Powered by Deep Web Technologies
Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite)  

U.S. Energy Information Administration (EIA) Indexed Site

Report Period: Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite) Secure File Transfer option available at: (e.g., PO Box, RR) Electronic Transmission: The PC Electronic Data Reporting Option (PEDRO) is available. Zip Code: - If interested in software, call (202) 586-9659. Email form to: Fax form to: (202) 586-9772 - - Mail form to: Oil & Gas Survey - - U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 OOG.SURVEYS@eia.doe.gov Contact Name: Version No.: 2013.01 Date of this Report: Mo Day State: Year Phone No.: DOMESTIC CRUDE OIL FIRST PURCHASE REPORT Company Name: A completed form must be filed by the 30th calendar day following the end of the report

2

More on Finding a Single Number to Indicate Overall Performance of a Benchmark Suite  

E-Print Network (OSTI)

The topic of finding a single number to summarize overall performance over a benchmark suite is continuing to be a difficult issue 14 years after Smith’s paper [1]. While significant insight into the problem has been provided by Smith [1], Hennessey and Patterson [2], Cragon [3], etc, the research community still seems to be unclear on the correct mean to use for different performance metrics. How should metrics obtained from individual benchmarks be aggregated to present a summary of the performance over the entire suite? What are valid central tendency measures over the whole benchmark suite for speedup, CPI, IPC, MIPS, MFLOPS, cache miss rates, cache hit rates, branch misprediction rates, etc? Arithmetic mean has been touted to be appropriate for

Lizy Kurian John

2004-01-01T23:59:59.000Z

3

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

4

News from the Expo floor  

Science Conference Proceedings (OSTI)

Sustainability, the recession, and challenges to the biodiesel industry were three major topics raised by a number of exhibitors at the 101st AOCS Annual Meeting & Expo in Phoenix, Arizona, USA, May 16–19, 2010. News from the Expo floor Inform Magazine I

5

LANL Go Suite  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Go Suite LANL Go Suite LANL Go Suite The LANL Go Suite is a collection of packages, libraries, utilities, and software patches related to Google's Go programming language (http://www.golang.org/). September 24, 2013 software Available for thumbnail of Feynman Center (505) 665-9090 Email LANL Go Suite The LANL Go Suite is a collection of packages, libraries, utilities, and software patches related to Google's Go programming language (http://www.golang.org/). The LANL Go Suite largely takes a high-performance computing angle to Go by providing some of the mechanisms needed to use Go in a supercomputing environment. For instance, the LANL Go Suite provides a Go interface to PAPI, the University of Tennessee at Knoxville's Performance Application Programming Interface (http://icl.cs.utk.edu/papi/), which helps software developers identify

6

STAYS PNNL SUITE  

Energy Science and Technology Software Center (OSTI)

002851IBMPC00 STAYSL PNNL Suite  http://radiochemscieng.pnnl.gov/research_areas/research_area_description.asp?id=283 

7

BESTEST Test Suites  

NLE Websites -- All DOE Office Websites (Extended Search)

BESTEST Test Suites BESTEST (Building Energy Simulation TEST) is a method for testing, diagnosing, and validating the capabilities of building energy simulation programs. The...

8

Directed Test Suite Augmentation.  

E-Print Network (OSTI)

??Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those elements.… (more)

Xu, Zhihong

2013-01-01T23:59:59.000Z

9

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

10

APS Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

to: cee@aps.anl.gov SecurityPrivacy Notice APS Floor Coordinators LOM COORDINATORS CAT INFORMATION 431 A,B,D Vacant SRI-CAT, Sectors 1-3 C FC Office E SRI-CAT, Sector 4 432 A...

11

Sheraton Seattle Hotel Floor Plans  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL 1. LEVEL. MEETING INFORMATION.

12

Security Suites | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Suites Available by Internet Service Providers Comcast Comcast offers the Norton Security Suite with antivirus and firewall software for your protection, for no additional...

13

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

14

Control of human induced floor vibrations  

E-Print Network (OSTI)

With the growing demand for open, column-free floor spaces and the advances in material strength, floor vibration serviceability criterion has been of growing importance within the past 20-30 years. All floor systems are ...

Homen, Sean Manuel

2007-01-01T23:59:59.000Z

15

Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Floor area for Schools, including child day-care centres Pages using the property "Building...

16

Impact of Thermally Insulated Floors  

E-Print Network (OSTI)

Presently in Kuwait the code of practice for energy conservation in the air conditioned buildings implemented by the Ministry of Electricity and Water (MEW) which has been in effect since 1983 has no consideration taken for thermally insulating the floors of residential and commercial buildings with unconditioned basements. As a part of a comprehensive research program conducted by the Building and Energy Technologies Department of Kuwait Institute for Scientific Research for revision of the code this paper analyzes the effect of using un-insulated floors on the peak cooling demand and energy consumption of a middle income residential private villa and a onebedroom multi-story apartment building in Kuwait. These floors typically separate air-conditioned spaces with ambient environment or un-conditioned spaces. This was done using the ESP-r, a building's energy simulation program, in conjunction with typical meteorological year for Kuwait. The study compared such typical floors with three types of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case of the residential villas.

Alghimlas, F.; Omar, E. A.

2004-01-01T23:59:59.000Z

17

Property:Building/FloorAreaRestaurants | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the property "Building/FloorAreaRestaurants" Showing 13 pages using this property. S Sweden Building 05K0007 + 1,990 + Sweden Building 05K0008 + 300 + Sweden Building 05K0013 + 215 + Sweden Building 05K0038 + 345 + Sweden Building 05K0046 + 200 + Sweden Building 05K0058 + 330 + Sweden Building 05K0060 + 256 + Sweden Building 05K0065 + 520 + Sweden Building 05K0081 + 98 + Sweden Building 05K0089 + 155 + Sweden Building 05K0098 + 170 + Sweden Building 05K0105 + 2,450 + Sweden Building 05K0114 + 400 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaRestaurants&oldid=285973#SMWResults"

18

Property:Building/FloorAreaMiscellaneous | Open Energy Information  

Open Energy Info (EERE)

FloorAreaMiscellaneous FloorAreaMiscellaneous Jump to: navigation, search This is a property of type Number. Floor area for Miscellaneous Pages using the property "Building/FloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 + 3,550 + Sweden Building 05K0016 + 445 + Sweden Building 05K0021 + 250 + Sweden Building 05K0025 + 254 + Sweden Building 05K0035 + 1,629 + Sweden Building 05K0037 + 175 + Sweden Building 05K0040 + 869 + Sweden Building 05K0044 + 1,234 + Sweden Building 05K0047 + 1,039 + Sweden Building 05K0051 + 1,489.92 + Sweden Building 05K0052 + 200 + Sweden Building 05K0062 + 140 + Sweden Building 05K0063 + 654 + Sweden Building 05K0068 + 746 + Sweden Building 05K0071 + 293 +

19

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

20

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

NLE Websites -- All DOE Office Websites (Extended Search)

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NBTC Safety Orientation Second Floor Duffield Hall  

E-Print Network (OSTI)

­ EVACUATE THE BUILDING. IF THERE IS A GAS ALARM ­ EVACUATE THE FLOOR. IF THE GAS ALARM IS ON ALL FLOORS&S) - Laser Safety - Centrifuge Rotor Safety - Fire Extinguisher Education · ENTER THE LABS BY SWIPING YOUR ID

Wu, Mingming

22

Sheraton Seattle Hotel Floor Plans - TMS  

Science Conference Proceedings (OSTI)

LEARN • NETWORK • ADVANCE. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL. PIKE ST. TOWER. UNION ST. TOWER.

23

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency  

Open Energy Info (EERE)

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Agency/Company /Organization: Pew Center on Global Climate Change Sector: Energy Focus Area: Energy Efficiency Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.pewclimate.org/docUploads/PEW_EnergyEfficiency_FullReport.pdf References: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency[1] FROM SHOP FLOOR TO TOP FLOOR: BEST BUSINESS PRACTICES IN ENERGY EFFICIENCY. Pew Center on Global Climate Change. William R. Prindle. April 2010. In the last decade, rising and volatile energy prices coupled with

24

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

25

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

26

Property:Building/FloorAreaShops | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property "Building/FloorAreaShops" Showing 19 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0009 + 800 + Sweden Building 05K0012 + 1,587 + Sweden Building 05K0013 + 154 + Sweden Building 05K0017 + 3,150 + Sweden Building 05K0018 + 245 + Sweden Building 05K0019 + 5,600 + Sweden Building 05K0035 + 292 + Sweden Building 05K0046 + 530 + Sweden Building 05K0062 + 940 + Sweden Building 05K0081 + 530 + Sweden Building 05K0086 + 920 + Sweden Building 05K0088 + 1,170 + Sweden Building 05K0089 + 976 + Sweden Building 05K0092 + 360 +

27

Development of Energy Trading Floors - Implications for Company Operations and Regional Energy Markets: Report Series on Fuel and Po wer Market Integration  

Science Conference Proceedings (OSTI)

A variety of different firms have established energy trading floors over the past several years, to such an extent that trading floors are increasingly being viewed as a mandatory part of the generation business. Increasing in number and scope, trading floors are undergoing rapid evolution, with inevitable -- but as yet uncertain -- impacts on alignment of fuel and power prices. This report provides a snapshot of the development and implications of energy trading floors, drawing on leading examples from ...

1998-04-15T23:59:59.000Z

28

Property:Building/FloorAreaUnheatedRentedPremises | Open Energy Information  

Open Energy Info (EERE)

FloorAreaUnheatedRentedPremises FloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but rented-out premises (garages) < 10 °C Pages using the property "Building/FloorAreaUnheatedRentedPremises" Showing 6 pages using this property. S Sweden Building 05K0021 + 700 + Sweden Building 05K0050 + 760 + Sweden Building 05K0058 + 1,200 + Sweden Building 05K0080 + 2,000 + Sweden Building 05K0081 + 700 + Sweden Building 05K0102 + 234 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaUnheatedRentedPremises&oldid=285964#SMWResults" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

29

Property:Building/FloorAreaOffices | Open Energy Information  

Open Energy Info (EERE)

FloorAreaOffices FloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property "Building/FloorAreaOffices" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 5,000 + Sweden Building 05K0003 + 4,360 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,150 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 21,765 + Sweden Building 05K0008 + 7,500 + Sweden Building 05K0009 + 33,955 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 14,080 + Sweden Building 05K0012 + 20,978 + Sweden Building 05K0013 + 15,632 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,101 +

30

BRC-CBEFF Conformance Test Suite  

Science Conference Proceedings (OSTI)

... technical interfaces), and the development of associated conformance testing architectures and testing suites designed to test for conformance to ...

2013-08-01T23:59:59.000Z

31

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

32

Building Energy Software Tools Directory: EEM Suite  

NLE Websites -- All DOE Office Websites (Extended Search)

EEM Suite EEM Suite EEM Suite Logo Enables large companies to proactively monitor, analyze and manage energy costs and consumption. EEM Suite combines analysis and reporting tools; real-time, event-driven alerts; and Web-based enterprise visibility into a single solution so users can control their energy costs and usage. EEM Suite leverages meter, billing, production, real-time price, rate and weather information to drive significant energy and water reductions. Users can control utility costs through timely identification of billing errors and overcharges, drive accountability through accurate cost allocation and tenant rebilling, monitor performance against budgets, predict energy requirements to assist in key operational activities planning, improve operational efficiency through continuous facility and

33

Paper Number  

Science Conference Proceedings (OSTI)

... like an ink jet printer it can direct a firing ... gas of the 40mm air delivered generator is approximately ... 4350 N. Fairfax Drive Suite 810 Arlington Virginia ...

2011-11-01T23:59:59.000Z

34

Kalman-type positioning filters with floor plan information  

Science Conference Proceedings (OSTI)

A family of Kalman-type filters that estimate the user's position indoors, using range measurements and floor plan data, is presented. The floor plan information is formulated as a set of linear constraints and is used to truncate the Gaussian posterior ... Keywords: Kalman filter, floor plan, inequality constraints, nonlinear filtering, positioning

Tommi Perälä; Simo Ali-Löytty

2008-11-01T23:59:59.000Z

35

Floor Support | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Floor Support Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 Scheduling X-ray/VUV Macromolecular Crystallography Cathy Knotts Lisa Dunn 120 120 3191 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858 Beam Lines/ X-ray Mechanical Chuck Troxel, Jr. 120 2700 Beam Lines/ X-ray-VUV Electronics Alex Garachtchenko 120 3440 Beam Lines/ Macromolecular Crystallography Mike Soltis 277 3050 SMB XAS Beam Lines & Equipment Matthew Latimer Erik Nelson 274 274 4944 3938 MEIS XAS Beam Lines & Equipment Matthew Latimer

36

Achieving effective floor control with a low-bandwidth gesture-sensitive videoconferencing system  

Science Conference Proceedings (OSTI)

Multiparty videoconferencing with even a small number of people is often infeasible due to the high network bandwidth required. Bandwidth can be significantly reduced if most of the advantages of using full-motion video can be achieved with low-frame-rate ... Keywords: floor control, frame rate, multiparty videoconferencing

Milton Chen

2002-12-01T23:59:59.000Z

37

User ESH Support (UES)/Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

User ESH Support (UES) / Floor Coordinators User ESH Support (UES) / Floor Coordinators Bruce Glagola, Group Leader Building 431, Room Z005 Phone: 630-252-9797 Fax: 630-252-1664 E-mail: glagola@aps.anl.gov Nena Moonier Building 431, Room Z008 Phone: 630-252-8504 Fax: 630-252-1664 E-mail: nmoonier@aps.anl.gov Karen Kucer Building 401, Room C3257C Phone: 630-252-9091 Fax: 630-252-5948 E-mail: kucer@aps.anl.gov Floor Coordinators Bruno Fieramosca Building 432, Room C001 Phone: 630-252-0201 Fax: 630-252-1664 On-site page: 4-0201 E-mail: bgf@aps.anl.gov Shane Flood Building 436, Room C001 Phone: 630-252-0600 Fax: 630-252-1664 On-site pager: 4-0600 E-mail: saf@aps.anl.gov Patti Pedergnana Building 434, Room C001 Phone: 630-252-0401 Fax: 630-252-1664 On-site pager: 4-0401 E-mail: neitzke@aps.anl.gov Wendy VanWingeren Building 435, Room C001

38

Introduction to the HPC Challenge Benchmark Suite  

Science Conference Proceedings (OSTI)

The HPC Challenge benchmark suite has been released by the DARPA HPCS program to help define the performance boundaries of future Petascale computing systems. HPC Challenge is a suite of tests that examine the performance of HPC architectures using kernels with memory access patterns more challenging than those of the High Performance Linpack (HPL) benchmark used in the Top500 list. Thus, the suite is designed to augment the Top500 list, providing benchmarks that bound the performance of many real applications as a function of memory access characteristics e.g., spatial and temporal locality, and providing a framework for including additional tests. In particular, the suite is composed of several well known computational kernels (STREAM, HPL, matrix multiply--DGEMM, parallel matrix transpose--PTRANS, FFT, RandomAccess, and bandwidth/latency tests--b{sub eff}) that attempt to span high and low spatial and temporal locality space. By design, the HPC Challenge tests are scalable with the size of data sets being a function of the largest HPL matrix for the tested system.

Luszczek, Piotr; Dongarra, Jack J.; Koester, David; Rabenseifner,Rolf; Lucas, Bob; Kepner, Jeremy; McCalpin, John; Bailey, David; Takahashi, Daisuke

2005-04-25T23:59:59.000Z

39

Ubiquitous Indoor Localization and Worldwide Automatic Construction of Floor Plans  

E-Print Network (OSTI)

Although GPS has been considered a ubiquitous outdoor localization technology, we are still far from a similar technology for indoor environments. While a number of technologies have been proposed for indoor localization, they are isolated efforts that are way from a true ubiquitous localization system. A ubiquitous indoor positioning system is envisioned to be deployed on a large scale worldwide, with minimum overhead, to work with heterogeneous devices, and to allow users to roam seamlessly from indoor to outdoor environments. Such a system will enable a wide set of applications including worldwide seamless direction finding between indoor locations, enhancing first responders' safety by providing anywhere localization and floor plans, and providing a richer environment for location-aware social networking applications. We describe an architecture for the ubiquitous indoor positioning system (IPS) and the challenges that have to be addressed to materialize it. We then focus on the feasibility of automating ...

Youssef, Moustafa; Elkhouly, Reem; Lotfy, Amal

2012-01-01T23:59:59.000Z

40

Natural Gas Price Uncertainty: Establishing Price Floors  

Science Conference Proceedings (OSTI)

This report presents the results of comprehensive calculations of ceiling and floor prices for natural gas. Ceiling prices are set by the price levels at which it is more economic to switch from natural gas to residual fuel oil in steam units and to distillate in combined cycle units. Switching to distillate is very rare, whereas switching to fuel oil is quite common, varying between winter and summer and increasing when natural gas prices are high or oil prices low. Monthly fuel use was examined for 89 ...

