new technology for optimization design, and considers solid mechanics, dynamics, kinematics...

  9. A numerical method for the design and analysis of counter-rotating propellers

    E-Print Network [OSTI]

    Playle, Scott Charles

    1984-01-01T23:59:59.000Z

    -Rotating Propellers from Airfoil Characteristics", NACA ARR 3EZ4 (WR L-330), May 1943. 13. Davidson, R. E. , "Optimization and Performance Calculation of Dual-Rotation Propellers", NASA TP 1948, December 1981. 14. Theodorsen, T. , "The Theory of Propellers... 1. Design Flight Conditions 2. Propeller Performance from Naiman and Davidson Design Methods 3. Efficiency Characteristics of the Three Propeller Designs 4. Thrust Coefficients of the Three Propeller Designs 5. Power Coefficients of the Three...

  10. Numerical design of SiC bulk crystal growth for electronic applications

    SciTech Connect (OSTI)

    Wejrzanowski, T.; Grybczuk, M.; Kurzydlowski, K. J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02507 Warsaw (Poland); Tymicki, E. [Institute of Electronic Materials Technology, Wolczynska 133, 01919 Warsaw (Poland)

    2014-10-06T23:59:59.000Z

    Presented study concerns numerical simulation of Physical Vapor Transport (PVT) growth of bulk Silicon Carbide (SiC) crystals. Silicon Carbide is a wide band gap semiconductor, with numerous applications due to its unique properties. Wider application of SiC is limited by high price and insufficient quality of the product. Those problems can be overcame by optimizing SiC production methods. Experimental optimization of SiC production is expensive because it is time consuming and requires large amounts of energy. Numerical modeling allows to learn more about conditions inside the reactor and helps to optimize the process at much lower cost. In this study several simulations of processes with different reactor geometries were presented along with discussion of reactor geometry influence on obtained monocrystal shape and size.

  11. Numerical design of a transonic airfoil having a Stratford pressure recovery

    E-Print Network [OSTI]

    Rocholl, Bruce Martin

    1978-01-01T23:59:59.000Z

    , TRANDES, for engineering applications. By ut1lizing TRANDES for both the design phase and the following extensive analysis, the features of the inverse approach to the a 1rfoil design problem were investigated. Finally, a second airfoil was designed... surface lift region contributes significantly to the total section lift, and these ai rfoils show a delay in drag rise Mach number of approximately 0. 1 over the NACA 6-series airfoils. Recently, a family of high lift, low drag airfoils employing...

  12. Design And Verification of Controllers for Coupled Bunch Instabilities Using Optimal Control Theory And Numerical Simulation: Predictions for PEP II

    SciTech Connect (OSTI)

    Hindi, Haitham; Prabhakar, Shyam; Fox, John D.; Linscott, Ivan; Teytelman, Dmitri; /SLAC

    2011-08-31T23:59:59.000Z

    We present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power - one of the most expensive components of a feedback system - and define the limits of the closed loop system performance. Our design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator uses PEP-II parameters and identifies unstable coupled bunch modes, their growth rates and their damping rates with feedback. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II.

  13. Numerical Verification and Experimental Validation of Sliding Mode Control Design for

    E-Print Network [OSTI]

    Kearfott, R. Baker

    -temperature solid oxide fuel cell systems (SOFC sys- tems) can be described mainly by their thermal, fluidic Thermal SOFC Models Andreas Rauh, Luise Senkel, Thomas D¨otschel , Harald Aschemann Chair of Mechatronics@inf.uni-due.de Abstract The design of reliable and robust control strategies for the automatized operation of SOFC systems

  14. A numerical simulation procedure for design and analysis of control systems

    E-Print Network [OSTI]

    Pridmore, James Arthur

    1967-01-01T23:59:59.000Z

    to his wife, Bobbie, for the helpfulness, encouragement, understanding, and patience she has maintained during the period of this research. iv TABLE OF CONTENTS Chapter I. INTRODUCTION Page II. STATE-VARIABLE THEORY III. DEVELOPMENT OF DESIGN...-Transforms of Time Functions Page 15 CHAPTER I INTRODUCTION There are many methods of analysis of control systems in the literature today, of a wide spectra of accuracy, complexity, generality, sophistication, and usefulness. It can be determined also...

  15. ANALYSIS AND OPTIMIZATION USING NUMERICAL AND EXPERIMENTAL EVALUATION METHODS FOR MULTIDISCIPLINARY DESIGN PROBLEMS 

    E-Print Network [OSTI]

    Oh, Bong T.

    2010-01-16T23:59:59.000Z

    for aluminum insert ??????????.??. 20 13 Typical injection molding machine?????????????????. 23 14 Water purifier (cool and hot water).?????????????????. 25 15 Typical tray grill ????...???????????????????.. 26 16 Flow chart... #1;#2;#3;#4;#5;#6; #7;#4;#8; #11;#6; Day+41 Design Review (DR1) Working Mock-up Review Day+65 Day+87 DR1 Final Day+119 #1;#2;#5;#3;#6;#12; #3;#4; #6; Day+150 Product Test DPP Day+163 Day+203 DR2 Final Day+211 #14;#15;#15;#6; Day+241...

  16. Numerical design of a transonic airfoil having a Stratford pressure recovery 

    E-Print Network [OSTI]

    Rocholl, Bruce Martin

    1978-01-01T23:59:59.000Z

    -8 . . . . . . . . . . . . . . . . . . . 39 Fig. 15 Drag polar for CRAM-109-8 46 Fig. 16 Fig. 17 Variation of drag coefficient with Mach number for CRAM-109-8 at C = . 350. . . . . . . . . . . . ~ 1 Lift/drag ratio as a function of Mach number for CRAM-109-8 47 49 LIST OF FIGURES... Al Analysis O Oesi gn 0. 351 0. 359 0. 0072 -0. 096 -0. 097 CI D I CRAM-109-B = 0. 74 a= 0' Rh = 15. 8 x 10 6 CI D I D O D I CI D D D 0. 5 x/c Fig. 9 Profile shape and comparison of design and analysis pressure distributions...

  17. AFIP-6 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore; M. Craig Marshall

    2011-09-01T23:59:59.000Z

    The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  18. AFIP-2 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn Moore

    2010-02-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) Full-size Plate In Center Flux Trap Position (AFIP)-2 experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP 2 experiment to be irradiated in the Idaho National Laboratory ATR. This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

  19. AFIP-4 Fabrication Summary Report

    SciTech Connect (OSTI)

    Glenn A. Moore

    2010-02-01T23:59:59.000Z

    The AFIP-4 (ATR Full –size-plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Twelve qualified fueled plates were fabricated for the AFIP-4 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts; including material selection, fabrication processes, and fuel plate qualification.

  20. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect (OSTI)

    Haque, S.; Frost, F. Dion R.; Groulx, R.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Roe, N. A.; Wang, G.; Yu, Y.

    2011-12-22T23:59:59.000Z

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 ?m × 2 ?m are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup ?} rms at 70 kpixels/sec.

  1. Print preview for the fabrication of physical objects

    E-Print Network [OSTI]

    Carr, David (David Alexander)

    2011-01-01T23:59:59.000Z

    This work proposes a new class of design and fabrication interfaces for digitally created objects, which the author terms augmented fabrication machines. By enhancing traditional fabrication machines with rich new input ...

  2. Design, fabrication, and testing of a three-dimensional, plastically-deformed, monolithic compliant HexFlex Nanomanipulator

    E-Print Network [OSTI]

    Korb, Samuel N. (Samuel Noaa), 1984-

    2004-01-01T23:59:59.000Z

    An experimental study was performed to investigate the possibility of incorporating plastic deformation into a precision compliant mechanism design. The particular application of a compliant HexFlex Nanomanipulator was ...

  3. Lithographic fabrication of nanoapertures

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  4. Tool fabrication system for micro/nano milling—function analysis and design of a six-axis Wire EDM machine

    E-Print Network [OSTI]

    Cheng, X.; Wang, Z. G.; Kobayashi, S.; Nakamoto, K.; Yamazaki, K.

    2010-01-01T23:59:59.000Z

    axis Wire EDM machine X. Cheng & Z. G. Wang & S. Kobayashi &Tool fabrication X. Cheng (*) : Z. G. Wang : K. Yamazaki

  5. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-01-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  6. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-07-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  7. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01T23:59:59.000Z

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  8. Technical recommendations in the design and operation of a plutonium fuel fabrication facility to facilitate decontamination and decommissioning

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    Sequoyah Fuels Corporation (formerly Kerr-McGee Nuclear Corporation) is in the process of decontaminating and decommissioning the Cimarron Plutonium Facility. This facility was designed to produce mixed oxide (Pu-U)O{sub 2} fuel using the co-precipitation process. This report is intended to address three topics: (1) identify problem areas which were revealed during the first phase of the decontamination and decommissioning (D&D) effort which could have been minimized by use of different design criteria; (2) provide recommendations which would have minimized Pu hold-up or made non-destructive assay (NDA) for inventory more accurate and less difficult; and (3) identify the limitations of the current NDA equipment being used at the Cimarron Plutonium Facility. The major problem areas uncovered to date and possible resolutions are identified.

  9. Design and fabrication of a multi-purpose soft x-ray array diagnostic system for KSTAR

    SciTech Connect (OSTI)

    Lee, Seung Hun; Chai, Kil Byoung; Jang, Siwon; Choe, Wonho [Department of Physics, Korea Advanced Institute of Science and Technology 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ko, Won-Ha; Kim, Junghee; Seo, Dongcheol; Lee, Jongha [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Bogatu, I. N.; Kim, Jin-Soo [FAR-TECH, Inc., 10350 Science Center Drive, Building 14, Suite 150, San Diego, California 92121-1136 (United States)

    2012-10-15T23:59:59.000Z

    A multi-purpose soft x-ray array diagnostic system was developed for measuring two-dimensional x-ray emissivity profile, electron temperature, Ar impurity transport, and total radiation power. A remotely controlled filter wheel was designed with three different choices of filters. The electron temperature profile can be determined from the ratio of two channels having different thickness of Be layer, and the Ar impurity concentration transport can be determined from a pair of Ar Ross filters (CaF{sub 2} and NaCl thin films). Without any filters, this diagnostic system can also be used as a bolometer.

  10. Design, Fabrication and Testing of an Infrared Ratio Pyrometer System for the Measurement of Gasifier Reaction Chamber Temperature

    SciTech Connect (OSTI)

    Tom Leininger

    2005-03-31T23:59:59.000Z

    Texaco was awarded contract DE-FC26-99FT40684 from the U.S. DOE to design, build, bench test and field test an infrared ratio pyrometer system for measuring gasifier temperature. The award occurred in two phases. Phase 1, which involved designing, building and bench testing, was completed in September 2000, and the Phase 1 report was issued in March 2001. Phase 2 was completed in 2005, and the results of the field test are contained in this final report. Two test campaigns were made. In the first one, the pyrometer was sighted into the gasifier. It performed well for a brief period of time and then experienced difficulties in keeping the sight tube open due to a slag accumulation which developed around the opening of the sight tube in the gasifier wall. In the second test campaign, the pyrometer was sighted into the top of the radiant syngas cooler through an unused soot blower lance. The pyrometer experienced no more problems with slag occlusions, and the readings were continuous and consistent. However, the pyrometer readings were 800 to 900 F lower than the gasifier thermocouple readings, which is consistent with computer simulations of the temperature distribution inside the radiant syngas cooler. In addition, the pyrometer readings were too sluggish to use for control purposes. Additional funds beyond what were available in this contract would be required to develop a solution that would allow the pyrometer to be used to measure the temperature inside the gasifier.

  11. Mechanical design and fabrication of a prototype facility for processing NaK using a chlorine reaction method

    SciTech Connect (OSTI)

    Dafoe, R.; Keller, D.; Stoll, F.

    1990-01-01T23:59:59.000Z

    A prototype facility has been built at the Idaho National Engineering Laboratory (INEL) to dispose of 180 gal(0.68 m{sup 3}) of radioactively contaminated NaK (sodium-potassium) that have been stored on site for 35 years. The NaK was used as primary coolant for the Experimental Breeder Reactor I (EBR-I) at the INEL and was contaminated during a meltdown of the Mark II core in November 1955. The NaK then was transferred to four containers for temporary storage. The facility process will react the NaK with elemental chlorine using a batch process to produce chemically stable sodium chloride and potassium chloride salts. The first use of the facility will be on a prototype level to verify the method. If results are favorable, the facility will be modified to eventually dispose of the EBR-I NaK. The design and intended operation of the prototype facility are described. 2 figs.

  12. Raw fabric hardware implementation and characterization

    E-Print Network [OSTI]

    Sun, Albert (Albert G.)

    2006-01-01T23:59:59.000Z

    The Raw architecture is scalable, improving performance not by pushing the limits of clock frequency, but by spreading computation across numerous simple, replicated tiles. The first Raw processors fabricated have 16 RISC ...

  13. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01T23:59:59.000Z

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  14. Design and Execution of Model Experiments to Validate Numerical Modelling of 2D Ship Operations in Pack Ice

    E-Print Network [OSTI]

    Bruneau, Steve

    in Pack Ice Roelof C. Dragt Offshore Engineering Faculty of Mechanical, Maritime and Material Engineering of experiments to validate a Graphics Processing Unit based numerical modelling of ship operations in 2D pack ice interaction, 2D Model Experiments, Image Processing. I. INTRODUCTION A ship travelling through pack ice

  15. Covering Walls With Fabrics.

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01T23:59:59.000Z

    TDOC . Z TA24S.7 8873 NO.1227 WALLS with ;FABRICS Texas Agricultural Extension Service . The Texas A&M University System Daniel C. Pfannstiel, Director, College Station, Texas Covering Walls with Fabrics* When tastefully applied, fabrics... it is applied, fabric-covered walls improve the sound-absorbing acoustical properties of a room. Also, fabrics can be used for covering walls of either textured gypsum board or wood paneling. Home decorating magazines are good sources for ideas about fabric...

  16. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  17. 710 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 6, NO. 4, OCTOBER 2009 Design, Fabrication, and Visual Servo Control of an

    E-Print Network [OSTI]

    Li, Yangmin

    ) method. Moreover, a prototype of the micromanipulator is fabricated and calibrated using a microscope by the micromanipulator, both kinematic calibration and online servo control are carried out by processing images cap, Macao SAR, China (e-mail: qsxu@umac.mo; ymli@umac.mo). N. Xi is with the Department of Electrical

  18. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  19. Polymorphous computing fabric

    DOE Patents [OSTI]

    Wolinski, Christophe Czeslaw (Los Alamos, NM); Gokhale, Maya B. (Los Alamos, NM); McCabe, Kevin Peter (Los Alamos, NM)

    2011-01-18T23:59:59.000Z

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  20. Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics

    SciTech Connect (OSTI)

    Skibinski, Jakub; Wejrzanowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02507 Warsaw (Poland); Caban, Piotr [Institute of Electronic Materials Technology, Wolczynska 133, 01919 Warsaw (Poland); Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering Woloska, 141, 02507 Warsaw (Poland)

    2014-10-06T23:59:59.000Z

    In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.

