National Library of Energy BETA

Sample records for number reduction project

  1. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). Baseline Inventory.pdf (23.65 KB) More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  2. Project identification for methane reduction options

    SciTech Connect (OSTI)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  3. West Valley Demonstration Project Site Cleanup By the Numbers...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the ...

  4. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active) Project Registration Number Assignments (Active) As of: May 2016 Provides a table of Project Registration Number Assignments (Active) Project Registration Number Assignment (Active) (511.76 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Completed

  5. Project Registration Number Assignments (Completed) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completed) Project Registration Number Assignments (Completed) As of: May 2016 Provides a table of Project Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) (406.85 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active

  6. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users ...

  7. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act Developing and Enhancing Workforce Training Programs: Number of Projects by State (389.21 KB) More Documents & Publications Workforce Development Wind Projects

  8. DOE Project Number Project Name Site Critical Decision Total...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (UVS) Carlsbad CD0 309,000,000 010121 CBC-ETEC-0040.C1 Energy Technology Engineering ... CBC-LBNL-0040.C1 Old Town Demolition Project, Phase 1 Project Lawrence Berkeley National ...

  9. Project Profile: High Performance Reduction/Oxidation Metal Oxides for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage | Department of Energy Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Sandia National Laboratory Logo Sandia National Lab (Sandia), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is systematically

  10. Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is PV different? | Department of Energy Soft Costs » Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Project Profile: Evaluating the Causes of Photovoltaics Cost Reduction: Why is PV different? Logo of Massachusetts Institute of Technology. The bar chart below the logo shows the cost reduction in photovoltaics compared to other energy-conversion technologies. PV is performing better than coal, natural gas, nuclear fusion, wind, and solar thermal

  11. Milestone Project Demonstrates Innovative Mercury Emissions Reduction...

    Office of Environmental Management (EM)

    ... Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

  12. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics » Users and Projects Through the Years Number of NERSC Users and Projects Through the Years These numbers exclude staff and vendor accounts. Year Number of Users Number of Projects 2014 5,950 846 2013 5.191 768 2012 4,659 728 2011 4,934 641 2010 4,294 540 2009 3,731 506 2008 3,271 464 2007 3,111 404 2006 2,978 385 2005 2,677 348 2004 2,416 347 2003 2,323 318 2002 2,594 337 2001

  13. Idaho Petroleum Reduction Leadership Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt041_es_baird_2011_p.pdf (699.2 KB) More Documents & Publications Idaho Petroleum Reduction Leadership Project Idaho Petroleum Reduction Leadership Project North Central Texas Council of Governments’ North Central Texas Alternative Fuel and Advanced Technology Investments initiative is one of 25 Area of Interest 4 Selections

  14. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect (OSTI)

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  15. Smooth local subspace projection for nonlinear noise reduction

    SciTech Connect (OSTI)

    Chelidze, David

    2014-03-15

    Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes noise reduction difficult. Local projective noise reduction is one of the most effective tools. It is based on proper orthogonal decomposition (POD) and works for both map-like and continuously sampled time series. However, POD only looks at geometrical or topological properties of data and does not take into account the temporal characteristics of time series. Here, we present a new smooth projective noise reduction method. It uses smooth orthogonal decomposition (SOD) of bundles of reconstructed short-time trajectory strands to identify smooth local subspaces. Restricting trajectories to these subspaces imposes temporal smoothness on the filtered time series. It is shown that SOD-based noise reduction significantly outperforms the POD-based method for continuously sampled noisy time series.

  16. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  17. Projection techniques as methods of particle-number symmetry restoration

    SciTech Connect (OSTI)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N. [Laboratoire de Physique Theorique, Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria, and Centre de Recherche Nucleaire d'Alger - COMENA, BP 399, Alger-Gare, Algiers (Algeria)

    2007-10-15

    The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.

  18. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  19. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set

  20. Los Alamos Science: The Human Genome Project. Number 20, 1992

    SciTech Connect (OSTI)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  1. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments [OSTI]

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  2. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  3. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect (OSTI)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  4. Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period December 1, 2011 ... Policy September 30, 2013 Arizona Rooftop Solar Challenge Final Report Table of Contents ...

  5. Risk reduction projects in Russia, Ukraine, and eastern Europe

    SciTech Connect (OSTI)

    Guppy, J.G.; Fitzpatrick, R.G.; Reisman, A.W. ); Spencer, B.W. )

    1993-01-01

    Assistance to Russia, Ukraine, and Central and Eastern Europe countries (CEEC) in the area of nuclear power safety has been undertaken in the United States. The U.S. Department of Energy is responsible for implementing the nuclear safety portion of this assistance. One aspect of this work is to provide near-term improvement to the safety of VVER and RBMK nuclear power plants (NPPs). This activity has been designated as near-term risk reduction (NTRR). This accident risk reduction effort is being conducted by utilizing teams of experts.

  6. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 2 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  7. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 1 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  8. PROJECT PROFILE: PV Risk Reduction through Quantifying In-Field Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PV Risk Reduction through Quantifying In-Field Energy PROJECT PROFILE: PV Risk Reduction through Quantifying In-Field Energy Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,500,000 Photovoltaic (PV) system degradation rates are not currently assessed in a comprehensive, standardized manner and do not account for climate, mounting configuration, or technology details. This project

  9. Puget Sound Clean Cities Petroleum Reduction Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Project November 17, 2008 Greg Kaufman Environmental Scientist Pueblo of Jemez Department of Resource Protection 575-834-3210 gkaufman@jemezpueblo-drp.org The Pueblo of Jemez * Federally-recognized Tribe * 45 Miles NW of Albuquerque, NM * Has occupied the Jemez Valley for over 800 years. * 2,200 Tribal members in village of Walatowa; 3,000 Tribal members total. * Only Towa-speaking Tribe. Population has high Towa fluency rate. * Has a unique K-12 charter school system emphasizing science

  10. Department of Energy Announces 22 New Projects to Enable Emissions Reductions and Improve Energy Efficiency

    Broader source: Energy.gov [DOE]

    The Energy Department’s Advanced Research Projects Agency-Energy (ARPA-E) today announced $60 million in funding for 22 innovative new projects aimed at detecting and measuring methane emissions and developing localized thermal management systems that reduce the energy needed to heat and cool buildings. The projects are funded through ARPA-E’s two newest programs: Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) and Delivering Efficient Local Thermal Amenities (DELTA).

  11. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Transfer Actions under 10 CFR 1021, Subpart D, Appendix B, Bl.30 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform transfer actions, in which the predominant activity is transportation, provided that (1)

  12. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 1 MSA Annual Categorical Exclusion for Support Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.l5 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction or modification, and operation of support buildings and

  13. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, Rev 1 MSA Annual Categorical Exclusion for Relocation of Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.22 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform relocation of buildings (including, but not limited to, trailers and

  14. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, Rev 1 MSA Annual Categorical Exclusion for Traffic Flow Adjustments under 10 CFR 1021, Subpart D, Appendix B, Bl.32 for Calendar Year 2014 II. Project Description and location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform traffic flow adjustments to existing roads (including, but not limited

  15. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 1 MSA Annual Categorical Exclusion for Site Characterization and Environmental Monitoring under 10 CFR 1021, Subpart D, Appendix B, B3.1 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform site characterization and environmental

  16. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38, Rev 3 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of

  17. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 MSA Annual Categorical Exclusion for Transfer Actions under 10 CFR 1021, Subpart D, Appendix B, Bl.30 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform transfer actions, in which the predominant activity is transportation, provided that

  18. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Air Conditioning Systems for Existing Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.4 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation or modification of air conditioning systems

  19. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 2 MSA Annual Categorical Exclusion for Polychlorinated Biphenyl Removal under 10 CFR 1021, Subpart D, Appendix B, Bl.l7 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of polychlorinated biphenyl (PCB)-containing items

  20. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Building and Equipment Instrumentation under 10 CFR 1021, Subpart D, Appendix B, B2.2 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation of, or improvements to, building and equipment

  1. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 2 MSA Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions to conserve energy or water, demonstrate potential

  2. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Radiological Survey Activities in the 600 Area of the Hanford Site Supporting Land Conveyance II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The U.S. Department of Energy, Richland Operations (DOE-RL) proposes to conduct radiological surveys of a portion of the 600 Area of the Hanford Site. The surveys are needed to