2007-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SHARP: Reactor Performance and Safety Simulation Suite  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARP SHARP Argonne National Laboratory's Reactor Performance and Safety Simulation Suite SHARP could save millions in nuclear reactor design and development... The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) suite of codes enables virtual design and engineering of nuclear plant behavior that would be impractical from a traditional experimental approach. ...by leveraging the computational power of one of the world's most powerful supercomputers. Exploiting the power of Argonne Leadership Computing Facility's near-petascale computers, researchers have developed a set of simulation tools that provide a highly detailed description of the reactor core and the nuclear plant behavior. This enables the efficient and precise design of tomorrow's safe and clean nuclear energy sources.

42

In Outer Space without a Space Suit?  

E-Print Network (OSTI)

The author proposes and investigates his old idea - a living human in space without the encumbrance of a complex space suit. Only in this condition can biological humanity seriously attempt to colonize space because all planets of Solar system (except the Earth) do not have suitable atmospheres. Aside from the issue of temperature, a suitable partial pressure of oxygen is lacking. In this case the main problem is how to satiate human blood with oxygen and delete carbonic acid gas (carbon dioxide). The proposed system would enable a person to function in outer space without a space suit and, for a long time, without food. That is useful also in the Earth for sustaining working men in an otherwise deadly atmosphere laden with lethal particulates (in case of nuclear, chemical or biological war), in underground confined spaces without fresh air, under water or a top high mountains above a height that can sustain respiration.

Alexander Bolonkin

2008-06-24T23:59:59.000Z

43

AEDG Implementation Recommendations: Floors | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Floors Floors The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on mass floors; steel joist or wood frame floors; slab-on-grade floors. Publication Date: Wednesday, May 13, 2009 air_floors.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies U.S. Department of Energy

44

Energy Saving in Office Building by Floor Integration System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 -...

45

Property:Building/FloorAreaChurchesChapels | Open Energy Information  

Open Energy Info (EERE)

Churches and chapels Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaChurchesChapels&oldid285978" What links here Related changes Special pages...

46

Property:Building/FloorAreaGroceryShops | Open Energy Information  

Open Energy Info (EERE)

for Grocery shops Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaGroceryShops&oldid286018" What links here Related changes Special pages...

47

The bioenergetics of walking and running in space suits  

E-Print Network (OSTI)

Space-suited activity is critical for human spaceflight, and is synonymous with human planetary exploration. Space suits impose kinematic and kinetic boundary conditions that affect movement and locomotion, and in doing ...

Carr, Christopher E. (Christopher Edward), 1976-

2005-01-01T23:59:59.000Z

48

Comparing non-adequate test suites using coverage criteria  

Science Conference Proceedings (OSTI)

A fundamental question in software testing research is how to compare test suites, often as a means for comparing test-generation techniques. Researchers frequently compare test suites by measuring their coverage. A coverage criterion C provides a set ... Keywords: Coverage criteria, non-adequate test suites

Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour, Darko Marinov

2013-07-01T23:59:59.000Z

49

Notices Disabled, 1401 S. Clark Street, Suite  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 Federal Register 13 Federal Register / Vol. 78, No. 240 / Friday, December 13, 2013 / Notices Disabled, 1401 S. Clark Street, Suite 10800, Arlington, Virginia 22202-4149. FOR FURTHER INFORMATION CONTACT: Barry S. Lineback, Telephone: (703) 603-7740, Fax: (703) 603-0655, or email CMTEFedReg@AbilityOne.gov. SUPPLEMENTARY INFORMATION: Addition On 6/28/2013 (78 FR 38952-38953), the Committee for Purchase From People Who Are Blind or Severely Disabled published notice of proposed addition to the Procurement List. After consideration of the material presented to it concerning capability of qualified nonprofit agency to provide the service and impact of the addition on the current or most recent contractors, the Committee has determined that the service listed below is suitable for procurement by the

50

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

51

Minimizing test suites in software product lines using weight-based genetic algorithms  

Science Conference Proceedings (OSTI)

Test minimization techniques aim at identifying and eliminating redundant test cases from test suites in order to reduce the total number of test cases to execute, thereby improving the efficiency of testing. In the context of software product line, ... Keywords: fault detection capability, feature pairwise coverage, test minimization, weight-based gas

Shuai Wang; Shaukat Ali; Arnaud Gotlieb

2013-07-01T23:59:59.000Z

52

NSLS-II Source Properties and Floor Layout  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Source Properties and Floor Layout NSLS-II Source Properties and Floor Layout April 12, 2010 Contents Basic Storage Ring Parameters Basic and Advanced Source Parameters Brightness Flux Photon Source Size and Divergence Power Infrared Sources Distribution of Sources Available for User Beamlines Floor Layout This document provides a summary of the current NSLS-II source and floor layout parameters. For a more complete description of the NSLS-II accelerator properties planned for NSLS-II, see the NSLS-II Preliminary Design Report Basic NSLS-II Storage Ring Parameters at NSLS-II website. We note that this document summarizes the present status of the design, but that the design continues to be refined and that these parameters may change as part of this process. NSLS-II is designed to deliver photons with high average spectral brightness in the 2 keV to 10 keV

53

Production system improvement : floor area reduction and cycle time analysis  

E-Print Network (OSTI)

A medical device company challenged a research team to reduce the manufacturing floor space required for an occlusion system product by one third. The team first cataloged equipment location and size, detailed the processes ...

Peterson, Jennifer J. (Jennifer Jeanne)

2012-01-01T23:59:59.000Z

54

Moisture Control in Insulated Raised Floor Systems in Southern Louisiana  

E-Print Network (OSTI)

polyisocyanurate foam, open-cell sprayed polyurethane foams of vary- ing vapor permeance, closed-cell sprayed in guidance for insulating raised floors in the hot and humid climate of the Gulf Houses with pier foundations

55

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

56

A Test Suite Generator For Struts Based Applications.  

E-Print Network (OSTI)

??Testing web-based enterprise applications requires the use of automated testing frameworks. The testing framework's ability to run suites of test cases through development ensures enhancements… (more)

Jackson, Gregory M.

2004-01-01T23:59:59.000Z

57

On test suite composition and cost-effective regression testing  

E-Print Network (OSTI)

Regression testing is an expensive testing process used to re-validate software as it evolves. Various methodologies for improving regression testing processes have been explored, but the cost-effectiveness of these methodologies has been shown to vary with characteristics of regression test suites. One such characteristic involves the way in which test inputs are composed into test cases within a test suite. This article reports the results of controlled experiments examining the effects of two factors in test suite composition — test suite granularity and test input grouping — on the costs and benefits of several regression-testing-related methodologies: retest-all, regression test selection, test suite reduction, and test case prioritization. These experiments consider the application of several specific techniques, from each of these methodologies, across ten releases each of two substantial software systems, using seven levels of test suite granularity and two types of test input grouping. The effects of granularity, technique, and grouping on the cost and fault-detection effectiveness of regression testing under the given methodologies are analyzed. This analysis shows that test suite granularity significantly affects several cost-benefit factors for the methodologies considered, while test input grouping has limited effects. Further, the results expose essential tradeoffs affecting the relationship between test suite design and regression testing cost-effectiveness, with several implications for practice. 1

Gregg Rothermel; Sebastian Elbaum; Alexey Malishevsky; Praveen Kallakuri

2004-01-01T23:59:59.000Z

58

Improving the effectiveness of test suite reduction for user-session-based testing of web applications  

Science Conference Proceedings (OSTI)

Context: Test suite reduction is the problem of creating and executing a set of test cases that are smaller in size but equivalent in effectiveness to an original test suite. However, reduced suites can still be large and executing all the tests in a ... Keywords: Ordering reduced suites, Test suite prioritization, Test suite reduction, User-session-based testing, Web application testing

Sreedevi Sampath; Renée C. Bryce

2012-07-01T23:59:59.000Z

59

Energy Saving in Office Building by Floor Integration System: Reducing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Naoya Motegi Information Technology that is featured by standard communication protocol like Lon Works, BACnet is very useful for managing building systems. Now we can collect much data quickly and easily and to analyze them in detail with this technology. Under the circumstances in that saving energy and reducing CO2 are required strongly, important thing is finding the effective information for building operation and control from collected data and the analysis of them. In our project, the floor integration controller that integrates the each building systems was proposed. It

60

Building Energy Software Tools Directory: SunAngle Professional Suite  

NLE Websites -- All DOE Office Websites (Extended Search)

SunAngle Professional Suite SunAngle Professional Suite SunAngle Professional logo. More sophisticated, robust, and well-documented version of SunAngle for people interested in better understanding the calculation methodology or developing their own solar angle calculation tools. The Professional Suite includes well-documented HTML/JavaScript and Microsoft Excel versions of SunAngle, plus a detailed technical manual explaining how to perform all of the underlying calculations. Screen Shots Keywords sun angle, solar calculator Validation/Testing Outputs of the SunAngle Professional Suite were compared to published standard sources of solar angle data; this is documented in the SunAngle Technical Manual. Expertise Required Knowledge of HTML, JavaScript, and/or Microsoft Excel, if the user wishes

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PREVENTIVE CONSERVATION: A CONCEPT SUITED TO THE CONSERVATION OF EARTHEN  

E-Print Network (OSTI)

PREVENTIVE CONSERVATION: A CONCEPT SUITED TO THE CONSERVATION OF EARTHEN ARCHITECTURAL HERITAGE and Construction Key words: Preventive conservation, traditional conservation practices, risk reduction, heritage management Abstract The concept of "preventive conservation" is relatively old as it has already been

Recanati, Catherine

62

The Extreme Benchmark Suite : measuring high-performance embedded systems  

E-Print Network (OSTI)

The Extreme Benchmark Suite (XBS) is designed to support performance measurement of highly parallel "extreme" processors, many of which are designed to replace custom hardware implementations. XBS is designed to avoid many ...

Gerding, Steven (Steven Bradley)

2005-01-01T23:59:59.000Z

63

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

64

Building Energy Software Tools Directory: Right-Suite Residential for  

NLE Websites -- All DOE Office Websites (Extended Search)

Right-Suite Residential for Windows Right-Suite Residential for Windows Right-Suite Residential for Windows logo. All-in-one HVAC software performs residential loads calculations, duct sizing, energy analysis, equipment selection, cost comparison calculations, and geothermal loop design. Also allows you to design your own custom proposals. Used for system design, for sales representation, and for quotation preparations. Buy only what you need. Unused functions are shipped as demos, so the program can grow with your needs. Keywords residential loads calculations, duct sizing, energy analysis, HVAC equipment selection, system design Validation/Testing N/A Expertise Required Knowledge of general HVAC concepts. High level of computer literacy not required. Users Over 10,000 users of Right-J loads.

65

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

DOE Green Energy (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

66

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot's motion when they are depressed. Paths for the robot are preprogrammed and the robot's motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-01-01T23:59:59.000Z

67

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot`s motion when they are depressed. Paths for the robot are preprogrammed and the robot`s motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-12-31T23:59:59.000Z

68

PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE  

DOE Green Energy (OSTI)

Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

Douglas C. Hittle

2002-10-01T23:59:59.000Z

69

Number Description Administrative  

E-Print Network (OSTI)

Public Warehousing --Including Farm ProductsSUITE HOTELS), Refrigerated Goods, Household Goods Exclude 4900 Utilities --Electric, Gas, Water, Sanitary Wholesale Trade - Durable Goods Exclude Exclude

70

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

2NT00041628 2NT00041628 Final Report Covering research during the period 1 June, 2002 through 30 September, 2008 Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project Submitted by: University of Mississippi Center for Marine Resources and Environmental Technology 310 Lester Hall, University, MS 38677 Principal Authors: J. Robert Woolsey, Thomas M. McGee, Carol B. Lutken Prepared for: United States Department of Energy National Energy Technology Laboratory January, 2009 Office of Fossil Energy ii SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT DOE Award Number DE-FC26-02NT41628 FINAL TECHNICAL REPORT

71

A Test Suite for GCMs: An Intercomparison of 11  

E-Print Network (OSTI)

A Test Suite for GCMs: An Intercomparison of 11 Dynamical Cores Christiane Jablonowski1, PeterSandia National Laboratories PDEs on the Sphere Workshop, Santa Fe Apr/28/2009 #12;Motivation · Test standardized & easy-to-use analysis techniques · Idea: Establish a collection of test cases that finds broad

Jablonowski, Christiane

72

Polysemy and sense proximity in the Senseval-2 test suite  

Science Conference Proceedings (OSTI)

We report on an empirical study of sense relations in the Senseval-2 test suite. We apply and extend the method described in (Resnik and Yarowsky, 1999), estimating proximity of sense pairs from the evidence collected from native-speaker translations ...

Irina Chugur; Julio Gonzalo; Felisa Verdejo

2002-07-01T23:59:59.000Z

73

DYNA3D/ParaDyn Regression Test Suite Inventory  

Science Conference Proceedings (OSTI)

The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

Lin, J I

2011-01-25T23:59:59.000Z

74

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

75

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

76

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

77

The Extreme Benchmark Suite: Measuring High-Performance Embedded Systems  

E-Print Network (OSTI)

The Extreme Benchmark Suite (XBS) is designed to support performance measurement of highly parallel “extreme ” processors, many of which are designed to replace custom hardware implementations. XBS is designed to avoid many of the problems that occur when using existing benchmark suites with nonstandard and experimental architectures. In particular, XBS is intended to provide a fair comparison of a wide range of architectures, from general-purpose processors to hard-wired ASIC implementations. XBS has a clean modular structure to reduce porting effort, and is designed to be usable with slow cycle-accurate simulators. This work presents the motivation for the creation of XBS and describes in detail the XBS framework. Several benchmarks implemented with this framework are discussed, and these benchmarks are used to compare a standard platform, an experimental architecture, and custom

Steven Gerding; Krste Asanovi?

2005-01-01T23:59:59.000Z

78

Revel8or: Model Driven Capacity Planning Tool Suite  

SciTech Connect

Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of design diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.

Zhu, Liming; Liu, Yan; Bui, Ngoc B.; Gorton, Ian

2007-05-31T23:59:59.000Z

79

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

80

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RIN Number 1904-AB68  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Procurement of Energy Efficient Products Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209

82

RIN Number 1904-AB68  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752

83

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte’s measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, G.

2012-08-03T23:59:59.000Z

84

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte’s measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E.

2012-08-01T23:59:59.000Z

85

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.

Shine, E.

2012-03-14T23:59:59.000Z

86

Statistical Analysis Of Tank 5 Floor Sample Results  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E. P.

2012-08-01T23:59:59.000Z

87

Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example  

SciTech Connect

This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

2011-12-01T23:59:59.000Z

88

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

89

Spherical Harmonic Solutions to the 3D Kobayashi Benchmark Suite  

SciTech Connect

Spherical harmonic solutions of order 5, 9 and 21 on spatial grids containing up to 3.3 million cells are presented for the Kobayashi benchmark suite. This suite of three problems with simple geometry of pure absorber with large void region was proposed by Professor Kobayashi at an OECD/NEA meeting in 1996. Each of the three problems contains a source, a void and a shield region. Problem 1 can best be described as a box in a box problem, where a source region is surrounded by a square void region which itself is embedded in a square shield region. Problems 2 and 3 represent a shield with a void duct. Problem 2 having a straight and problem 3 a dog leg shaped duct. A pure absorber and a 50% scattering case are considered for each of the three problems. The solutions have been obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The Ardra code takes advantage of a two-level parallelization strategy, which combines message passing between processing nodes and thread based parallelism amongst processors on each node. All calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.

Brown, P.N.; Chang, B.; Hanebutte, U.R.

1999-12-29T23:59:59.000Z

90

Integration of APECS and VE-Suite for Data Overlay  

Science Conference Proceedings (OSTI)

In the design of advanced power generation facilities, process simulation tools are being utilized to model plant behavior and quickly analyze results. While such tools enable investigation of crucial aspects of plant design, typical commercial process simulators still do not explore some plant design information, including high-fidelity data from computational fluid dynamics (CFD) models of complex thermal and fluid flow phenomena, economics data used for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Software tools must be created that allow disparate sources of information to be integrated for facilitating accurate and effective plant design. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus®) and high-fidelity equipment simulation (e.g., FLUENT®). In this paper, the integration of the high-fidelity CFD data with overall process data in a virtual power simulation environment will be described. More specifically, we will highlight VE-Suite, an open-source virtual engineering (VE) software toolkit, and its support of Aspen Plus® Hierarchy blocks via the VE-AspenUnit.