  1. Fusion Engineering and Design 81 (2006) 549553 Numerical analysis of MHD flow and heat transfer in a

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    . Zinkle, M. Youssef, Assessment of liquid breeder first wall and blanket options for the DEMO design, in channels. tural material. Helium cools the fist wall and blanket structure, and the self-cooled breeder, Pb in a poloidal channel of the DCLL blanket with a SiCf/SiC flow channel insert S. Smolentseva,, M. Abdoua, N

  2. Contextualizing urban mobile fabrics

    E-Print Network [OSTI]

    Lin, Michael Chia-Liang

    2007-01-01T23:59:59.000Z

    This thesis is focus on the urban fabric issues. To be more specific, I will focus on the "Mobile Fabrics" within the larger Asian urban context. Instead of working with a specific geographical site; I will focus on the ...

  3. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01T23:59:59.000Z

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  4. Trust in reference to integrated circuits addresses the concern that the design and/or fabrication of the IC may be purposely

    E-Print Network [OSTI]

    Plusquellic, James

    it extremely difficult for chip validation processes, such as manufacturing test, to accidentally discover them-based test- ing techniques designed to uncover the presence of Trojans are not likely to be effective against even the simplest Trojan hid- ing techniques. Techniques that relay on physical inspection

  5. Fabrication options for depleted uranium components in shielded containers

    SciTech Connect (OSTI)

    Derrington, S.B.; Thompson, J.E.; Coates, C.W.

    1994-01-27T23:59:59.000Z

    Depleted uranium (DU) is an attractive material for the gamma-shielding components in containers designed for the storage, transport, and disposal of high-level radioactive wastes or spent nuclear fuel. The size and weight of these components present fabrication challenges. A broad range of technical expertise, capabilities, and facilities for uranium manufacturing and technology development exist at the Department of Energy laboratories and production facilities and within commercial industry. Several cast and wrought processes are available to fabricate the DU components. Integration of the DU fabrication capabilities and physical limitations for handling the DU components into the early design phase will ensure a fabricable product.

  6. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect (OSTI)

    Neelakantan, Lakshman [Ruhr-Universitaet Bochum, Institute for Materials, 44801 Bochum (Germany); Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, 600 036 Chennai (India); Zglinski, Jenni Kristin; Eggeler, Gunther [Ruhr-Universitaet Bochum, Institute for Materials, 44801 Bochum (Germany); Frotscher, Matthias [Ruhr-Universitaet Bochum, Institute for Materials, 44801 Bochum (Germany); CORTRONIK GmbH, 18119 Rostock-Warnemuende (Germany)

    2013-03-15T23:59:59.000Z

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  7. Computation & design for nanophotonics

    E-Print Network [OSTI]

    Oskooi, Ardavan F

    2010-01-01T23:59:59.000Z

    The versatility of computational design as an alternative to design by nanofabrication has made computers a reliable design tool in nanophotonics. Given that almost any 2d pattern can be fabricated at infrared length scales, ...

  8. New polymorphous computing fabric.

    SciTech Connect (OSTI)

    Wolinski, C. (Christophe); Gokhale, M. (Maya); McCabe, K. P. (Kevin P.)

    2002-01-01T23:59:59.000Z

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  9. Fabrication and Performance of Silicon-Embedded Permanent-Magnet Microgenerators

    E-Print Network [OSTI]

    Herrault, Florian

    This paper focuses on the design, fabrication, and characterization of silicon-packaged permanent-magnet (PM) microgenerators. The use of silicon packaging favors fine control on shape and dimensions in batch fabrication ...

  10. Process development for the fabrication of light emitting vacuum field emission triodes 

    E-Print Network [OSTI]

    Williams, Roger T.

    1994-01-01T23:59:59.000Z

    . Legg has extended the diode structure by designing a vacuum triode. This work deals with development of a process for fabricating the triode structure using current microelectronic processing techniques. Subsequently, triodes are fabricated for testing...

  11. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  12. Fabrication of Diamond Nanowires for Quantum Information Processing Applications

    E-Print Network [OSTI]

    Birgit Hausmann; Mughees Khan; Tom Babinec; Yinan Zhang; Katie Martinick; Murray McCutcheon; Phil Hemmer; Marko Loncar

    2010-02-23T23:59:59.000Z

    We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including $\\mathrm{Au}$, $\\mathrm{SiO_{2}}$ and $\\mathrm{Al_2O_3}$) as well as electron beam lithography defined spin-on glass and evaporated $\\mathrm{Au}$ have been used as an etch mask. We found $\\mathrm{Al_2O_3}$ nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are $\\unit[\\approx1]{\\mu m}$ and $\\unit[120-340]{nm}$, respectively, having a $\\unit[200]{nm/min}$ etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were $\\unit[1-2.4]{\\mu m}$ and $\\unit[120-490]{nm}$ with etch rates between $\\unit[190-240]{nm/min}$.

  13. Device Architecture Simplification of Laser Pattering in High-Volume Crystalline Silicon Solar Cell Fabrication using Intensive Computation for Design and Optimization

    SciTech Connect (OSTI)

    Grupp Mueller, Guenther [SolarWorld; Herfurth, Hans [Fraunhofer CLT; Dunham, Scott [University of Washington; Xu, Baomin [PARC

    2013-11-15T23:59:59.000Z

    Prices of Si based solar modules have been continuously declining in recent years. Goodrich is pointing out that a significant portion of these cost reductions have come about due to ?economies of scale? benefits, but there is a point of diminishing returns when trying to lower cost by simply expanding production capacity [1]. Developing innovative high volume production technologies resulting in an increase of conversion efficiency without adding significant production cost will be necessary to continue the projected cost reductions. The Foundational Program to Advance Cell Efficiency (F-PACE) is seeking to achieve this by closing the PV efficiency gap between theoretical achievable maximum conversion efficiency - 29% for c-Si - and the current typical production - 18.5% for a typical full area back contact c-Si Solar cell ? while targeting a module cost of $0.50/Watt . The research conducted by SolarWorldUSA and it?s partners within the FPACE framework focused on the development of a Hybrid metal-wrap-through (MWT) and laser-ablated PERC solar cell design employing a extrusion metallization scheme to achieve >20% efficient devices. The project team was able to simulate, develop and demonstrate the technologies necessary to build p-type MWT PERC cells with extruded front contacts. Conversion efficiencies approaching 20% were demonstrated and a path for further efficiency improvements identified. A detailed cost of ownership calculation for such a device was based on a NREL cost model and is predicting a $/Watt cost below 85 cents on a 180 micron substrate. Several completed or planned publications by SolarWorldUSA and our partners are based on the research conducted within this project and are adding to a better understanding of the involved technologies and materials. Several aspects and technologies of the proposed device have been assessed in regards to technical effectiveness and economic feasibility. It has been shown in a pilot demonstration with wafer thicknesses down to 120 micron that further wafer thickness reduction is only economically viable if handling and contact formation limitations are addressed simultaneously. Furthermore the project partners assessed and demonstrated the feasibility of processing wafers with vias connecting front and back sides through a PERC cell process and aligning and connecting those vias with a non-contact metallization. A close cooperation between industry and institutes of higher education in the Pacific Northwest as shown in this project is of direct benefit to the public and is contributing to the education of the next generation of PV engineers and scientist.

  14. Fabrication and Measurements of 500 MHz Double Spoke Cavity

    SciTech Connect (OSTI)

    Park, HyeKyoung [JLAB; Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University

    2014-12-01T23:59:59.000Z

    A 500 MHz ?0=1 double spoke cavity has been designed and optimized for a high velocity application such as a compact electron accelerator at the Center for Accelerator Science at Old Dominion University [1] and the fabrication was recently completed at Jefferson Lab. The geometry specific to the double spoke cavity required a variety of tooling and fixtures. Also a number of asymmetric weld joints were expected to make it difficult to maintain minimal geometric deviation from the design. This paper will report the fabrication procedure, resulting tolerance from the design, initial test results and the lessons learned from the first ?0=1 double spoke cavity fabrication.

  15. TECHNICAL PAPER Fabrication of microfluidic device channel using a photopolymer

    E-Print Network [OSTI]

    and industry areas (Manz et al. 1990). The technology allows designers to create small, portable, robust, low-costTECHNICAL PAPER Fabrication of microfluidic device channel using a photopolymer for colloidal of fabricating microfluidic device channels for bio-nanoelectronics sys- tem by using high performance epoxy

  16. Timber tower : a flexible fabrication method for reconfigurable housing

    E-Print Network [OSTI]

    Coleman, James (James Richard)

    2014-01-01T23:59:59.000Z

    "Prefabricating Housing...again", this time it's going to be different. Fabrication machine functionality is bracketed by the physical configuration and componentry of the system. Traditionally, a machine designer engineers ...

  17. ag fuel fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current design a plate ... Ie, Tze Yung Andrew, 1978- 2004-01-01 6 Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells MIT - DSpace Summary: An...

  18. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian...

  19. Design and Fabrication of Nanochannel Devices 

    E-Print Network [OSTI]

    Wang, Miao

    2010-10-12T23:59:59.000Z

    Nanochannel devices have been explored over the years with wide applications in bio/chemical analysis. With a dimension comparable to many bio-samples, such as proteins, viruses and DNA, nanochannels can be used as a platform to manipulate...

  20. Biomaterials 24 (2003) 25332540 Fabrication of PLGA scaffolds using soft lithography and

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    2003-01-01T23:59:59.000Z

    -aided design and solid free form fabrication, both 3D-printing and lost mold methods have been developed. 3D-Printing

  1. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    SciTech Connect (OSTI)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-07-11T23:59:59.000Z

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications. (DLC)

  2. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

  3. Design Space Exploration of Parameterized Systems using Design of Experiments

    E-Print Network [OSTI]

    Sheldon, David

    2011-01-01T23:59:59.000Z

    is known as a full factorial design: --- (A off, B off, Cknown as fractional factorial design involving experimentsetc. ) of the full factorial design. Numerous fractional

  4. Material-based design computation

    E-Print Network [OSTI]

    Oxman, Neri

    2010-01-01T23:59:59.000Z

    The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

  5. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in...

  6. An automated pipette puller for fabrication of glass micropipettes

    SciTech Connect (OSTI)

    Tamizhanban, R.; Sreejith, K. R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)] [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-05-15T23:59:59.000Z

    Glass micropipettes are versatile probing tools for performing micro- and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships.

  7. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  8. Intraocular lens fabrication

    DOE Patents [OSTI]

    Salazar, M.A.; Foreman, L.R.

    1997-07-08T23:59:59.000Z

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  9. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  10. Electrochemical fabrication of capacitors

    SciTech Connect (OSTI)

    Mansour, A.N.; Melendres, C.A.

    1999-12-14T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in position on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  11. Mask fabrication process

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2000-01-01T23:59:59.000Z

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  12. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01T23:59:59.000Z

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  13. A numerically based design procedure for buried high-density polyethylene profile-wall pipes buried in fine-grained in-situ soils

    E-Print Network [OSTI]

    Brown, Frederick Allen

    1984-01-01T23:59:59.000Z

    in this soil-structure interaction problem can be accurately modeled using the finite element method. The finite element program used in this analysis was CANDE ( 1, 2) developed by M. G. Katona and modified for the purposes of this investigation . CANDE... and Resoonse After Katona (1) COMPARISON OF AVAILABLE FINITE ELEMENT PROGRAMS Several different finite element programs have been developed to analyze soil-structure interaction problems. Two of these programs, Culvert ANalysis and DEsign (CANDE) and Soil-STructure...

  14. Hybrid Reassemblage: An Exploration of Craft, Digital Fabrication and Artifact Uniqueness

    E-Print Network [OSTI]

    Zoran, Amit Shlomo

    Digital fabrication, and especially 3D printing, is an emerging field that is opening up new possibilities for craft, art and design. The process, however, has important limitations; in particular, digitally designed ...

  15. Thermo-mechanical modeling of a micro-fabricated solid oxide fuel cell

    E-Print Network [OSTI]

    Ie, Tze Yung Andrew, 1978-

    2004-01-01T23:59:59.000Z

    A micro-fabricated solid oxide fuel cell is currently being designed by the Micro-chemical Power Team(funded under the Multidisciplinary University Research Initiative(MURI) Research Program). In the current design a plate ...

  16. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  17. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21T23:59:59.000Z

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  18. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  19. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  20. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Los Altos, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, Milton A. (Berkeley, CA); Folta, James A. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  1. Process for fabrication of cermets

    DOE Patents [OSTI]

    Landingham, Richard L. (Livermore, CA)

    2011-02-01T23:59:59.000Z

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  2. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-12T23:59:59.000Z

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  3. Enforcement Letter, Parsons Technology Development & Fabrication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Issued to...

  4. Fabrication of wedged multilayer Laue lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01T23:59:59.000Z

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more »This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  5. Microdisk fabrication by emulsion evaporation

    E-Print Network [OSTI]

    Wong, Susanna Wing Man

    2007-09-17T23:59:59.000Z

    , such as asphaltenes in heavy oil industry, clay particles in agriculture, and red blood cells in biology, are of great interest in a variety of industries and scientific areas. However, to fabricate monodisperse microdisks, uniform in structure or composition...

  6. Reasonable computing for architectural fabrication

    E-Print Network [OSTI]

    Villalon, Rachelle B. (Rachelle Bentajado)

    2008-01-01T23:59:59.000Z

    The use of digital fabrication tools in the architecture industry serve a particular group of individuals whose familiarity of the tools are by trade skill. Machines lack the understanding of people in its ability to ...

  7. Geometric Numerical Methods for Numerical Weather Prediction

    E-Print Network [OSTI]

    Langdon, Stephen

    -Mesh (HPM) Method · Label space is discretised into N particles with coordinates on the momentum phase space and Sij = (1 - ^2xx)-1. Geometric Numerical Methods for Numerical Weather Prediction ­ p. 8/28 #12;HPM Equations of shallow water motions · The canonical HPM equations of 1D shallow water motion on TS1 are P

  8. Controlling self-assembly within nanospace for peptide nanoparticle fabrication

    E-Print Network [OSTI]

    Chau, Ying

    ,5 Moreover, short peptide building blocks can be designed to enable a bottom-up construction of smart provide natural building blocks for the fabrication of well-ordered structures and advanced materials.4 simultaneously be obtained from the same building blocks.9 Different nanostructure morphologies are desired

  9. Design of a TRU Waste Repackaging System

    SciTech Connect (OSTI)

    Fogle, R.F.

    2000-07-27T23:59:59.000Z

    This paper addresses the work that SRTC is performing in the design, fabrication, assembly, and testing of the TRU-Waste Repackaging Module.

  10. AIAA 20033531 Numerical Analysis and Design of

    E-Print Network [OSTI]

    Jameson, Antony

    for compressible flow are modified using the idea of artificial compress- ibility and discretized on unstructured tetrahedral grids to provide estimates of lift and drag for upwind sail configurations. Convergence

  11. LAMPF transition-region mechanical fabrication

    SciTech Connect (OSTI)

    Bush, E.D. Jr.; Gallegos, J.D.F.; Harrison, R.; Hart, V.E.; Hunter, W.T.; Rislove, S.E.; Sims, J.R.; Van Dyke, W.J.

    1984-07-01T23:59:59.000Z

    The primary purpose of the new Transition Region (TR-II) is to optimize the phase matching of the H/sup +/ and H/sup -/ beams during simultaneous transport. TR-II incorporates several design improvements that include larger aperture, a straight beam track, greater beam-path length adjustments, and utility lines integrated with the support system. The close pack density of magnets and beam-line hardware required innovative solutions to magnet design and mounting, vacuum manifolding, and utility routing. Critical magnet placement was accomplished using a new three-dimensional alignment system that does real-time vector calculations on a computer with input from two digital theodolites. All assembly and a large fraction of the mechanical fabrication were done by LAMPF personnel. The TR-II has been operational since September 1983 and routinely transports production beams up to 900-..mu..A current with no major problems.