  3. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 2 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of electricity

  4. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, Rev 2 MSA Annual Categorical Exclusion for Training Exercises and Simulations under 10 CFR 1021, Subpart D, Appendix B, Bl.2 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform training exercises and simulations (including, but not limited

  5. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Routine Maintenance and Custodial Services under 10 CFR 1021, Subpart D, Appendix B, 81.3 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform routine maintenance activities and custodial services for

  6. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 1 MSA Annual Categorical Exclusion for Polychlorinated Biphenyl Removal under 10 CFR 1021, Subpart D, Appendix B, Bl.l7 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of polychlorinated biphenyl (PCB)-containing items

  7. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Disconnection of Utilities under 10 CFR 1021, Subpart D, Appendix B, B1.27 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions that are required for the disconnection of utility services

  8. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 1 MSA Annual Categorical Exclusion for Installation or Relocation of Machinery and Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.31 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation or relocation and operation of

  9. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, Bl.35 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  10. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Facility Safety and Environmental Improvements under 10 CFR 1021, Subpart D, Appendix B, B2.5 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform safety and environmental improvements of a facility

  11. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 1 MSA Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions to conserve energy or water, demonstrate potential

  12. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, Rev 1 MSA Annual Categorical Exclusion for Facilities to Store Packaged Hazardous Waste for 90 Days or Less under 10 CFR 1021, Subpart D, Appendix B, B6.4 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  13. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 MSA Annual Categorical Exclusion for Training Exercises and Simulations under 10 CFR 1021, Subpart D, Appendix B, Bl.2 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform training exercises and simulations (including, but not limited to,

  14. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Routine Maintenance and Custodial Services under 10 CFR 1021, Subpart D, Appendix B, Bl.3 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform routine maintenance activities and custodial services for

  15. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, Bl.35 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction,

  16. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Facility Safety and Environmental Improvements under 10 CFR 1021, Subpart D, Appendix B, B2.5 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform safety and environmental improvements of a facility

  17. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 2 MSA Annual Categorical Exclusion for Site Characterization and Environmental Monitoring under 10 CFR 1021, Subpart D, Appendix B, B3.1 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform site characterization and environmental

  18. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Facilities to Store Packaged Hazardous Waste for 90 Days or Less under 10 CFR 1021, Subpart D, Appendix B, B6.4 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  19. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  20. Lessons learned from substation predictive maintenance project, TC project {number_sign}7014. Final report

    SciTech Connect (OSTI)

    Geisecke, J.; Spencer, G.; Richardson, F.

    1998-12-01

    The EPRI Maintenance and Diagnostics Center, through a tailored collaboration effort with 10 utilities, developed a Substation Predictive Maintenance Program (SPDM). The objective of the program was to reduce Operation and Maintenance (O and M) costs by applying predictive/condition based maintenance practices to energized substation equipment. This report presents a summary of the project including: how new and existing diagnostic technologies and equipment were evaluated and utilized; how information was gathered in program cost justification and savings and specific work procedures and program administrative aids for a SPDM process. The program was effective in implementing a preventive or condition based maintenance process for participating utilities--enhancing the prioritization or work, redirecting maintenance activity and reducing costs. This document can serve as an implementation guide with lessons learned for substation predictive maintenance processes or to compare and contrast programs currently in place.

  1. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  2. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect (OSTI)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  3. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect (OSTI)

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  4. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton

    2009-10-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  5. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton; Kent Norris

    2010-03-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  6. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton; Kent Norris

    2009-12-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  7. The Global Threat Reduction Initiative's Orphan Source Recovery Project in the Russian Federation

    SciTech Connect (OSTI)

    Russell, J. W.; Ahumada, A. D.; Blanchard, T. A.

    2012-06-04

    After 9/11, officials at the United States Department of Energy (DOE), National Nuclear Security Administration (NNSA) grew more concerned about radiological materials that were vulnerable to theft and illicit use around the world. The concern was that terrorists could combine stolen radiological materials with explosives to build and detonate a radiological dispersal device (RDD), more commonly known as a dirty bomb. In response to this and other terrorist threats, the DOE/NNSA formed what is now known as the Global Threat Reduction Initiative (GTRI) to consolidate and accelerate efforts to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. Although a cooperative program was already underway in the Russian Federation to secure nuclear materials at a range of different facilities, thousands of sealed radioactive sources remained vulnerable at medical, research, and industrial sites. In response, GTRI began to focus efforts on addressing these materials. GTRIs Russia Orphan Source Recovery Project, managed at the Nevada National Security Sites North Las Vegas facility, was initiated in 2002. Throughout the life of the project, Joint Stock Company Isotope has served as the primary Russian subcontractor, and the organization has proven to be a successful partner. Since the first orphan source recovery of an industrial cobalt-60 irradiator with 647 curies (Ci) at an abandoned facility in Moscow in 2003, the GTRI Orphan Source Recovery Project in the Russian Federation has accomplished substantial levels of threat reduction. To date, GTRI has recovered and securely disposed of more than 5,100 sources totaling more that 628,000 Ci. This project serves as an extraordinary example of how international cooperation can be implemented by partners with mutual interests to achieve significant goals.

  8. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect (OSTI)

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  9. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  10. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    SciTech Connect (OSTI)

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  11. Micronized coal-fired retrofit system for SO{sub x} reduction: Krakow clean fossil fuels and energy efficiency program. Technical progress report number 2

    SciTech Connect (OSTI)

    Not Available

    1994-12-31

    The objective of the project is to retrofit the Balice Boilerhouse with a TCS Coal Micronization System and Amerex baghouses to achieve higher combustion efficiencies and lower air emissions, including S02, NOX, CO and particulate matter. The Balice Boilerhouse is located adjacent to the Krakow Airport and provides heating steam for the Polish Military Unit No. 1616, which is based in the vicinity of the Krakow airport. Sulfur dioxide (SO{sub 2}) reduction during combustion with micronized coal is possible by co-micronizing limestone with coal. Nitrogen oxide reductions utilizing a TCS system result primarily from: the reduced combustion temperature of a micronized coal flame, lower excess air than other conventional coal combustion systems, and staged combustion achieved with the proprietary TCS Low-NO{sub x} burner. Carbon monoxide reductions result because of the extremely high degree of carbon burnout achieved with micronized coal. The original project scope of work envisioned that TCS coal micronization systems would be retrofitted to four existing boilers at the Balice Boilerhouse. However, shortly after the project`s start-up in March 1994, the Polish Military announced that it desired and intended to decommission its existing four boilers (due to old age and poor general condition) and replace them with two new units. As such, the project`s scope of equipment supply and assessment expanded from use of the existing boilers, to requirements for implementing new units. This report describes the progress made to date on the various tasks.

  12. Independent review of estimated load reductions for PJM's small customer load response pilot project

    SciTech Connect (OSTI)

    Heffner, G.; Moezzi, M.; Goldman, C.

    2004-06-01

    program. We found that the observed load reductions for the premise-level data aggregated over all households in the two participating electric cooperatives were, respectively, 40 percent-60 percent less and 3 percent less-10 percent higher than the estimated diversified demand reduction values assumed by the CSP, depending on whether observed or normalized results are considered. We also analyzed sub-station level data and found that the observed load reductions during the test periods were significantly lower than expected, although confounding influences and operational problems significantly limit our ability to differentiate between control-related and non-control related differences in substation-level load shape data. The usefulness and accuracy of the results were hampered by operational problems encountered during the measurement period as well as in sufficient number of load research grade interval meters at one cooperative. Given the larger sample size at one electric cooperative and more statistically-robust results, there is some basis to suggest that the Adjusted Diversified Demand Factor (ADDF) values used by the CSP somewhat over-state the actual load reductions. Given the results and limitations of the M&V approach as implemented, we suggest several options for PJM to consider: (1) require load aggregators participating in ISODR programs to utilize formal PURPA-compliant load research samples in their M&V plans, and (2) continue developing lower cost M&V approaches for mass market load control programs that incorporate suggested improvements described in this study.

  13. Global Threat Reduction Initiative Africa and Middle East Project Plan 2012

    SciTech Connect (OSTI)

    Jamison, Jeremy D.

    2012-02-01

    GTRI Africa and Middle East Project Plan submitted for school project to American Graduate University.