McCorkel, Doug (Iowa State University, Ames, IA); Bivins, Gerrick (Iowa State University, Ames, IA); Jordan, Terry; Bryden, Mark (Iowa State University, Ames, IA); Zitney, S.E.; Widmann, John (ANSYS, Lebanon, NH); Osawe, Maxwell

2008-06-01T23:59:59.000Z

91

PHAST (PHAGE ASSEMBLY SUITE AND TUTORIAL): A WEB-BASED GENOME ASSEMBLY TEACHING TOOL  

E-Print Network (OSTI)

PHAST (PHAGE ASSEMBLY SUITE AND TUTORIAL): A WEB-BASED GENOME as genome assembly. PHAST (Phage Assembly Suite and Tutorial) is an online set small phage genomes of their own. With PHAST, entry-level biology students learn

Campbell, A. Malcolm

92

Robotic Joint Torque Testing: A Critical Tool in the Development of Pressure Suit Mobility Elements  

E-Print Network (OSTI)

Pressure suits allow pilots and astronauts to survive in extreme environments at the edge of Earth’s atmosphere and in the vacuum of space. One obstacle that pilots and astronauts face is that gas-pressurized suits stiffen ...

Meyen, Forrest Edward

93

Space suit simulator for partial gravity extravehicular activity experimentation and training  

E-Print Network (OSTI)

During human space exploration, mobility is extremely limited when working inside a pressurized space suit. Astronauts perform extensive training on Earth to become accustomed to space suit-imposed high joint torques and ...

Gilkey, Andrea L. (Andrea Lynn)

2012-01-01T23:59:59.000Z

94

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

95

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

96

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network (OSTI)

In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions.

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

97

Creating suites of models with system entity structure: global warming example  

Science Conference Proceedings (OSTI)

We describe how to develop a suite of models in the MS4 Modeling Environment. The approach employs the operation of merging of System Entity Structures supported by the environment. After construction, the suite of models can be hosted on Model Store, ... Keywords: component-based modeling, suite of models, system entity structure, systems of systems

Bernard P. Zeigler, Chungman Seo, Robert Coop, Doohwan Kim

2013-04-01T23:59:59.000Z

98

User Guide for the STAYSL PNNL Suite of Software Tools  

SciTech Connect

The STAYSL PNNL software suite provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations.

Greenwood, Lawrence R.; Johnson, Christian D.

2013-02-27T23:59:59.000Z

99

MDM Project: Analysis of the Micromechanics Damage Model Suite  

E-Print Network (OSTI)

This report extends a previous study of core algorithms and portability considerations associated with the Micromechanics Damage Model computer software developed by the AFRL Materials Directorate at Wright-Patterson Air Force Base. 1 The MDM analysis suite is comprised of four fracture mechanics codes used to establish design criteria for newly developed composite materials, particularly for brittle, heat-resistant composites associated with the fabrication of turbine blades. The MDM codes are based on a semi-analytical approach in which single coated fibers and the surrounding composite material are represented as a nested set of concentric shells (Fig. 1). Stresses and displacements at prescribed points along the length of the cylinder are determined by evaluation of a polynomial function. Numerically challenging conditions arise during the construction of this function. The calculation of matrix exponentials in terms of the full spectrum of eigenvalues associated with the pri...

D. C. O' neal; R. Luczak; N. J. Pagano; H. W. Brown Iii; G. P. Tandon

2000-01-01T23:59:59.000Z

100

PUBLIC ACCESS: 955 LEnfant Plaza North, SW, Suite 1500, Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

th th Meeting Unconventional Resources Technology Advisory Committee July 14, 2009 1:00 p.m. EASTERN WebEx/Conference Call Meeting PUBLIC ACCESS: 955 L'Enfant Plaza North, SW, Suite 1500, Washington, DC AGENDA 12:30 Registration; Begin call in to 800-number and login to WebEx Members, Chair, Designated Federal Officer, and Committee Manager 1:00 Call to Order - Welcome Chris Hall, Committee Chair Member Roll Call and the presence of a quorum Elena Melchert Committee Manager Meeting purpose and review of the agenda; Insights regarding future funding and other pending legislation; Draft 2010 Annual Plan delivery, and pending meetings in September and October 2009 Guido DeHoratiis Designated Federal Officer 1:25 Report from the Standing Subcommittee and

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases  

Science Conference Proceedings (OSTI)

A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

Najjar, F M; Solberg, J; White, D

2008-04-17T23:59:59.000Z

102

LLW Notes, Volume 12, Number 7  

SciTech Connect

Contents include articles entitled: House votes 309 to 107 to approve Texas compact; Nebraska governor hosts LLRW meeting; Southeast Compact considers funding proposal; Chem-Nuclear explores options re SC revenue requirements; Legislation sets revenue requirements for Barnwell; TCC meets: Supports CA request for technical assistance; DOE approves part of California`s technical assistance request; State legislators discuss LLRW management for OH, IL, NC; Washington governor re Potential New Hanford Role; Federal court enjoins DOE from excluding WCS on new disposal; Appellate court in favor of DOE in surcharge rebates dispute; Hearing set for October in Ward Valley case; court rejects federal motion to dismiss Ward Valley suit; NE sues commission re veto over export authorizations; US Supreme Court dismisses line-item veto challenge; Department of Interior Inspector General investigation requested; USEC privatization plan approved; DOD finalizes LLRW disposal charter; Clinton nominates six DOE appointees; Congress moves FUSRAP to Army Corps of Engineers; Schaefer named interim director of USGS: Nichols leaves EPA: NRC Commissioner Rogers` term expires; NRC: CA ``Well-Quantified`` to license Ward Valley facility; EPA objects to state permit for Louisiana facility; Petitions submitted to EPA oppose Shintech permits; ECOS draft recommendations re Enviro programs; Legislation introduced to prohibit spent fuel shipments to the Goshutes; and HLW legislation ready for floor action.

Norris, C.; Brown, H. [eds.; Gedden, R.; Lovinger, T.; Scheele, L.; Shaker, M.A.

1997-09-01T23:59:59.000Z

103

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

104

Building Energy Software Tools Directory: HomeEnergySuite  

NLE Websites -- All DOE Office Websites (Extended Search)

depending upon the hosts configuration choices, and most are drop down selections. Typical inputs are home style, size, year built, number of occupants, location (usually...

105

Glossary Term - Avogadro's Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Number Previous Term (Atomic Number) Glossary Main Index Next Term (Beta Decay) Beta Decay Avogadro's Number Avogadro's number is the number of particles in one mole of a...

106

OMB No. 1905-0165 Expiration Date: 1/31/2013 Version No.:2011.01 ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076: ... Kerosene & Light Gas Oils: 830 Heavy Gas Oils: 840 Residuum: 850

107

OMB No. 1905-0165 Expiration Date: 12/31/2011 Version No.:2009.01 ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Secure File Transfer: ... Kerosene & light gas oils 830 Heavy Gas Oils 840 Residuum 850

108

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-815 MONTHLY BULK ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076. ... Kerosene & Light Gas Oils. 830: Heavy Gas Oils. 840: Residuum. 850:

109

Production system improvement at a medical devices company : floor layout reduction and manpower analysis  

E-Print Network (OSTI)

Due to the low demand and the need to introduce other production lines in the floor, the medical devices company wants to optimize the utilization of space and manpower for the occlusion system product. This thesis shows ...

AlEisa, Abdulaziz A. (Abdulaziz Asaad)

2012-01-01T23:59:59.000Z

110

Pressure Fluctuations on the Open-Ocean Floor off the Gulf of California: Tides, Earthquakes, Tsunamis  

Science Conference Proceedings (OSTI)

This paper supplements an initial article on sea-floor pressure observations conducted with a sensitive though not “perfectly” stable transducer. A variety of examples are used to demonstrate that a wide range of research subjects in the fields ...

Jean H. Filloux

1983-05-01T23:59:59.000Z

111

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

112

Analysis of Thermostat Design for Vertical Fan Coil Units Within Modern Window-Wall Condominium Suites.  

E-Print Network (OSTI)

??The aim for this research is to identify the issues with poor thermostat designs in a window-wall condominium suite during cooling season, and to investigate… (more)

Ruff, Shawn

2013-01-01T23:59:59.000Z

113

Traditional And Angle-dependent Characterization Of Penn State’s Panel Transmission Loss Suite.  

E-Print Network (OSTI)

??The Center for Acoustics and Vibration at Penn State has a Panel Transmission Loss Suite consisting of a reverberation chamber coupled to an anechoic room.… (more)

Bauch, Paul

2013-01-01T23:59:59.000Z

114

Job-level proof-number search for connect6  

Science Conference Proceedings (OSTI)

This paper proposes a new approach for proof number (PN) search, named job-level PN (JL-PN) search, where each search tree node is evaluated or expanded by a heavy-weight job, which takes normally over tens of seconds. Such JL-PN search is well suited ...

I-Chen Wu; Hung-Hsuan Lin; Ping-Hung Lin; Der-Johng Sun; Yi-Chih Chan; Bo-Ting Chen

2010-09-01T23:59:59.000Z

115

Evaluation of Sediment Toxicity Using a Suite of Assessment Tools  

E-Print Network (OSTI)

Accurate characterization of risk of adverse ecological effects related to contaminated sediment presents a particularly difficult challenge. A series of studies has been conducted to investigate the utility of various tools for assessment of sediment toxicity. The goal of this research was to provide information which could help increase the accuracy with which predictions of toxicity could be made at hazardous sites. A calibration study was conducted using model PAHs, PCBs, a binary PAH mixture and a coal-tar mixture. This study was a collaborative effort among five university-based Superfund Research Programs (SRPs). Each program, with the help of funding through the NIEHS Superfund Research Program, has developed a chemical-class specific assay to estimate toxicity of contaminants in sediment. This suite of bioassays expands the range of data typically obtained through the use of standard aquatic toxicity assays. A series of caged in situ exposure studies has been conducted using juvenile Chinook salmon and Pacific staghorn sculpin in the Lower Duwamish Waterway. The study aimed to investigate the utility of selected biomarkers in evaluating the relationship between contaminants present in environmental samples and response in receptors following an in situ caged exposure. Results found that DNA adducts detected in exposed fish were significantly higher than controls in 2004 and 2006, and DNA adducts appear to be a reliable indicator of exposure, although no dose-response relationship was present. Western blot analysis of CYP1A1 was not indicative of exposure levels. The final study conducted was concerned with evaluating the utility of using solid phase microextraction (SPME) fibers in situ to evaluate contaminated sediment. Levels of PAHs and PCBs in sediment often exceeded sediment quality guidelines; however, results from aquatic toxicity bioassays using Hyalella azteca were mostly negative, thus levels of contaminants detected on SPME fibers could not be associated with adverse effects in Hyalella. However, regression analysis of total PAHs present in sediment and levels of PAHs detected in porewater SPME fiber samplers, which were placed 5 cm into the sediment for 30 days, revealed a strongly correlated linear relationship (R2 = .779). Normalization of the sediment data to total organic carbon was performed to determine if the trend would remain present, and the linear relationship was again confirmed (R2 =.709).

Kelley, Matthew A

2010-05-01T23:59:59.000Z

116

Fault-based test suite prioritization for specification-based testing  

Science Conference Proceedings (OSTI)

Context: Existing test suite prioritization techniques usually rely on code coverage information or historical execution data that serve as indicators for estimating the fault-detecting ability of test cases. Such indicators are primarily empirical in ... Keywords: Fault class hierarchy, Fault-based prioritization, Fault-based testing, Software testing, Specification-based testing, Test suite prioritization

Yuen Tak Yu; Man Fai Lau

2012-02-01T23:59:59.000Z

117

Gaussian random number generators  

Science Conference Proceedings (OSTI)

Rapid generation of high quality Gaussian random numbers is a key capability for simulations across a wide range of disciplines. Advances in computing have brought the power to conduct simulations with very large numbers of random numbers and with it, ... Keywords: Gaussian, Random numbers, normal, simulation

David B. Thomas; Wayne Luk; Philip H.W. Leong; John D. Villasenor

2007-11-01T23:59:59.000Z

118

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case… (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

119

A Benchmark Suite for Evaluating the Performance of the WebODE Ontology Engineering Platform  

E-Print Network (OSTI)

Abstract. Ontology tools play a key role in the development and maintenance of the Semantic Web. Hence, we need in one hand to objectively evaluate these tools, in order to analyse whether they can deal with actual and future requirements, and in the other hand to develop benchmark suites for performing these evaluations. In this paper, we describe the method we have followed to design and implement a benchmark suite for evaluating the performance of the WebODE ontology engineering workbench, along with the conclusions obtained after using this benchmark suite for evaluating WebODE. 1.

Raúl García-castro; Asunción Gómez-pérez

2004-01-01T23:59:59.000Z

120

OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

100 Connecticut Ave., NW, Suite 810, Washington, DC 100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 1 Electricity Advisory Committee Meeting 8:33 a.m. through 2:49 p.m. October 29, 2010 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 2 National Rural Electric Cooperative Conference Center 4301 Wilson Boulevard Arlington, VA 22203 OLENDER REPORTING, INC. 1100 Connecticut Ave., NW, Suite 810, Washington, DC 20036 Washington: (202) 898-1108 / Baltimore: (410) 752-3376 Toll Free: (888) 445-3376 3 ELECTRICITY ADVISORY MEMBERS PRESENT: Richard Cowart

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-Print Network (OSTI)

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01T23:59:59.000Z

122

DC Pro Software Tool Suite, Data Center Fact Sheet, Industrial Technologies Program  

Science Conference Proceedings (OSTI)

This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

Not Available

2009-04-01T23:59:59.000Z

123

Quantum Random Number Generator  

Science Conference Proceedings (OSTI)

... trusted beacon of random numbers. You could conduct secure auctions, or certify randomized audits of data. One of the most ...

2013-08-30T23:59:59.000Z

124

Fleet-Wide Prognostic and Health Management Suite: Beta Testing Results  

Science Conference Proceedings (OSTI)

The Fleet-Wide Prognostic and Health Management software suite (FW-PHM) is an integrated suite of web-based diagnostic and prognostic tools and databases specifically developed for the Electric Power Research Institute by Expert Microsystems for use in the commercial power industry (both nuclear and fossil fuel). FW-PHM serves as an integrated health management framework, managing the functionality needed for a complete implementation of automated diagnostics and prognostics. The open-architecture ...

2013-05-16T23:59:59.000Z

125

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

126

Analysis of sludge from K East basin floor and weasel pit  

Science Conference Proceedings (OSTI)

Sludge samples from the floor of the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and possibly assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements.

Makenas, B.J., Westinghouse Hanford

1996-05-04T23:59:59.000Z

127

A Comparison of Meteorological Observations from South Pole Station before and after Installation of a New Instrument Suite  

Science Conference Proceedings (OSTI)

The Amundsen–Scott South Pole surface meteorological instrument suite was upgraded in 2004. To ensure that the new and old instruments were recording similar information, the two suites of instruments ran simultaneously for a year. Statistical ...

L. M. Keller; K. A. Baker; M. A. Lazzara; J. Gallagher

2009-08-01T23:59:59.000Z

128

Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

J. Robert Woolsey; Thomas McGee; Carol Lutken

2008-05-31T23:59:59.000Z

129

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

130

Pore-Level Modeling of Carbon Dioxide Infiltrating the Ocean Floor  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltrating the Ocean Floor Infiltrating the Ocean Floor Grant S. Bromhal, Duane H. Smith, US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; M. Ferer, Department of Physics, West Virginia University, Morgantown, WV 26506-6315 Ocean sequestration of carbon dioxide is considered to be a potentially important method of reducing greenhouse gas emissions (US DOE, 1999). Oceans are currently the largest atmospheric carbon dioxide sink; and certainly, enough storage capacity exists in the oceans to hold all of the CO 2 that we can emit for many years. Additionally, technologies exist that allow us to pump liquid CO 2 into the oceans at depths between one and two kilometers for extended periods of time and five times that deep for shorter durations. The biggest unknown in the ocean sequestration process, however, is the fate and

131

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

132

Floor response spectra for seismic qualification of Kozloduy VVER 440-230 NPP  

Science Conference Proceedings (OSTI)

In this paper the floor response spectra generation methodology for Kozloduy NPP, Unit 1-2 of VVER 440-230 is presented. The 2D coupled soil-structure interaction models are used combined with a simplified correction of the final results for accounting of torsional effects. Both time history and direct approach for in-structure spectra generation are used and discussion of results is made.

Kostov, M.K. [Bulgarian Academy of Sciences, Sofia (BG). Central Lab. for Seismic Mechanics and Earthquake Engineering; Ma, D.C. [Argonne National Lab., IL (United States); Prato, C.A. [Univ. of Cordoba (AR); Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (US)

1993-08-01T23:59:59.000Z

133

Number | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number More Documents & Publications Analysis of Open Office of Inspector General Recommendations, OAS-L-08-07 Policy and International Affairs (WFP) Open Government Plan 2.0...