  12. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Allgood, Glenn O. (Powell, TN); Mooney, Larry R. (Knoxville, TN); Duncan, Michael G. (Clinton, TN); Turner, John C. (Clinton, TN); Treece, Dale A. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  13. Modeling electrodeposition for LIGA microdevice fabrication

    SciTech Connect (OSTI)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W. [and others

    1998-02-01T23:59:59.000Z

    To better understand and to help optimize the electroforming portion of the LIGA process, we have developed one and two-dimensional numerical models describing electrode-position of metal into high aspect-ratio molds. The one-dimensional model addresses dissociation, diffusion, electromigration, and deposition of multiple ion species. The two-dimensional model is limited to a single species, but includes transport induced by forced flow of electrolyte outside the mold and by buoyancy associated with metal ion depletion within the mold. To guide model development and to validate these models, we have also conducted a series of laboratory experiments using a sulfamate bath to deposit nickel in cylindrical molds having aspect ratios up to twenty-five. The experimental results indicate that current densities well in excess of the diffusion-limited currents may still yield metal deposits of acceptable morphology. However, the numerical models demonstrate that such large ion fluxes cannot be sustained by convection within the mold resulting from flow across the mold top. Instead, calculations suggest that the observed enhancement of transport probably results from natural convection within the molds, and that buoyancy-driven flows may be critical to metal ion transport even in micron-scale features having very large aspect ratios. Taking advantage of this enhanced ion transport may allow order-of-magnitude reductions in electroforming times for LIGA microdevice fabrication. 42 refs., 14 figs., 1 tab.

  14. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    SciTech Connect (OSTI)

    Frank Marhauser

    2011-09-01T23:59:59.000Z

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  15. Sketch It, Make It: Freehand Drawing for Precise Rapid Fabrication Gabriel G. Johnson1

    E-Print Network [OSTI]

    domains, including 3D modeling or graphic design. #12; #12;1. INTRODUCTION traditional materials. These "new makers" use rapid fabrication machines like 3D printers, laser cutters, and other CNC machinery. Laser cutters are among the more

  16. Case studies in the digital fabrication of open-source consumer electronic products

    E-Print Network [OSTI]

    Mellis, David Adley

    2011-01-01T23:59:59.000Z

    This thesis explores the effects of digital fabrication on the design, production, and customization of consumer electronic devices. It does so through a series of three case studies - a radio, a pair of speakers, and a ...

  17. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect (OSTI)

    Ariman, T.

    1981-12-01T23:59:59.000Z

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  18. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01T23:59:59.000Z

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  19. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  20. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  1. Fabrication of specimens with controlled flaws

    SciTech Connect (OSTI)

    Edwards, R.L.; Gruber, G.J.; Watson, P.D. [Southwest Research Inst., San Antonio, TX (United States)

    1995-10-01T23:59:59.000Z

    Most nondestructive evaluation (NDE) codes and standards require that the NDE equipment be calibrated using a calibration block. Ultrasonic testing (UT) historically has required the use of side-drilled or flat-bottom holes or notches. Recent technology has recognized that the acoustic response of real flaws is not directly comparable to artificial reflectors. The need arose to manufacture UT test specimens that contained real flaws of known size, shape, position, and orientation. The 1989 Section XI ASME Code, Appendix VIII (ASME Code, 1989), requires NDE qualification of equipment, procedures, and personnel utilizing full-scale test specimens with actual (real) flaws. The same technology could prove of great benefit to industries other than nuclear, particularly for the fracture mechanics approach to fitness-for-purpose or lifetime-extension programs. This paper describes an approach to the design and fabrication of NDE test specimens with controlled flaws.

  2. Microoptical system and fabrication method therefor

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08T23:59:59.000Z

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  3. Microoptical System And Fabrication Method Therefor

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2005-03-15T23:59:59.000Z

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  4. Fabrication technology for ODS Alloy MA957

    SciTech Connect (OSTI)

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-03-16T23:59:59.000Z

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

  5. Fabrication of boron sputter targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); McKernan, Mark A. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  6. DDE Design Status Report Nov 2011

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson

    2011-11-01T23:59:59.000Z

    The National Nuclear Security Agency Global Threat Reduction Initiative employs the Reduced Enrichment for Research and Test Reactors (RERTR) Fuel Development program to facilitate maturation of Low Enriched Uranium (LEU) fuel technology in order to enable conversion of High Power Research Reactors (HPRR) to LEU fuels. The RERTR Fuel Development program has overseen design, fabrication, irradiation, and examination of numerous tests on small to medium sized specimens containing LEU fuels. To enable the three nearest term HPRR conversions, including the Massachusetts Institutes of Technology Reactor (MITR), University of Missouri Research Reactor (MURR), and National Bureau of Standard Reactor (NBSR), the FD pillar is currently focused on qualification of the 'Base Monolithic Design'. The Base Monolithic Design consists of uranium-10 wt% molybdenum alloy (U-10Mo) in the form of a monolithic foil, with thin zirconium interlayers, clad in aluminum by hot isostatic press. The licensing basis of the aforementioned HPRR's restricts them from testing lead test elements of their respective LEU fuel element designs. In order to provide the equivalent of a lead test assembly, one Design Demonstration Experiment (DDE) is planned for each of the three NRC licensed reactors.

  7. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    SciTech Connect (OSTI)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28T23:59:59.000Z

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  8. LAB #8 Numerical Methods

    E-Print Network [OSTI]

    2005-10-20T23:59:59.000Z

    Page 1. LAB #8. Numerical Methods. Goal: The purpose of this lab is to explain how computers numerically ... Also you will examine what .... (7) Now consider the differential equation ... 3-exp(2*y)+sqrt(t)/y; (Don't forget the “;” at the end.).

  9. Fabrication of a gated gallium arsenide heterostructure resonant tunneling diode 

    E-Print Network [OSTI]

    Kinard, William Brian

    1989-01-01T23:59:59.000Z

    ) William Brian Kinard, B. S, Texas A&M University Chair of Advisory Committee: Mark H. Weichold The objective of this research was to design and fabricate a device capable of electrically contrulhng current through a vertical resonant tunneling diode.... Addi- tionally, this modulation of current must not aB'ect the normal cperation of the resonant tunneling diode such as shifting resonant bias. Device arrays of various sizes were successfully 1'abricated for the first time utilizing unique...

  10. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20T23:59:59.000Z

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  11. Solution-Verified Reliability Analysis and Design of Compliant Micro-Electro-Mechanical Systems

    E-Print Network [OSTI]

    - strated by application to design optimization of microelectromechanical systems (MEMS), devices for which Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an important emerging

  12. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    2000-06-13T23:59:59.000Z

    This design package documents design, fabrication, and testing of new stinger tool design. Future revisions will document further development of the stinger tool and incorporate various developmental stages, and final test results.

  13. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect (OSTI)

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25T23:59:59.000Z

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  14. Fabrication of optoelectronic microwave linear and ring resonators on a gallium arsenide substrate

    E-Print Network [OSTI]

    Yeh, Chun-Liang

    1993-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE August 1993 Major Subject: Electrical Engineering FABRICATION OF OPTOELECTRONIC MICROWAVE LINEAR AND RING RESONATORS ON A GALLIUM ARSENIDE SUBSTRATE A Thesis by CHUN-LIANG YEH Approved as to style and content by: Mark... and the first modes at 4. 87, 4. 89, 4. 91 GHz have been designed, simulated, and fabricated on a GaAs substrate. A microstrip ring resonator with 3/4 pm coupling gaps and the first mode at 3. 456 GHz also has been fabricated on GaAs. A reliable high yield...

  15. Toward standard testbeds for numerical relativity

    E-Print Network [OSTI]

    Miguel Alcubierre; Gabrielle Allen; Carles Bona; David Fiske; Tom Goodale; F. Siddharta Guzman; Ian Hawke; Scott H. Hawley; Sascha Husa; Michael Koppitz; Christiane Lechner; Denis Pollney; David Rideout; Marcelo Salgado; Erik Schnetter; Edward Seidel; Hisa-aki Shinkai; Bela Szilagyi; Deirdre Shoemaker; Ryoji Takahashi; Jeffrey Winicour

    2003-05-06T23:59:59.000Z

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods, and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step toward building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources, and can be used with many different approaches used in the relativity community.

  16. GLASS FABRICATION AND ANALYSIS LITERATURE REVIEW AND METHOD SELECTION FOR WTP WASTE FEED QUALIFICATION

    SciTech Connect (OSTI)

    Peeler, D.

    2013-06-27T23:59:59.000Z

    Scope of the Report The objective of this literature review is to identify and review documents to address scaling, design, operations, and experimental setup, including configuration, data collection, and remote handling that would be used during waste feed qualification in support of the glass fabrication unit operation. Items addressed include: ? LAW and HLW glass formulation algorithms; ? Mixing and sampling; ? Rheological measurements; ? Heat of hydration; ? Glass fabrication techniques; ? Glass inspection; ? Composition analysis; ? Use of cooling curves; ? Hydrogen generation rate measurement.

  17. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19T23:59:59.000Z

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  18. Polymer micromold and fabrication process

    DOE Patents [OSTI]

    Lee, Abraham P. (1428 Whitecliff Way, Walnut Creek, CA 94596); Northrup, M. Allen (923 Creston Rd., Berkeley, CA 94708); Ahre, Paul E. (1299 Gonzaga Ct., Livermore, CA 94550); Dupuy, Peter C. (1736 Waldo Ct., Modesto, CA 95358)

    1997-01-01T23:59:59.000Z

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  19. The design, fabrication and testing of micro-fabricated linear and planar colloid thruster arrays

    E-Print Network [OSTI]

    Velásquez García, Luis Fernando, 1976-

    2004-01-01T23:59:59.000Z

    New space applications such as orbital control of micro-satellites and precise interferometry have created a demand for high precision, low thrust efficient space engines. Electrospray propulsion is a serious candidate for ...

  20. Numerical Analysis Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Analysis Gordon K. Smyth May 1997 Numerical analysis is concerned with the accurate discipline of numer­ ical analysis is almost entirely a product of the period since 1950 during which biostatisticians can benefit from familiarity with numerical analysis. An understanding of the numerical methods

  1. Update On Monolithic Fuel Fabrication Development

    SciTech Connect (OSTI)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01T23:59:59.000Z

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  2. Progress toward a MEMS fabricated 100 GHz oscillator.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Lemp, Thomas; Weyn, Mark L.; Coleman, Phillip Dale; Rowley, James E. (SAIC, Albuquerque, NM)

    2006-02-01T23:59:59.000Z

    This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.

  3. Sandia National Laboratories: improved fiberglass fabric positioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabric positioning Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  4. Fabrication of Small Diesel Fuel Injector Orifices

    Broader source: Energy.gov (indexed) [DOE]

    Micro-Orifice Fabrication - Nickel Vapor Deposition - Laser Micro-Drilling NVD - Weber Laser - Sparkle Publications & PatentsInventions Publications - Fenske, G.,...

  5. Fabrication and characterization of conducting polymer microwires

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2009-01-01T23:59:59.000Z

    Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

  6. Attribute process methodology : feasibility assessment of Digital Fabrication Production Systems for planar part assemblies using network analysis and System Dynamics

    E-Print Network [OSTI]

    Papanikolaou, Dimitrios, M.S. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to custom produce an artifact according to a design, fast, cheap, and easy, independently ...

  7. Prefab the FabLab : rethinking the habitability of a fabrication lab by including fixture-based components

    E-Print Network [OSTI]

    Nunez, Joseph Gabriel

    2010-01-01T23:59:59.000Z

    This thesis is about defining a fixture-based system that can be adapted into a digital fabrication production system of friction fit assembly. It is inspired by the work and research conducted by the Digital Design ...

  8. Hyperbolic Metamaterial Feasible for Fabrication with Direct Laser Writing Processes

    E-Print Network [OSTI]

    Zhang, Xu; Güney, Durdu Ö

    2015-01-01T23:59:59.000Z

    Stimulated emission depletion microscopy inspired direct laser writing (STED-DLW) processes can offer diffraction-unlimited fabrication of 3D-structures, not possible with traditional electron-beam or optical lithography. We propose a hyperbolic metamaterial for fabrication with STED-DLW. First, we design meandering wire structures with three different magnetic dipoles which can be excited under different incidences of light. Then, based on effective parameters corresponding to normal incidence and lateral incidence, we find that the hyperbolic dispersion relation for five-layer structure appears between 15THz to 20THz. Finally, we investigate the influence of imaginary parts of the effective parameters on the metamaterial dispersion. The proposed metamaterial structure has also potential for three-dimensionally isotropic permeability despite geometric anisotropy.

  9. Modeling fabrication of nuclear components: An integrative approach

    SciTech Connect (OSTI)

    Hench, K.W.

    1996-08-01T23:59:59.000Z

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  10. CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS

    SciTech Connect (OSTI)

    Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

    2009-11-10T23:59:59.000Z

    The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

  11. Hydrogen Station Test Device Design and Fabrication | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from potential suppliers are due no later than October 8, 2014, at 8:00 p.m. Eastern Daylight Time. Device requirements and additional information can be found at the at the...

  12. Design and Fabrication of a Vertical Pump Multiphase Flow Loop

    E-Print Network [OSTI]

    Kirkland, Klayton 1965-

    2012-08-24T23:59:59.000Z

    is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them...

  13. Design, fabrication and characterization of terahertz quantum-well photodetectors

    E-Print Network [OSTI]

    Huang, Shengxi, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Terahertz (THz) photodetectors are important in the fully exploration and development of electromagnetic spectrum. However, a fast and sensitive THz photodetector ready for array integration is not available. A THz ...

  14. Design, fabrication and characterization of polypyrrole trilayer actuators

    E-Print Network [OSTI]

    Ho, Wei Hsuan (Wei Hsuan Jessie)

    2008-01-01T23:59:59.000Z

    Conducting polymers are currently studied as artificial muscle materials. They are used instead of traditional actuators because they mimic the movements of animal muscles. They can generate larger active stresses than ...

  15. Design, fabrication, and characterization of controllable conducting polymer actuation systems

    E-Print Network [OSTI]

    Paster, Eli (Eli Travis)

    2010-01-01T23:59:59.000Z

    The geometric, hierarchal, multifunctional composition of mammalian skeletal muscle and the neuromuscular system consists of actuation elements, length sensors, force sensors, localized energy storage, controlled energy ...

  16. Design for the fabrication of high efficiency solar cells

    DOE Patents [OSTI]

    Simmons, Joseph H. (Gainesville, FL)

    1998-01-01T23:59:59.000Z

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  17. Design, fabrication, and characterization of a micro fuel processor

    E-Print Network [OSTI]

    Blackwell, Brandon S. (Brandon Shaw)

    2008-01-01T23:59:59.000Z

    The development of portable-power systems employing hydrogen-driven solid oxide fuel cells continues to garner significant interest among applied science researchers. The technology can be applied in fields ranging from ...