  14. DOE Award Number DE-SC0006012 Recipient: NCAR Project Title:...

    Office of Scientific and Technical Information (OSTI)

    to Integrated Assessment Modeling and Water-Climate issues. It also provided recommendations on how to establish and pursue projects related to IAMs and Water Management issues. ...

  15. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    SciTech Connect (OSTI)

    Yao, W; Farr, J

    2014-06-15

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters.

  16. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  17. An innovative approach to multimedia waste reduction: Measuring performance for environmental cleanup projects

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; George, S.M.

    1993-04-01

    One of the greatest challenges we now face in environmental cleanup is measuring the progress of minimizing multimedia transfer releases and achieving waste reduction. Briefly, multimedia transfer refers to the air, land, and water where pollution is not controlled, concentrated, and moved from one medium to another. An example of multimedia transfer would be heavy metals in wastewater sludges moved from water to land disposal. Over $2 billion has been budgeted for environmental restoration site cleanups by the Department of Energy (DOE) for FY 1994. Unless we reduce the huge waste volumes projected to be generated in the near future, then we will devote more and more resources to the management and disposal of these wastes. To meet this challenge, the Martin Marietta Energy Systems, Inc., Oak Ridge Environmental Restoration (ER) Program has explored the value of a multimedia approach by designing an innovative Pollution Prevention Life-Cycle Model. The model consists of several fundamental elements (Fig. 1) and addresses the two major objectives of data gathering and establishing performance measures. Because the majority of projects are in the remedial investigation phase, the focus is on the prevention of unnecessary generation of investigation-derived waste and multimedia transfers at the source. A state-of-the-art tool developed to support the life-cycle model for meeting these objectives is the Numerical Scoring System (NSS), which is a computerized, user-friendly data base system for information management, designed to measure the effectiveness of pollution prevention activities in each phase of the ER Program. This report contains a discussion of the development of the Pollution Prevention Life-Cycle Model and the role the NSS will play in the pollution prevention programs in the remedial investigation phase of the ER Program at facilities managed by Energy Systems for DOE.

  18. Project Liberty: Cooperative Research and Development Final Report, CRADA Number CRD-07-00245

    SciTech Connect (OSTI)

    Wolfrum, E. J.

    2010-08-01

    NREL hosted two teams of POET Project Liberty analysts for week-long biomass compositional analysis (wet chemical analysis) classes (one in 2008, one in 2009). NREL also performed biomass compositional on over 70 samples of corn stover feedstock and pretreated corn stover provided by POET.

  19. Final Report for Phase I Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Wagoner, J

    2010-10-26

    On June 8, 2009, the U. S. Department of Energy's National Energy Technology Laboratory released a Funding Opportunity Announcement (DE-FOA 0000015) with the title, Recovery Act: Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO{sub 2} Use. C6 Resources (C6), an affiliate of Shell Oil Company, responded with a proposal for Technology Area 1: Large-scale industrial carbon capture and sequestration (CCS) projects from industrial sources. As DOE Federally Funded Research and Development Center (FFRDC) Contractors, Lawrence Livermore National Laboratory (LBNL) and Lawrence Berkeley National Laboratory (LLNL) proposed to collaborate with C6 and perform technical tasks, which C6 included in the C6 proposal, titled the Northern California CO{sub 2} Reduction Project. The proposal was accepted for Phase I funding and C6 received DOE Award DEFE0002042. LLNL and LBNL each received Phase I funding of $200,000, directly from DOE. The essential task of Phase I was to prepare a proposal for Phase II, which would be a five-year, detailed technical proposal, budget, and schedule for a complete carbon capture, transportation, and geologic storage project, with the objective of starting the injection of 1 million tons per year of industrial CO2 by the end of FY2015. LLNL and LBNL developed technical proposals (and DOE Field Work Proposals [FWPs]) for many aspects of the geologic testing and CO{sub 2} monitoring that were included in the C6 Phase II proposal, which C6 submitted by the deadline of April 16, 2010. This document is the Final Report for LLNL's Phase I efforts and is presented in two parts. Part 1 is the complete text of the technical proposal provided to C6 by LLNL and LBNL for inclusion in the C6 Phase II proposal. Because of space limitations, however, C6 may not have included all of this information in their proposal. In addition to developing the proposal presented below, LLNL's Bill Foxall and Laura Chiarmonte, in

  20. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect (OSTI)

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  1. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; George, S.M.

    1993-07-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator`s success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning.

  2. Solid waste sampling and distribution project: Sampling report {number_sign}5

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The US DOE has established a key goal of the Waste Management Program (WMP) to be to ensure that waste management issues do not become obstacles to the commercialization of advanced coal utilization technologies. To achieve this goal, the WMP identifies various emerging coal utilization technologies and performs comprehensive characterizations of the waste streams and products. DOE is now extending their characterization program to include a number of new facilities, particularly larger pilot- and commercial-scale units. Several advanced coal utilization technologies have been tentatively selected for comprehensive waste characterization. One of these technologies is the LOW NO{sub x} process being demonstrated by Southern Company Services, Inc. at Site F. On July 29, 1993 samples were collected to characterize solid waste streams. This document provides background information on the site and describes the sampling activities performed at this facility.

  3. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT

    SciTech Connect (OSTI)

    Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Chen, Wufan

    2014-03-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest neighboring

  4. PROJECT NUMBER: PROJECT TITLE: PERIOD ...

    Office of Scientific and Technical Information (OSTI)

    ... SAM proteins (blue), transporters (green), toxinsantitoxins (pink), previously ... The yield of biologically produced metabolites is constrained by the energy inherent to ...

  5. PROJECT PROFILE: Promotion of PV Soft Cost Reductions in the Southeastern United States (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project creates a replicable model for solar photovoltaic (PV) soft cost reduction in South Carolina through human capacity-building at the local level and direct efforts to harmonize policy at the inter-county or regional level. This effort will close the gap between South Carolina installed costs of residential rooftop solar and national averages and develop a portable and replicable model that can be applied to other jurisdictions in the future.

  6. EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

  7. Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities.

    SciTech Connect (OSTI)

    Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L.; Dohrmann, Clark R.

    2009-10-01

    Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

  8. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect (OSTI)

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  9. The RACER (risk analysis, communication, evaluation, and reduction) stakeholder environmental data transparency project for Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Echohawk, John Chris; Dorries, Alison M; Eberhart, Craig F; Werdel, Nancy

    2008-01-01

    The RACER (Risk Analysis, Communication, Evaluation, and Reduction) project was created in 2003, as an effort to enhance the Los Alamos National Laboratory's ability to effectively communicate the data and processes used to evaluate environmental risks to the public and the environment. The RACER project staff consists of members of Risk Assessment Corporation, Los Alamos National Laboratory (LANL), and the New Mexico Environment Department (NMED). RACER staff worked closely with members of the community, tribal governments, and others within NMED and LANL to create innovative tools and a process that could provide information to regulators, LANL and the community about the sources of public health risk and ecological impact from LAN L operations. The RACER Data Analysis Tool (DA T) provides the public with webbased access to environmental measurement data collected in and around the LANL site. Its purpose is to provide a 'transparent' view to the public of all data collected by LANL and NMED regarding the LANL site. The DAT is available to the public at 'www.racernm.com'.

  10. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    SciTech Connect (OSTI)

    Wells, J.L.