134

Expected Frobenius numbers  

E-Print Network (OSTI)

We show that for large instances the order of magnitude of the expected Frobenius number is (up to a constant depending only on the dimension) given by its lower bound.

Aliev, Iskander; Hinrichs, Aicke

2009-01-01T23:59:59.000Z

135

Floor Plan  

Science Conference Proceedings (OSTI)

VAW Aluminium. Technology. EDAX/TSL. KHD Humboldt. Wedag AG. Moeller. GmbH. SciDoc. Inc. Kluwer Academic. Publishers. Edison. Welding Inst. Resco.

136

Report number codes  

SciTech Connect

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

137

Evening Temperature Rises on Valley Floors and Slopes: Their Causes and Their Relationship to the Thermally Driven Wind System  

Science Conference Proceedings (OSTI)

At slope and valley floor sites in the Owens Valley of California, the late afternoon near-surface air temperature decline is often followed by a temporary temperature rise before the expected nighttime cooling resumes. The spatial and temporal ...

C. David Whiteman; Sebastian W. Hoch; Gregory S. Poulos

2009-04-01T23:59:59.000Z

138

On Test Suite Composition and Cost-Effective Regression Testing. Gregg Rothermel  

E-Print Network (OSTI)

On Test Suite Composition and Cost-Effective Regression Testing. Gregg Rothermel , Sebastian Elbaum}@cse.unl.edu August 30, 2003 Abstract Regression testing is an expensive testing process used to re-validate software as it evolves. Various methodologies for improving regression testing processes have been explored, but the cost

Rothermel, Gregg

139

On Test Suite Composition and Cost-Effective Regression Testing Gregg Rothermel  

E-Print Network (OSTI)

On Test Suite Composition and Cost-Effective Regression Testing Gregg Rothermel , Sebastian Elbaum}@cse.unl.edu August 31, 2004 Abstract Regression testing is an expensive testing process used to re-validate software as it evolves. Various methodologies for improving regression testing processes have been explored, but the cost

Rothermel, Gregg

140

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC, 2005 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza was to familiarize the DOE research community involved in hydrogen storage materials and process development

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data  

E-Print Network (OSTI)

the increased computational load. Since all of these transactions are stored in the VAMPIRE database, no dataVAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data of analysis, collectively known as variance-modeled posterior inference with regional exponentials (VAMPIRE

142

An overview of the HDF5 technology suite and its applications  

Science Conference Proceedings (OSTI)

In this paper, we give an overview of the HDF5 technology suite and some of its applications. We discuss the HDF5 data model, the HDF5 software architecture and some of its performance enhancing capabilities. Keywords: HDF5, data management, data models, databases

Mike Folk; Gerd Heber; Quincey Koziol; Elena Pourmal; Dana Robinson

2011-03-01T23:59:59.000Z

143

Using Fractional Numbers of . . .  

E-Print Network (OSTI)

One of the design parameters in closed queueing networks is Np, the number of customers of class p. It has been assumed that Np must be an integer. However, integer choices will usually not achieve the target throughput for each class simultaneously. We use Mean Value Analysis with the Schweitzer-Bard approximation and nonlinear programming to determine the value of Np needed to achieve the production targets exactly, although the values of Np may be fractional. We interpret these values to represent the average number of customers of each class in the network. We implement a control rule to achieve these averages and verify our approach through simulation.

Rajan Suri; Rahul Shinde; Mary Vernon

2005-01-01T23:59:59.000Z

144

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

145

Disjunctive Rado numbers  

Science Conference Proceedings (OSTI)

If L1 and L2 are linear equations, then the disjunctive Rado number of the set {L1, L2} is the least integer n, provided that it exists, such that for every 2-coloring of ... Keywords: Rado, Ramsey, Schur, disjunctive

Brenda Johnson; Daniel Schaal

2005-11-01T23:59:59.000Z

146

A number of organizations,  

E-Print Network (OSTI)

buying power to purchase green power. The city of Chicago has formed an alliance with 47 other local installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green to competition, the city of Chicago and 47 other local government agencies formed the Local Government Power

147

South Dakota Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers...

148

South Dakota Natural Gas Number of Residential Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential...

149

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

150

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

151

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

152

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

153

Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor  

DOE Patents (OSTI)

A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

Wyatt, Douglas E. (Aiken, SC)

2001-01-01T23:59:59.000Z

154

Engineering Evaluation Report on K-311-1 Floor Subsidence (2008 Annual Report) at the East Tennessee Technology Park, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of this task is to evaluate the effect of floor settlement on building structure, piping, and equipment foundations between column lines 1 and 2 and B and K of Bldg. K-311-1 (see Fig. A-1 in Appendix A) at East Tennessee Technology Park (ETTP), Oak Ridge, Tennessee. Revision 0 of this document covers the 2005 annual inspection. Revision 1 addresses the 2006 annual inspection, Revision 2 addresses the 2007 annual inspection, and Revision 3 covers the 2008 annual inspection, as indicated by the changed report title. A civil survey and visual inspection were performed. Only a representative number of points were measured during the 2008 survey. The exact location of a number of survey points in Table A-1 could not be accurately determined in the 2008 survey since these points had not been spray painted since 2003. The points measured are deemed adequate to support the conclusions of this report. Based on the survey and observations, there has been no appreciable change in the condition of the unit since the 2007 inspection. The subsidence of the floor presents concerns to the building structure due to the possible indeterminate load on the pipe gallery framing. Prior to demolition activities that involve the piping or removal of the equipment, such as vent, purge and drain and foaming, engineering involvement in the planning is necessary. The piping connected to the equipment is under stress, and actions should be implemented to relieve this stress prior to disturbing any of the equipment or associated piping. In addition, the load on the pipe gallery framing needs to be relieved prior to any activities taking place in the pipe gallery. Access to this area and the pipe gallery is not allowed until the stress is released.

Knott R.B.

2008-11-13T23:59:59.000Z

155

Finite Neutrosophic Complex Numbers  

E-Print Network (OSTI)

In this book for the first time the authors introduce the notion of real neutrosophic complex numbers. Further the new notion of finite complex modulo integers is defined. For every $C(Z_n)$ the complex modulo integer $i_F$ is such that $2F_i = n - 1$. Several algebraic structures on $C(Z_n)$ are introduced and studied. Further the notion of complex neutrosophic modulo integers is introduced. Vector spaces and linear algebras are constructed using these neutrosophic complex modulo integers.

W. B. Vasantha Kandasamy; Florentin Smarandache

2011-11-01T23:59:59.000Z

156

A.: Defining a benchmark suite for evaluating the import of OWL lite ontologies  

E-Print Network (OSTI)

Abstract. Semantic Web tools should be able to correctly interchange ontologies and, therefore, to interoperate. This interchange is not always a straightforward task if tools have different underlying knowledge representation paradigms. This paper describes the process followed to define a benchmark suite for evaluating the OWL import capabilities of ontology development tools in a benchmarking activity in progress in the Knowledge Web 1 European Network of Excellence. 1

Stefano David; Raúl García-castro; Asunción Gómez-pérez

2006-01-01T23:59:59.000Z

157

Black suit with a white, button down, collared dress shirt and conservative tie Black socks and black shoes  

E-Print Network (OSTI)

Dress Code Men · Black suit with a white, button down, collared dress shirt and conservative tie · Black socks and black shoes Women · Black dress, black suit pant or skirt (dress or skirt must be at or below the knee) · Black hose (without pattern) and black dress shoes MSC OPAS provides: · A volunteer

Boas, Harold P.

158

Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation  

SciTech Connect

Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

Zitney, S.E.; McCorkle, D. (Iowa State University, Ames, IA); Yang, C. (Reaction Engineering International, Salt Lake City, UT); Jordan, T.; Swensen, D. (Reaction Engineering International, Salt Lake City, UT); Bryden, M. (Iowa State University, Ames, IA)

2007-05-01T23:59:59.000Z

159

Construction Project Number  

NLE Websites -- All DOE Office Websites (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

160

KPA Activity Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Utah Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

162

Utah Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

163

Utah Natural Gas Number of Residential Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

164

Illinois Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

165

Wisconsin Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

166

Wisconsin Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

167

Wisconsin Natural Gas Number of Commercial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

168

California Natural Gas Number of Industrial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

169

California Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

170

Ohio Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

171

Ohio Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

172

Ohio Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

173

Colorado Natural Gas Number of Industrial Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

174

Colorado Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

175

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

176

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

177

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

178

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

179

Michigan Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

180

Michigan Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Idaho Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

182

Idaho Natural Gas Number of Commercial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

183

Idaho Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

184

Connecticut Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

185

Hawaii Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

186

Kentucky Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

187

Tennessee Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

188

Maryland Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

189

Louisiana Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

190

Alabama Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

191

Oklahoma Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

192

Alaska Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

193

Kansas Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

194

Illinois Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

195

Maine Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

196

Florida Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

197

Iowa Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

198

Georgia Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

199

Arkansas Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

200

Missouri Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Montana Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

202

Nevada Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

203

Mississippi Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

204

Arizona Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

205

Pennsylvania Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

206

Nebraska Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

207

Minnesota Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

208

Massachusetts Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

209

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

210

New Mexico Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

211

New Mexico Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

212

New Mexico Natural Gas Number of Commercial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

213

Texas Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

214

Texas Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

215

Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance  

E-Print Network (OSTI)

Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time and effort. Therefore, this paper proposes a) two methods of evaluating the floor heating efficiency from the room / crawl space temperature and the energy consumption and b) method of evaluating COP of the room air conditioner from the data measured at the external unit. Case studies in which these tools were applied to actual residences are presented to demonstrate their effectiveness.

Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

2004-01-01T23:59:59.000Z

216

Benchmark suites for improving the RDF(S) importers and exporters of ontology development tools  

E-Print Network (OSTI)

Abstract. Interoperability is the ability of two or more systems to interchange information and to use the information that has been interchanged. Nowadays, interoperability between ontology development tools is low. Therefore, to assess and improve this interoperability, we propose to perform a benchmarking of the interoperability of ontology development tools using RDF(S) as the interchange language. This paper presents, on the one hand, the interoperability benchmarking that is currently in progress in Knowledge Web 1 and, on the other, the benchmark suites defined and used in this benchmarking. 1

Raúl García-castro; Asunción Gómez-pérez

2006-01-01T23:59:59.000Z

217

STATE OF INDIANA OFFICE OF THE GOVERNOR State House, Second Floor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDIANA INDIANA OFFICE OF THE GOVERNOR State House, Second Floor Indianapolis, Indiana 46204 Mitchell E. Daniels, Jr. Governor March 12,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S. W Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. I)(ARRA), I am providing the following assurances. I have requested our public utility commission (the Indiana Utility Regulatory Commission) to consider additional actions to promote energy efficiency, consistent with the federal statutory language contained in H.R. 1 and their obligations to

218

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

219

Number: 305 Most Dangerous Vehicles ...  

Science Conference Proceedings (OSTI)

... top> Number: 314 Marine Vegetation Description: Commercial harvesting of marine vegetation such as algae, seaweed and ...

2002-12-12T23:59:59.000Z

220

Suite of Activity-Based Probes for Cellulose-Degrading Enzymes  

Science Conference Proceedings (OSTI)

Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

2012-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

222

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

223

Pressure Fluctuations on the Open Ocean Floor Over a Broad Frequency Range: New Program and Early Results  

Science Conference Proceedings (OSTI)

A two-month ocean-floor pressure record obtained 330 km to the east of the main island of Hawaii by means of a Bourdon tube-type transducer with optical readout is discussed in detail. An approach to subtraction of the drift component associated ...

J. H. Filloux

1980-12-01T23:59:59.000Z

224

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

225

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number  

E-Print Network (OSTI)

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number Social Security Number and only use black or dark blue ink. Return this form to: TIAA-CREF P.O. Box 1264 Charlotte, NC 28201 NOTE City State Zip Code For TIAA-CREF USE ONLY Accepted -- Teachers Insurance and Annuity Association

Snider, Barry B.

226

Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data  

SciTech Connect

Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human subject datasets, were used in a preliminary observer evaluation where four board certified breast radiologists with varying amounts of experience ranked the level of realism (from 1 ='fake' to 10 ='real') of the simulated images. Results: The morphing technique was able to successfully generate new and unique morphed datasets from the original human subject data. The radiologists evaluated the realism of simulated mammograms generated from the morphed and unmorphed human subject datasets and scored the realism with an average ranking of 5.87 {+-} 1.99, confirming that overall the phantom image datasets appeared more 'real' than 'fake.' Moreover, there was not a significant difference (p > 0.1) between the realism of the unmorphed datasets (6.0 {+-} 1.95) compared to the morphed datasets (5.86 {+-} 1.99). Three of the four observers had overall average rankings of 6.89 {+-} 0.89, 6.9 {+-} 1.24, 6.76 {+-} 1.22, whereas the fourth observer ranked them noticeably lower at 2.94 {+-} 0.7. Conclusions: This work presents a technique that can be used to generate a suite of realistic computerized breast phantoms from a limited number of human subjects. This suite of flexible breast phantoms can be used for multimodality imaging research to provide a known truth while concurrently producing realistic simulated imaging data.

Hsu, Christina M. L. [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Palmeri, Mark L. [Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, W. Paul [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Veress, Alexander I. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

2013-04-15T23:59:59.000Z

227

The Distribution of Ramsey Numbers  

E-Print Network (OSTI)

We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 order of magnitude (x ln x)**(1/2).

Clark, Lane

2013-01-01T23:59:59.000Z

228

DOE-STD-1167-2003; Respiratory Acceptance Program for Supplied-Air Suits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-STD-1167-2003 OCTOBER 2003 DOE STANDARD THE DEPARTMENT OF ENERGY RESPIRATORY ACCEPTANCE PROGRAM FOR SUPPLIED-AIR SUITS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii DOE-STD-1167-2003 FOREWORD This non-mandatory Technical Standard provides the Department of Energy (DOE) and contractor

229

An Expert Elicitation Based Study of the Proliferation Resistance of a Suite of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

In 2008, a multi-laboratory research team completed a study evaluating the proliferation resistance (PR) characteristics of a diverse suite of four advanced nuclear reactor designs. The systems evaluated included: • a light water reactor (a pressurized-water reactor), • a heavy water reactor, • a high temperature gas reactor (with a prismatic-block reactor core), • a sodium-cooled fast reactor. The team used an expert elicitation assessment approach based on the Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR&PP) methodology. The team evaluated three general types of proliferation threats: 1) concealed diversion of material, 2) concealed misuse of the reactor to produce material, and 3) breakout. The evaluations took into account the intrinsic PR characteristics of each reactor and the extrinsic PR characteristics provided by generic safeguards the team considered appropriate for each reactor, based on the team’s experience and available conceptual design information.

Zentner, Michael D.; Therios, Ike; Bari, Robert A.; Cheng, Lap; Yue, Meng; Wigeland, Roald; Hassberger, Jim; Boyer, Brian; Pilat, Joseph

2010-08-11T23:59:59.000Z

230

Ruptured Internal Iliac Artery Aneurysm: Staged Emergency Endovascular Treatment in the Interventional Radiology Suite  

SciTech Connect

Ruptured aneurysms of the internal iliac artery (IIA) are rare and challenging to treat surgically. Due to their anatomic location they are difficult to operate on and perioperative morbidity is high. An endovascular approach can be helpful. We recently treated a patient with a ruptured IIA aneurysm in the interventional radiology suite with embolization of the side-branch of the IIA and placement of a covered stent in the ipsilateral common and external iliac arteries. A suitable stent-graft was not available initially and had to be brought in from elsewhere. An angioplasty balloon was temporarily placed across the ostium of the IIA to obtain hemostasis. Two hours later, the procedure was finished by placing the stent-graft.

Kelckhoven, Bas-Jeroen van [HagaZiekenhuis, Location Leyenburg, Department of Radiology (Netherlands)], E-mail: bjvankelckhoven@hotmail.com; Bruijninckx, Boy M. A.; Knippenberg, Bob [HagaZiekenhuis, Location Leyenburg, Department of Surgery (Netherlands); Overhagen, Hans van [HagaZiekenhuis, Location Leyenburg, Department of Radiology (Netherlands)

2007-07-15T23:59:59.000Z

231

Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis  

SciTech Connect

This paper provides an introduction to the reactor analysis capabilities of the nuclear power reactor simulation tools that are being developed as part of the U.S. Department of Energy s Nuclear Energy Advanced Modeling and Simulation (NEAMS) Toolkit. The NEAMS Toolkit is an integrated suite of multi-physics simulation tools that leverage high-performance computing to reduce uncertainty in the prediction of performance and safety of advanced reactor and fuel designs. The Toolkit effort is comprised of two major components, the Fuels Product Line (FPL), which provides tools for fuel performance analysis, and the Reactor Product Line (RPL), which provides tools for reactor performance and safety analysis. This paper provides an overview of the NEAMS RPL development effort.