  18. TECHNICAL PAPER Design and fabrication of microchannel test rig

    E-Print Network [OSTI]

    Müller, Norbert

    of the ultra-micro wave rotor (UlWR). 1 Introduction Ultra micro gas turbines (UlGT) is expected to be a next

  19. Theory, Design, and Fabrication of Nanoplasmonic Architectures for Molecular Diagnostics

    E-Print Network [OSTI]

    Ross, Benjamin Maxwell

    2011-01-01T23:59:59.000Z

    en- hancement through a single bowtie-shaped aperture. Appl.rectangular holes [98], bowtie holes [99], double holes [than rectangular holes, bowtie holes, and double holes that

  20. Procedural Design of Imprint Rolls for Fluid Pathway Fabrication

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David

    2007-01-01T23:59:59.000Z

    repeating features (or tiles), and the rolls are designedmodeling a small set of unique tiles and then combining themThe modular nature of the tiles also improves the ef?ciency

  1. Design and fabrication of quantum-dot lasers

    E-Print Network [OSTI]

    Nabanja, Sheila

    2008-01-01T23:59:59.000Z

    Semiconductor lasers using quantum-dots in their active regions have been reported to exhibit significant performance advantages over their bulk semiconductor and quantum-well counterparts namely: low threshold current, ...

  2. Design of heliostat system for demonstration of fabrication and functionality

    E-Print Network [OSTI]

    Dobson, Adrian A

    2011-01-01T23:59:59.000Z

    There has been considerable amount of interest in the use of solar thermal power as an alternative source of energy. A promising option is the use of arrays of heliostats combined with a central receiver. A heliostat is a ...

  3. LSST Camera Optics Design

    SciTech Connect (OSTI)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24T23:59:59.000Z

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  4. Fabricating the Solid Core Heatpipe Reactor

    SciTech Connect (OSTI)

    Ring, Peter J.; Sayre, Edwin D. [Advanced Methods and Materials, Inc., 1190 Mountain View-Alviso Road, Suite P, Sunnyvale, CA 94089 (United States); Houts, Mike [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The solid core heatpipe nuclear reactor has the potential to be the most dependable concept for the nuclear space power system. The design of the conversion system employed permits multiple failure modes instead of the single failure mode of other concepts. Regardless of the material used for the reactor, either stainless steel, high-temperature alloys, Nb1Zr, Tantalum Alloys or MoRe Alloys, making the solid core by machining holes in a large diameter billet is not satisfactory. This is because the large diameter billet will have large grains that are detrimental to the performance of the reactor due to grain boundary diffusion. The ideal fabrication method for the solid core is by hot isostatic pressure diffusion bonding (HIPing). By this technique, wrought fine-grained tubes of the alloy chosen are assembled into the final shape with solid cusps and seal welded so that there is a vacuum in between all surfaces to be diffusion bonded. This welded structure is then HIPed for diffusion bonding. A solid core made of Type 321 stainless steel has been satisfactorily produced by Advanced Methods and Materials and is undergoing evaluation by NASA Marshall Space Flight Center.

  5. Cogeneration System Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    The commercial or industrial firm contemplating cogeneration at its facilities faces numerous basic design choices. The possibilities exist for fueling the system with waste materials, gas, oil, coal, or other combustibles. The choice of boiler...

  6. Apparatus and method for fabricating a microbattery

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Kravitz, Stanley H. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); Ingersoll, David (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  7. Numerical simulation of three-dimensional electrical flow through geomaterials 

    E-Print Network [OSTI]

    Akhtar, Anwar Saeed

    1998-01-01T23:59:59.000Z

    95 99 V ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 104 5. 1 INTRODUCTION 5. 2 ANALYTICAL SOLUTION FOR ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 5. 3 NUMERICAL INVESTIGATION 5. 4 COMPARISON OF ANALYTICAL AND NUMERICAL... RESULTS 5. 5 CONCLUSION AND APPLICATION 5. 5. 1 Utilization of Numerical Results 104 106 110 113 115 116 VI EXPERIMENTAL EQUIPMENT DESIGN 121 6. 1 INTRODUCTION 6. 2 ELECTRICAL POWER SOURCE 6. 3 ELECTRICAL RESISTIVITY CONE PENETROMETER 6. 4...

  8. Simulating Reionization in Numerical Cosmology

    E-Print Network [OSTI]

    Aaron Sokasian; Tom Abel; Lars E. Hernquist

    2001-05-10T23:59:59.000Z

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. Here, we present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by a set of discrete point sources. A diffuse background radiation field is also computed self-consistently in our procedure. The method requires relatively few time steps and can be employed with simulations having high resolution. We describe the details of the algorithm and provide a description of how the method can be applied to the output from a pre-existing cosmological simulation to study the systematic reionization of a particular ionic species. As a first application, we compute the reionization of He II by quasars in the redshift range 3 to 6.

  9. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 #12;Numerical Integration Numerical integration is the study of how the numerical value of an integral can be found. Also called

  10. CSE/Math 555: Numerical Optimization Techniques Course Announcement

    E-Print Network [OSTI]

    Shontz, Suzanne M.

    towards graduate students, researchers and faculty in · computer science and engineering · mathematics portfolios Description: The course will emphasize the design and mathematical analysis of numerical op: unconstrained optimization methods, automatic differentiation, nonlinear equations, constrained optimization

  11. Fabrication of an optical component

    DOE Patents [OSTI]

    Nichols, Michael A. (Livermore, CA); Aikens, David M. (Pleasanton, CA); Camp, David W. (Oakland, CA); Thomas, Ian M. (Livermore, CA); Kiikka, Craig (Livermore, CA); Sheehan, Lynn M. (Livermore, CA); Kozlowski, Mark R. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  12. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS Int. J. Numer. Anal. Meth. Geomech. 2009; 33:285308

    E-Print Network [OSTI]

    Peirce, Anthony

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS Int. J. Numer. Anal of engineering applications such as pavement design, stress analysis of mining excavations, and hydraulic. In the petroleum industry, hydraulic fractures are deliberately created in oil and gas reservoirs to substantially

  13. X-ray Lenses Fabricated by LIGA Technology

    SciTech Connect (OSTI)

    Nazmov, Vladimir; Last, Arndt; Saile, Volker [Institut fuer Microstrukturtechnik, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe (Germany); Karlsruhe University, 76131 Karlsruhe (Germany); Reznikova, Elena; Mohr, Jurgen [Institut fuer Microstrukturtechnik, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe (Germany); Simon, Rolf [Institut fuer Synchrotronstrahlung, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe (Germany); DiMichiel, Marco [European Synchrotron Radiation Facility, BP220, 38043, Grenoble (France)

    2007-01-19T23:59:59.000Z

    X-ray refractive optical lens systems have been successfully elaborated, designed, fabricated at the Institute for Microstructure Technology at the Forschungszentrum Karlsruhe (Germany) using LIGA technology in recent years. The lenses are structured in a SU-8 polymer. The capability of the LIGA technique to create an arbitrary profile of the focusing microstructures allow the fabrication of lenses with different curvature radius of parabolic geometry, minimized absorption and a large depth of focus. Also a set of planar lens systems on one substrate can be realized with 17 lenses providing identical focal distances for different X-ray energies from 2 to over 100 keV. Nickel lenses fabricated by electroforming using polymer templates can be applied for energies larger than 80 keV. The parabolic crossed lenses are used for 2D nano focusing of monochromatic beams. The quasi-parabolic crossed lenses with a submicron focus and a focus depth of the centimetre range can be used as an achromatic system. Mosaic truncated parabolic lenses with a focusing aperture up to 1 mm are made to increase the X-ray intensity in the focused spot.

  14. High Power Hg Target Conceptual Design Review

    E-Print Network [OSTI]

    McDonald, Kirk

    the WNR Bubble Test Loop · Both containments are designed for 1 atmosphere overpressure #12;8 OAK RIDGE, but ... · Base support structure may be fabricated from painted carbon steel or aluminum · Gaskets shall be non

  15. Design of a silicon waver breaker

    E-Print Network [OSTI]

    Mukaddam, Kabir James, 1983-

    2005-01-01T23:59:59.000Z

    Usually multiple MEMS or IC devices are fabricated on a single silicon wafer. Manually separating the components from each other involves scribing and fracturing the silicon. This thesis presents a design for a tool to aid ...

  16. 2.72 Elements of Mechanical Design, Spring 2006

    E-Print Network [OSTI]

    Frey, Daniel

    Examination and practice in the application of many mechanical design elements, including control components. Students working in groups design, fabricate, and test prototype devices in response to requests from industrial ...

  17. 1-MWE heat exchangers for OTEC. Final design report

    SciTech Connect (OSTI)

    Sprouse, A.M.

    1980-06-19T23:59:59.000Z

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  18. UPDATE ON MONOLITHIC FUEL FABRICATION METHODS

    SciTech Connect (OSTI)

    C. R. Clark; J. F. Jue; G. A. Moore; N. P. Hallinan; B. H. Park; D. E. Burkes

    2006-10-01T23:59:59.000Z

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Progress at INL has led to fabrication of hot isostatic pressed uranium-molybdenum bearing monolithic fuel plates. These miniplates are part of the RERTR-8 miniplate irradiation test. Further progress has also been made on friction stir weld processing which has been used to fabricate full size fuel plates which will be irradiated in the ATR and OSIRIS reactors.

  19. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    SciTech Connect (OSTI)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.; Salleh, J.; Abidin, M. H. [Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam Selangor (Malaysia)

    2010-03-11T23:59:59.000Z

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised. For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.

  20. Odessa fabricator builds rig specifically for geothermal drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Odessa fabricator builds rig specifically for geothermal drilling Odessa fabricator builds rig specifically for geothermal drilling August 3, 2008 - 2:59pm Addthis For 35 years, MD...

  1. Carbon dioxide-assisted fabrication of highly uniform submicron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

  2. Fabrication of diamond nanowires for quantum information processing applications Birgit J.M. Hausmann a,b,

    E-Print Network [OSTI]

    Loncar, Marko

    and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are 1Fabrication of diamond nanowires for quantum information processing applications Birgit J

  3. Method for fabricating hafnia films

    DOE Patents [OSTI]

    Hu, Michael Z [Knoxville, TN

    2007-08-21T23:59:59.000Z

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  4. Flexible aerogel composite for mechanical stability and process of fabrication

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Poco, John F. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  5. Flexible aerogel composite for mechanical stability and process of fabrication

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Poco, John F. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  6. Pantry and Fabric Pests in the Home

    E-Print Network [OSTI]

    Merchant, Michael E.; Brown, Wizzie

    2008-10-22T23:59:59.000Z

    Pests such as Indian meal moths and various beetles and weevils can infest stored food. Dermestes beetles and clothes moths attack stored fabrics, hides and feathers. The first step in controlling these pests is learning to identify them and find...

  7. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  8. Fabrication and properties of microporous silicon

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  9. Fabrication and characterization of microscale sandwich beams

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    /metal cores were produced through fabrication methods that combined photolithography and electrodeposition prototyping strategy consisting of photolithographic, electrodeposition, and face-sheet bonding steps sandwiched between two sheets of nickel. We also investigate the structural response--load, flex- ural

  10. Fabrication and properties of microporous silicon 

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  11. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect (OSTI)

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01T23:59:59.000Z

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  12. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  13. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02T23:59:59.000Z

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  14. Problems in interpretation of clay fabrics

    SciTech Connect (OSTI)

    Reynolds, S.

    1987-05-01T23:59:59.000Z

    Several models have been developed to explain the origins of different clay fabrics as seen with the scanning electron microscope, but some of these models may be oversimplified. One microfabric model suggests that bioturbation leads to a randomization of fabric; nonbioturbated fabrics should exhibit a preferred orientation (PO) of clay particles in the horizontal direction. However, in samples from the Los Angeles basin, California, it was discovered that bioturbated, hemipelagic mudstones had essentially the same clay fabric as nonbioturbated, turbiditic mudstones; both were highly random. The effect of bioturbation was also studied in anoxic-laminated, nonbioturbated muds which exhibited isolated burrows (Pico Formation, Rosario Group, California; Niobrara Formation, Colorado). The clay fabric inside and outside the burrows was similar; diagenesis appeared to be the controlling factor of these microfabrics. Another common conception is that PO of clays is developed during consolidation. The only PO seen in the samples from the Los Angeles basin is of silt-sized detrital micas and diagenetic chlorite. Much of the PO which has been measured in recent sediments may be due to the PO of silt-sized micas, not clays; and PO in shales may be due to diagenetic growth of phyllosilicates under uniaxial pressure. Another model states that pelagic settling of clays will lead to the development of PO. The nonbioturbated mudstones of the Pico Formation display random clay fabrics in both pelagic and turbiditic sediments. These results are not meant to disprove previous clay fabric studies but instead are intended as a warning against oversimplification of the origin and significance of clay fabrics.

  15. Carbon nanotube collimator fabrication and application

    DOE Patents [OSTI]

    Chow, Lee (Orlando, FL); Chai, Guangyu (Orlando, FL); Schenkel, Thomas (San Francisco, CA)

    2010-07-06T23:59:59.000Z

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  16. 11. NUMERICAL TECHNIQUES 1 Numerical identification of effective multipole

    E-Print Network [OSTI]

    Boyer, Edmond

    11. NUMERICAL TECHNIQUES 1 Numerical identification of effective multipole moments of polarizable of the induced multipole moments. A general multipole theory is available in the literature, however, only linear multipole model is usually exploited when determining numerically these effective moments. Since this axial

  17. System design description cone penetrometer system

    SciTech Connect (OSTI)

    Seda, R.Y., Westinghouse Hanford

    1996-08-12T23:59:59.000Z

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  18. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10T23:59:59.000Z

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  19. Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1

    E-Print Network [OSTI]

    Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1 , C.L. Sones1 of a thermoelectric generator with the rapid, lithography-less technique of laser-induced forward transfer (LIFT on one substrate. The design of the proposed thermoelectric generator was selected to demonstrate

  20. A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b,

    E-Print Network [OSTI]

    A microfluidic microbial fuel cell fabricated by soft lithography Fang Qian a,b, , Zhen He c microfluidic microbial fuel cell (MFC) platform built by soft-lithography tech- niques. The MFC design includes a unique sub-5 lL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic

  1. Volume Fresnel zone plates fabricated by femtosecond laser direct writing Pornsak Srisungsitthisunti

    E-Print Network [OSTI]

    Xu, Xianfan

    Volume Fresnel zone plates fabricated by femtosecond laser direct writing Pornsak October 2006; accepted 29 November 2006; published online 2 January 2007 In this letter, volume Fresnel. A volume zone plate consists of a number of layers of Fresnel zone plates designed to focus light together

  2. Roylance, D., P. Chammas, J. Ting, H. Chi, and B. Scott Numerical Modeling Of Fabric Impact

    E-Print Network [OSTI]

    Roylance, David

    a momentum-impulse balance, a strain-displacement condition, and a constitutive equation to compute for each is computed from a material "constitutive" (stress-strain) relation, and this tension is used to calculate

  3. Design of a high quality factor spiral inductors in RF MCM-D

    E-Print Network [OSTI]

    Peters, Joshua, 1981-

    2004-01-01T23:59:59.000Z

    This thesis studies the design and fabrication of spiral inductors for use in Radio Frequency (RF) applications. A design methodology is developed to search an inductor design space efficiently using existing simulation ...

  4. Numerical Integration Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Integration Gordon K. Smyth May 1997 Numerical integration is the study of how the numerical value of an integral can be found. Also called quadrature, which refers to finding a square whose \\Lambda . Of central interest is the process of approximating a definite integral from values of the in

  5. Numerical Analysis Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    Numerical Analysis Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 #12;Numerical Analysis Numerical analysis is concerned with the accurate and efficient evalua- tion of mathematical expressions

  6. Dynamical Spacetimes from Numerical Hydrodynamics

    E-Print Network [OSTI]

    Allan Adams; Nathan Benjamin; Arvin Moghaddam; Wojciech Musial

    2014-11-07T23:59:59.000Z

    We numerically construct dynamical asymptotically-AdS$_4$ metrics by evaluating the fluid/gravity metric on numerical solutions of dissipative hydrodynamics in (2+1) dimensions. The resulting numerical metrics satisfy Einstein's equations in (3+1) dimensions to high accuracy.