    1997-03-01

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  11. TH-A-18C-03: Noise Correlation in CBCT Projection Data and Its Application for Noise Reduction in Low-Dose CBCT

    SciTech Connect (OSTI)

    ZHANG, H; Huang, J; Ma, J; Chen, W; Ouyang, L; Wang, J

    2014-06-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low

  12. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect (OSTI)

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  13. Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2009-11-01

    This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  14. Final Technical Report for project "Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center"

    SciTech Connect (OSTI)

    Dr. Jonathan D. Istok , Oregon State University; Dr. Lee Krumholz, University of Oklahoma; Dr. James McKinley, Pacific Northwest National Laboratory; Dr. Baohua Gu, Oak Ridge National Laboratory

    2006-10-31

    The overall goal of this project was to better understand factors and processes controlling microbially-mediated reduction and reoxidation of U and Tc in the unconsolidated residuum overlying the Nolichucky shale at the Field Research Center (FRC) at Oak Ridge National Laboratory. Project activities were designed to test the following hypotheses: 1. The small rates of denitrification and U bio-reduction observed in laboratory incubations of sediments from FRC Area 1 at low pH (< 5) are due to the presence of high concentrations of toxic metals (especially Al and Ni). Rates of Tc reduction will also be small at low pH in the presence of high concentrations of toxic metals. 2. In situ rates of U and perhaps Tc bio-reduction can be increased by increasing system pH and thus precipitating toxic metals from solution. 3. In situ rates of U and Tc bio-reduction can be increased by the addition of humic substances, which complex toxic metals such as Al and Ni, buffer pH, and serve as electron shuttles to facilitate U and Tc reduction. 4. Microbially-reduced U and Tc are rapidly oxidized in the presence of high concentrations of NO3- and the denitrification intermediates NO2-, N2O, and NO. 5. An electron-donor-addition strategy (type and form of donor, with or without pH adjustment and with or without the co-addition of humic substances) can be devised to reduce U and Tc concentrations for an extended period of time in low pH groundwater in the presence of high concentrations of NO3-, Al, and Ni. This strategy operates by removing or complexing these components of FRC groundwater to allow the subsequent reduction of U(VI) and Tc(VII).

  15. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4

    SciTech Connect (OSTI)

    Denning, J.L.

    1994-09-01

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

  16. Scientific/Technical Report Science Literacy Project Award number-DE-FG02-06ER64286

    SciTech Connect (OSTI)

    Nasseh, Bizhan

    2011-02-28

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State Universitys nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  17. Water Use Reduction Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Case Studies Water Use Reduction Case Studies These case studies offer examples of water use reduction projects implemented...

  18. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    SciTech Connect (OSTI)

    Kang, Nam Lyong

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  19. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  20. Potential for Induced Seismicity Related to the Northern California CO2 Reduction Project Pilot Test, Solano County, California

    SciTech Connect (OSTI)

    Myer, L.; Chiaramonte, L.; Daley, T.M.; Wilson, D.; Foxall, W.; Beyer, J.H.

    2010-06-15

    The objective of this technical report is to analyze the potential for induced seismicity due to a proposed small-scale CO{sub 2} injection project in the Montezuma Hills. We reviewed currently available public information, including 32 years of recorded seismic events, locations of mapped faults, and estimates of the stress state of the region. We also reviewed proprietary geological information acquired by Shell, including seismic reflection imaging in the area, and found that the data and interpretations used by Shell are appropriate and satisfactory for the purpose of this report. The closest known fault to the proposed injection site is the Kirby Hills Fault. It appears to be active, and microearthquakes as large as magnitude 3.7 have been associated with the fault near the site over the past 32 years. Most of these small events occurred 9-17 miles (15-28 km) below the surface, which is deep for this part of California. However, the geographic locations of the many events in the standard seismicity catalog for the area are subject to considerable uncertainty because of the lack of nearby seismic stations; so attributing the recorded earthquakes to motion along any specific fault is also uncertain. Nonetheless, the Kirby Hills Fault is the closest to the proposed injection site and is therefore our primary consideration for evaluating the potential seismic impacts, if any, from injection. Our planned installation of seismic monitoring stations near the site will greatly improve earthquake location accuracy. Shell seismic data also indicate two unnamed faults more than 3 miles east of the project site. These faults do not reach the surface as they are truncated by an unconformity at a depth of about 2,000 feet (610 m). The unconformity is identified as occurring during the Oligocene Epoch, 33.9-23.03 million years ago, which indicates that these faults are not currently active. Farther east are the Rio Vista Fault and Midland Fault at distances of about 6 miles

  1. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change I - Signatories X II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in...

  2. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change X I - Signatories II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in...

  3. Idaho Petroleum Reduction Leadership Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Idaho Petroleum Reduction Leadership Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. 293-F Stack Reduction Project

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    Demoltion of the 293-F Stack. A look at the environmental management at the Savannah River Site. Training and experience benefits for employees and better management of environmental safety.

  6. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  7. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  8. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  9. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  10. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  11. Final Technical Report Advanced Anchoring Technology DOE Award Number DE-EE0003632 Project Period 09/10 - 09/12

    SciTech Connect (OSTI)

    Meggitt, Dallas J

    2012-11-09

    It is generally conceded that the costs associated with current practices for the mooring, anchoring, or foundation systems of Marine HydroKinetic (MHK) and Deepwater Floating Wind systems are a disproportionate portion of the total cost of an installed system. Reducing the cost of the mooring and anchoring components for MHK systems can contribute substantially to reducing the levelized cost of electricity (LCOE). Micropile anchors can reduce the LCOE both directly, because the anchors, associated mooring hardware and installation costs are less than conventional anchor and mooring systems, but also because micropile anchors require less extensive geotechnical surveys for confident design and proper implementation of an anchor or foundation system. This report presents the results of the development of critical elements of grouted marine micropile anchor (MMA) technology for application to MHK energy conversion systems and other ocean engineering applications that require fixing equipment to the seafloor. Specifically, this project identified grout formulations and developed designs for grout dispensing systems suitable for use in a seawater environment as a critical development need for successful implementation of practical MMA systems. The project conducted a thorough review of available information on the use of cement-based grouts in seawater. Based on this review and data available from commercial sources, the project selected a range of grout formulations for testing as part of a micropile system. The project also reviewed instrumentation for measuring grout density, pressure and flow rate, and integrated an instrumentation system suitable for use with micropile installation. The grout formulations and instrumentation system were tested successfully and demonstrated the suitability of MMA technology for implementation into anchor systems for MHK and other marine renewable energy systems. In addition, this project developed conceptual designs for micropile

  12. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  13. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  14. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  15. Annual progress Report on research related to our research project Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation funded by the Environmental Remediation Sciences Division (ERSD)

    SciTech Connect (OSTI)

    New, Mary

    2006-06-01

    The overarching goal of this research project is to investigate and optimize the mechanisms for in situ immobilization of Pu species by naturally-occurring bacteria. Specific research objectives are: (a) investigate the mechanism of bacterial accumulation and immobilization of plutonium species by biofilm formation under aerobic conditions and (b) to demonstrate the direct and indirect stabilization of Pu via dissimilatory reduction by Geobacter metallireducens.

  16. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    SciTech Connect (OSTI)

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  17. Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical

  18. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  19. Paperwork Reduction Act Forms

    Office of Energy Efficiency and Renewable Energy (EERE)

    You may need to fill out one or several of these forms depending on the nature of your survey or usability project. See the Paperwork Reduction Act Web page for more information about the process. Contact the Web Usability Coordinator if you have questions about which forms to complete.

  20. NSIDC Data Center: Energy Reduction Strategies | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSIDC Data Center: Energy Reduction Strategies NSIDC Data Center: Energy Reduction Strategies Fact sheet describes the Green Data Center Project efforts to significantly reduce the ...

  1. EPA Source Reduction Assistance Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.

  2. Waste reduction through consumer education. Final report

    SciTech Connect (OSTI)

    Harrison, E.Z.

    1996-05-01

    The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

  3. Nitrate reduction

    DOE Patents [OSTI]

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  4. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs ...

  5. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  6. Puget Sound Clean Cities Petroleum Reduction Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Puget Sound Clean Cities Petroleum Reduction Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Reduction/Transformation Operators

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  9. Savings Project: Lower Water Heating Temperature | Department...

    Energy Savers [EERE]

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F reduction Time to ...

  10. Iterative methods for dose reduction and image enhancement in tomography

    DOE Patents [OSTI]

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  11. EM Contractors for Capital Asset Projects

    Broader source: Energy.gov [DOE]

    Read the EM Contractors for Capital Asset Projects list, which includes the project name, number, site, and contractor.

  12. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  13. MHK Projects/Mohawk MHK Project | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14408 Environmental Monitoring and...

  14. MHK Projects/Fishers Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14395 Environmental Monitoring and...

  15. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  16. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Stability-Low-Cost Supports | Department of Energy Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 adzic_bnl_kickoff.pdf (4.62 MB) More Documents & Publications Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

  17. New Project Set Up | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Project Set Up Version Number: 7 Document Number: Form 58100.010 Effective Date: 11/2014

  18. MHK Projects/Belair Project | Open Energy Information

    Open Energy Info (EERE)

    Capacity (MW) 16 Number of Devices Deployed 40 Main Overseeing Organization MARMC Enterprises LLC Project Licensing FERC License Docket Number P-13125 Environmental Monitoring...