Pointer, William David [ORNL; Bradley, Keith S [ORNL; Fischer, Paul F [ORNL; Smith, Micheal A [ORNL; Tautges, Timothy J [ORNL; Ferencz, Robert M [ORNL; Martineau, Richard C [ORNL; Jain, Rajeev [ORNL; Obabko, Aleksandr [Argonne National Laboratory (ANL); Billings, Jay Jay [ORNL

2013-01-01T23:59:59.000Z

232

PUBLIC ACCESS: 955 LEnfant Plaza North, SW, Suite 1500, Washington, DC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 th Meeting Ultra-Deepwater Advisory Committee July 15, 2009, 8:00 a.m. EASTERN, WebEx/Conference Call Meeting PUBLIC ACCESS: 955 L'Enfant Plaza North, SW, Suite 1500, Washington, DC AGENDA 7:30 Registration; Begin Member call in 8:00 Call to Order - Welcome Arnis Judzis, Vice-Chair Member Roll Call and the presence of a quorum Elena Melchert, Committee Manager Meeting purpose and review of the agenda; Insights regarding future funding and other pending legislation; Draft 2010 Annual Plan delivery, and pending meetings in September and October 2009 Guido DeHoratiis Designated Federal Officer 8:25 Report from the Standing Subcommittee regarding Process; Member Q/A and Discussion Mary Jane Wilson

233

Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

234

Number: 1394 Description: In what ...  

Science Conference Proceedings (OSTI)

... Number: 1752 Description: When was the Oklahoma City bombing? ... name of the plane that dropped the Atomic Bomb on Hiroshima? ...

2003-02-12T23:59:59.000Z

235

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

236

Inspection of the objects on the sea floor by using 14 MeV tagged neutrons  

SciTech Connect

Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated in order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)

Valkovic, V. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Sudac, D.; Obhodas, J. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia); Matika, D. [Inst. for Researches and Development of Defense Systems, Zagreb (Croatia); Kollar, R. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Nad, K.; Orlic, Z. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia)

2011-07-01T23:59:59.000Z

237

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-03-01T23:59:59.000Z

238

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42877 Semiannual Progress Report HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO Submitted by: CENTER FOR MARINE RESOURCES AND ENVIRONMENTAL TECHNOLOGY 111 BREVARD HALL, UNIVERSITY, MS 38677 Principal Author: Carol Lutken, PI Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2011 Office of Fossil Energy ii HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO SEMIANNUAL PROGRESS REPORT 1 JANUARY, 2011 THROUGH 30 JUNE, 2011

239

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

2007-03-31T23:59:59.000Z

240

Dynamic virtual credit card numbers  

Science Conference Proceedings (OSTI)

Theft of stored credit card information is an increasing threat to e-commerce.We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate ... Keywords: credit card theft, e-commerce

Ian Molloy; Jiangtao Li; Ninghui Li

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fatigue analysis of stringer to floor beam connections in through plate girder and through truss railroad bridges  

E-Print Network (OSTI)

The objective of this thesis is to determine fatigue stresses in the stringer to floor beam connections of through plate girder (TPG) and through truss (TT) bridges in order to predict failure. Field observations by the Association of American Railroads (AAR) indicate failure in the stringer to floor beam connections of both the TPG and TT bridges, although a higher frequency of failure appears in the TT bridges. Accordingly, this study includes 1) creating analytical models for the TPG and TT bridges, 2) determining member internal forces, 3) developing force envelopes, 4) determining maximum internal stresses, and 5) comparing these results to field observations. First, bridge models for the TPG and TT bridge were assembled using a finite element analysis program in order to evaluate member internal forces. The TPG bridge model was taken from the plans of an existing bridge designed in 1912 and located near TX Highway 21 between College Station and Caldwell, TX. The TT bridge model was taken from the plans of an existing bridge designed in 1902 in the Chicago Office of the American Bridge Company. Next, a finite element analysis was conducted to obtain member internal forces. The resulting forces were compiled to create axial load, shear force, and moment envelopes. These envelopes were constructed to provide the magnitudes and location of the maximum forces required for analysis. These forces were also used to develop maximum tensile stresses for the rivets in the floor beams. After examining the results, the following conclusions were drawn. Axial load was predicted to be a source of higher failure frequency within TT bridges versus TPG bridges. Lower chord deformation in the TT bridge caused elongation of the floor system that, in turn, produced axial loads in the bridge members. The TPG bridge members, however, carried no axial load. Shear force was not predicted to be a contributing factor for increased connection failure rates in the TT bridges as compared to the TPG bridges, but bending moment was. This result, however, was sensitive to the degree of fixity in the stringer to floor beam connection.

Evans, Leslie Virginia

1999-01-01T23:59:59.000Z

242

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

2006-06-01T23:59:59.000Z

243

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you a basic guide to the process involved.  

E-Print Network (OSTI)

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you Takeextracarewhenusingpowertools Formoredetailedtipshavealookatour: · General safety tips http://news.domain.com.au/domain/ diy/diy

Peters, Richard

244

Walking on daylight : the application of translucent floor systems as a means of achieving natural daylighting in mid and low rise architecture  

E-Print Network (OSTI)

This thesis is concerned with the introduction of quality daylight to buildings by means of translucency in the horizontal planes or floors within the building. Since people began to build, the concept of translucency in ...

Widder, James

1985-01-01T23:59:59.000Z

245

Predictive Services Department John B. Connally Building 301 Tarrow, Suite 304 College Station, Texas 77840-7896  

E-Print Network (OSTI)

. Connally Building 301 Tarrow, Suite 304 College Station, Texas 77840-7896 TEL 979/458-6530 FAX 979/458-7333 http://texasforestservice.tamu.edu Winter 2011 Wildland Fire Season Outlook for Texas September 24 days developing in the coming few weeks and months. Brad Smith, Fuels Analyst with the Texas Forest

246

How to maximize the value of big data with the open source SpagoBI suite through a comprehensive approach  

Science Conference Proceedings (OSTI)

This paper describes the approach adopted by SpagoBI suite (www.spagobi.org) to manage large volumes of heterogeneous structured and unstructured data, to perform real-time Business Intelligence on Big Data streaming and to give meaning to data through ...

Monica Franceschini

2013-08-01T23:59:59.000Z

247

Thme Date Enseignant Thme Date Enseignant AKIN Tuna Suites 16-mai AD Equa diff 24-mai RL  

E-Print Network (OSTI)

Page 1 Page 1 Thème Date Enseignant Thème Date Enseignant AKIN Tuna Suites 16-mai AD Equa diff 24 Probas 23-mai MAC Thème Date Enseignant Thème Date Enseignant AKIN Tuna Configurations 31-mai DT Arithm

Douai, Antoine

248

Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in  

E-Print Network (OSTI)

Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

Guestrin, Carlos

249

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

250

Document ID Number: RL-721  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

251

Stochastic Low Reynolds Number Swimmers  

E-Print Network (OSTI)

As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies to extract a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a theoretical formulation to describe the "stochastic motor" that drives the motion of low Reynolds number swimmers based on this concept, and use it to study the propulsion of a simple low Reynolds number swimmer, namely, the three-sphere swimmer model. When the detailed-balanced is broken and the motor is driven out of equilibrium, it can propel the swimmer in the required direction. The formulation can be used to study optimal design strategies for molecular-scale low Reynolds number swimmers.

Ramin Golestanian; Armand Ajdari

2009-01-12T23:59:59.000Z

252

LLW Notes, Volume 12, Number 1  

Science Conference Proceedings (OSTI)

Contents include articles entitled: Suit against Envirocare sparks investigations: Formal petition filed with NRC; Group alleges misconduct by USGS re Beatty study; EPA rescinds NESHAPs subpart 1; Northwest Compact executive director changes jobs; New forum participant for the state of New Jersey; and Director of North Carolina division of radiation control retires.

Norris, C.; Brown, H. [eds.; Colsant, J.; Lovinger, T.; Scheele, L.; Shaker, M.A.

1997-01-01T23:59:59.000Z

253

Integration & Co-development of a Geophysical CO2 Monitoring Suite  

SciTech Connect

Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.

Friedmann, S J

2007-07-24T23:59:59.000Z

254

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-11-01T23:59:59.000Z

255

Floor Sweeper-Scrubbers: Demonstration of Advanced Lead-Acid Batteries and High-Power Charging in Commercial Warehouse Operations  

Science Conference Proceedings (OSTI)

Electric walk-behind and riding floor scrubbers are in widespread and growing use in the commercial and industrial building sectors. This demonstration indicates that the weight, bulk, and battery capacity of existing equipment could be significantly reduced in equipment used for certain "spot-cleaning" and other limited use duty-cycles. Further, results show that for sealed lead-acid batteries, recharge rates on the same order as discharge rates are sufficient for extending peak daily run-time to 200 pe...

2001-07-11T23:59:59.000Z

256

Undergraduate Catalog Phone Numbers & Address  

E-Print Network (OSTI)

Interest Research Exemption Programs 11 ReglsJrationPeriod III 6 Group (WashPIRG) 14 Faculty Number 9 State NaUonal Guard ' . , Full-Time Student Requirements __'_ 9 Service and Research Credit 10 Tuition notice. All announcements in the Time Schedule are subject to change without notice and do not constitute

Kelly, Scott David

257

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

258

RL·721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: REV 3 NEPA REVIEW SCREENING FORM DOE/CX-00045 . J.proj(;l~t Titl~: - - - -- - - - - - - - - - - - - - - - - - -- --------- ------_. . _ - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - LIMITED FIREBREAK MAINTENANCE ON THE HANFORD SITE DURING CALENDAR YEAR 2012 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions· e.g., acres displaced/disturbed, excavation length/depth, etc.): The Department of Energy (DOE) proposes to perform firebreak maintenance in selected areas of the Hanford Site during calendar year 2012 with limited use of physical, chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously disturbed

259

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-05-18T23:59:59.000Z

260

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

Carol Lutken

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A summary of recent refinements to the WAKE dispersion model, a component of the HGSYSTEM/UF{sub 6} model suite  

Science Conference Proceedings (OSTI)

The original WAKE dispersion model a component of the HGSYSTEM/UF{sub 6} model suite, is based on Shell Research Ltd.`s HGSYSTEM Version 3.0 and was developed by the US Department of Energy for use in estimating downwind dispersion of materials due to accidental releases from gaseous diffusion plant (GDP) process buildings. The model is applicable to scenarios involving both ground-level and elevated releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. Over the 2-year period since its creation, the WAKE model has been used to perform consequence analyses for Safety Analysis Reports (SARs) associated with gaseous diffusion plants in Portsmouth (PORTS), Paducah (PGDP), and Oak Ridge. These applications have identified the need for additional model capabilities (such as the treatment of complex terrain and time-variant releases) not present in the original utilities which, in turn, has resulted in numerous modifications to these codes as well as the development of additional, stand-alone postprocessing utilities. Consequently, application of the model has become increasingly complex as the number of executable, input, and output files associated with a single model run has steadily grown. In response to these problems, a streamlined version of the WAKE model has been developed which integrates all calculations that are currently performed by the existing WAKE, and the various post-processing utilities. This report summarizes the efforts involved in developing this revised version of the WAKE model.

Yambert, M.W.; Lombardi, D.A.; Goode, W.D. Jr.; Bloom, S.G.

1998-08-01T23:59:59.000Z

262

The Scalable Parallel Random Number Generators (SPRNG) ...  

Science Conference Proceedings (OSTI)

... Random Number Generators (SPRNG) Library is a widely used tool for random number generation on high-performance computing platforms. ...

2011-05-04T23:59:59.000Z

263

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

264

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

265

Original articles: Optimal current waveforms for torque control of permanent magnet synchronous machines with any number of phases in open circuit  

Science Conference Proceedings (OSTI)

Polyphase permanent magnet synchronous motors are well suited for electromechanical actuation systems demanding a high level of reliability. They are indeed able to run on a reduced number of phases and therefore to make the actuation system fault tolerant. ... Keywords: Fault tolerance, Open phase fault, Optimal currents, Polyphase motor

F. Baudart, E. Matagne, B. Dehez, F. Labrique

2013-04-01T23:59:59.000Z

266

RL-721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 NEPA REVIEW SCREENING FORM DOE/CX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The proposed action includes design, procurement, and construction of a pre-engineered metal building for transformer management; including inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered electrical utilities lay-down yard west of the 2101-M Building in 200 East Area of the Hanford Site. The building footprint

267

Control Measure Title Reference Number *  

E-Print Network (OSTI)

exhaustive search for emissions reductions to use in meeting federal Clean Air Act requirements for this 2008 PM2.5 Plan. Chapter 6 details the District’s process for developing control measures for reducing emissions of primary PM2.5 and PM2.5 precursors. This Appendix presents the product of this process: a master list of all candidate control measure ideas identified and evaluated for this plan. After assembling Appendix I, the District then screened the candidate measures into several categories: high priority measures to be implemented in the years immediately following plan adoption; measures that might be implemented in future years to allow for expected technology development; and those measures that require further study to identify when they could be implemented and what reductions they could achieve. Candidate control measure descriptions in Appendix I have the following major components:! Title and Number

unknown authors

2008-01-01T23:59:59.000Z

268

Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins  

Science Conference Proceedings (OSTI)

This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic background logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.

BAKER, R.B.

1998-11-20T23:59:59.000Z

269

3610 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ●  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ● Fax 602-808-2099 ● www.sunzia.net 10 N. 44th Street, Suite 250, Phoenix, AZ 85018 ● Phone 602-808-2004 ● Fax 602-808-2099 ● www.sunzia.net October 17, 2013 Transmitted via electronic mail to juliea.smith@hq.doe.gov and christopher.lawrence@hq.doe.gov Subject: SunZia Southwest Transmission Project comments on Department of Energy's August 29, 2013 Federal Register Notice regarding Improving Performance of Federal Permitting and Review of Infrastructure Projects. The following comments are provided to the Department of Energy (DOE) in response to the agency's request for information on (RFI) the draft Integrated Interagency Pre-Application (IIP) Process. These comments reflect the views and suggestions of the SunZia Southwest Transmission Project (SunZia). The Bureau of Land Management is the lead agency for processing our right-of-

270

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

271

Why is hydrogen's atomic number 1?  

NLE Websites -- All DOE Office Websites (Extended Search)

the number of protons in an atom's nucleus. Hydrogen's atomic number is 1 because all hydrogen atoms contain exactly one proton. Author: Steve Gagnon, Science Education Specialist...

272

Reference Number PCR Kit Name Manufacturer Kit ...  

Science Conference Proceedings (OSTI)

Page 1. Reference Number PCR Kit Name Manufacturer Kit Description 1 Profiler Life Technologies AmpFlSTR® Profiler® (Part number 403038) ...

2013-11-20T23:59:59.000Z

273

Number: 894 Description: How far is it ...  

Science Conference Proceedings (OSTI)

... Number: 1198 Description: When was Hiroshima bombed? ... 1264 Description: What is the atomic weight of ...

2002-04-29T23:59:59.000Z

274

LLW Notes, Volume 12, Number 8  

Science Conference Proceedings (OSTI)

Contents include articles entitled: Chem-Nuclear documents new plan for Barnwell; Nebraska releases technical analysis of LLRW facility; Southeast Compact suspends funding for NC facility development; NC governor and Southeast Compact differ on proposed MOU; Midwest Compact to return export fees; State legislators` group revises radioactive waste policy; Internal documents discuss administration`s policy on Ward Valley; BLM issues EA for Ward Valley testing; California DHS, NRC criticize DOI`s testing protocols; Army removes training mines from Ward Valley site; The 1997 gubernatorial elections and a look ahead to 1998; Court throws out case challenging Pennsylvania`s siting law; DOE files notice of appeal in WCS suit; Central Compact moves to dismiss ``Veto`` authority suit; Congress exempts NAS from FACA; Judge sets schedule for Ward Valley case; Court won`t order DOE to accept spent fuel by deadline; NRC chairman expresses concern re CERCLA reauthorization; Senators question EPA`s guidance on remediation; EPA issues guidance, criticizes NRC decommissioning rule; Members of Congress clarify FUSRAP transfer; HLW legislation passes House by wide margin; Takings legislation passes House; Energy and water bill signed into law; and Senate confirms 5 of 6 DOE appointees.

Norris, C.; Brown, H. [eds.; Gedden, R.; Lovinger, T.; Scheele, L.; Shaker, M.A.