  7. THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT

    E-Print Network [OSTI]

    Mobasher, Barzin

    THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT COMPOSITES Alva Peled Structural Engineering, Arizona State University, USA #12;Advantages of Fabrics in Cement Composites 0 300 600 900 0 2 4 6 8 Deflection, mm FlexuralLoad,N Fabrics Continuous Fibers Cement Matrix #12;Fabrics

  8. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  9. Fabrication of wideband optoelectronic differential amplifier using a balanced receiver on a semi-insulating GaAs substrate 

    E-Print Network [OSTI]

    Choi, Kyoo Nam

    1989-01-01T23:59:59.000Z

    bandwidth. The monolithic receiver design described here has greatly reduced these undesirable effects and allowed multi-gigshertz performance. Balanced receivers have been fabricated with photoconductive gap widths of 5 pm and 3 Izrn... and supplies and to Jim Gardner for laser scribing and reticle fabrication support. I would especially like to thank Victor Swenson for his help in diagnosing and repairing the many equipment problems and instructions on equipment operation. I would also...

  10. Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon

    SciTech Connect (OSTI)

    Zharova, Yu. A., E-mail: piliouguina@mail.ioffe.ru; Fedulova, G. V.; Astrova, E. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Baldycheva, A. V. [University of Dublin, Trinity College, Department of Electronic and Electrical Engineering (Ireland); Tolmachev, V. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Perova, T. S. [University of Dublin, Trinity College, Department of Electronic and Electrical Engineering (Ireland)

    2011-08-15T23:59:59.000Z

    Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.

  11. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29T23:59:59.000Z

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  12. Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory

    E-Print Network [OSTI]

    Zhihao Ge; Ruihua Li

    2014-12-25T23:59:59.000Z

    In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.

  13. Numerical Methods for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory

    E-Print Network [OSTI]

    Zhihao Ge; Ruihua Li

    2015-03-08T23:59:59.000Z

    In the work, the numerical methods are designed for the Bogoliubov-Tolmachev-Shirkov model in superconductivity theory. The numerical methods are novel and effective to determine the critical transition temperature and approximate to the energy gap function of the above model. Finally, a numerical example confirming the theoretical results is presented.

  14. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  15. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  16. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01T23:59:59.000Z

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  17. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10T23:59:59.000Z

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  18. Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

    SciTech Connect (OSTI)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kovach, P.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore,, J.; Nobreaga, F.; Novitsky, I.; Peggs, S.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2008-08-17T23:59:59.000Z

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb{sub 3}Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  19. Development and coil fabrication for the LARP 3.7-m long Nb3Sn quadruple

    SciTech Connect (OSTI)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2009-02-01T23:59:59.000Z

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  20. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M. (Albuquerque, NM); Atwood, Clinton L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Griffith, Michelle L. (Albuquerque, NM); Harwell, Lane D. (Albuquerque, NM); Jeantette, Francisco P. (Albuquerque, NM); Romero, Joseph A. (Albuquerque, NM); Schanwald, Lee P. (Albuquerque, NM); Schmale, David T. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  1. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19T23:59:59.000Z

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

  2. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect (OSTI)

    Griffin, Dayton A. (DNV Global Energy Concepts Inc., Seattle, WA)

    2009-05-01T23:59:59.000Z

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.

  3. Fabrication and Test Results of a Prototype, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect (OSTI)

    Gourlay, S. A.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-09-01T23:59:59.000Z

    A prototype, Nb{sub 3}Sn superconducting magnet, utilizing a racetrack coil design has been built and tested. This magnet represents the first step in a recently implemented program to develop a high field, accelerator quality magnet. This magnet was constructed with coils wound from conductor developed for the ITER project, limiting the magnet to a field of 6-7 Tesla. Subsequent magnets in the program will utilize improved conductor, culminating in a magnet design capable of producing fields approaching 15 Tesla. The simple geometry is more suitable for the use of brittle superconductors necessary to eventually reach high field levels. In addition, fewer and simpler parts are used in fabricating these coils compared with the more conventional cosine theta cross section coils. The general fabrication steps, mechanical design and quench performance are discussed.

  4. Progress report of the third Generation ECR ion source fabrication

    E-Print Network [OSTI]

    Leitner, M A; Lyneis, C M; Taylor, C E; Wutte, D C

    1999-01-01T23:59:59.000Z

    Recent progress in the construction of the 3rd Generation ECR ion source at the 88" cyclotron in Berkeley is reported. Test results of a full scale prototype superconducting magnet structure, which has been described in the last ECR Ion Source Workshop, lead to an improved coil design for the 3rd Generation ECR ion source. Solenoids of the new design have been fabricated and exceeded the design field values without quench. The new sextupole coils are currently being wound and will be tested this summer. This magnet structure consists of three solenoids and six race track coils with iron poles forming the sextupole. It is described in the report along with the structural support and coil winding specifications. The coils are designed to generate a 4T axial mirror field at injection and 3T at extraction and a radial sextupole field of 2.4 T at the plasma chamber wall. The high axial magnetic field of the 3rd Generation ECR ion source influences ion beam extraction considerably and we have initiated simulations ...

  5. Numerical Modeling of HCCI Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

  6. NumericalS imulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    NumericalS imulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen words:fi nite volume method,fi lm cooling, cooling gas injection, multiscale techniques, grid adaptation#ciency is investigated. Keywords: Finite Volum Method,Film cooling, Cooling gas injection, Multiscale techniques, Grid

  7. Design package for vacuum wand for fuel retrieval system

    SciTech Connect (OSTI)

    ROACH, H.L.

    1999-07-28T23:59:59.000Z

    This is a design package that contains the details for the design, fabrication, and testing of a vacuum wand that will pick up sludge and corrosion products generated during fuel assembly handling operations at K-Basin. This document contains requirements, development design information, design calculations, tests, and test reports.

  8. Faculty Position in Design Research School of Architecture

    E-Print Network [OSTI]

    Barthelat, Francois

    Faculty Position in Design Research School of Architecture The School of Architecture at Mc, for example, without being limited to, integrative design practice, sustainable design, digital fabrication & Buildings; Sustainable Design; Advanced Construction) and supervision of Masters and PhD-level students

  9. Decontamination of the Curium Source Fabrication Facility

    SciTech Connect (OSTI)

    Schaich, R.W.

    1982-01-01T23:59:59.000Z

    The Curium Source Fabrication Facility (CSFF) at Oak Ridge National Laboratory (ORNL) was decontaminated to acceptable contamination levels for maintenance activities, using standard decontamination techniques. Solid- and liquid-waste volumes were controlled to minimize discharge to the ORNL Waste Systems. This program required two years of decontamination effort at a total cost of $580K.

  10. Fabrication Procedures and Process Sensitivities for

    E-Print Network [OSTI]

    with an AM1.5 eciency of 15.4% as verified by the National Renewable Energy Laboratory. SOLAR CELL Avenue, Toledo, OH 43607, U.S.A. Contract/grant sponsor: U.S. Department of Energy; Contract/grant numberFabrication Procedures and Process Sensitivities for CdS/CdTe Solar Cells Doug H. Rose*, Falah S

  11. Fabrication of Surface Plasmon Resonators by Nanoskiving

    E-Print Network [OSTI]

    Prentiss, Mara

    . The diamond knife cuts cleanly through microplates 35 µm in diameter and 100 nm thick without bending); the single-crystalline gold nanowires fabricated here have much lower radiative loss than polycrystalline to act as surface plasmon resonators, a characteristic that polycrystalline metal nanowires do

  12. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26T23:59:59.000Z

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  13. Method of fabricating a solar cell

    DOE Patents [OSTI]

    Pass, Thomas; Rogers, Robert

    2014-02-25T23:59:59.000Z

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  14. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    E-Print Network [OSTI]

    Teich, Malvin C.

    Polymer microcantilevers fabricated via multiphoton absorption polymerization Z. Bayindir, Y. Sun polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties orders of magnitude smaller than would be predicted from the properties of the bulk polymer.6 If correct

  15. Fabrication development and usage of vanadium alloys in DIII-D

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Reis, E.E.

    1996-10-01T23:59:59.000Z

    GA is procuring material, designing components, and developing fabrication techniques for use of V alloy into the DIII-D divertor as elements of the Radiative Divertor Project modification. This program was developed to assist in the development of low activation alloys for fusion use by demonstrating the fabrication and installation of V alloy components in an operating tokamak. Along with fabrication development, the program includes multiple steps starting with small coupons installed in DIII-D to measure the environmental effects on V. This is being done in collaboration with DOE Fusion Materials Program (particularly at ANL and ORNL). Procurement of the material has been completed; the world`s largest heat of V alloy (1200 kg V-4Cr-4Ti) was produced and converted into various products. Manufacturing process is described and chemistry results presented. Research into potential fabrication methods is being performed. Joining of V alloys was identified as the most critical fabrication issue for its use in the Radiative Divertor program. Successful welding trials were done using resistance, friction, and electron beam methods; metallography and mechanical tests were done to evaluate the welds.

  16. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect (OSTI)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01T23:59:59.000Z

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  17. The Numerical Simulation of Turbulence

    E-Print Network [OSTI]

    W. Schmidt

    2007-12-06T23:59:59.000Z

    In this contribution, I give an overview of the various approaches toward the numerical modelling of turbulence, particularly, in the interstellar medium. The discussion is placed in a physical context, i. e. computational problems are motivated from basic physical considerations. Presenting selected examples for solutions to these problems, I introduce the basic ideas of the most commonly used numerical methods.

  18. NUMERICAL ANALYSIS KENDALL E. ATKINSON

    E-Print Network [OSTI]

    Atkinson, Kendall

    of mathematics and computer science that creates, analyzes, and implements algorithms for solving nu- merically mathematical models in science and engineering, and numerical analysis of increasing sophistication has been of numerical analysis varies from quite theoretical mathematical studies (e.g. see [5]) to computer science

  19. July 4, 2001 A. R. Raffray, et al., ARIES-AT Blanket and Divertor Design, SNECMA, Bordeaux, France 1

    E-Print Network [OSTI]

    Raffray, A. René

    safety features · Simple design geometry · Reasonable design margins as an indication of reliability, 1500 Engineering Drive, Madison, WI 53706-1687, USA 3Forschungszentrum Karlsruhe, Postfach 3640, D Design and Analysis · Fabrication · Maintenance · Manifolding Analysis · Conclusions Overall Objective

  20. Numerical modeling of vertical cavity semiconductor lasers

    SciTech Connect (OSTI)

    Chow, W.W.; Hadley, G.R.

    1996-08-01T23:59:59.000Z

    A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.

  1. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01T23:59:59.000Z

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  2. Fabrication of microfluidic systems in poly(dimethylsiloxane)

    E-Print Network [OSTI]

    Prentiss, Mara

    Fabrication of microfluidic systems in PDMS . 29 2.1 Soft lithographyFabrication of microfluidic systems in poly(dimethylsiloxane) Microfluidic devices are finding increasing application as analytical systems, biomedi- cal devices, tools for chemistry and biochemistry

  3. ARIES-CS COIL STRUCTURE ADVANCED FABRICATION APPROACH

    E-Print Network [OSTI]

    California at San Diego, University of

    : ARIES-CS, advanced fabrication, additive manufacturing Note: Some figures in this paper are in color with conventional means would be very challenging and costly. A new fabrication technology is "additive manufac

  4. Fabrication of high-quality microflexures using micromilling techniques

    E-Print Network [OSTI]

    Gafford, Joshua B

    2010-01-01T23:59:59.000Z

    This research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material ...

  5. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  6. SiGe-On-Insulator (SGOI) Technology and MOSFET Fabrication

    E-Print Network [OSTI]

    Cheng, Zhiyuan

    In this work, we have developed two different fabrication processes for relaxed Si??xGex-on-insulator (SGOI) substrates: (1) SGOI fabrication by etch-back approach, and (2) by "smart-cut" approach utilizing ...

  7. FABRICATION TECHNIQUES FOR REVERSE ELECTRODE COAXIAL GERMANIUM NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01T23:59:59.000Z

    Energy under Contract W-7405-ENG-48 FABRICATION TECHNIQUESunder Contract No. W-7405-ENG-48. References to a company or

  8. Graphene Device Fabrication and Applications in Communication Systems

    E-Print Network [OSTI]

    Liu, Guanxiong

    2012-01-01T23:59:59.000Z

    Device Fabrications 2.1 Graphene Samples Preparation We use2.1 Graphene samples preparation ……………………………………………….. 2.2 E-

  9. activated carbon fabrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  10. Cryogenic Dark Matter Search Detector Fabrication Process and Recent Improvements

    E-Print Network [OSTI]

    Andrew Jastram; Rusty Harris; Rupak Mahapatra; James Phillips; Mark Platt; Kunj Prasad; Joel Sander; Sriteja Upadhyayula

    2014-09-26T23:59:59.000Z

    A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

  11. IMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa

    E-Print Network [OSTI]

    Mobasher, Barzin

    for the pultruded composites made from PE knitted fabrics. Keywords Impact, fabric, cement composite, textile, fiberIMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa , Alva PELEDb , and Barzin Engineering Department, Ben Gurion University, Beer Sheva Israel, c Civil and Environmental Engineering

  12. Atomic Scale Design and Three-Dimensional Simulation of Ionic Diffusive Nanofluidic Channels

    E-Print Network [OSTI]

    Jin Kyoung Park; Kelin Xia; Guo-Wei We

    2015-03-02T23:59:59.000Z

    Recent advance in nanotechnology has led to rapid advances in nanofluidics, which has been established as a reliable means for a wide variety of applications, including molecular separation, detection, crystallization and biosynthesis. Although atomic and molecular level consideration is a key ingredient in experimental design and fabrication of nanfluidic systems, atomic and molecular modeling of nanofluidics is rare and most simulations at nanoscale are restricted to one- or two-dimensions in the literature, to our best knowledge. The present work introduces atomic scale design and three-dimensional (3D) simulation of ionic diffusive nanofluidic systems. We propose a variational multiscale framework to represent the nanochannel in discrete atomic and/or molecular detail while describe the ionic solution by continuum. Apart from the major electrostatic and entropic effects, the non-electrostatic interactions between the channel and solution, and among solvent molecules are accounted in our modeling. We derive generalized Poisson-Nernst-Planck (PNP) equations for nanofluidic systems. Mathematical algorithms, such as Dirichlet to Neumann mapping and the matched interface and boundary (MIB) methods are developed to rigorously solve the aforementioned equations to the second-order accuracy in 3D realistic settings. Three ionic diffusive nanofluidic systems, including a negatively charged nanochannel, a bipolar nanochannel and a double-well nanochannel are designed to investigate the impact of atomic charges to channel current, density distribution and electrostatic potential. Numerical findings, such as gating, ion depletion and inversion, are in good agreements with those from experimental measurements and numerical simulations in the literature.