  19. Sandia National Laboratories: Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Threat and Intelligence Insight Game-changing projects with a high degree of technical risk realized and produced in support of the warfighter Threat and Intelligence Insight Various Project Highlights IMS spearheads work supporting a number of prominent projects. Supporting the Department of Defense's core mission and ever-evolving needs, IMS leverages its robust background in weapons development to understand and actively engage with a number of weapons technologies, defense

  20. (SSS)Project Dashboard 2015-12-21 1000.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment 1 EM Bechtel National Inc. 01-D-416 Waste Treatment and ...

  1. (SSS)Project Dashboard 2015-08-28.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number Project Title Original Project Budget Project Budget Monthly Overall Assessment Cost Performance Schedule Performance Project Dashboard - August 2015 Post CD-2 Active...

  2. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  3. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  4. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  5. Structure and Function of Microbial Metal-Reduction Proteins (Other) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Other: Structure and Function of Microbial Metal-Reduction Proteins Citation Details In-Document Search Title: Structure and Function of Microbial Metal-Reduction Proteins In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i)

  6. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  7. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  8. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  9. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  10. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  11. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect (OSTI)

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  12. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  13. GEOCENTRIFUGE STUDIES OF FLOW AND TRANSPORT IN POROUS MEDIA, FINAL REPORT FOR GRANT NUMBER DE-FG02-03ER63567 TO THE UNIVERSITY OF IDAHO (RW SMITH), ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598, COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA

    SciTech Connect (OSTI)

    Robert W. Smith; Carl D. Palmer; Earl D. Mattson

    2007-06-15

    Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. The development of these improved models requires field and laboratory results to evaluate their efficacy. However, controlled laboratory experiments simulating vadose conditions can require extensive period of time, and often are conducted at condition near saturation rather than the much drier conditions common in many contaminated arid vadose zone sites. Collaborative research undertaken by the Idaho National Laboratory (INL) and the University of Idaho as part of this Environmental Management Science Program project focused on the development and evaluation of geocentrifuge techniques and equipment that allows vadose zone experiments to be conducted for relevant conditions in time frames not possible in conventional bench top experiments. A key and novel aspect of the research was the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Laboratory to conduct unsaturated transport experiments. Specifically, the following activities were conducted ** Reviewing of the theory of unsaturated flow in the geocentrifuge to establish the range of centrifuge accelerations/experimental conditions and the translation of centrifuge results to 1 gravity applications. ** Designing, constructing, and testing of in-flight experimental apparatus allowing the replication of traditional bench top unsaturated transport experiments on the geocentrifuge. ** Performing unsaturated 1-dimenstional column geocentrifuge experiments using conservative tracers to evaluate the effects of increased centrifugal acceleration on derived transport properties and assessing the scaling relationships for these properties. Because the application of geocentrifuge techniques to vadose transport

  14. The reduction of packaging waste

    SciTech Connect (OSTI)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  15. enVerid Systems - HVAC Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enVerid Systems - HVAC Load Reduction enVerid Systems - HVAC Load Reduction Credit: Enverid Systems Credit: Enverid Systems Lead Performer: enVerid Systems Inc. - Houston, TX DOE Funding: $2,400,000 Cost Share: $2,400,000 Project Term: October 1, 2014 - September 30, 2017 Funding Opportunity: DE-FOA-0001084 PROJECT OBJECTIVE The objective is to install and operate modular HVAC Load Reduction (HLR) retrofits in multiple and diverse buildings, monitor their performance, analyze the energy savings

  16. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  17. Categorical Excluslon DeterminatIon 11'orn1 Project Title: Bear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DeterminatIon 11'orn1 ...... Project Title: Bear Creek Road Deferred Maintenance Reduction Project (4550) Program or Program Office: Y-12 Site Office Oak Ridge Tennessee Project...

  18. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  19. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal: Analyzing Variations over Time, Events, and Program Designs Prepared for US Department of Energy Nuclear Fuel Storage and Transportation Planning Project Hank C. Jenkins-Smith Carol L. Silva Kerry G. Herron Kuhika G. Ripberger Matthew Nowlin Joseph Ripberger Center for Risk and Crisis Management, University of Oklahoma Evaristo "Tito" Bonano Rob P. Rechard Sandia

  20. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  1. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  2. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  3. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  4. NATURALHY Project Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    step towards the hydrogen economy by using the existing natural gas grid (the NATURALHY-project) Onno Florisson N.V. Nederlandse Gasunie Prepared by O. Florisson Gasunie Main political drivers towards H2 * Improvement of the energy security * Reduction of the CO2-emission (Kyoto, > 8% reduction by 2010) * Improvement of region air quality Prepared by O. Florisson Gasunie The transition to the hydrogen-economy will be lengthy, costly and will require significant R&D PRACTICAL STRATEGY

  5. Preliminary assessment of potential CDM early start projects in Brazil

    SciTech Connect (OSTI)

    Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

    2000-11-01

    The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest

  6. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  7. About Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Projects MicroBooNE Project Web Pages The Project Pages hold information and links for the collaboration and its Project Managers, and also hold links to project Director's and ...

  8. Measuring Performance and Benchmarking Project Management

    Energy Savers [EERE]

    implemented. Monthly 4. Project management staffing Is project staffing adequate in terms of number and qualifications? Assessment scale from 1 (poor) to 5 (excellent)....

  9. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  10. completed-ng-projects | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Completed Natural Gas and Unconventional Resources Projects Project Number Project Name Primary Performer 09122-32 A Geomechanical Model for Gas Shales Based on the Integration of ...

  11. MHK Projects/Duncan Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.3743, -91.2403 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  12. MHK Projects/Wickliffe Project | Open Energy Information

    Open Energy Info (EERE)

    36.9756, -89.1193 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 29 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  13. MHK Projects/Point Menoir Project | Open Energy Information

    Open Energy Info (EERE)

    30.6436, -91.3029 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 66 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  14. MHK Projects/Kempe Bend Project | Open Energy Information

    Open Energy Info (EERE)

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  15. MHK Projects/Live Oak Project | Open Energy Information

    Open Energy Info (EERE)

    29.7638, -90.0278 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  16. MHK Projects/Helena Reach Project | Open Energy Information

    Open Energy Info (EERE)

    34.5795, -90.5722 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 152 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/Avondale Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9301, -90.2215 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Kenner Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9596, -90.2868 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    Open Energy Info (EERE)

    30.7879, -91.5469 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 94 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Brilliant Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.0835, -90.912 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 56 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  1. MHK Projects/Remy Bend Project | Open Energy Information

    Open Energy Info (EERE)

    30.0121, -90.754 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 28 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  2. MHK Projects/Anconia Point Project | Open Energy Information

    Open Energy Info (EERE)

    33.2952, -91.168 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 15 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  3. MHK Projects/General Hampton Project | Open Energy Information

    Open Energy Info (EERE)

    30.1019, -90.9562 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 46 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  4. MHK Projects/Gouldsboro Bend Project | Open Energy Information

    Open Energy Info (EERE)

    29.9177, -90.0673 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 20 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  5. Manhattan Project: Resources

    Office of Scientific and Technical Information (OSTI)

    RESOURCES RELATING TO THE MANHATTAN PROJECT In addition to the events, people, places, processes, and science pages that comprise the bulk of this web site, a number of additional ...

  6. MHK Projects/Algiers Cutoff Project | Open Energy Information

    Open Energy Info (EERE)

    Capacity (MW) 16 Number of Devices Deployed 40 Main Overseeing Organization MARMC Enterprises LLC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  7. MHK Projects/Douglas County Wave Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Douglas County Project Licensing FERC License Docket Number P-12743 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy...

    Open Energy Info (EERE)

    Rhode Island Energy Group LLC Project Licensing FERC License Docket Number P-13092 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  9. PORTNUS Project

    SciTech Connect (OSTI)

    Loyal, Rebecca E.

    2015-07-14

    The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.

  10. NSIDC Data Center: Energy Reduction Strategies

    SciTech Connect (OSTI)

    2012-05-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center’s constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant reduction is achievable through the use of airside economization and a new indirect evaporative cooling cycle. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. Although this particular project was able to maximize the positive effects of airside economization and indirect evaporative cooling because of its geographic location, similar strategies may also be relevant for many other sites and data centers in the United States.