1997-12-31T23:59:59.000Z

275

LLW Notes, Volume 12, Number 6  

Science Conference Proceedings (OSTI)

Contents include articles entitled: GAO concludes most Ward Valley SEIS issues previously addressed; Midwest compact halts facility development; Texas publishes proposal to issue WCS radioactive materials license; Central Compact issues export authorizations over NE`s objection; Nebraska governor to host LLRW summit; California regulators reassured re US ecology facility in WA; Southeast Compact augments funding for North Carolina; State and compact calendar of events; IAEA Director General to UN: reexamine nuclear power; DOI convenes meetings on Ward Valley Title VI complaint; California BLM: Tribes fully represented and consulted; MW, NE, and SW file amici curiae briefs in Ward Valley suit; Court denies state`s motion for protective order; WCS files suit against Envirocare and others; States attack DOE`s claim re lack of authority to store spent fuel; House committee passes Texas legislation; Ward Valley land transfer bill introduced in Senate; Senate committee holds hearing on Ward Valley legislation and related GAO report; NRDC threatens to sue DOE re Envirocare; NRC chair criticizes Deputy Interior Secretary`s use of Ward Valley fact sheet; Utility consortium submits license application for storage on Goshute land to NRC; Envirocare cited for SNM violation; EPA begins audit; and EPA rejects Title VI claim re Texas site.

Norris, C.; Brown, H. [eds.; Gedden, R.; Lovinger, T.; Scheele, L.; Shaker, M.A.

1997-07-01T23:59:59.000Z

276

SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SNR Denton US LLP SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA Thomas C. Jensen Partner thomas.jensen@snrdenton.com D +1 202 408 3956 M 703 304 5211 T +1 202 408 6400 F +1 202 408 6399 snrdenton.com March 28, 2012 BY E-MAIL Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Re: OE Docket No. RRTT-IR-001 Dear Mr. Jackson:: This letter is submitted on behalf of PPL Electric and Public Service Electric and Gas Company ("PSE&G") 1 ,(referred to herein as "the Companies") with respect to the Susquehanna-Roseland

277

Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models  

SciTech Connect

The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

Billman, L.; Keyser, D.

2013-08-01T23:59:59.000Z

278

Rapid TRANSIT to the Future Using UPK for Oracle’s E-Business Suite Executive Overview  

E-Print Network (OSTI)

This is a case study of how Denver Regional Transportation District (RTD) is utilizing Oracle’s User Productivity Kit (UPK) software to maximize efficiency and effectiveness in its training programs for the implementation and rollout of Oracle E-Business Suite and Maximus maintenance management applications. This paper will answer several key questions about the use of UPK during the project, as well as why organizations should leverage UPK for their education and training rollouts as well as ongoing maintenance of those programs. Introduction and Background Denver RTD operates a public transportation system in an eight county service area with Denver, CO at the center. RTD is involved in several major transportation projects in the Denver metropolitan area including FasTracks, a 12 year regional transportation plan to improve and expand bus and rapid transit and T-REX, a combined light rail and highway expansion project. Involvement in both of these projects required RTD to

A Solbourne

2007-01-01T23:59:59.000Z

279

Mailing Addresses and Information Numbers for Operations, Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

509-376-7411 U.S. Department of Energy Rocky Mountain Oilfield Testing Center 907 N. Poplar, Suite 150 Casper, WY 82601 307-233-4800 U.S. Department of Energy Sandia Site Office...

280

Fast library for number theory: an introduction  

Science Conference Proceedings (OSTI)

We discuss FLINT (Fast Library for Number Theory), a library to support computations in number theory, including highly optimised routines for polynomial arithmetic and linear algebra in exact rings.

William B. Hart

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"New Mexico Number of Natural Gas Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Residential" "Sourcekey","NA1501SNM8","NA1508SNM8","NA1509SNM8" "Date","New Mexico Natural Gas Number of Residential Consumers (Count)","New Mexico Natural Gas Number of...

282

Number: 1 Description: What powers did ...  

Science Conference Proceedings (OSTI)

... top> Number: 10 Description: What is one of the major problems with electronic producing turbines (windmills) in California? ...

2002-11-04T23:59:59.000Z

283

Number: 1 Description: How did the ...  

Science Conference Proceedings (OSTI)

... Number: 80 Description: What part did ITT (International Telephone and Telegraph) and Anaconda Copper play in the ...

2003-03-03T23:59:59.000Z

284

Hardware Workmanship Test Suite  

Science Conference Proceedings (OSTI)

... Section 6.4.3, General Build Quality; Part 1 Section 6.4.4, Durability; Part 1 ... complete version of the VVSG-NI in HTML, MS-Word, or PDF formats can ...

2010-10-05T23:59:59.000Z

285

Acoustic Imaging Suite  

INL’s acoustic imaging technology improves methods of capturing moving images of a specified object by using a photorefractive effect to produce a full-field image of the object without using a probe to perform a full scan of the object. INL ...

286

Why Test Suites  

Science Conference Proceedings (OSTI)

In the marketplace, testing provides a vehicle for exchanging information ... For sellers (eg, manufacturers), testing can help to substantiate claims that ...

2012-11-02T23:59:59.000Z

287

Results of the radiological survey at the former Herring-Hall-Marvin Safe Company (3rd floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001)  

SciTech Connect

At the request of the US Department of Energy (DOE), a group from the Oak Ridge National Laboratory conducted a radiological survey at the former Herring-Hall-Marvin Safe Company (third floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001) in August 1993. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, derived from the former Manhattan Engineer District project. The survey included gamma scans; direct and transferable measurements of alpha, beta, and gamma radiation levels; and debris sampling for radionuclide analyses. Results of the survey demonstrated {sup 238}U surface contamination in excess of the DOE criteria for surface contamination. The third floor was generally contaminated over 25 percent of its area with isolated spots in the remaining area. Although three isolated spots of contamination were found in areas other than on the third floor (in the same southeastern comer of the facility), they were remediated by sampling. Based on the survey results, this site is recommended for remediation.

Murray, M.E.; Johnson, C.A.

1994-03-01T23:59:59.000Z

288

Geologic Sequestration Software Suite (GS3): a collaborative approach to the management of geological GHG storage projects  

Science Conference Proceedings (OSTI)

Geologic storage projects associated with large anthropogenic sources of greenhouse gases (GHG) will have lifecycles that may easily span a century, involve several numerical simulation cycles, and have distinct modeling teams. The process used for numerical simulation of the fate of GHG in the subsurface follows a generally consistent sequence of steps that often are replicated by scientists and engineers around the world. Site data is gathered, assembled, interpreted, and assimilated into conceptualizations of a solid-earth model; assumptions are made about the processes to be modeled; a computational domain is specified and spatially discretized; driving forces and initial conditions are defined; the conceptual models, computational domain, and driving forces are translated into input files; simulations are executed; and results are analyzed. Then, during and after the GHG injection, a continuous monitoring of the reservoir is done and models are updated with the newly collected data. Typically the working files generated during all these steps are maintained on workstations with local backups and archived once the project has concluded along with any modeling notes and records. We are proposing a new concept for supporting the management of full-scale GHG storage projects where collaboration, flexibility, accountability and long-term access will be essential features: the Geologic Sequestration Software Suite, GS3.

Bonneville, Alain HR; Black, Gary D.; Gorton, Ian; Hui, Peter SY; Murphy, Ellyn M.; Murray, Christopher J.; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; White, Mark D.; Williams, Mark D.; Wurstner, Signe K.

2011-01-23T23:59:59.000Z

289

ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS  

SciTech Connect

Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

Anthony L. Crawford; Robert E. Spears, Ph.D.; Mark J. Russell

2009-07-01T23:59:59.000Z

290

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 25, 2007 ... Tri State. Ref. SMV. Natl Elec. Carbon. Blasch. Carl Zeiss. Micro. Imaging. Mid- ... LP Royer ... New. Orleans. C&VB. Graphite. Machining. Xothermic. MetSoc ... York. Linings. Carl Zeiss. SMT. Darco. Southern. Bruno. Presezzi.

291

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 7, 2010 ... Techmo Car S.p.A. 310. APT Aluminium and Aluminium Journal. 601 ... Hydro Aluminium. 608. Outotec. 319. Hertwich Engineering. 612.

292

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Feb 20, 2008 ... Industries. Bloom. Engr. Murlin. Chemical. North ... Ovens BV. SMV AS. HRV. Engr. AUMUND ... Industries. Parker. Hannifin. KBM. Affilips BV.

293

Exhibition Hall Floor Plan  

Science Conference Proceedings (OSTI)

Jan 13, 2005 ... Industry. 645. FEI. Cytec. Industries. ENERGOPROM. MAS Inc. Parker ... STAS. Thermal. Ceramics. Thermcon. Ovens. Thorpe. Technologies.

294

Exhibit Floor Plan - TMS  

Science Conference Proceedings (OSTI)

Manufacturing. Alum Times. LANL. Elsevier. Science. Holton. Process. Engineering. Resources. Norsmelt. Murlin Chem Kabert. Metallurg. Aluminium. Pechiney.

295

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

296

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

297

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

298

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

299

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

300

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

302

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

303

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

304

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

305

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

306

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

307

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING ENERGY AUDITS A/C & HEATING INSULATION LIGHTING  

E-Print Network (OSTI)

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING for homeowners, businesses, and government entities that assist them in lowering utility bills, reducing a unique solutions approach based on the RE3 concept, which includes: · Review ­ current energy usage

Colorado at Boulder, University of

308

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

309

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

310

Production mechanisms, number concentration, size distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002asl2.441 Meeting Report Production mechanisms, number concentration, size distribution, chemical composition, and...

311

Project Registration Number Assignments (Completed) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Project Registration Number Assignments (Active) Technical Standards, DOE Orders and Applicable CFRsDEAR Crosswalk - February 2, 2002 All Active DOE Technical...

312

Project Registration Number Assignments (Active) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration Number Assignments (Completed) All Active DOE Technical Standards Document Technical Standards, DOE Orders and Applicable CFRsDEAR Crosswalk - February 2, 2002...

313

Customer Service Specialist Job Number: 54844874  

E-Print Network (OSTI)

. The credit company is able to link a customer's identification number with 1 A discussion of signatures can: identification numbers for the customer, the customer's credit company, and the merchant; the amount customers' identities. ffl The credit company will not know what customers buy. Security is implemented

Heller, Barbara

314

enter part number BNC / RP-BNC  

E-Print Network (OSTI)

enter part number Products 7/16 1.0/2.3 1.6/5.6 AFI AMC BNC / RP-BNC C FAKRA SMB FME HN MCX Mini ------- Product Search ------- Inventory Search Search Results for: 31-10152-RFX Results: 1 - 1 of 1 Part Number. All rights reserved. Copyright | Terms & Conditions | RF E-Mail Client | Contact Us | Amphenol

Berns, Hans-Gerd

315

Compare Activities by Number of Computers  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Computers Number of Computers Compare Activities by ... Number of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type with more than one computer per employee. Religious worship and food sales buildings had the fewest computers per square foot. Percent of All Computers by Building Type Figure showing percent of all computers by building type. If you need assistance viewing this page, please call 202-586-8800. Computer Data by Building Type Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Computers (thousand) Computers per Million Square Feet Computers per Thousand Employees All Buildings 4,657

316

Compendium of Experimental Cetane Number Data  

DOE Green Energy (OSTI)

In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

2004-09-01T23:59:59.000Z

317

Photon-number tomography and fidelity  

E-Print Network (OSTI)

The scheme of photon-number tomography is discussed in the framework of star-product quantization. The connection of dual quantization scheme and observables is reviewed. The quantizer and dequantizer operators and kernels of star product of tomograms in photon-number tomography scheme and its dual one are presented in explicit form. The fidelity and state purity are discussed in photon{number tomographic scheme, and the expressions for fidelity and purity are obtained in the form of integral of the product of two photon-number tomograms with integral kernel which is presented in explicit form. The properties of quantumness are discussed in terms of inequalities on state photon{number tomograms.

O. V. Man'ko

2012-12-23T23:59:59.000Z

318

DOE Solar Decathlon: 2005 Contests and Scoring - Dwelling  

NLE Websites -- All DOE Office Websites (Extended Search)

work and home. Main floor master suites ensure that houses remain livable as homeowners age. The building industry constantly adapts to lifestyle changes with new floor...

319

Stockpile Stewardship Quarterly Volume 1, Number 4  

National Nuclear Security Administration (NNSA)

1, Number 4 * February 2012 1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication Highlights 9 2011 NNSA Stewardship Science Graduate Fellowship Class S tockpile Stewardship Science is not for wimps, and

320

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples  

DOE Green Energy (OSTI)

Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

2002-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Climate Zone Number 1 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 1 Climate Zone Number 1 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC Dry(1B) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC . The following places are categorized as class 1 climate zones: Broward County, Florida Hawaii County, Hawaii Honolulu County, Hawaii Kalawao County, Hawaii Kauai County, Hawaii Maui County, Hawaii Miami-Dade County, Florida Monroe County, Florida Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_Number_1&oldid=21604" Category: ASHRAE Climate Zones What links here Related changes Special pages Printable version Permanent link Browse properties

322

What's Behind the Numbers? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's Behind the Numbers? What's Behind the Numbers? What's Behind the Numbers? June 24, 2011 - 3:39pm Addthis What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the price of gasoline at the pump. But what is behind the price of crude oil? This week the U.S. Energy Information Administration (EIA) launched a new web-based assessment highlighting key factors that can affect crude oil

323

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

324

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

325

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

326

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

327

Number of Interactions Involved in Software Failures ...  

Science Conference Proceedings (OSTI)

... Table 2. Number of variables in avionics software branches. Vars, Count, Pct, Cumulative. 1, 5691, 74.1%, 74.1%. 2, 1509, 19.6%, 93.7%. ...

328

Theorem Proving with the Real Numbers  

E-Print Network (OSTI)

This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few `discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the `Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally,...

John Robert Harrison

1996-01-01T23:59:59.000Z

329

Climate Zone Number 8 | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone Number 8 Jump to: navigation, search A type of climate defined in the ASHRAE...

330

Richardson Number Statistics in the Seasonal Thermocline  

Science Conference Proceedings (OSTI)

Statistics of Richardson number in the seasonal thermocline are determined for a simple model and from experiments over the continental shelf. The model consists of normally distributed and uncorrelated density gradient and shear (such as may be ...

Laurie Padman; Ian S. F. Jones

1985-07-01T23:59:59.000Z

331

Source codes as random number generators  

E-Print Network (OSTI)

Abstract—A random number generator generates fair coin flips by processing deterministically an arbitrary source of nonideal randomness. An optimal random number generator generates asymptotically fair coin flips from a stationary ergodic source at a rate of bits per source symbol equal to the entropy rate of the source. Since optimal noiseless data compression codes produce incompressible outputs, it is natural to investigate their capabilities as optimal random number generators. In this paper we show under general conditions that optimal variable-length source codes asymptotically achieve optimal variable-length random bit generation in a rather strong sense. In particular, we show in what sense the Lempel–Ziv algorithm can be considered an optimal universal random bit generator from arbitrary stationary ergodic random sources with unknown distributions. Index Terms — Data compression, entropy, Lempel–Ziv algorithm, random number generation, universal source coding.

Karthik Visweswariah; Student Member; Sanjeev R. Kulkarni; Senior Member; Sergio Verdú

1998-01-01T23:59:59.000Z

332

Ion Stopping Powers and CT Numbers  

SciTech Connect

One of the advantages of ion beam therapy is the steep dose gradient produced near the ion's range. Use of this advantage makes knowledge of the stopping powers for all materials through which the beam passes critical. Most treatment planning systems calculate dose distributions using depth dose data measured in water and an algorithm that converts the kilovoltage X-ray computed tomography (CT) number of a given material to its linear stopping power relative to water. Some materials present in kilovoltage scans of patients and simulation phantoms do not lie on the standard tissue conversion curve. The relative linear stopping powers (RLSPs) of 21 different tissue substitutes and positioning, registration, immobilization, and beamline materials were measured in beams of protons accelerated to energies of 155, 200, and 250 MeV; carbon ions accelerated to 290 MeV/n; and iron ions accelerated to 970 MeV/n. These same materials were scanned with both kilovoltage and megavoltage CT scanners to obtain their CT numbers. Measured RLSPs and CT numbers were compared with calculated and/or literature values. Relationships of RLSPs to physical densities, electronic densities, kilovoltage CT numbers, megavoltage CT numbers, and water equivalence values converted by a treatment planning system are given. Usage of CT numbers and substitution of measured values into treatment plans to provide accurate patient and phantom simulations are discussed.