  13. Fabrication of thorium bearing carbide fuels

    DOE Patents [OSTI]

    Gutierrez, Rueben L. (Los Alamos, NM); Herbst, Richard J. (Los Alamos, NM); Johnson, Karl W. R. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  14. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Jankowski, Alan F. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  15. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27T23:59:59.000Z

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  16. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03T23:59:59.000Z

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  17. Method and apparatus for fabricating superconducting wire

    SciTech Connect (OSTI)

    Kumar, N.

    1993-07-20T23:59:59.000Z

    A method is described for fabricating a superconducting wire comprising the steps of: in a first means, sputter depositing on a base wire a partial superconduction layer consisting of at least some, but not all, of the elements of an HTS material; and in a second means, reacting said partial superconduction layer with the other element or elements, including at least one metallic element, of the HTS material so that a complete superconduction layer is formed on said base wire.

  18. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  19. Fabrication of brittle materials -- current status

    SciTech Connect (OSTI)

    Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  20. Energy Systems Fabrication Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Fabrication Laboratory at the Energy Systems Integration Facility. The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and electrochemical cells using a variety of manufacturing techniques. Fabricated components include catalysts, thin-film and gas diffusion electrodes, and membrane electrode assemblies (MEAs). The laboratory supports NREL's fuel cell and electrochemical cell related research. The main focus of the laboratory is to provide support for fuel cell research that is performed in adjacent laboratories. The laboratory enables NREL to manufacture fuel cells in-house using, for example, experimental catalyst developed at NREL. It further enables the creation of MEAs containing artificial defects required for the systematic study of performance and lifetime effects and the evaluation of in-house and externally developed quality control diagnostics for high volume production of fuel cell. Experiments performed in the laboratory focus mainly on the development of alternative fuel cell manufacturing methods.

  1. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    SciTech Connect (OSTI)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01T23:59:59.000Z

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  2. Engineering tasl plan for the development, fabrication and installation of rotary mode core sample truck bellows

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-06-24T23:59:59.000Z

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST).

  3. Control Techniques for Uncore Power Mangement in Chip Multiprocessor Designs

    E-Print Network [OSTI]

    Xu, Zheng

    2013-08-01T23:59:59.000Z

    In chip-multiprocessor (CMP) designs, when the number of core increases, the size of on-chip communication fabric and data storage grows accordingly and therefore the chip power challenge is exacerbated. This thesis work considers the power...

  4. 4.500 Introduction to Design Computing, Spring 2006

    E-Print Network [OSTI]

    Sass, Lawrence

    This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use ...

  5. Layout optimization in ultra deep submicron VLSI design

    E-Print Network [OSTI]

    Wu, Di

    2006-08-16T23:59:59.000Z

    As fabrication technology keeps advancing, many deep submicron (DSM) effects have become increasingly evident and can no longer be ignored in Very Large Scale Integration (VLSI) design. In this dissertation, we study several deep submicron problems...

  6. Integrated Scenario-based Design Methodology for Collaborative Technology Innovation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Integrated Scenario-based Design Methodology for Collaborative Technology Innovation Fabrice Forest information technology innovation with an end-to-end Human and Social Sciences assistance. This methodology Technological innovation often requires large scale collaborative partnership between many heterogeneous

  7. On the design of lithographic interferometers and their application

    E-Print Network [OSTI]

    Walsh, Michael E. (Michael Edward), 1975-

    2004-01-01T23:59:59.000Z

    Interference lithography is presented as an ideal technique for fabricating large-area periodic structures with sub-100nm dimensions. A variety of interferometer designs are discussed and implemented, each of which emphasizes ...

  8. Design of ultra precision fixtures for nano-manufacturing

    E-Print Network [OSTI]

    Mangudi Varadarajan, Kartik, 1981-

    2005-01-01T23:59:59.000Z

    This thesis presents the design, modeling, fabrication and experimental validation of an active precision fixturing system called the Hybrid Positioning Fixture (HPF). The HPF uses the principles of exact constraint, ...

  9. NUMERICAL ANALYSIS AND DESIGN OF UPWIND a dissertation

    E-Print Network [OSTI]

    Stanford University

    dimensional compressible Euler equations are modified using the idea of artificial com- pressibility and discretized on unstructured tetrahedral grids to provide estimates of lift and drag for upwind sail

  10. Sandia Energy - Numerical Manufacturing And Design Tool (NuMAD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Biofuels Lignocellulosic Biomass Microalgae Thermochemical Conversion Optima: Co-Optimization of Fuels and Engines Energy Storage Components and Systems Batteries Electric...

  11. Architectural Design 2.0 : An online platform for the mass customization of architectural structures

    E-Print Network [OSTI]

    Smithwick, Daniel J., II (Daniel John)

    2010-01-01T23:59:59.000Z

    Not only are there incredible inefficiencies in the current practice of design, fabrication and construction of architecture, but, until now these processes have been limited to costly design professionals, wasteful ...

  12. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin the tensile behavior of fabric­cement composites is presented to relate the properties of the matrix, fabric reserved. Keywords: Fabric reinforced composites; Cement composites; Laminated composites; Pultrusion

  13. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  14. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  15. Fabrication, Packaging, and Performance of VCSELs and Photodetectors for Space Applications

    SciTech Connect (OSTI)

    Armendariz, M.G.; Briggs, R.D.; Choquette, K.D.; Geib, K.M.; Serkland, D.K.

    1999-03-09T23:59:59.000Z

    Optocouplers are used for a variety of applications aboard spacecraft including electrical isolation, switching and power transfer. Commercially available light emitting diode (LED)-based optocouplers have experienced severe degradation of light output due to extensive displacement damage occurring in the semiconductor lattice caused by energetic proton bombardment. A new optocoupler has been designed and fabricated which utilizes vertical cavity surface emitting laser (VCSEL) and resonant cavity photodetector (RCPD) technologies for the optocoupler emitter and detector, respectively. Linear arrays of selectively oxidized GaAs/AlGaAs VCSELS and RCPDS, each designed to operate at a wavelength of 850nm, were fabricated using an airbridge contacting scheme. The airbridged contacts were designed to improve packaging yields and device reliability by eliminating the use of a polyimide planarizing layer which provided poor adhesion to the bond pad metallization. Details of the airbridged optocoupler fabrication process are reported. Discrete VCSEL and RCPD devices were characterized at temperatures between {minus}100 to 100 C. Devices were packaged in a face-to-face configuration to form a single channel optocoupler and its performance was evaluated under conditions of high-energy proton bombardment.

  16. Fuel Fabrication for Surrogate Sphere-Pac Rodlet

    SciTech Connect (OSTI)

    Del Cul, G.D.

    2005-07-19T23:59:59.000Z

    Sphere-pac fuel consists of a blend of spheres of two or three different size fractions contained in a fuel rod. The smear density of the sphere-pac fuel column can be adjusted to the values obtained for light-water reactor (LWR) pellets (91-95%) by using three size fractions, and to values typical of the fast-reactor oxide fuel column ({approx}85%) by using two size fractions. For optimum binary packing, the diameters of the two sphere fractions must differ by at least a factor of 7 (ref. 3). Blending of spheres with smaller-diameter ratios results in difficult blending, nonuniform loading, and lower packing fractions. A mixture of about 70 vol% coarse spheres and 30 vol% fine spheres is needed to obtain high packing fractions. The limiting smear density for binary packing is 86%, with about 82% achieved in practice. Ternary packing provides greater smear densities, with theoretical values ranging from 93 to 95%. Sphere-pac technology was developed in the 1960-1990 period for thermal and fast spectrum reactors of nearly all types (U-Th and U-Pu fuel cycles, oxide and carbide fuels), but development of this technology was most strongly motivated by the need for remote fabrication in the thorium fuel cycle. The application to LWR fuels as part of the DOE Fuel Performance Improvement Program did not result in commercial deployment for a number of reasons, but the relatively low production cost of existing UO{sub 2} pellet fuel is probably the most important factor. In the case of transmutation fuels, however, sphere-pac technology has the potential to be a lower-cost alternative while also offering great flexibility in tailoring the fuel elements to match the exact requirements of any particular reactor core at any given time in the cycle. In fact, the blend of spheres can be adjusted to offer a different composition for each fuel pin or group of pins in a given fuel element. Moreover, it can even provide a vertical gradient of composition in a single fuel pin. For minor-actinide-bearing fuels, the sphere-pac form is likely to accept the large helium release from {sup 241}Am transmutation with less difficulty than pellet forms and is especially well suited to remote fabrication as a dustless fuel form that requires a minimum number of mechanical operations. The sphere-pac (and vi-pac) fuel forms are being explored for use as a plutonium-burning fuel by the European Community, the Russian Federation, and Japan. Sphere-pac technology supports flexibility in the design and fabrication of fuels. For example, the blend composition can be any combination of fissile, fertile, transmutation, and inert components. Since the blend of spheres can be used to fill any geometric form, nonconventional fuel geometries (e.g., annular fuels rods, or annular pellets with the central region filled with spheres) are readily fabricated using sphere-pac loading methods. A project, sponsored by the U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI), has been initiated at Oak Ridge National Laboratory (ORNL) with the objective of conducting the research and development necessary to evaluate sphere-pac fuel for transmutation in thermal and fast-spectrum reactors. This AFCI work is unique in that it targets minor actinide transmutation and explores the use of a resin-loading technology for the fabrication of the remote-handled minor actinide fraction. While there are extensive data on sphere-pac fuel performance for both thermal-spectrum and fast-spectrum reactors, there are few data with respect to their use as a transmutation fuel. The sphere-pac fuels developed will be tested as part of the AFCI LWR-2 irradiations. This report provides a review of development efforts related to the fabrication of a sphere-pac rodlet containing surrogate fuel materials. The eventual goal of this activity is to develop a robust process that can be used to fabricate fuels or targets containing americium. The report also provides a review of the materials, methods, and techniques to be used in the fabrication of the surrogate fuel rodlet that will also b

  17. he application of rapid prototyping (RP) in fabricat-ing nonassembly robotic systems with inserts is pre-

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    T he application of rapid prototyping (RP) in fabricat- ing nonassembly robotic systems for the rapid and automatic design and fabrication of robotic sys- tems a reality is to study the application with inserts is pre- sented in this article. The development of robotic systems that have all necessary

  18. Efficient Energy-Balancing in Multipath RPL Oana Iova1, Fabrice Theoleyre 1 and Thomas Noel1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficient Energy-Balancing in Multipath RPL Oana Iova1, Fabrice Theoleyre 1 and Thomas Noel1 1ICube the global energy consumption, we aim here at designing an energy-balancing routing protocol: each node. Keywords: RPL, multipath, energy efficiency, energy-balancing, WSN, network lifetime 1 Introduction Routing

  19. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower

    2009-07-09T23:59:59.000Z

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  20. Ceramic nanostructures and methods of fabrication

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-11-24T23:59:59.000Z

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  1. Fabrication of transparent ceramics using nanoparticles

    DOE Patents [OSTI]

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18T23:59:59.000Z

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  2. Solid freeform fabrication using chemically reactive suspensions

    DOE Patents [OSTI]

    Morisette, Sherry L. (Belmont, MA); Cesarano, III, Joseph (Albuquerque, NM); Lewis, Jennifer A. (Urbana, IL); Dimos, Duane B. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  3. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27T23:59:59.000Z

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  4. Method of fabricating bifacial tandem solar cells

    DOE Patents [OSTI]

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07T23:59:59.000Z

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  5. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21T23:59:59.000Z

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  6. Physical and Numerical Space Running Head: Biases in Physical and Numerical Space

    E-Print Network [OSTI]

    Chatterjee, Anjan

    Physical and Numerical Space 1 Running Head: Biases in Physical and Numerical Space Elementary school children's attentional biases in physical and numerical space Tilbe Göksun: April 30, 2012 #12; Physical and Numerical Space 2 Abstract Numbers

  7. Development of a CW NCRF Photoinjector using Solid Freeform Fabrication (SFF)

    SciTech Connect (OSTI)

    Frigola, P; Faillace, L; Rimmer, Robert; Clemens, William; Henry, James; Marhauser, Frank; Wu, Andy; Zhao, Xin; Harrysson, O; Knowlson, K; Mahale, T; Prasanna, G; Horn, Tanja; Medina, F; Wicker, W B

    2010-10-11T23:59:59.000Z

    A key issue for high average power, normal conducting radio frequency (NCRF), photoinjectors is efficient structure cooling. To that end, RadiaBeam has been developing the use of Solid Freeform Fabrication (SFF) for the production of NCRF photoinjectors. In this paper we describe the preliminary design, developed in collaboration with JLab, of a high gradient, very high duty cycle, photoinjector combining the cooling efficiency only possible through the use of SFF, and the RF efficiency of a re-entrant gun design. Simulations of the RF and thermal-stress performance are presented, as well as material testing of SFF components.

  8. Ion Beam Sputter Fabrication of Micro-Grooving and Micro-Threading Tools

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,M.J.; KRISHNAN,A.S.M.

    1999-11-05T23:59:59.000Z

    This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.

  9. Micro-Grooving and Micro-Threading Tools for Fabricating Curvilinear Features

    SciTech Connect (OSTI)

    ADAMS,DAVID P.; VASILE,MICHAEL J.; KRISHNAN,A.S.M.

    2000-07-24T23:59:59.000Z

    This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Micro-grooving and micro-threading tools having cutting widths as small as 13 {micro}m are made by focused ion beam sputtering and used for ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 {micro}m. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close match between tool width and feature size. Microtools are used to machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workplaces. Micro-grooving tools are also used to fabricate sinusoidal cross-section features in planar metal samples.

  10. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10T23:59:59.000Z

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  11. Methods for fabricating a micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06T23:59:59.000Z

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  12. Sacrificial template method of fabricating a nanotube

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (Berkeley, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yi-Ying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2007-05-01T23:59:59.000Z

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  13. Method for fabricating a microelectromechanical resonator

    DOE Patents [OSTI]

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05T23:59:59.000Z

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  14. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14T23:59:59.000Z

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  15. Numerical methods in heat transfer

    SciTech Connect (OSTI)

    Emery, A.F.; Douglass, R.W.

    1988-01-01T23:59:59.000Z

    This book contains nine papers. Some of the titles are: Numerical calculation of bubble growth in nucleate boiling from inception through departure; An evaluation of a translator for finite element data to resistor/capacitor data for the heat diffusion; Thermophoretic deposition due to jet impingement on an inclined plane; and A three-dimensional boundary-fitted coordinate system.

  16. Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade

    SciTech Connect (OSTI)

    HyeKyoung Park, S.U. De Silva, J.R. Delayen

    2012-07-01T23:59:59.000Z

    A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

  17. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01T23:59:59.000Z

    were conducted to a) determine a suitable fabric/desiccant combination for use in the window cavity dehumidifier, and b) to estimate the moisture absorption (regain) capacity of the candidate fabriddesiccant combinations. After examining... the properties of various solid desiccants. we determined that silica gel beads, encapsulated in a fabric pouch, would be the best approach. ?bus, we measured the moisture regain characteristics of several fabrics used to encapsulate silica gel beads...

  18. Very high numerical aperture light transmitting device

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.

  19. EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM

    SciTech Connect (OSTI)

    Pickenheim, B.; Miller, D.; Burket, P.