  11. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  13. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  18. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. MHK Projects/Cape Cod Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14394 Environmental Monitoring and...

  2. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect (OSTI)

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the

  3. Reduction-in-Force

    Broader source: Energy.gov [DOE]

    Reduction in force (RIF) is a set of regulations and procedures that are used to determine whether an employee keeps his or her present position, or whether the employee has a right to another...

  4. Paperwork Reduction Act

    Broader source: Energy.gov [DOE]

    The Paperwork Reduction Act requires that all federal websites request permission from the Office of Management and Budget (OMB) before collecting information from 10 or more members of the public....

  5. An approximate framework for quantum transport calculation with model order reduction

    SciTech Connect (OSTI)

    Chen, Quan; Li, Jun; Yam, Chiyung; Zhang, Yu; Wong, Ngai; Chen, Guanhua

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  6. NREL Funding Reductions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Reductions to Further Impact Lab's Work Force For more information contact: Robert Noun 303-275-3062 Golden, Colo., December 22, 1995 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today that it will further reduce its work force as a result of continuing reductions of its fiscal year 1996 federal funding for renewable energy research and development. On November 2, the laboratory announced plans to reduce its 900 person regular work force

  7. Energy Department Announces New SunShot Projects to Harness the...

    Energy Savers [EERE]

    ... in Golden, Colorado, will lead another project with Clean Power Finance to develop a ... cost reductions and better forecast future cost reductions for new energy technologies. ...

  8. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vssp_09_proc.pdf (2.28 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Test and Evaluation and

  9. Tactical encirclement reductions

    SciTech Connect (OSTI)

    Gutwald, R.

    1986-12-05

    This monograph discusses the intricacies of liquidating tactical encirclements and bypassed pockets of enemy resistance. Operational employment of U.S. Army doctrine will lead to tactical encirclements in most instances. Contemporary doctrine, however, fails to acknowledge the probability of encirclement. Additionally, doctrine fails to address methods of dealing with enemy pockets. History argues that encircled enemy units often refuse to capitulate and usually require reduction by force. Furthermore, four brief examples of encirclement from the Russo-German front of World War II demonstrate that reduction operations are often difficult and complex. An encircling commander must foresee the consequences of encirclements and attempt to create the most favorable conditions for the reduction of encircled enemy forces. He must select a method and technique of reduction. He must base his selection of the situation, the threat posed by the enemy, the requirement for speed, the available resources, and the likely costs. Regardless of the method and technique chosen, the encircling commander must also consider the following: pausing to organize, establishing maneuver and fire control measures, isolating the enemy, nuclear weapon employment, and psychological operations. This paper concludes that the Army must acknowledge its doctrinal void, research and develop a reduction methodology, and amend its doctrine.

  10. MHK Projects/Pointe a la Hache Project | Open Energy Information

    Open Energy Info (EERE)

    Capacity (MW) 16 Number of Devices Deployed 40 Main Overseeing Organization MARMC Enterprises LLC Project Licensing FERC License Docket Number P-13136 Environmental Monitoring...

  11. 2014 Annual Planning Summary for the NNSA Global Threat Reduction Initiative Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Global Threat Reduction Initiative Office.

  12. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  13. REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-10

    This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension � not fully fleshed out yet � that aims to reduce the current number of nuclear explosives from seven to five, the so-called �3+2� vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.

  14. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  15. REDUCTIONS WITHOUT REGRET: SUMMARY

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-16

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  16. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  17. Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50

  18. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 ...

  19. Number

    Office of Legacy Management (LM)

    engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...

  20. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  1. Global Threat Reduction Initiative

    Broader source: Energy.gov (indexed) [DOE]

    The Current Status of Gap and U.S.-Origin Nuclear Fuel Removals 2011 Jeff Galan, Deputy Project Manager U.S.-Origin Nuclear Remove Program National Nuclear Security Administration ...

  2. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  3. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  4. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  5. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  6. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  7. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  8. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  9. Project Reports for Lac Courte Oreilles Band of Lake Superior Chippewa Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    This weatherization training will result in a reduction of the use and cost of energy by increasing the number of homes that are weatherized.

  10. Lessons learned bulletin. Number 2

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    During the past four years, the Department of Energy -- Savannah River Operations Office and the Westinghouse Savannah River Company (WSRC) Environmental Restoration (ER) Program completed various activities ranging from waste site investigations to closure and post closure projects. Critiques for lessons learned regarding project activities are performed at the completion of each project milestone, and this critique interval allows for frequent recognition of lessons learned. In addition to project related lessons learned, ER also performs lessons learned critiques. T`he Savannah River Site (SRS) also obtains lessons learned information from general industry, commercial nuclear industry, naval nuclear programs, and other DOE sites within the complex. Procedures are approved to administer the lessons learned program, and a database is available to catalog applicable lessons learned regarding environmental remediation, restoration, and administrative activities. ER will continue to use this database as a source of information available to SRS personnel.

  11. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  12. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  13. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  14. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  15. MHK Projects/Gastineau Channel Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-13606 Environmental Monitoring and...

  16. MHK Projects/Dorchester Maurice Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14223 Environmental Monitoring and...

  17. MHK Projects/Margate Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14224 Environmental Monitoring and...

  18. MHK Projects/Orient Point Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14333 Environmental Monitoring and...

  19. MHK Projects/Cohansey River Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14127 Environmental Monitoring and...

  20. MHK Projects/BW2 Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14222 Environmental Monitoring and...

  1. MHK Projects/Maurice River Tidal | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14234 Environmental Monitoring and...

  2. MHK Projects/Salem Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-13849 Environmental Monitoring and...

  3. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14232 Environmental Monitoring and...

  4. MHK Projects/Killisnoo Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-13823 Environmental Monitoring and...

  5. Microsoft Word - Renewable_Energy_Efficient_Energy_Projects_Loan...

    Broader source: Energy.gov (indexed) [DOE]

    ... guarantee pursuant to the terms of any existing ... a DUNS number, you can search for it or request one at: ... 1. Project Information: Enter the Project name, select ...

  6. Microsoft Word - Advanced_Fossil_Energy_Projects_Loan_Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... guarantee pursuant to the terms of any existing ... a DUNS number, you can search for it or request one at: ... 1. Project Information: Enter the Project name, select ...

  7. PROJECT PROFILE: Nevados Engineering Inc. (Incubator 10) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevados Engineering-Logo.png Project Title: Installation and Soft Cost Reduction for ... more site options, eliminating major construction costs, and increasing power generation. ...

  8. Final Scientific/Technical Report for Project entitled "Mechanism...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis" Citation Details In-Document Search Title: Final Scientific...

  9. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  10. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  11. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  12. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  13. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  14. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  15. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  16. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  17. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  19. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  20. Project Benefits

    Broader source: Energy.gov [DOE]

    Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.

  1. Hydropower Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  2. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, John R. (Pleasanton, CA)

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  3. Electrolytic oxide reduction system

    SciTech Connect (OSTI)

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  4. Nuclear Facility Risk Reduction project moves forward at Y-12...

    National Nuclear Security Administration (NNSA)

    items including steam stations, cooling water distribution systems, ventilation systems, vacuum pumps, and electrical switchgear, motor control centers, transformers, and breakers. ...

  5. Project Profile: High Performance Reduction/Oxidation Metal Oxides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This development requires sophisticated computer modeling of multiphysics interactions including fluid and discrete particle flow, thermodynamics, kinetics, solar optics, heat and ...

  6. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    SciTech Connect (OSTI)

    Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti; Sayler, Gary; Layton, Alice; Hettich, Robert

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  7. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  8. Completed Recovery Act Project Gives Y-12 New Look

    Broader source: Energy.gov [DOE]

    Y-12 completes Biolody Complex demolition project three months ahead of schedule. The $26.5 million project removed four of the seven buildings from the complex, and it helped modernize the site through much-needed footprint reduction.

  9. MHK Projects/Fortyeight Mile Point Project | Open Energy Information

    Open Energy Info (EERE)

    Water Mississippi River Coordinates 30.0447, -90.6659 Project Phase Phase ? PermitLicense Buildout (MW) 59 Device Nameplate Capacity (MW) 40 kW Number of Build Out Units...

  10. An integrated surface technology for friction reduction in vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pmp_08_hsu.pdf (305.8 KB) More Documents & Publications An Integrated Surface Technology for Optimum Performance Vehicle Technologies Office Merit Review 2014: Friction Reduction through Surface Modification (Agreement ID:23284) Project ID:18518 Vehicle Technologies Office Merit Review 2016: Integrated Friction Reduction

  11. Maskless micro-ion-beam reduction lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  12. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Ground Source Heat Pump (GSHP) in Hot and Humid Climate | Department of Energy Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Project objectives: Gather and analyze independently the available technical, cost, financial incentive data on installed GSHP/HGSHP applications in

  13. Reductant injection and mixing system

    DOE Patents [OSTI]

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  14. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  15. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  16. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  17. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  18. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  6. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  11. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  13. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  15. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  1. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  17. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  18. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  19. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  20. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  1. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  4. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  5. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  7. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  10. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  13. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  1. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  4. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  5. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  7. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  10. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Connecticut Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 - = No Data Reported; -- = Not

  13. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  20. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  7. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  9. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  10. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  12. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  13. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  14. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  15. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  17. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  20. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  1. LDRD Project Annual Report Template | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Report Template Version Number: 1 Document Number: NA Effective Date: 12/2014 File (public): File ldrd_project_annual_report_template_rev1.docx

  2. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  3. MHK Projects/Wavegen | Open Energy Information

    Open Energy Info (EERE)

    since 2000 with 30,000 hours of grid connected operating experience and high reliability. Project Installed Capacity (MW) 1 Number of Devices Deployed 1 Main Overseeing...

  4. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  5. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  6. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Tour Project Tour See NMSSUP from the ground NMSSUP Phase II Construction Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the tour, transportation will be provided back to Hilton Santa Fe Buffalo Thunder. What to wear Wear comfortable pants and leather shoes (flat, comfortable, closed-toe; no tennis shoes or high heels). Schedule There will be a one-hour, no-host lunch

  7. MHK Projects/Island 14 Bend | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 132 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0 Number of Build Out...

  8. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  9. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  10. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  11. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  12. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  13. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  14. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San ...

  15. LLWnotes - Volume 11, Number 4

    SciTech Connect (OSTI)

    1996-05-01

    This document is the May 1996 issue of LLWnotes. It contains articles and news items on the following topics: news items related to states and compacts; Low-Level Radioactive Waste (LLW) Forum activities; court rulings and calendars; US DOE testing at Ward Valley; US BLM contract with Lawrence Livermore National Laboratory; Mixed Waste Pilot Project Schedule; extension of US EPA`s mixed waste enforcement moratorium; EPA Advisory Committee on research program operation; and decommissioning.

  16. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  17. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  18. WINDExchange: Wind for Schools Affiliate Projects

    Wind Powering America (EERE)

    Affiliate Projects Although the Wind for Schools project is supported in a limited number of states, Wind for Schools affiliate projects allow K-12 schools or state-based programs to leverage existing materials to implement activities in their areas. On this page, you will find information about affiliate projects for individual K-12 schools and for states. Affiliate projects do not receive financial support from the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL),

  19. Active Project Justification Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Project Justification Statement Active Project Justification Statement As of: May 2016 Provides a table of Active Project Justification Statements Active Project Justification Statement (386.46 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active) The Proposed Reaffirmations and Cancellations For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail: jeffrey.feit@hq.doe.gov

  20. Awarded projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1

  1. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  2. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  3. PAPERWORK REDUCTION ACT OF 1995

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAPERWORK REDUCTION ACT OF 1995 U. S. DEPARTMENT OF ENERGY INFORMATION COLLECTION MANAGEMENT PROGRAM Chris Rouleau, PRA Officer Records Management Division Office of the Associate Chief Information Officer for IT Planning, Architecture and E-Government Office of the Chief Information Officer Office of the Chief Information Officer 2/16/2010 2 TOPICS  Paperwork Reduction Act (PRA) of 1995 - Law  Paperwork Reduction Act - Overview  Information Collection Requests (ICRs)  Information

  4. National Idling Reduction Network News- November 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  5. National Idling Reduction Network News- September 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  6. National Idling Reduction Network News- October 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  7. National Idling Reduction Network News- May 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  8. National Idling Reduction Network News- November 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  9. National Idling Reduction Network News- January 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  10. National Idling Reduction Network News- June 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  11. National Idling Reduction Network News- July 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  12. National Idling Reduction Network News- October 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  13. National Idling Reduction Network News- July 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  14. National Idling Reduction Network News- July 2013

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  15. National Idling Reduction Network News- March 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  16. National Idling Reduction Network News- September 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  17. Characterizing Test Methods and Emissions Reduction Performance...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of in-use DPFs shows levels of reduction within in-use testing objectives: PM emission reductions >90%, elementalblack carbon reduction of 99%, and retrofit ...

  18. National Idling Reduction Network News- October 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  19. National Idling Reduction Network News- September 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  20. National Idling Reduction Network News- April 2011

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  1. National Idling Reduction Network News- February 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  2. National Idling Reduction Network News- June 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  3. National Idling Reduction Network News- September 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  4. National Idling Reduction Network News- April 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  5. National Idling Reduction Network News- January 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  6. National Idling Reduction Network News- March 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  7. National Idling Reduction Network News- December 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  8. National Idling Reduction Network News- June 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  9. National Idling Reduction Network News- November 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  10. National Idling Reduction Network News- March 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  11. National Idling Reduction Network News- February 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  12. National Idling Reduction Network News- April 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  13. National Idling Reduction Network News- February 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  14. National Idling Reduction Network News- March 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  15. National Idling Reduction Network News- January 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  16. National Idling Reduction Network News- December 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  17. National Idling Reduction Network News- May 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  18. National Idling Reduction Network News- November 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  19. National Idling Reduction Network News- April 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  20. National Idling Reduction Network News- March 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  1. National Idling Reduction Network News- July 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  2. Vehicle Technologies Office: National Idling Reduction Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together ...

  3. National Idling Reduction Network News- November 2010

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  4. National Idling Reduction Network News- July 2009

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  5. National Idling Reduction Network News- May 2012

    Broader source: Energy.gov [DOE]

    Newsletter with information on idling reduction regulations, idling reduction grants, idling reduction general news, summary of state ani-idling regulations, and upcoming meetings and events.

  6. FOIA Backlog Reduction Goals, fiscal years 2008,2009 and 2010. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Backlog Reduction Goals, fiscal years 2008,2009 and 2010. FOIA Backlog Reduction Goals, fiscal years 2008,2009 and 2010. FOIA Backlog Reduction Goals with respect to the numbers of FOIA requests and administrative appeals to be processed for the next three fiscal years as well as the number of requests and number of appeals it expects to be pending beyond the statutory time period at the end of each fiscal year for Fiscal Years 2008, 2009, and 2010. FOIA Backlog Reduction Goals,

  7. Integrated diesel engine NOx reduction technology development

    SciTech Connect (OSTI)

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  8. Pollution Prevention- Environmental Impact Reduction Checklists for NEPA/309 Reviewers

    Broader source: Energy.gov [DOE]

    The environmental review process under the National Environmental Policy Act (NEPA) provides a valuable opportunity for Federal agency NEPA/309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This Environmental Protection Agency guidance was prepared to assist NEPA/309 reviewers in incorporating pollution prevention into each step of the environmental review process, including scoping, mitigation, monitoring, and enforcement.

  9. CCS Project Permit Acquisition Protocols

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Matthews, Vince; McPherson, Brian

    2013-06-30

    Geologic carbon storage projects require a vast range of permits prior to deployment. These include land-access permits, drilling permits, seismic survey permits, underground injection control permits, and any number of local and state permits, depending on the location of the project. For the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project in particular, critical permits included site access permits, seismic survey permits, and drilling permits for the characterization well. Permits for these and other activities were acquired either prior to or during the project.

  10. project management | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    project management NNSA projects win Secretary's Achievement Awards for cost savings and efficiency NNSA was presented with two Department of Energy Secretary's Achievement Awards at a ceremony in Arlington, Va., on Wednesday. The awards, presented by Deputy Secretary of Energy Elizabeth Sherwood-Randall, commend NNSA on delivering the Y-12 Nuclear Facility Risk Reduction Project $5.7... NNSA's G2 Management Information System Wins Association for Enterprise Information's (AFEI) "Excellence

  11. RENOTER Project

    Broader source: Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  12. Project 1027697

    Office of Scientific and Technical Information (OSTI)

    William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US ...

  13. EGS Projects

    Broader source: Energy.gov [DOE]

    EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...

  14. Voluntary pollution reduction programs

    SciTech Connect (OSTI)

    Sears, E.B.

    1997-08-01

    Despite claims that the government is reducing the amount of environmental regulation, the sheer amount of regulatory language has actually increased yearly. Yet based on media reports and citizen claims, pollution appears to go unchecked. Citizens condemn a perceived lack of government regulation of industrial pollution, while industries find themselves mired in increasingly complex regulatory programs that are sometimes far removed from real world situations. US Environmental Protection Agency (EPA) decision-makers have responded to these concerns by designing regulatory programs that abandon traditional command-and-control regulatory schemes as ill-suited to today`s pollution problems and the interests of these stakeholders. This paper analyzes the use of voluntary pollution control programs in place of command-and-control regulation. It is proposed that voluntary programs may serve as carrots to entice regulated entities to reduce pollution, but that there are a number of hurdles to their effective implementation that preclude them from being embraced as effective environmental regulatory tools. This paper reviews why agencies have moved from command-and-control regulation and examines current voluntary pollution control programs. This paper also contemplates the future of such programs.

  15. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects » Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate

  16. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  17. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    None, None

    1982-09-01

    Report III, Volume 1 contains those specifications numbered A through J, as follows: General Specifications (A); Specifications for Pressure Vessels (C); Specifications for Tanks (D); Specifications for Exchangers (E); Specifications for Fired Heaters (F); Specifications for Pumps and Drivers (G); and Specifications for Instrumentation (J). The standard specifications of Bechtel Petroleum Incorporated have been amended as necessary to reflect the specific requirements of the Breckinridge Project, and the more stringent specifications of Ashland Synthetic Fuels, Inc. These standard specifications are available to the Initial Effort (Phase Zero) work performed by all contractors and subcontractors. Report III, Volume 1 also contains the unique specifications prepared for Plants 8, 15, and 27. These specifications will be substantially reviewed during Phase I of the project, and modified as necessary for use during the engineering, procurement, and construction of this project.

  18. Alternative Fuels Data Center: Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction on Google Bookmark Alternative Fuels Data Center: Idle Reduction on Delicious Rank Alternative Fuels Data Center: Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction on AddThis.com... More in this section... Idle Reduction Benefits

  19. Caterpillar MorElectric DOE Idle Reduction Demonstration Program

    SciTech Connect (OSTI)

    John Bernardi

    2007-09-30

    This project titled 'Demonstration of the New MorElectric{trademark} Technology as an Idle Reduction Solution' is one of four demonstration projects awarded by the US Department of Energy in 2002. The goal of these demonstration and evaluation projects was to gather objective in-use information on the performance of available idle reduction technologies by characterizing the cost; fuel, maintenance, and engine life savings; payback; and user impressions of various systems and techniques. In brief, the Caterpillar Inc. project involved applying electrically driven accessories for cab comfort during engine-off stops and for reducing fuel consumption during on-highway operation. Caterpillar had equipped and operated five new trucks with the technology in conjunction with International Truck and Engine Corporation and COX Transfer. The most significant result of the project was a demonstrated average idle reduction of 13.8% for the 5 truck MEI fleet over the control fleet. It should be noted that the control fleet trucks were also equipped with an idle reduction device that would start and stop the main engine automatically in order to maintain cab temperature. The control fleet idle usage would have been reduced by 3858 hours over the 2 year period with the MEI system installed, or approximately 2315 gallons of fuel less (calculations assume a fuel consumption of 0.6 gallons per hour for the 13 liter engine at idle). The fuel saved will be significantly larger for higher displacement engines without idle reduction equipment such as the engine auto start/stop device used by COX Transfer. It is common for engines to consume 1.0 gallons per hour which would increase the fuel savings to approximately 1260 gallons per truck per year of typical idling (1800 hours idle/yr).

  20. MHK Projects/Lock and Dam No 2 Hydroelectric Project | Open Energy...

    Open Energy Info (EERE)

    Capacity (MW) 0 Number of Devices Deployed 2 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  1. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  2. REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-09

    This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of � The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. � The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. � The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. � The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. � The Small ICBM (SICBM), or Midgetman, a road-mobile, single

  3. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  4. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation

  5. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    SciTech Connect (OSTI)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  6. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline. 

  7. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  8. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  9. Cloudnet Project

    SciTech Connect (OSTI)

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  10. Workforce Training for the Electric Power Sector: Map of Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in each State through the Workforce Training for the Electric Power Sector grants under the American Recovery and Reinvestment Act. Workforce Training for the Electric Power Sector: Map of Projects (11.23 MB) More Documents & Publications Smart Grid Investment Grants: Map of Projects Developing and Enhancing Workforce Training Programs: Number

  11. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  12. Lab resumes work on NMSSUP security project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NMSSUP Security Project Lab resumes work on NMSSUP security project The project adds fences, cameras, sensors, utility and access buildings, and other systems to the existing security infrastructure around the Lab's principal plutonium processing facility. February 6, 2013 When complete, these barriers will be a portion of the NMSSUP upgrade. When complete, these barriers will be a portion of the NMSSUP upgrade. (LA-UR-12-26312) The project integrates a number of security technologies for the

  13. Project Narrative

    SciTech Connect (OSTI)

    Driscoll, Mary C.

    2012-07-12

    The Project Narrative describes how the funds from the DOE grant were used to purchase equipment for the biology, chemistry, physics and mathematics departments. The Narrative also describes how the equipment is being used. There is also a list of the positive outcomes as a result of having the equipment that was purchased with the DOE grant.

  14. OCGen Module Mooring Project

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2015-02-06

    Ocean Renewable Power Company's OCGen Module Mooring Project provided an extensive research, design, development, testing and data collection effort and analysis conducted with respect to a positively buoyant, submerged MHK device secured to the seabed using a tensioned mooring system. Different analytic tools were evaluated for their utility in the design of submerged systems and their moorings. Deployment and testing of a prototype OCGen® system provided significant data related to mooring line loads and system attitude and station keeping. Mooring line loads were measured in situ and reported against flow speeds. The Project made a significant step in the development of designs, methodologies and practices related to floating and mooring of marine hydrokinetic (MHK) devices. Importantly for Ocean Renewable Power Company, the Project provided a sound basis for advancing a technically and commercially viable OCGen® Power System. The OCGen® Power System is unique in the MHK industry and, in itself, offers distinct advantages of MHK devices that are secured to the seabed using fixed structural frames. Foremost among these advantages are capital and operating cost reductions and increased power extraction by allowing the device to be placed at the most energetic level of the water column.

  15. U.S. Virgin Islands Transportation Petroleum Reduction Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transportation Petroleum Reduction Plan U.S. Virgin Islands Transportation Petroleum Reduction Plan This report, funded by DOE and prepared by EDIN's Transportation Working Group (TWG), aims to build on the "2030 USVI Transportation Master Plan" by describing how its recommended projects can be leveraged toward the 60% by 2025 goal. U.S. Virgin Islands Transportation Petroleum Reduction Plan (1.2 MB) More Documents & Publications U.S. Virgin Islands Energy Road Map:

  16. The institutional needs of joint implementation projects

    SciTech Connect (OSTI)

    Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.

    1995-10-21

    In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

  17. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  18. PROJECT PROFILE: Oregon State University

    Broader source: Energy.gov [DOE]

    Oregon State University will continue the development of a microchannel solar receiver, using supercritical carbon dioxide (sCO2) as the heat transfer fluid. The research will resolve key issues associated with the commercial viability of the technology, which allows for a radical reduction in the size of a solar central receiver. The project will culminate in a field test of a commercial scale receiver module with a surface area of approximately one square meter.

  19. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by

  20. ORAU Supports DOE Footprint Reduction Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORAU Supports DOE Footprint Reduction Efforts ORAU Supports DOE Footprint Reduction Efforts August 4, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - Disposing of old and contaminated buildings and remediating soil and groundwater across the Oak Ridge Reservation has long been a priority for the U.S. Department of Energy - Oak Ridge Office (ORO). Although much of the work-locally referred to as the Integrated Facility Disposition Project (IFDP)-wasn't expected to begin for another three to four years,