Moyers, Michael F., E-mail: MFMoyers@roadrunner.co [Department of Proton Therapy, Inc., Colton, CA (United States); Sardesai, Milind [Department of Long Beach Memorial Medical Center, Long Beach, CA (United States); Sun, Sean [Department of City of Hope National Medical Center, Duarte, CA (United States); Miller, Daniel W. [Department of Loma Linda University Medical Center, Loma Linda, CA (United States)

2010-10-01T23:59:59.000Z

333

C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington, D.C. 20006 Tel. Tel. Tel. Tel. 202-378-2300  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington, D.C. 20006 Tel. Tel. Tel. Tel. 202-378-2300 C/O HELP PLLC, 750 SEVENTEETH STREET N.W. SUITE 900 Washington, D.C. 20006 Tel. Tel. Tel. Tel. 202-378-2300 February 27, 2012 Submitted via email to: Brian.Mills@hq.doe.gov Mr. Brian Mills Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Re: Coordination of Federal Authorizations for Electric Transmission Facilities, RIN 1901-AB18 Dear Mr. Mills: On behalf of WIRES (www.wiresgroup.com) I am pleased to submit the attached Comments in response to the Notice of Proposed Rulemaking on Coordination of Federal Authorizations for Electric Transmission Facilities. WIRES regards the work of Assistant Secretary Hoffman and OEDER in the area of electric transmission planning

334

Climate Zone Number 7 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Number 7 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 7 is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7 climate zones: Aitkin County, Minnesota Aleutians East Borough, Alaska Aleutians West Census Area, Alaska Anchorage Borough, Alaska Aroostook County, Maine Ashland County, Wisconsin Baraga County, Michigan Barnes County, North Dakota Bayfield County, Wisconsin Becker County, Minnesota Beltrami County, Minnesota Benson County, North Dakota Bottineau County, North Dakota Bristol Bay Borough, Alaska Burke County, North Dakota Burnett County, Wisconsin Carlton County, Minnesota Cass County, Minnesota

335

Microsoft Word - Document Numbering Plan.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

document Number Plan 11/3/2005 document Number Plan 11/3/2005 All documents numbers start with a 9 9 _ _ ___ | | | | | Document per chart | Generation (i.e. PSS has 1,2&3, FEEPS has 1&2) Use 0 when the document doesn't apply to any of these System 0- Non system Specific (group wide) 1- PSS 2- Reserved for PSS expansion 3- FEEPS 4- Reserved for FEEPS expansion 5- BLEPS 6- Reserved for BLEPS expansion 7- DIW 8- Reserved for future use 9- Reserved for future use 000-099 Requirements 000 - Statement of work For x.1.4.1.4 - Design Statement of Work For Beamlines - Installation Statement of Work 001-009 Reserved for Statement of Works for upgrade, revisions, add-ons, etc. 010 - Cost Estimate 011-019 Additional Cost Estimates

336

Notices OMB Control Number: 1850-0803.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

870 Federal Register 870 Federal Register / Vol. 78, No. 140 / Monday, July 22, 2013 / Notices OMB Control Number: 1850-0803. Type of Review: Extension without change of an existing collection of information. Respondents/Affected Public: Individuals or households. Total Estimated Number of Annual Responses: 135,000. Total Estimated Number of Annual Burden Hours: 27,000. Abstract: This is a request for a 3-year renewal of the generic clearance to allow the National Center for Education Statistics (NCES) to continue to develop, test, and improve its survey and assessment instruments and methodologies. The procedures utilized to this effect include but are not limited to experiments with levels of incentives for various types of survey operations, focus groups, cognitive laboratory

337

Climate Zone Number 3 | Open Energy Information  

Open Energy Info (EERE)

Number 3 Number 3 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 3 is defined as Warm - Humid(3A) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Dry(3B) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Warm - Marine(3C) with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3 climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alameda County, California Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina

338

SPRNG Parallel Random Number Generators at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

SPRNG SPRNG SPRNG Description The SPRNG libraries of generators produce good quality random numbers, and are also fast. They have been subjected to some of the largest random number tests, with around 10^13 RNs per test. SPRNG provides both FORTRAN and C (also C++) interfaces for the use of the parallel random number generators. Access SPRNG v2.0 is available on Carver (gcc, intel and pgi) and Cray systems (pgi and cce). Use the module utility to load the software. module load sprng Using SPRNG On Cray systems: ftn sprng_test.F $SPRNG -lsprng On Carver: mpif90 sprng_test.F $SPRNG -lsprng Documentation On Carver there are various documents in $SPRNG/DOCS and various examples in $SPRNG/EXAMPLES. See the SPRNG web site at Florida State University for complete details. For help using SPRNG at NERSC contact the

339

fall 2010, volume 4 number 1 Center Director  

E-Print Network (OSTI)

DAC program will have far-reaching effects in fields such as basic energy, biology, environmental science, fusion energy, and high-energy physics. The Performance Engineering Research Institute (PERI) tiger team in this section; we present results of applying them in Sections 4, 5, and 6. 2.1.1. Vampir The Vampir suite

Olsen Jr., Dan R.

340

Towards a Number Theoretic Discrete Hilbert Transform  

E-Print Network (OSTI)

This paper presents an approach for the development of a number theoretic discrete Hilbert transform. The forward transformation has been applied by taking the odd reciprocals that occur in the DHT matrix with respect to a power of 2. Specifically, the expression for a 16-point transform is provided and results of a few representative signals are provided. The inverse transform is the inverse of the forward 16-point matrix. But at this time the inverse transform is not identical to the forward transform and, therefore, our proposed number theoretic transform must be taken as a provisional result.

Kandregula, Renuka

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Beamline Phone Numbers| Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

342

Utah Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

754,554 778,644 794,880 810,442 821,525 830,219 1987-2011 Sales 754,554 821,525 830,219 1997-2011 Commercial Number of Consumers 55,821 57,741 59,502 60,781 61,976 62,885 1987-2011...

343

Michigan Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

1997-2011 Commercial Number of Consumers 254,923 253,139 252,382 252,017 249,309 249,456 1987-2011 Sales 236,447 217,325 213,995 1998-2011 Transported 18,476 31,984 35,461...

344

Illinois Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

,812,121 3,845,441 3,869,308 3,839,438 3,842,206 3,855,997 1987-2011 Sales 3,619,628 3,568,120 3,594,102 1997-2011 Transported 192,493 274,086 261,895 1997-2011 Commercial Number...

345

Wisconsin Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

,611,772 1,632,200 1,646,644 1,656,614 1,663,583 1,671,834 1987-2011 Sales 1,611,772 1,663,583 1,671,834 1997-2011 Transported 0 0 0 1997-2011 Commercial Number of Consumers...

346

New Jersey Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA)

Number of Consumers: 8,245: 8,036: 7,680: 7,871: 7,505: 7,391: 1987-2011: Sales: 7,248 : 6,282: 6,036: 1998-2011: Transported: 997 : 1,223: 1,355: 1998-2011: Average ...

347

On crossing numbers of geometric proximity graphs  

Science Conference Proceedings (OSTI)

Let P be a set of n points in the plane. A geometric proximity graph on P is a graph where two points are connected by a straight-line segment if they satisfy some prescribed proximity rule. We consider four classes of higher order proximity graphs, ... Keywords: Crossing number, Geometric graphs, Proximity graphs

Bernardo M. Ábrego; Ruy Fabila-Monroy; Silvia Fernández-Merchant; David Flores-Peñaloza; Ferran Hurtado; Vera Sacristán; Maria Saumell

2011-05-01T23:59:59.000Z

348

Colorado Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

,558,911 1,583,945 1,606,602 1,622,434 1,634,587 1,645,716 1986-2011 Sales 1,558,908 1,634,582 1,645,711 1997-2011 Transported 3 5 5 1997-2011 Commercial Number of Consumers...

349

Number of Award Federal Agencies Awards Amount  

E-Print Network (OSTI)

Universities 30 2,886,684 State of Colorado** 35 2,210,660 Miscellaneous agencies 11 498 the University of Colorado and Colorado State University Colorado School of Mines Awards by Funding Agency FiscalNumber of Award Federal Agencies Awards Amount Department of Agriculture Department of Commerce 4

350

Number of Award Federal Agencies Awards Amount  

E-Print Network (OSTI)

289 13,089,070 Other Universities 31 2,399,092 State of Colorado** 27 2,139,037 Miscellaneous agencies the University of Colorado and Colorado State University Colorado School of Mines Awards by Funding Agency FiscalNumber of Award Federal Agencies Awards Amount Department of Agriculture 1 499,815 Department

351

Number of Award Federal Agencies Awards Amount  

E-Print Network (OSTI)

,739,813 State of Colorado** 26 1,846,825 Miscellaneous agencies 10 697,285 326 29,281,431 Total Awards ReceivedNumber of Award Federal Agencies Awards Amount Department of Commerce 2 25,613 Department 215,000 Environmental Protection Agency 0 - National Aeronautics and Space Administration 1 30

352

Number of Award Federal Agencies Awards Amount  

E-Print Network (OSTI)

,096,445 State of Colorado 22 1,007,618 Miscellaneous agencies 10 514,288 327 24,608,655 Total Awards ReceivedNumber of Award Federal Agencies Awards Amount Department of Commerce 3 117,227 Department,385,219 Environmental Protection Agency 1 21,602 National Aeronautics and Space Administration 5 703,140 National

353

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments (OSTI)

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

354

Vermont Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

34,081 34,937 35,929 37,242 38,047 38,839 1987-2011 Sales 34,081 38,047 38,839 1997-2011 Commercial Number of Consumers 4,861 4,925 4,980 5,085 5,137 5,256 1987-2011 Sales 4,861...

355

Octane Number Prediction in a Reforming Plant  

Science Conference Proceedings (OSTI)

In this work a neural network for the prediction of the complex and non-linear behavior of a Catalytic Reforming of a refinery has been developed. In a fuel, refinery reforming is a conversion process to increase octane number (RON) of the desulphurated ...

E. Chibaro

2000-07-01T23:59:59.000Z

356

Michigan Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

3,193,920 3,188,152 3,172,623 3,169,026 3,152,468 3,153,895 1987-2011 Sales 3,066,542 2,952,550 2,946,507 1997-2011 Transported 127,378 199,918 207,388 1997-2011 Commercial Number...

357

Idaho Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

23,114 336,191 342,277 346,602 350,871 353,963 1987-2012 Sales 346,602 350,871 353,963 1997-2012 Commercial Number of Consumers 33,767 37,320 38,245 38,506 38,912 39,202 1987-2012...

358

Volume 131, Number 13 tech.mit.edu Tuesday, March 15, 2011 Oldest and Largest  

E-Print Network (OSTI)

, in- stead of summer campers practicing their layups and free throws, the floor of As- sembly Hall and environmental sciences; physics professor Scott Willenbrock; and Robert Roman, chief of utility plant operations

359

Table B14. Number of Establishments in Building, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

4. Number of Establishments in Building, Number of Buildings, 1999" 4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1897,272,"Q","Q","Q",164 "5,001 to 10,000 ..............",1110,802,222,17,"Q","Q","Q" "10,001 to 25,000 .............",708,506,121,51,12,"Q",17 "25,001 to 50,000 .............",257,184,33,15,15,"Q","Q"

360

Prefix-based node numbering for temporal XML  

Science Conference Proceedings (OSTI)

Prefix-based numbering (also called Dewey numbering, Dewey level order, or dynamic level numbering) is a popular method for numbering nodes in an XML data model instance. The nodes are numbered so that spatial relationships (e.g., is a node a descendant ... Keywords: Dewey numbering, XML, prefix-based numbering, temporal, versioning

Curtis E. Dyreson; Kalyan G. Mekala

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Battling bird flu by the numbers  

NLE Websites -- All DOE Office Websites (Extended Search)

May » May » Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

362

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

363

Sensitivity in risk analyses with uncertain numbers.  

SciTech Connect

Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

Tucker, W. Troy; Ferson, Scott

2006-06-01T23:59:59.000Z

364

AMR for low Mach number reacting flow  

Science Conference Proceedings (OSTI)

We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm supports modeling of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the application of the methodology to turbulent premixed combustion and nuclear flames in type Ia supernovae.

Bell, John B.

2004-01-16T23:59:59.000Z

365

Entanglement Distillation Protocols and Number Theory  

E-Print Network (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

366

Case Numbers: TBH-0063, TBZ-0063  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 21, 2008 May 21, 2008 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion To Dismiss Name of Case: Richard L. Urie Dates of Filing: May 15, 2007 July 19, 2007 Case Numbers: TBH-0063 TBZ-0063 This Decision concerns a Complaint filed by Richard L. Urie (hereinafter referred to as "Mr. Urie" or "the Complainant") against Los Alamos National Laboratory (hereinafter referred to as "LANL" or "the Respondent"), his former employer, under the Department of Energy's (DOE) Contractor

367

Faster Quantum Number Factoring via Circuit Synthesis  

E-Print Network (OSTI)

A major obstacle to implementing Shor's quantum number-factoring algorithm is the large size of modular-exponentiation circuits. We reduce this bottleneck by customizing reversible circuits for modular multiplication to individual runs of Shor's algorithm. Our circuit-synthesis procedure exploits spectral properties of multiplication operators and constructs optimized circuits from the traces of the execution of an appropriate GCD algorithm. Empirically, gate counts are reduced by 4-5 times, and circuit latency is reduced by larger factors.

Igor L. Markov; Mehdi Saeedi

2013-01-15T23:59:59.000Z

368

Higgs Quantum Numbers in Weak Boson Fusion  

E-Print Network (OSTI)

Recently, the ATLAS and CMS experiments have reported the discovery of a Higgs like resonance at the LHC. The next analysis step will include the determination of its spin and CP quantum numbers or the form of its interaction Lagrangian channel-by-channel. We show how weak-boson-fusion Higgs production and associated ZH production can be used to separate different spin and CP states.

C. Englert; D. Goncalves-Netto; K. Mawatari; T. Plehn

2012-12-04T23:59:59.000Z

369

Property:PhoneNumber | Open Energy Information  

Open Energy Info (EERE)

PhoneNumber PhoneNumber Jump to: navigation, search This is a property of type String. Pages using the property "PhoneNumber" Showing 25 pages using this property. (previous 25) (next 25) 1 1st Light Energy, Inc. + 209-824-5500 + 2 21-Century Silicon, Inc. + 972-591-0713 + 3 3Degrees + 415.449.0500 + 3M + 1-888-364-3577 + 4 4C Offshore Limited + +44 (0)1502 509260 + 4th Day Energy + 877-484-3291 + @ @Ventures (California) + (650) 322-3246 + @Ventures (Massachusetts) + (978) 658-8980 + A A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or 415-729-4210 + ABC Solar, Inc. + 1-866-40-SOLAR + ABS Alaskan Inc + (800) 235-0689 + ACME solar works + 877-226-3004 + ACORE + 202-393-0001 +

370

[Federal Register: April 19, 2006 (Volume 71, Number 75)] | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Register: April 19, 2006 (Volume 71, Number 75) Federal Register: April 19, 2006 (Volume 71, Number 75) Federal Register: April 19, 2006 (Volume 71, Number 75) More...

371

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

372

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

373

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

374

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

375

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

376

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

377

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

378

Notices Total Estimated Number of Annual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

379

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

380

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

382

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

383

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

384

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

385

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

386

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

387

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

388

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

389

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

390

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

391

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

392

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

393

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

394

Stockpile Stewardship Quarterly, Volume 2, Number 1  

National Nuclear Security Administration (NNSA)

1 * May 2012 1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in Non-hydrostatic Behavior in the Diamond Anvil Cell 8 Emission of Shocked Inhomogeneous Materials 9 2012 NNSA Stewardship Science Academic

395

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

396

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

397

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

398

Risk communication: Uncertainties and the numbers game  

Science Conference Proceedings (OSTI)

The science of risk assessment seeks to characterize the potential risk in situations that may pose hazards to human health or the environment. However, the conclusions reached by the scientists and engineers are not an end in themselves - they are passed on to the involved companies, government agencies, legislators, and the public. All interested parties must then decide what to do with the information. Risk communication is a type of technical communication that involves some unique challenges. This paper first defines the relationships between risk assessment, risk management, and risk communication and then explores two issues in risk communication: addressing uncertainty and putting risk number into perspective.

Ortigara, M. [ed.

1995-08-30T23:59:59.000Z

399

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments (OSTI)

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

400

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

402

THE OPERATOR © FOR THE CHROMATIC NUMBER OF A GRAPH£ ¡  

E-Print Network (OSTI)

We introduce an operator © mapping any graph parameter ¬( ), nested between the stability number ...... Local chromatic number and Sperner capacity. ?ournal.