    2012-03-08T23:59:59.000Z

    Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10, 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly improved over the current design. Test boxes were filled with grout to evaluate the performance of the sheet drain and fabrics in a simulated vault environment. All of the tests produced a similar amount of drain water, between 8-11% of the amount of water in the mix, which is expected with the targeted formulation. All of the collected drain waters contained some amount of solids, although the 10 micron filter did not appear to allow any premix materials to pass through. The solids collected from this box are believed to consist of calcium carbonate based on one ICP-AES measurement. Any of the four candidate fabrics would be an improvement over the sheet drain alone relative to solids removal. The 10 micron fabric is the only candidate that stopped all premix material from passing. The 10 micron fabric will also cause the largest decrease in flux. This decrease in flux was not enough to inhibit the total amount of drain water removed, but may lead to increased time to remove standing water prior to subsequent pours in the facility. The acceptability of reduced liquid flux through the 10 micron fabric will depend on the amount of excess water to be removed, the time available for water removal and the total area of fabric installed at the disposal cell.

  20. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect (OSTI)

    Karen L. Shropshire

    2008-04-01T23:59:59.000Z

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  1. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect (OSTI)

    Johnson, Raegan Lynn

    2005-08-01T23:59:59.000Z

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  2. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26T23:59:59.000Z

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  3. ORNL demonstrates first large-scale graphene fabrication | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL demonstrates first large-scale graphene composite fabrication ORNL's ultrastrong graphene features layers of graphene and polymers and is...

  4. alumina core fabricated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by Materials Science Websites Summary: Strengthening and toughening of carbon nanotube reinforced...

  5. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01T23:59:59.000Z

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  6. Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates

    E-Print Network [OSTI]

    Lewis, Christina L.

    We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) ...

  7. Fundamental Approach to Electrode Fabrication and Failure Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Approach to Electrode Fabrication and Failure Analysis Vince Battaglia LBNL May 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise...

  8. Cost-Effective Fabrication Routes for the Production of Quantum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures...

  9. Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic

    E-Print Network [OSTI]

    Rogers, John A.

    Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic Devices Seokwoo Jeon in which large numbers (>2000) of lithographically defined 3D nanofluidic pathways (50-300 nm wide

  10. Numerical bifurcation analysis of piecewise smooth systems

    E-Print Network [OSTI]

    ( ) ( ) ( ) ( ), , outoutinin inin xffxff xhhxgg xxxx == == #12;Numerical bifurcation analysis of piecewise smooth systems INRIA

  11. 1. Department, Course Number, Title ORE 766 Numerical Methods in Ocean Engineering

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, Course Number, Title ORE 766 Numerical Methods in Ocean Engineering 2. Designation of numerical methods for simulating and solving ocean engineering problems. Topics include: Mathematical, & engineering Program Outcome 5: Use of latest tools in ocean engineering Program Outcome 6: Problem formulation

  12. Improvements on FFD Modeling by Using Different Numerical Schemes Wangda Zuo, Jianjun Hu, Qingyan Chen

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    . "Improvements on FFD modeling by using different numerical schemes," Numerical Heat Transfer, Part B (m) t time step (s) Greek Symbols ratio of mass flow rate to a flow domain over that out of the flow: Fundamentals, 58(1), 1-16. #12;2 Abstract Indoor environm ent design and air m anagement in buildings requires

  13. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect (OSTI)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31T23:59:59.000Z

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.

  14. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  15. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    SciTech Connect (OSTI)

    Huckfeldt, R.A.

    1995-06-01T23:59:59.000Z

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck {number_sign}2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ``Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.`` It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Order 5484.1, ``Environmental Protection, Safety and Health Protection Information Reporting Requirements,`` was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise.

  16. Quantum dot Ge/TiO{sub 2} heterojunction photoconductor fabrication and performance

    SciTech Connect (OSTI)

    Church, Carena P.; Carter, Sue A., E-mail: sacarter@ucsc.edu [Department of Physics, University of California Santa Cruz, Santa Cruz, California 95064 (United States); Muthuswamy, Elayaraja; Kauzlarich, Susan M. [Department of Chemistry, University of California Davis, Davis, California 95616 (United States)] [Department of Chemistry, University of California Davis, Davis, California 95616 (United States); Zhai, Guangmei [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China)] [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China)

    2013-11-25T23:59:59.000Z

    Spun cast TiO{sub 2}-Ge quantum dot (QD) heterojunction type photodetectors have been fabricated and characterized, with interest paid to photocurrent enhancements related to device design. Performance as a function of absorber layer thickness, QD size, and back contact is investigated. We have achieved ultra-thin (?200?nm) devices with photocurrents at 0.5?V of 10{sup ?4} A cm{sup ?2} while the thickest devices have photocurrents at 0.5?V of 10{sup ?2} A cm{sup ?2} with on-off ratios >100, which represents 5 orders of magnitude increase in photocurrents over previously fabricated Ge QD devices. At 0.5?V bias, the currents in our devices are competitive with thin-film Ge photovoltaics.

  17. Process for fabricating device structures for real-time process control of silicon doping

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    2001-01-01T23:59:59.000Z

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  18. Methods for freeform fabrication of structures

    DOE Patents [OSTI]

    Kaufman, Stephen G. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    Rapid prototyping methods and apparatuses that produce structures made of continuous-fiber polymer-matrix composites without the use of molds. Instead of using molds, the composite structure is fabricated patch by patch in layers or wraps, using a two- or three-axis stage connected to a rapidly-reconfigurable forming surface, and a robot arm to position the evolving composite structure, which are both programmable devices. Because programmable devices are included, i.e., a robot and a two- or three-axis stage connected to the reconfigurable forming surface, the control program needed to produce a desired shape can be easily modified to automatically generate the desired shape from an electronic model (e.g., using a CAD/CAM system) of the desired (predetermined) shape.

  19. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, Louis M. (Big Flats, NY); Lipp, G. Daniel (Fort Collins, CO)

    1999-01-01T23:59:59.000Z

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.

  20. Method of fabricating a honeycomb structure

    DOE Patents [OSTI]

    Holleran, L.M.; Lipp, G.D.

    1999-08-03T23:59:59.000Z

    A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.

  1. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04T23:59:59.000Z

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  2. Method of fabricating a cooled electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11T23:59:59.000Z

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  3. Turbine airfoil fabricated from tapered extrusions

    DOE Patents [OSTI]

    Marra, John J

    2013-07-16T23:59:59.000Z

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  4. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24T23:59:59.000Z

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  5. Tenth target fabrication specialists` meeting: Proceedings

    SciTech Connect (OSTI)

    Foreman, L.R.; Stark, J.C. [comp.

    1995-11-01T23:59:59.000Z

    This tenth meeting of specialists in target fabrication for inertial confinement is unique in that it is the first meeting that was completely unclassified. As a result of the new classification, we were able to invite more foreign participation. In addition to participants from the US, UK, and Canada, representatives from France, Japan, and two Russian laboratories attended, about 115 in all. This booklet presents full papers and poster sessions. Indirect and direct drive laser implosions are considered. Typical topics include: polymer or aluminium or resorcinol/formaldehyde shells, laser technology, photon tunneling microscopy as a characterization tool, foams, coatings, hohlraums, and beryllium capsules. Hydrogen, deuterium, tritium, and beryllium are all considered as fuels.

  6. Closeout of JOYO-1 Specimen Fabrication Efforts

    SciTech Connect (OSTI)

    ME Petrichek; JL Bump; RF Luther

    2005-10-31T23:59:59.000Z

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2.

  7. aerodynamic shape design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASTER OF SCIENCE May 1968... Seaman, Charles Knight 2012-06-07 2 Numerical Shape Optimization of Airfoils With Practical Aerodynamic Design Requirements. Open Access Theses and...

  8. Design of Wireless Sensor Units with Embedded Statistical Time-Series Damage Detection Algorithms for Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    A low-cost wireless sensing unit is designed and fabricated for deployment in a structural monitoring progresses towards performance-based design principles, structural monitoring systems can provide extensive

  9. Prototyping Tangible Input Devices with Digital Fabrication

    E-Print Network [OSTI]

    Hartmann, Björn

    have previously investigated the benefits of tangibility in How Bodies Matter. 3D printing holds users of 3D printing can currently create such objects. For example, we surveyed the the online in this last sector are typically experts in PCB design and design for 3D printing. "Iconic Lion at the Steps

  10. Numerical integration of variational equations

    E-Print Network [OSTI]

    Ch. Skokos; E. Gerlach

    2010-09-29T23:59:59.000Z

    We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the \\textit{`tangent map (TM) method'}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton's equations of motion by the repeated action of a symplectic map $S$, while the corresponding tangent map $TS$, is used for the integration of the variational equations. A simple and systematic technique to construct $TS$ is also presented.

  11. Numerical simulation of hydraulic fracturing

    E-Print Network [OSTI]

    Warner, Joseph Barnes

    1987-01-01T23:59:59.000Z

    ~ared that the results of such treatments were not always adequately described by the two-dimensional models. With recent advances in hydraulic fracturing and computing technology, attempts have been made to formulate more realistic fracture models. These three...NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...

  12. Ceramic package fabrication for YMP nuclear waste disposal

    SciTech Connect (OSTI)

    Wilfinger, K.

    1994-08-01T23:59:59.000Z

    The purpose of this work is to develop alternate materials/design concepts to metal barriers for the Nevada Nuclear Waste Storage Investigations Project. There is some potential that site conditions may prove to be too aggressive for successful employment of the metal alloys under current consideration or that performance assessment models will predict metal container degradation rates that are inconsistent with the goal of substantially complete containment included in the NRC regulations. In the event that the anticipated lifetimes of metal containers are considered inadequate, alternate materials (i.e. ceramics or ceramic/metal composites) will be chosen due to superior corrosion resistance. This document was prepared using information taken from the open literature, conversations and correspondence with vendors, news releases and data presented at conferences to determine what form such a package might take. This discussion presents some ceramic material selection criteria, alternatives for the materials which might be used and alternatives for potential fabrication routes. This includes {open_quotes}stand alone{close_quotes} ceramic components and ceramic coatings/linings for metallic structures. A list of companies providing verbal or written information concerning the production of ceramic or ceramic lined waste containers appears at the end of this discussion.

  13. 4.510/4.501 Materializing Design

    E-Print Network [OSTI]

    Entekhabi, Dara

    for building construction - Full use of 5 digital fabrication machines [CNC routing, Laser Cutting Waterjet to CNC or molding built from layering techniques. Third is digital design at full scale as a way of the semester] Laser Cutter 2 Sheet of blonde masonite (17 x 31) Router 1 Sheet of 24" x 24" plywood 1 Sheet

  14. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01T23:59:59.000Z

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  15. Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics

    E-Print Network [OSTI]

    Meyer, Christian

    Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

  16. advanced fabrication technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabrication technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in IC fabrication...

  17. Direct laser additive fabrication system with image feedback control

    DOE Patents [OSTI]

    Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

    2002-01-01T23:59:59.000Z

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  18. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs

    E-Print Network [OSTI]

    Sitti, Metin

    Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs Metin Sitti and Ronald S. Fearing Dept -- This paper proposes two different nanomolding methods to fabricate synthetic gecko foot-hair nanostructures a nano-pore membrane as a template. These templates are molded with silicone rubber, polyimide

  19. Nickel Electroplating for Nanostructure Mold Fabrication * Xiaohui Lin1

    E-Print Network [OSTI]

    Chen, Ray

    Nickel Electroplating for Nanostructure Mold Fabrication * Xiaohui Lin1 , Xinyuan Dou1 , Xiaolong demonstrated a practical process of fabricating nickel molds for nanoimprinting. Dual-side polished glass is chosen as the substrate on which nickel nanostructures are successfully electroplated. Photonic crystal

  20. Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks

    E-Print Network [OSTI]

    Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks PNNL-16951 DRAFT Authors bottlenecks that may arise in the conversion and fuel fabrication steps when used in conjunction with the U.S.-sponsored Reliable Fuel Supply (RFS) reserve. Paper is also intended to identify pathways for assessing the magnitude

  1. Fabrication of 10 nm enclosed nanofluidic channels and Zhaoning Yu

    E-Print Network [OSTI]

    Fabrication of 10 nm enclosed nanofluidic channels Han Caoa) and Zhaoning Yu Nanostructure wafers . The nanofluidic channels were further narrowed and sealed by techniques that are based- tremely small nanofluidic structures need to be fabricated and used as matrices for the manipulation

  2. Multistage-Based Switching Fabrics for Scalable Routers

    E-Print Network [OSTI]

    Tzeng, Nian-Feng

    with distributed packet routing to achieve high scalability and low costs. Our fabrics are based on a multistage patterns are evaluated and discussed as well. Being scalable and of low costs, the proposed switching their arrival LCs toward their destined LCs. Switching fabrics naturally affect overall router perfor- mance

  3. Redefining design criteria for Pu-238 gloveboxes

    SciTech Connect (OSTI)

    Acosta, S.V.

    1998-12-31T23:59:59.000Z

    Enclosures for confinement of special nuclear materials (SNM) have evolved into the design of gloveboxes. During the early stages of glovebox technology, established practices and process operation requirements defined design criteria. Proven boxes that performed and met or exceeded process requirements in one group or area, often could not be duplicated in other areas or processes, and till achieve the same success. Changes in materials, fabrication and installation methods often only met immediate design criteria. Standardization of design criteria took a big step during creation of ``Special-Nuclear Materials R and D Laboratory Project, Glovebox standards``. The standards defined design criteria for every type of process equipment in its most general form. Los Alamos National Laboratory (LANL) then and now has had great success with Pu-238 processing. However with ever changing Environment Safety and Health (ES and H) requirements and Ta-55 Facility Configuration Management, current design criteria are forced to explore alternative methods of glovebox design fabrication and installation. Pu-238 fuel processing operations in the Power Source Technologies Group have pushed the limitations of current design criteria. More than half of Pu-238 gloveboxes are being retrofitted or replaced to perform the specific fuel process operations. Pu-238 glovebox design criteria are headed toward process designed single use glovebox and supporting line gloveboxes. Gloveboxes that will house equipment and processes will support TA-55 Pu-238 fuel processing needs into the next century and extend glovebox expected design life.

  4. Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter

    SciTech Connect (OSTI)

    Heather Wampler; Adam Gerth; Heng Ban; Donna Post Guillen; Douglas Porter; Cynthia Papesch

    2010-06-01T23:59:59.000Z

    Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.

  5. Transmission line: design manual

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation, US Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required. Some of the example problems were developed when the sixth edition of NESC was current, and are so noted; however, most examples use the 1977 edition of NESC.

  6. Ultrasonic imaging system for in-process fabric defect detection

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  7. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    SciTech Connect (OSTI)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-08-15T23:59:59.000Z

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

  8. Josh Inouye Shows a subset of mechanical design projects and experience.

    E-Print Network [OSTI]

    Valero-Cuevas, Francisco

    setup design and fabrication · 3-D printed part design 1 #12;3-D Model of Engine Transfer System and 3-D Printed Part Design I designed the above multi-fingered robotic hand in SolidWorks and also the 3-D printed piece which is yellow for finger placement. This was for robotic hand research. Skills

  9. Design and Testing of Improved Spacesuit Shielding Components

    SciTech Connect (OSTI)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08T23:59:59.000Z

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  10. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect (OSTI)

    Snyder, K.W.

    1999-03-01T23:59:59.000Z

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  11. Synergistic diffuser/heat-exchanger design

    E-Print Network [OSTI]

    Lazzara, David S. (David Sergio), 1980-

    2004-01-01T23:59:59.000Z

    The theoretical and numerical evaluation of synergistic diffusing heat-exchanger design is presented. Motivation for this development is based on current diffuser and heat-exchange technologies in cogeneration plants, which ...

  12. Numerical calculation of Green's functions

    E-Print Network [OSTI]

    Urrea-Beltran, Julian

    1975-01-01T23:59:59.000Z

    , for his assistance in the preparation of this thesis, and Dr. Francis J. Narcowich and Dr. Phillip J. Green for serving as members of my committee. I am also grateful to Dr. Norman W. Naugle for hia guidance in using the Hewlett Packard Computer... concerning the numerical results (V) are given. The computations were done on the IBM 360 of Texas A&M University and the graphs on the Hewlett Packard 9830A digital computer of the Mathematics Department. The citations on the following pages follow...

  13. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect (OSTI)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06T23:59:59.000Z

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  14. SketchChair: An All-in-one Chair Design System for JST ERATO IGARASHI

    E-Print Network [OSTI]

    Igarashi, Takeo

    , such as 3D printers, laser cutters, and computer-controlled milling machines, have become cheaper and more). There are generally constraints on creating functional 3D products within a given fabrication process. For example to incorporate constraints of specific fabrication processes into a design. Instead, they produce generic 3D

  15. ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention

    E-Print Network [OSTI]

    mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use are durability and shape requirements imposed by aircraft design. The construction process involves first

  16. Fabrication and characterization of shunted ?-SQUID

    SciTech Connect (OSTI)

    Kumar, Nikhil, E-mail: knikhil@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur - 208016 (India); Fournier, T.; Courtois, H.; Gupta, Anjan K. [Institute Neel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, BP 166, 38042, Grenoble (France)

    2014-04-24T23:59:59.000Z

    In order to eliminate hysteresis, we have fabricated and characterized niobium based shunted micron size superconducting quantum interference devices (?-SQUIDs). We find a wide temperature range where these ?-SQUIDs are non-hysteretic in nature and show a very good I{sub c} vs. B oscillations in hysteretic regime and V vs. B oscillations in non-hysteretic regime. Here we report the characteristics of a shunted- ?-SQUID (Wf38LS72D5). In this device we have achieved a large voltage modulation, in non-hysteretic regime, at various temperatures including such as 1.1 mV at 6.62 K with a transfer function V{sub ?}?=?7.2mV/?{sub 0}. The figures within the original article PDF file, as supplied to AIP Publishing, were affected by a PDF-processing error. Consequently, the article re-flowed and pagination increased from 3 to 4 pages. This article was updated on 14 May 2014 to correct the PDF-processing error, with the scientific content remaining unchanged. Readers are advised that the replacement article PDF file contains an additional blank page to preserve the original pagination.

  17. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin March 2005; accepted 2 June 2005 Abstract A model simulating the tensile behavior of fabric­cement composites; Cement composites; Laminated composites; Pultrusion; Fibers; Fabrics; Toughness; Strength; Micro

  18. A continuum constitutive model for the mechanical behavior of woven fabrics including slip and failure

    E-Print Network [OSTI]

    King, Michael J. (Michael James), 1978-

    2006-01-01T23:59:59.000Z

    Woven fabrics are used in many applications, including ballistic armors and fabric-reinforced composites. Advances in small-scale technologies are enabling new applications including fabrics with embedded electronics, ...

  19. Method and instrumentation for the measurement and characterization of MEMS fabricated electrical contacts

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2010-01-01T23:59:59.000Z

    MEMS fabricated electrical contacts consist of two MEMS fabricated surfaces which are physically separated and brought together for the purpose of carrying current. MEMS fabricated electrical contacts are used in a wide ...

  20. Design for a single mode erbium-doped fiber laser

    E-Print Network [OSTI]

    Wang, Jon-En

    1995-01-01T23:59:59.000Z

    The objective of this research was to design and fabricate a single-mode, narrow-linewidth linear erbium-doped fiber laser using a solid etalon for mode selection. This thesis describes the design of the linear laser which uses erbium-doped fiber...

  1. Design for a single mode erbium-doped fiber laser 

    E-Print Network [OSTI]

    Wang, Jon-En

    1995-01-01T23:59:59.000Z

    The objective of this research was to design and fabricate a single-mode, narrow-linewidth linear erbium-doped fiber laser using a solid etalon for mode selection. This thesis describes the design of the linear laser which uses erbium-doped fiber...

  2. Designing Micro Wind Turbines for Portable Power Generation Francois Hogan

    E-Print Network [OSTI]

    Barthelat, Francois

    to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) · This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

  3. Department of Mechanical Engineering Fall 2012 Intelligent Building Skin Design

    E-Print Network [OSTI]

    Demirel, Melik C.

    % reduction in solar heat gain The discretised polarizing sheet design is able to retrofit onto older. Additionally, we were tasked to evaluate Autodesk's software suite and its effectiveness in our design process of the prototype Used Autodesk Vasari to run solar analysis on the model of Rec Hall Fabricated a working scale

  4. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risø National Laboratory Wind Energy Department and The Technical University of Denmark Informatics and Mathematical Modelling Department Nicholas J. Cutler s000144 Constructing a Numerical Wind Atlas 5 2.1 Introduction

  5. Fabrication and Test Results of a Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect (OSTI)

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A. F.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    2000-02-06T23:59:59.000Z

    A 'proof-of-principle' Nb{sub 3}Sn superconducting dual-bore dipole magnet was built from racetrack coils, as a first step in a program to develop an economical, 15 Tesla, accelerator-quality magnet. The mechanical design and magnet fabrication procedures are discussed. No training was required to achieve temperature-dependent plateau currents, despite several thermal cycles that involved partial magnet disassembly and substantial pre-load variations. Subsequent magnets are expected to approach 15 Tesla with substantially improved conductor.

  6. Nuclear target foil fabrication for the Romano Event

    SciTech Connect (OSTI)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-06-19T23:59:59.000Z

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections.

  7. The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method

    E-Print Network [OSTI]

    Zhao, Lin

    2013-01-01T23:59:59.000Z

    synthesis of graphene-based titanium dioxide nanocompositesLos Angeles The Fabrication of Titanium Dioxide Based AnodeTHE THESIS The Fabrication of Titanium Dioxide Based Anode

  8. Direct Fabrication of Enzyme-Carrying Polymer Nanofibers byElectrospi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication of Enzyme-Carrying Polymer Nanofibers by Electrospinning. Direct Fabrication of Enzyme-Carrying Polymer Nanofibers by Electrospinning. Abstract: Nanofibers of an...

  9. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect (OSTI)

    A. Anderko; G. Engelhardt; M.M. Lencka (OLI Systems Inc.); M.A. Jakab; G. Tormoen; N. Sridhar (Southwest Research Institute)

    2007-09-29T23:59:59.000Z

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel-base alloys, stainless steels and copper-nickel alloys and (2) the effects of heat treatment on localized corrosion. Excellent agreement with experimental data has been obtained for alloys in various environments, including acids, bases, oxidizing species, inorganic inhibitors, etc. Further, a probabilistic model has been established for predicting the long-term damage due to localized corrosion on the basis of short-term inspection results. This methodology is applicable to pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue. Finally, a comprehensive model has been developed for predicting sensitization of Fe-Ni-Cr-Mo-W-N alloys and its effect on localized corrosion. As a vehicle for the commercialization of this technology, OLI Systems has developed the Corrosion Analyzer, a software tool that is already used by many companies in the chemical process industry. In process design, the Corrosion Analyzer provides the industry with (1) reliable prediction of the tendency of base alloys for localized corrosion as a function of environmental conditions and (2) understanding of how to select alloys for corrosive environments. In process operations, the software will help to predict the remaining useful life of equipment based on limited input data. Thus, users will also be able to identify process changes, corrosion inhibition strategies, and other control options before costly shutdowns, energy waste, and environmental releases occur. With the Corrosion Analyzer, various corrosion mitigation measures can be realistically tested in a virtual laboratory.

  10. Digital Material Fabrication Using Mask-Image-Projection-based Stereolithography

    E-Print Network [OSTI]

    Chen, Yong

    on its PolyJet Matrix Technology, these three-dimensional (3D) printers are capable of manufacturing is motivated by the recent 3D printer development especially by the digital material fabrication in which two

  11. THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    THROUGH THICKNESS LASER JOINING OF CONTINUOUS GLASS FIBER FABRIC REINFORCEMENT Paper Number 405 Huade Tan, Gen Satoh, Y. Lawrence Yao Manufacturing Research Laboratory Department of Mechanical and propagation is a major failure mode in structural composite applications. Manufacturing induced fiber

  12. A fabrication method for integrated filter elements with inductance cancellation

    E-Print Network [OSTI]

    Perreault, David J.

    This paper outlines a fabrication method for integrated filter elements. An integrated filter element is a three- (or more) terminal device comprising a capacitor and coupled air-core magnetic windings, in which the magnetic ...

  13. Fabrication and characterization of thermally drawn fiber capacitors

    E-Print Network [OSTI]

    Lestoquoy, Guillaume

    We report on the fabrication of all-in-fiber capacitors with poly(vinylidene fluoride) (PVDF) as the dielectric material. Electrodes made of conductive polymer are separated by a PVDF thin film within a polycarbonate casing ...

  14. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration 

    E-Print Network [OSTI]

    Webb, Jacob Douglas

    2011-08-08T23:59:59.000Z

    There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

  15. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  16. Two-dimensional Photonic Crystals Fabricated by Nanoimprint Lithography

    E-Print Network [OSTI]

    Chen, A.

    We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is ...

  17. Fabrication of Controlled Release Devices Using Supercritical Antisolvent Method

    E-Print Network [OSTI]

    Lee, Lai Yeng

    In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This ...

  18. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration

    E-Print Network [OSTI]

    Webb, Jacob Douglas

    2011-08-08T23:59:59.000Z

    There is a drive for improving the surface uniformity of optical waveguide devices in the photonics lab. This report focuses on the exploration of annealed proton exchange (APE) waveguide fabrication on lithium niobate crystal as a method...

  19. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17T23:59:59.000Z

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  20. Materials for freeform fabrication of GHz tunable dielectric photonic crystals.

    SciTech Connect (OSTI)

    Niehaus, Michael Keith; Lewis, Jennifer A. (University of Illinois, Urbana, IL); Smay, James Earl; Clem, Paul Gilbert; Lin, Shawn-Yu; Cesarano, Joseph, III (,; ); Carroll, James F.

    2003-01-01T23:59:59.000Z

    Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

  1. Reproducible Tip Fabrication and Cleaning for UHV STM . | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    etching has been further refined to enable a reproducible fabrication of the tungsten tips with a radius &61603;3 nm. Simple and flexible setup for the tip UHV annealing...

  2. advanced fabrication process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    171 Application Of The Mold Sdm Process To The Fabrication Of Ceramic Parts For A Micro Gas Turbine Engine CiteSeer Summary: ... engine with silicon nitcon part is being developed....

  3. array mold fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Application Of The Mold Sdm Process To The Fabrication Of Ceramic Parts For A Micro Gas Turbine Engine CiteSeer Summary: ... engine with silicon nitcon part is being developed....

  4. On the Fabrication of Microparticles Using Electrohydrodynamic Atomization Method

    E-Print Network [OSTI]

    Kuang, Lim Liang

    A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, ...

  5. Fabrication and Characterization of Poly(2-Hydroxyethyl Methacrylate) Microparticle Sensors

    E-Print Network [OSTI]

    Philip, Merene

    2013-04-24T23:59:59.000Z

    they are highly sensitive to analyte changes and may be implemented in lifetime or intensity-based systems. In order to develop particle-based fluorescent sensors, poly(2-hydroxyethylmethacrylate) (HEMA) microspheres have been fabricated via membrane...

  6. FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM

    E-Print Network [OSTI]

    MacDonald, Noel C.

    FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM MICROMACHININING, USA Abstract Bulk titanium has a number of attractive characteristics that are favorable of a microelectrode chip for particle trapping and fundamental microfluidic studies. Keywords: bulk titanium

  7. Midas: Fabricating Custom Capacitive Touch Sensors to Prototype Interactive Objects

    E-Print Network [OSTI]

    California at Irvine, University of

    . While digital fabrication techniques such as 3D printing make it easier to prototype the shape of custom processes like 3D printing and CNC ma- chining make it easier to prototype the form of such products

  8. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  9. Cost-Effective Fabrication Routes for the Productionof Quantum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type Structures and...

  10. Fabrication of organic and inorganic nanoparticles using electrospray

    E-Print Network [OSTI]

    Deotare, Parag Bhaskar

    2009-05-15T23:59:59.000Z

    A new fabrication process of organic and inorganic nanoparticles and cups by electrospraying blended polymer-sol-gel solutions followed by calcination has been investigated. Because of low viscosity and high surface tension of blended polymersol...

  11. Nanostructure fabrication by electron and ion beam patterning of nanoparticles

    E-Print Network [OSTI]

    Kong, David Sun, 1979-

    2004-01-01T23:59:59.000Z

    Two modes of energetic beam-mediated fabrication have been investigated, namely focused ion beam (FIB) direct-writing of nanoparticles, and a technique for electrostatically patterning ionized inorganic nanoparticles, ...

  12. GaN Nanopore Arrays: Fabrication and Characterization

    E-Print Network [OSTI]

    Wang, Yadong

    GaN nanopore arrays with pore diameters of approximately 75 nm were fabricated by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN ...

  13. Proceedings of the twelfth target fabrication specialists` meeting

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  14. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2005; 12:683

    E-Print Network [OSTI]

    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2005; 12:683 Published Numerical Linear Algebra and its Applications The fourth workshop of the ERCIM Working Group on `Matrix Computations and Statistics' and the First International workshop on `Numerical Linear Algebra and its

  15. Method of fabricating vertically aligned group III-V nanowires

    DOE Patents [OSTI]

    Wang, George T; Li, Qiming

    2014-11-25T23:59:59.000Z

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  16. Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation

    E-Print Network [OSTI]

    Booij, Wilfred Edwin

    Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

  17. Mechanical properties and fabric of the Punchbowl fault zone, California

    E-Print Network [OSTI]

    Chester, Frederick Michael

    1983-01-01T23:59:59.000Z

    MECHANICAL PROPERIIES AND FABRIC OF THE PUiVCHBOlv'L FAULT ZONE, CALIFORNIA A Thesis by FREDERICK MICHAEL CHESTER Subm-', tted to the Graduate College of Texas ABM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1983 Major Subject: Geology MECHANICAL PROPERTIES AND FABRIC OF THE PUNCHBOWL FAULT ZONE, CALIFORNIA A Thesis by FREDERICK MICHAEL CHESTER Approved as to sty1e and content by: on . . an airman o ommittee) Me1vin edman...

  18. The design of a microfabricated air electrode for liquid electrolyte fuel cells

    E-Print Network [OSTI]

    Pierre, Fritz, 1977-

    2007-01-01T23:59:59.000Z

    In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

  19. Design of a small-scale continuous linear motion pharmaceutical filtration module

    E-Print Network [OSTI]

    Wong, Katherine Wing-Shan

    2010-01-01T23:59:59.000Z

    A new small-scale continuous linear motion pharmaceutical filtration prototype was designed, fabricated, and tested. The goal of this unit is to filter an Active Pharmaceutical Ingredient (API) from a mixture of API ...

  20. Analysis, Design, and Operation of a Spherical Inverted-F Antenna

    E-Print Network [OSTI]

    McDonald, Jacob J.

    2010-07-14T23:59:59.000Z

    This thesis presents the analysis, design, and fabrication of a spherical inverted-F antenna (SIFA). The SIFA consists of a spherically conformal rectangular patch antenna recessed into a quarter section of a metallic sphere. The sphere acts as a...