403

The New Element Californium (Atomic Number 98)  

DOE R&D Accomplishments (OSTI)

Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

1950-06-19T23:59:59.000Z

404

Weighted trapezoidal approximation-preserving cores of a fuzzy number  

Science Conference Proceedings (OSTI)

Recently, various researchers have proved that approximations of fuzzy numbers may fail to be fuzzy numbers. In this contribution, we suggest a new weighted trapezoidal approximation of an arbitrary fuzzy number, which preserves its cores. We prove that ... Keywords: Core of fuzzy number, Fuzzy numbers, Trapezoidal fuzzy numbers, Weighted approximation

S. Abbasbandy; T. Hajjari

2010-05-01T23:59:59.000Z

405

Case Numbers: TBH-0098, TBZ-0098  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 9, 2010 November 9, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Motion to Dismiss Initial Agency Decision Names of Petitioners: Mark D. Siciliano Battelle Energy Alliance LLC Dates of Filings: March 15, 2010 August 16, 2010 Case Numbers: TBH-0098 TBZ-0098 This Decision will consider a Motion to Dismiss filed by Battelle Energy Alliance LLC (Battelle), the Management and Operating Contractor for the Department of Energy's (DOE) Idaho National Laboratory (INL), in connection with the pending Complaint of Retaliation filed by Mark Siciliano against Battelle under the DOE's Contractor Employee Protection Program and its governing regulations set forth at 10 C.F.R. Part 708. The Office of Hearings and Appeals

406

Case Numbers: TBH-0073, TBH-0075  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2008 9, 2008 DECISION AND ORDER OF THE DEPARMENT OF ENERGY Initial Agency Decision Names of Petitioners: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: February 1, 2008 Case Numbers: TBH-0073 TBH-0075 This Initial Agency Decision involves two whistleblower complaints, one filed by Jonathan K. Strausbaugh (Case No. TBH-0073) and the other filed by Richard L. Rieckenberg (Case No. TBH-0075) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Both complainants were employees of KSL Services, Inc. ("KSL" or "the contractor"), a contractor providing technical services on the site of the DOE Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, where they were employed until June 14, 2007. In their respective

407

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

408

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

409

Case Numbers: TBH-0080, TBZ-0080  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Order to Show Cause Motion for Summary Judgment Initial Agency Decision Name of Cases: Billy Joe Baptist Dates of Filing: December 19, 2008 February 18, 2009 Case Numbers: TBH-0080 TBZ-0080 This decision will consider an Order to Show Cause that I issued on February 3, 2009, regarding a March 6, 2008, whistleblower complaint filed by Billy Joe Baptist (Baptist) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708, against his employer, CH2M-WG Idaho, LLC (CWI). I will also consider in this decision as a Motion for Summary Judgment that CWI filed on February 18, 2009 regarding this complaint. Pursuant to Part 708, an OHA attorney conducted an investigation of Baptist's whistleblower

410

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

411

Climate Zone Number 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Dry(5B) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Marine(5C) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5 climate zones: Ada County, Idaho Adair County, Iowa Adair County, Missouri Adams County, Colorado Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Adams County, Washington Albany County, New York Allegan County, Michigan Alleghany County, North Carolina

412

Case Numbers: TBD-0073, TBD-0075  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2008 16, 2008 DECISION AND ORDER OFFICE OF HEARINGS AND APPEALS Motion to Compel Discovery Case Names: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: April 2, 2008 Case Numbers: TBD-0073 TBD-0075 Pending before me is a consolidated Motion to Compel Discovery filed with the Office of Hearings and Appeals (OHA) on behalf of Jonathan K. Strausbaugh and Richard L. Rieckenberg (the complainants) by their attorney. This Motion relates to a hearing requested by the complainants under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708), in connection with the Part 708 complaints they filed against KSL Services, Inc. (KSL). The OHA has assigned Mr. Strausbaugh's and Mr. Rieckenberg's hearing

413

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

414

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

415

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

416

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

417

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

418

Title, Location, Document Number Estimated Cost Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Title, Location, Document Number Estimated Cost Description EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $65,000 Annual NEPA Planning Summary NEPA Reviews of Proposals to Implement Enterprise SRS Initiatives unknown The Savannah River Site Strategic Plan for 2011 - 2015 describes 12 initiatives that Enterprise SRS will pursue by applying SRS's management core competencies in nuclear materials. Implementation of new missions resulting from this effort will likely require NEPA review. However, until firm proposals are developed

419

Case Numbers: TBH-0087, TBZ-0087  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 22, 2010 January 22, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion to Dismiss Name of Case: David P. Sanchez Dates of Filing: October 30, 2009 December 21, 2009 Case Numbers: TBH-0087 TBZ-0087 This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory ("LANL" or "the Respondent"). LANL seeks dismissal of a pending complaint filed by David P. Sanchez ("Mr. Sanchez" or "the Complainant") against his employer, Los Alamos National Security, L. L. C. ("LANS"), 1 on October 30, 2009, under the Department of Energy's (DOE) Contractor Employee Protection Program, set for that 10 C.F.R. Part 708. OHA has assigned Mr. Sanchez' hearing request Case No. TBH-0087, and the present Motion to Dismiss Case No.

420

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

422

Mo Year Report Period: EIA ID NUMBER:  

U.S. Energy Information Administration (EIA) Indexed Site

Version No: 2013.01 Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 PADD 4 Type of Report (Check One ): (Thousands of dollars) (Thousands of barrels) PADD 2 PADD 3 PAD DISTRICT (a) Revision to Report:

423

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

424

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

425

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

426

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

427

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

428

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

429

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

430

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

431

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

432

U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of  

Gasoline and Diesel Fuel Update (EIA)

Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57 66 62 63 64 65 64 2007 63 63 68 71 70 69 69 71 73 77 79 75 2008 76 77 75 72 73 73 72 72 NA 77 72 73 2009 75 76 72 70 65 60 61 60 60 63 62 63 2010 64 65 63 66 67 67 67 65 64 62 62 62

433

About the logic of the prime number distribution  

E-Print Network (OSTI)

There are two basic number sequences which play a major role in the prime number distribution. The first Number Sequence SQ1 contains all prime numbers of the form 6n+5 and the second Number Sequence SQ2 contains all prime numbers of the form 6n+1. All existing prime numbers seem to be contained in these two number sequences, except of the prime numbers 2 and 3. Riemanns Zeta Function also seems to indicate, that there is a logical connection between the mentioned number sequences and the distribution of prime numbers. This connection is indicated by lines in the diagram of the Zeta Function, which are formed by the points s where the Zeta Function is real. Another key role in the distribution of the prime numbers plays the number 5 and its periodic occurrence in the two number sequences SQ1 and SQ2. All non-prime numbers in SQ1 and SQ2 are caused by recurrences of these two number sequences with increasing wave-lengths in themselves, in a similar fashion as Overtones (harmonics) or Undertones derive from a fundamental frequency. On the contrary prime numbers represent spots in these two basic Number Sequences SQ1 and SQ2 where there is no interference caused by these recurring number sequences. The distribution of the non-prime numbers and prime numbers can be described in a graphical way with a -Wave Model- (or Interference Model) -- see Table 2.

Harry K. Hahn

2008-01-28T23:59:59.000Z

434

FLINT Fast Library for Number Theory  

E-Print Network (OSTI)

FLINT is a C library of functions for doing number theory. It is highly optimised and can be compiled on numerous platforms. FLINT also has the aim of providing support for multicore and multiprocessor computer architectures, though we do not yet provide this facility. FLINT is currently maintained by William Hart of Warwick University in the UK. Its main authors are William Hart, Sebastian Pancratz, Fredrik Johannson, Andy Novocin and David Harvey (no longer active). FLINT 2 and following should compile on any machine with GCC and a standard GNU toolchain, however it is specially optimized for x86 (32 and 64 bit) machines. As of version 2.0 FLINT required GCC version 2.96 or later, MPIR 2.1.1 or later and MPFR 3.0.0 or later. FLINT is supplied as a set of modules, fmpz, fmpz_poly, etc., each of which can be linked to a C program making use of their functionality. All of the functions in FLINT have a corresponding test function provided in an appropriately named test le. For example, the function fmpz_poly_add located in fmpz_poly/add.c has test code in the le fmpz_poly/test/t-add.c.

William Hart; *Fredrik Johansson; Sebastian Pancratz

2011-01-01T23:59:59.000Z

435

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

436

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

437

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

438

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

440

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

442

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

443

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

444

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

445

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

446

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

447

New Mexico Natural Gas Number of Residential Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Number of Elements) New Mexico Natural Gas Number of Residential Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

448

New Mexico Natural Gas Number of Commercial Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

- Sales (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

449

New Mexico Natural Gas Number of Residential Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

450

New Mexico Natural Gas Number of Commercial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

451

New Mexico Natural Gas Number of Underground Storage Acquifers...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

452

New Mexico Natural Gas Number of Industrial Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

453

New Mexico Natural Gas Number of Industrial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

454

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

455

Number of Marketers Serving Residential Customers, December 2002  

U.S. Energy Information Administration (EIA)

Number of Marketers Serving Residential Customers, December 2002. State/District *Total Marketers ... Gives number of marketers but no names: Georgia: 10: 10:

456

Local Energy Assurance Planning: Map of States with Number of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States with Number of Cities Selected Local Energy Assurance Planning: Map of States with Number of Cities Selected Map of the United States identifying the States with cities...

457

Property:Number of Plants included in Capacity Estimate | Open...  

Open Energy Info (EERE)

of Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

458

Property:NEPA FundingNumber | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Property Name NEPA FundingNumber Property Type String This is a property of type String. Pages using the property "NEPA FundingNumber"...

459

Suites Catering Menu --Fall 2012 ScholarshipSuites  

E-Print Network (OSTI)

and Monterey Jack cheeses garnished with sour cream and green onions served with tortilla chips Pancetta Dip Traditional hummus made from organic garbanzo beans garnished with kalamata olives, peppadew peppers and extra Tray $40 (Local and Imported) Garnished with berries and grapes, served with assorted crackers Shrimp

Peterson, Blake R.

460

Suites Catering Menu --Fall 2011 ScholarshipSuites  

E-Print Network (OSTI)

, horseradish sauce, stone ground mustard, and vegetable garnish Nacho Bar $50 Start with seasoned ground beef and ranch dip Assorted Cheese Tray $40 (Local and Imported) Garnished with berries and grapes, served garnish St. Louis Style Ribs $25 Fall-off-the-bone tender and slathered with carmelized BBQ sauce, a slab

Peterson, Blake R.

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

462

An improved ranking method for fuzzy numbers with integral values  

Science Conference Proceedings (OSTI)

Ranking fuzzy numbers is a very important decision-making procedure in decision analysis and applications. The last few decades have seen a large number of approaches investigated for ranking fuzzy numbers, yet some of these approaches are non-intuitive ... Keywords: Index of optimism, Integral value, Ranking fuzzy numbers

Vincent F. Yu, Luu Quoc Dat

2014-01-01T23:59:59.000Z

463

72 Los Alamos Science Number 24 1996 Russian Federation  

E-Print Network (OSTI)

inspection by signing the Nu- clear Nonproliferation Treaty (NPT). However, a number of states, as well

464

ENDOSCOPY SUITE DIRECT ENDOSCOPY REQUEST  

E-Print Network (OSTI)

­ who _______ negative colonoscopy 1st degree relative ______ Occult GI bleeding with ______ Abnormal, x-ray or CT ______ Occult GI bleeding (attach report) ______ Hematochezia ______ Nausea and

Viola, Ronald

465

GENII. Environmental Radiation Dosimetry Suite  

Science Conference Proceedings (OSTI)

GENII was developed to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) into the environmental pathway analysis models used at Hanford. GENII is a coupled system of seven programs and the associated data libraries that comprise the Hanford Dosimetry System (Generation II) to estimate potential radiation doses to individuals or populations from both routine and accidental releases of radionuclides to air or water and residual contamination from spills or decontamination operations. The GENII system includes interactive menu-driven programs to assist the user with scenario generation and data input,internal and external dose factor generators, and environmental dosimetry programs. The programs analyze environmental contamination resulting from both far-field and near-field scenarios. A far-field scenario focuses outward from a source, while a near-field scenario focuses in toward a receptor. GENII can calculate annual dose, committed dose, and accumulated dose from acute and chronic releases from ground or elevated sources to air or water and from initial contamination of soil or surfaces and can evaluate exposure pathways including direct exposure via water, soil, air, inhalation pathways, and ingestion pathways. In addition, GENII can perform 10,000 years migration analyses and can be used for retrospective calculations of potential radiation doses resulting from routine emissions and for prospective dose calculations for purposes such as siting facilities, environmental impact statements, and safety analysis reports.

Napier, B.A. [Pacific Northwest Lab., Richland, WA, (United States)

1988-12-01T23:59:59.000Z

466

Exhibit Floor Plan (PDF) - TMS  

Science Conference Proceedings (OSTI)

Jan 27, 2011 ... Exxon Mobil Oil Corp. Fives Solios. FL Smidth. GE Global Research. Graftech. Harbin Dongsheng. Harbison-Walker Refractories. Hatch.

467

Property:NumberOfEZFeedDsirePolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedDsirePolicies NumberOfEZFeedDsirePolicies Jump to: navigation, search Property Name NumberOfEZFeedDsirePolicies Property Type Number Description Number for query that includes EZ policies and DSIRE entries. Populated from Template:StatisticsForPlace Pages using the property "NumberOfEZFeedDsirePolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 +

468

Scale Free Analysis and the Prime Number Theorem  

E-Print Network (OSTI)

We present an elementary proof of the prime number theorem. The relative error follows a golden ratio scaling law and respects the bound obtained from the Riemann's hypothesis. The proof is derived in the framework of a scale free nonarchimedean extension of the real number system exploiting the concept of relative infinitesimals introduced recently in connection with ultrametric models of Cantor sets. The extended real number system is realized as a completion of the field of rational numbers $Q$ under a {\\em new} nonarchimedean absolute value, which treats arbitrarily small and large numbers separately from a finite real number.

Dhurjati Prasad Datta; Anuja Roy Choudhuri

2010-01-10T23:59:59.000Z

469

1 Argentina Australia & New Zealand Education Argentina Buenos Aires Paraguay 647 piso 4 Of. 17 & 18 C1057AAG Buenos Aires +54 11 4311 9828 +54 11 4311 9828 arocha@australianzeducation.com 2 Australia IDP Education Australia Australia Sydney Ground Floor,  

E-Print Network (OSTI)

Ambala Plot No10, 2nd Floor Opp. Komal Petrol Station Old Session Court Road, Jain Nagar Ambala City,+91 171 6451757 ambala.planet@gmail.com 129 India Planet Education India Lucknow Mark Education 3rd

University of Technology, Sydney

470

Export support of renewable energy industries. Task number 1, deliverable number 3. Final report  

DOE Green Energy (OSTI)

The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

NONE

1998-01-14T23:59:59.000Z

471

Export support of renewable energy industries, grant number 1, deliverable number 3. Final report  

DOE Green Energy (OSTI)

The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

NONE

1998-01-14T23:59:59.000Z

472

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

473

ORISE: Report shows number of health physics degrees for 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

ORISE report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the...

474

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

475

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

476

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

477

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

478

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

479

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

480

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "number floor suite" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

482

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

483

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

484

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

485

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

486

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

487

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

488

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

489

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

490

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

491

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

492

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

493

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

494

Property:NumberOfMeasuringStations | Open Energy Information  

Open Energy Info (EERE)

Property Edit with form History Facebook icon Twitter icon Property:NumberOfMeasuringStations Jump to: navigation, search This is a property of type Number. Pages using the...

495

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

496

HYPERPERFECT NUMBERS WITH FIVE AND SIX DIFFERENT PRIME FACTORS  

E-Print Network (OSTI)

A natural number N is hyperperfect if there exists an integer k such that N ?1 = k[?(N)? N ? 1], where ?(N) is the sum of the positive divisors of N. The classical perfect numbers are hyperperfect numbers corresponding to k = 1. In this paper we exhibit several hyperperfect numbers with five different prime factors and the first known hyperperfect number with six different prime factors. A natural number N is said to be hyperperfect if there exists an integer k such that N ? 1 = k[?(N) ? N ? 1], where ?(N) is the sum of the positive divisors of N. The ordinary perfect numbers, for which ?(N) = 2 · N, correspond to the case where k = 1. Hyperperfect numbers have been studied by Minoli [2], [3], [4], Bear [2], te Riele [6], [7], [8], McCranie, [1], and Nash [5]. Several examples have been found of hyperperfect numbers with two, three and four different prime factors and one such number with five different prime factors was discovered be te Riele [8]. In this paper we include some new hyperperfect numbers with five different prime factors and the first known example with six different prime factors as well. These numbers were

Mariano Garcia

2002-01-01T23:59:59.000Z

497

A preconditioned method for rotating flows at arbitrary mach number  

Science Conference Proceedings (OSTI)

An improved preconditioning is proposed for viscous flow computations in rotating and nonrotating frames at arbitrary Mach numbers. The key to the current method is the use of both free stream Mach number and rotating Mach number to construct a preconditioning ...

Chunhua Sheng

2011-01-01T23:59:59.000Z

498

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

499

Property:NumberOfUtilityCompanies | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:NumberOfUtilityCompanies Jump to: navigation, search Property Name NumberOfUtilityCompanies Property Type Number Description Number of Utility Companies. Pages using the property "NumberOfUtilityCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 +

500

Property:NumberOfEZFeedPolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedPolicies NumberOfEZFeedPolicies Jump to: navigation, search Property Name NumberOfEZFeedPolicies Property Type Number Pages using the property "NumberOfEZFeedPolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +