National Library of Energy BETA

Sample records for number description a9

  1. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  2. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  3. Testbed Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testbed Description Network R&D Overview Experimental Network Testbeds 100G SDN Testbed Testbed Description Testbed Results Proposal Process Terms and Conditions Dark Fiber Testbed...

  4. Energy Level Diagrams A=9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Available in the following years: (2004), (1988), (1984), (1979), (1974), (1966), (1959) A=9 Energy Level Diagrams from (2004TI06) GIF (Graphic Interchange Format): 9Li (24 KB) 9Be (44 KB) 9B (36 KB) 9C (20 KB) Isobar diagram (36 KB) PDF (Portable Document Format): 9Li (36 KB) 9Be (60 KB) 9B (48 KB) 9C (28 KB) Isobar diagram (56 KB) EPS (Encapsulated Postscript): 9Li (1.7 MB) 9Be (1.7 MB) 9B (1.6 MB) 9C (1.7 MB) Isobar diagram (1.8 MB) A=9 Energy Level Diagrams from (1988AJ01) GIF (Graphic

  5. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Description Inspiring girls to recognize their potential and pursue opportunities in science, technology, engineering and mathematics. Through Expanding Your Horizon (EYH) ...

  6. Testbed Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testbed Description Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  7. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Description SAGE, the Summer of Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program emphasizes both teaching of field methods and research related to basic science and a variety of applied problems. SAGE is hosted by the National Security Education Center and the Earth and Environmental Sciences Division of the Los Alamos National

  8. Description of Proposed Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECORD OF CATEGORICAL EXCLUSION DETERMINATION 1 Description of Proposed Action Performance of a three-dimensional seismic survey line on approximately 2,409 acres contained within the WIPP Land Withdrawal Area as part of a larger survey to determine whether hydrocarbons are present in the region in quantities that warrant extraction and development. Number and Title of Applicable Categorical Exclusion B3.1 Site Characterization/Environmental Monitoring Activities covered by this Categorical

  9. A=9Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.3 2.9 keV for the second T 32 state in A 9 (1975KA18). 1. 9Li(-)9Be Qm 13.607 The half-life of 9Li is 178.3 0.4 msec (1976AL02). Other recent values are 175 1...

  10. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  11. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  12. A=9He (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (Not illustrated) 9He is predicted to be particle unstable: its calculated mass excess > 40.17 MeV (1970WA1G, 1972WA07), = 43.54 MeV (1972TH13). Particle instability with respect to 8He + n, 7He + 2n and 6He + 3n implies atomic mass excesses greater than 39.7, 42.25 and 41.812 MeV, respectively. See also (1968CE1A). 9He has not been observed in a pion experiment [9Be(π-, π+)9He] (1965GI10) nor in the spontaneous fission of 252Cf (1967CO1K

  13. STEP Intern Job Description

    Broader source: Energy.gov [DOE]

    STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  14. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  15. Research Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No job description found Current Research Opportunities Water Quality Standards and Feasibility Studies National Permit Discharge Elimination System Permitting Physiologically...

  16. Company/Product Description Contract Number Contract Holders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lumension: Ben Boykin ph: 703-956-0347 ben.boykin@lumension.com Rob Gettings Robert.Gettings@hq.doe.gov 301-903-0829 McAfee Anti-virus and anti-spyware software (most McAfee ...

  17. PURPOSE FORM INSTRUCTIONS Item Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PURPOSE FORM INSTRUCTIONS Item Description 1 Enter inclusive dates of current reporting period. 2 Enter the official contract title. 3 Enter the official contract number. 4 Enter the name and address of each subcontractor. Subcontractors are to be grouped by state. 5 Enter ZIP code plus the 4-digit ZIP code extension. 6 Enter the subcontractor's business type (i.e. Academia, Industry, National Lab, Non-Profit Organization, State, or Other). 7 Enter the subcontractor's business classification

  18. HAZWOPER Training Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    55 Revision 0 Hanford Standardized HAZWOPER Training Program Description Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management Approved for Public Release; Further Dissemination Unlimited Hanford Standardized HAZWOPER Training Program Description, DOE-0355 Page 2 of 12 Senior Management Team Approval Hanford Standardized HAZWOPER Training Program Description, DOE-0355 Page 3 of 12 Hanford Training Manager Approval Hanford Standardized HAZWOPER Training

  19. ARM - Detailed Experiment Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M)...

  20. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of ...

  1. VISION Model: Description

    SciTech Connect (OSTI)

    2009-01-18

    Description of VISION model, which is used to estimate the impact of highway vehicle technologies and fuels on energy use and carbon emissions to 2050.

  2. Detailed Income Statement Descriptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Description Sales Sales under the Transmission Rate Schedules Miscellaneous Revenue Sales that are not subject to Transmission rates schedules Inter-Business Unit...

  3. Categorical Exclusion Determinations: A9 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    publication and distribution, and classroom training and informational programs), ... CX(s) Applied: A9 Federal Energy Management Program Date: 04132016 Location(s): ...

  4. Original Workshop Proposal and Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes for Vis Requirements Original Workshop Proposal and Description Original Workshop Proposal and Description Visualization Requirements for Computational Science and ...

  5. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  6. B Plant facility description

    SciTech Connect (OSTI)

    Chalk, S.E.

    1996-10-04

    Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

  7. BIA Description | Open Energy Information

    Open Energy Info (EERE)

    Description Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BIA Description Abstract Description of Bureau of Indian Affairs. Author Bureau of Indian...

  8. Description of GPRA08 scenarios

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Background information for the FY 2007 GPRA methodology review providing a description of GPRA08 scenarios.

  9. Microscopic Description of Induced Nuclear Fission (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Microscopic Description of Induced Nuclear Fission Citation Details In-Document Search Title: Microscopic Description of Induced Nuclear Fission Authors: Schunck, N Publication Date: 2012-12-13 OSTI Identifier: 1059062 Report Number(s): LLNL-PROC-608273 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: 10th International Conference on Clustering Aspects of Nuclear Structure and Dynamics, Debrecen, Hungary, Sep 24 - Sep 28

  10. Microscopic Description of Nuclear Fission: Fission Barrier Heights of

    Office of Scientific and Technical Information (OSTI)

    Even-Even Actinides (Conference) | SciTech Connect Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides Citation Details In-Document Search Title: Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides Authors: McDonnell, J ; Schunck, N ; Nazarewicz, W Publication Date: 2013-01-22 OSTI Identifier: 1062216 Report Number(s): LLNL-PROC-612272 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation:

  11. Description of Induced Nuclear Fission with Skyrme Energy Functionals: II.

    Office of Scientific and Technical Information (OSTI)

    Finite Temperature Effects (Journal Article) | SciTech Connect Journal Article: Description of Induced Nuclear Fission with Skyrme Energy Functionals: II. Finite Temperature Effects Citation Details In-Document Search Title: Description of Induced Nuclear Fission with Skyrme Energy Functionals: II. Finite Temperature Effects Authors: Schunck, N ; Duke, D ; Carr, H Publication Date: 2013-11-06 OSTI Identifier: 1184748 Report Number(s): LLNL-JRNL-645837 DOE Contract Number: DE-AC52-07NA27344

  12. Management control system description

    SciTech Connect (OSTI)

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  13. Description of Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    for the 1999 Commercial Buildings Energy Consumption Survey (CBECS) consists of building characteristics tables B1 through B39, which contain the number of buildings and...

  14. TWRS baseline system description

    SciTech Connect (OSTI)

    Lee, A.K.

    1995-03-28

    This document provides a description of the baseline system conceptualized for remediating the tank waste stored within the Hanford Site. Remediation of the tank waste will be performed by the Tank Waste Remediation System (TWRS). This baseline system description (BSD) document has been prepared to describe the current planning basis for the TWRS for accomplishing the tank waste remediation functions. The BSD document is not intended to prescribe firm program management strategies for implementing the TWRS. The scope of the TWRS Program includes managing existing facilities, developing technology for new systems; building, testing and operating new facilities; and maintaining the system. The TWRS Program will manage the system used for receiving, safely storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all tank waste. The scope of the TWRS Program encompasses existing facilities such as waste storage tanks, evaporators, pipelines, and low-level radioactive waste treatment and disposal facilities. It includes support facilities that comprise the total TWRS infrastructure, including upgrades to existing facilities or equipment and the addition of new facilities.

  15. Microscopic description of fission dynamics: finite element method

    Office of Scientific and Technical Information (OSTI)

    resolution of the TDGCM+GOA equation (Conference) | SciTech Connect Conference: Microscopic description of fission dynamics: finite element method resolution of the TDGCM+GOA equation Citation Details In-Document Search Title: Microscopic description of fission dynamics: finite element method resolution of the TDGCM+GOA equation Authors: Regnier, D ; Dubray, N ; Schunck, N ; Verriere, M Publication Date: 2015-10-16 OSTI Identifier: 1239187 Report Number(s): LLNL-PROC-678472 DOE Contract

  16. Physical Description and Experimental Characterization of the Resistive

    Office of Scientific and Technical Information (OSTI)

    Switching Filament. (Conference) | SciTech Connect Physical Description and Experimental Characterization of the Resistive Switching Filament. Citation Details In-Document Search Title: Physical Description and Experimental Characterization of the Resistive Switching Filament. Abstract not provided. Authors: Lohn, Andrew ; Mickel, Patrick R. ; James, Conrad D. ; Marinella, Matthew Publication Date: 2014-02-01 OSTI Identifier: 1141260 Report Number(s): SAND2014-1499C 504908 DOE Contract

  17. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  18. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  19. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  20. Program Description | Robotics Internship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 4, 2016. Apply Now for the Robotics Internship About the Internship Program Description Start of Appointment Renewal of Appointment End of Appointment Stipend Information...

  1. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  2. California Natural Gas Number of Commercial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers California Number of Natural ...

  3. Detailed Course Module Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Course Module Description Detailed Course Module Description This document lists the course modules for building science courses offered at Cornell's Collaborator...

  4. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  5. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  6. Original Workshop Proposal and Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes for Vis Requirements » Original Workshop Proposal and Description Original Workshop Proposal and Description Visualization Requirements for Computational Science and Engineering Applications Proposal for a DoE Workshop to Be Held 
at the Berkeley Marina Radisson Hotel,
Berkeley, California, June 5, 2002
(date and location are tenative) Workshop Co-organizers: Bernd Hamann 
University of California-Davis Lawrence Berkeley Nat'l Lab. E. Wes Bethel 
Lawrence Berkeley Nat'l Lab.

  7. Quality Assurance Requirements and Description

    Energy Savers [EERE]

    QjCivilianRadioactive Was'fe Management QA: QA QVALITY ASSURANCE REQUIREMENTS AND DESCRIPTION DOEIRW-0333P Revisiol1 20 Effective Date: 10-01-2008 LarrY Newman, DlrectQr Office of Quality As,surance ~~--~-_._._- Edward F. Spr at III, Di or Office of Civilian Radioactive Waste Management Date I/Jf/4t' , . - - - Date OCRWM Title: Quality Assurance Requirements and Description DOEIRW-0333P, Revision 20 Office of Civilian Radioactive Waste Management Quality Assurance Policy Page: 2 of 160

  8. Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Evaluation Josh Warner, Manager Contract Administration Mike Rose, Manager Smart GridDemand Response Lee Hall, Manager Programs Brent Barclay, Manager IndustrialAg Sector...

  9. Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenging training environment Modeled after real-world events and scenarios Forces teams to push the boundaries of their comfort level with their tools and...

  10. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  11. Visiting Faculty Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Faculty Program Program Description The Visiting Faculty Program seeks to increase the research competitiveness of faculty members and their students at institutions historically underrepresented in the research community in order to expand the workforce vital to Department of Energy mission areas. As part of the program, selected university/college faculty members collaborate with DOE laboratory research staff on a research project of mutual interest. Program Objective The program is

  12. Nuclear Industry Job Descriptions Boilermaker

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or radiological incident. The NIT's mission is to coordinate NNSA assets for deployment, continually monitor deployment activities, and provide situational awareness of activities to NNSA management. The NIT is staffed and fully operational within two hours of notification

    Industry Job Descriptions Boilermaker Skilled craft who

  13. Student Internship Programs Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Internship Programs Program Description The objective of the Laboratory's student internship programs is to provide students with opportunities for meaningful hands- on experience supporting educational progress in their selected scientific or professional fields. The most significant impact of these internship experiences is observed in the intellectual growth experienced by the participants. Student interns are able to appreciate the practical value of their education efforts in their

  14. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  15. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  16. Visiting Faculty Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covers stipend and travel reimbursement for the 10-week program. Teacherfaculty participants: 1 Program Coordinator: Scott Robbins Email: srobbins@lanl.gov Phone number: 663-5621...

  17. SNF AGING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    L.L. Swanson

    2005-04-06

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the spent nuclear fuel (SNF) aging system and associated bases, which will allow the design effort to proceed. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD follows the design with regard to the description of the system. The description provided in the SDD reflects the current results of the design process. Throughout this SDD, the term aging cask applies to vertical site-specific casks and to horizontal aging modules. The term overpack is a vertical site-specific cask that contains a dual-purpose canister (DPC) or a disposable canister. Functional and operational requirements applicable to this system were obtained from ''Project Functional and Operational Requirements'' (F&OR) (Curry 2004 [DIRS 170557]). Other requirements that support the design process were taken from documents such as ''Project Design Criteria Document'' (PDC) (BSC 2004 [DES 171599]), ''Site Fire Hazards Analyses'' (BSC 2005 [DIRS 172174]), and ''Nuclear Safety Design Bases for License Application'' (BSC 2005 [DIRS 171512]). The documents address requirements in the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]). This SDD includes several appendices. Appendix A is a Glossary; Appendix B is a list of key system charts, diagrams, drawings, lists and additional supporting information; and Appendix C is a list of procedures that will be used to operate the system.

  18. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  19. Descriptive Model of Generic WAMS

    SciTech Connect (OSTI)

    Hauer, John F.; DeSteese, John G.

    2007-06-01

    The Department of Energys (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nations electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

  20. Minnesota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Minnesota Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Minnesota Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Maine Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. California Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. California Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. New Jersey Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Kentucky Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Oregon Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. Louisiana Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Nevada Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. Maryland Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Massachusetts Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  17. Michigan Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Ohio Natural Gas Number of Industrial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. Mississippi Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. New York Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Montana Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Missouri Natural Gas Number of Industrial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  3. Maine Natural Gas Number of Industrial Consumers (Number of Elements...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. North Carolina Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Pennsylvania Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  7. Nebraska Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Arizona Natural Gas Number of Residential Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Arizona Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Student Internship Programs Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for a summer high school student to 75,000 for a Ph.D. student working full-time for a year. Program Coordinator: Scott Robbins Email: srobbins@lanl.gov Phone number: 663-5621...

  11. Description of induced nuclear fission with Skyrme energy functionals. II.

    Office of Scientific and Technical Information (OSTI)

    Finite temperature effects (Journal Article) | SciTech Connect functionals. II. Finite temperature effects Citation Details In-Document Search Title: Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects Authors: Schunck, N. ; Duke, D. ; Carr, H. Publication Date: 2015-03-25 OSTI Identifier: 1180645 Grant/Contract Number: AC52-07NA27344 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal

  12. Description of induced nuclear fission with Skyrme energy functionals:

    Office of Scientific and Technical Information (OSTI)

    Static potential energy surfaces and fission fragment properties (Journal Article) | SciTech Connect functionals: Static potential energy surfaces and fission fragment properties Citation Details In-Document Search Title: Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties Authors: Schunck, N. ; Duke, D. ; Carr, H. ; Knoll, A. Publication Date: 2014-11-06 OSTI Identifier: 1180689 Grant/Contract Number:

  13. Microsoft Word - 338M_Geothermal_Project_Descriptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    338MGeothermalProjectDescriptions Microsoft Word - 338MGeothermalProjectDescriptions PDF icon Microsoft Word - 338MGeothermalProjectDescriptions More Documents & ...

  14. ASP Program Description | Department of Energy

    Energy Savers [EERE]

    ASP Program Description ASP Program Description This program description provides an overview of the Analytical Services Program (ASP) activities for the United States (U.S.) Department of Energy (DOE or Department), including the National Nuclear Security Administration (NNSA). The Office of Environment, Health, Safety and Security (AU), Office of Sustainable Environmental Stewardship, manages the ASP, which is composed three elements: U.S. Department of Energy Consolidated Audit Program, Mixed

  15. Number

    Office of Legacy Management (LM)

    H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical Forks, ...

  16. Postdoctoral Program Program Description The Postdoctoral (Postdoc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research program offers the opportunity for appointees to perform research in a robust scientific R&D...

  17. Investigation and Analytical Description of Acoustic Production...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology Citation Details In-Document Search This content will become...

  18. Slice Product Description (contracts/slice)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meeting on March 4, 1999, to discuss the Slice Product Description and to receive oral comments. This report summarizes the issues raised in written and oral comments...

  19. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  20. MediaWiki:Mainpage-description | Open Energy Information

    Open Energy Info (EERE)

    Mainpage-description Jump to: navigation, search Main page Retrieved from "http:en.openei.orgwikiMediaWiki:Mainpage-description...

  1. Advances in the ab initio description of nuclear three-cluster systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Advances in the ab initio description of nuclear three-cluster systems Citation Details In-Document Search Title: Advances in the ab initio description of nuclear three-cluster systems Authors: Redondo, C R ; Quaglioni, S ; Navratil, P ; Hupin, G Publication Date: 2015-08-25 OSTI Identifier: 1234622 Report Number(s): LLNL-PROC-676587 DOE Contract Number: AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 21st International

  2. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of Natural Gas Industrial

  3. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of Natural Gas

  4. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  5. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  7. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  8. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  9. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  10. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  11. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  12. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  13. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  14. CHP R&D Project Descriptions

    Broader source: Energy.gov [DOE]

    The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

  15. Date Time Event Description/Participants Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: 06112015 Date Time Event DescriptionParticipants Location Point of Contact 11 thru 12 All Day Meeting Todd Allen, deputy director of Science and Technology at INL, has...

  16. Description of Energy Intensity Tables (12)

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present...

  17. Detailed Course Module Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Course Module Description Detailed Course Module Description This document lists the course modules for building science courses offered at Cornell's Collaborator Sustainable Buildingi Practice course. PDF icon course_module.pdf More Documents & Publications Building America Building Science Education Roadmap Building America Program Research-to-Market Plan Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301)

  18. Microsoft Word - HQ ISM System Description Final

    National Nuclear Security Administration (NNSA)

    NA-1 SD 450.4-1 Approved: 10-23-07 National Nuclear Security Administration Headquarters Integrated Safety Management System Description This NNSA Headquarters Integrated Safety Management System Description describes the NNSA Headquarters role in establishing expectations and accomplishing work in a safe and environmentally sound manner to successfully execute the NNSA mission and strategic goals. NNSA senior managers strongly support and are personally committed to implementation of the policy

  19. Course Descriptions - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Course Descriptions Course Descriptions Combustion Dynamics Lecturer: Prof. Sébastien M. Candel, École Centrale Paris Course Length: 15 hours (Mon - Fri) Session: Morning Session Objective: This course provides an introduction to the analysis of combustion dynamics problems. It includes a tutorial on acoustics and on early combustion instability

  20. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  1. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  2. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  4. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  5. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  7. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  9. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  10. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  12. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  15. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  2. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  5. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  6. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  7. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  10. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  13. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  16. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  4. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  11. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  14. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  20. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  2. North Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56,191 60,663 63,562 1990's 68,088 70,207 72,647 76,386 80,739 84,041 93,504 97,629 100,251 104,294 2000's 107,566 107,656 102,505 107,506 105,163 109,205 111,127 112,092 111,868 113,630 2010's 113,900 115,609 117,155 118,257 120,111 - = No Data Reported; -- = Not Applicable; NA =

  3. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  4. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  6. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  8. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  14. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  15. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  2. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  3. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  4. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  6. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  8. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  10. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Technology applications bulletins: Number one

    SciTech Connect (OSTI)

    Koncinski, W. Jr.

    1989-02-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), operates five facilities for the US Department of Energy (DOE): the Oak Ridge National Laboratory (ORNL), which is a large, multidisciplinary research and development (R and D) center whose primary mission is energy research; the Oak Ridge Y-12 Plant, which engages in defense research, development, and production; and the uranium-enrichment plants at Oak Ridge; Paducah, Kentucky; and Portsmouth, Ohio. Much of the research carried out at these facilities is of interest to industry and to state or local governments. To make information about this research available, the Energy Systems Office of Technology Applications publishes brief descriptions of selected technologies and reports. These technology applications bulletins describe the new technology and inform the reader about how to obtain further information, gain access to technical resources, and initiate direct contact with Energy Systems researchers.

  4. Nuclear Waste Partnership (NWP) Quality Assurance Program Description...

    Office of Environmental Management (EM)

    Waste Partnership (NWP) Quality Assurance Program Description (QAPD) Nuclear Waste Partnership (NWP) Quality Assurance Program Description (QAPD) The documents included in this...

  5. CleanEnergyProjectsonTribalLands_Project_Descriptions_072011...

    Broader source: Energy.gov (indexed) [DOE]

    CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf More Documents & Publications CleanEnergyProjectsonTribalLandsProjectDescriptions072011.pdf...

  6. Microsoft Word - 564M_Biomass_Project Descriptions FINAL 120409...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microsoft Word - 564MBiomassProject Descriptions FINAL 120409 PDF icon Microsoft Word - 564MBiomassProject Descriptions FINAL 120409 More Documents & Publications ...

  7. Microscopic Description of Nuclear Fission: Fission Barrier Heights...

    Office of Scientific and Technical Information (OSTI)

    Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides Citation Details In-Document Search Title: Microscopic Description of Nuclear Fission: ...

  8. Unified Description of Nambu-Goldstone Bosons without Lorentz...

    Office of Scientific and Technical Information (OSTI)

    Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Citation Details In-Document Search Title: Unified Description of Nambu-Goldstone Bosons without Lorentz ...

  9. Description of induced nuclear fission with Skyrme energy functionals...

    Office of Scientific and Technical Information (OSTI)

    Description of induced nuclear fission with Skyrme energy functionals: Static potential ... Citation Details In-Document Search Title: Description of induced nuclear fission with ...

  10. Microscopic Description of Nuclear Fission: Fission Barrier Heights...

    Office of Scientific and Technical Information (OSTI)

    Conference: Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides Citation Details In-Document Search Title: Microscopic Description of Nuclear ...

  11. Description of Induced Nuclear Fission with Skyrme Energy Functionals...

    Office of Scientific and Technical Information (OSTI)

    Description of Induced Nuclear Fission with Skyrme Energy Functionals: II. Finite Temperature Effects Citation Details In-Document Search Title: Description of Induced Nuclear ...

  12. Integrated Program Management Report (IPMR) Data Item Description...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report...

  13. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  14. Paducah Site Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Background » Paducah Site Description Paducah Site Description The 3,556-acre Paducah Site is located in western Kentucky The 3,556-acre Paducah Site is located in western Kentucky Paducah state Map The Paducah Gaseous Diffusion (PGDP) Site is located in McCracken County, Kentucky, 10 miles west of the city of Paducah. The plant is located on a 3,556-acre DOE site, of which approximately 750 acres are within the fenced security area. The PGDP footprint has more than 500 facilities, 19 miles of

  15. TWRS information locator database system design description

    SciTech Connect (OSTI)

    Knutson, B.J.

    1996-09-13

    This document gives an overview and description of the Tank Waste Remediation System (TWRS) Information Locator Database (ILD)system design. The TWRS ILD system is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

  16. Network architecture functional description and design

    SciTech Connect (OSTI)

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  17. Better Buildings Neighborhood Program Business Models Guide: Program Administrator Description

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Program Administrator Business Models, Program Administrator Description.

  18. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    SciTech Connect (OSTI)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-05-15

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S{sup 2} or S{sup 1}, and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  19. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  20. System Design Description PFP Thermal Stabilization

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  1. Acquisition Description/ Category Solicitation Method Contract Type

    Energy Savers [EERE]

    13/2016 Acquisition Description/ Category Solicitation Method Contract Type Period of Performance Contract Value All EM Sites DOE-Wide commercial low-level waste treatment Energy Solutions, Inc. Perma-Fix Environmental Services, Inc. Philo-Technics, Ltd. Studsvik, Inc. Full and Open Competition Firm Fixed Price IDIQ 6/30/08-6/29/13 $450M Multiple award indefinite delivery/indefinite quality (IDIQ) Set-aside contracts for nationwide environmental services/ environmental cleanup Clauss

  2. Certificate in Environmental Monitoring Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certificate in Environmental Monitoring Program Description Since a primary goal of the Neighborhood Environmental Watch Network (NEWNET) project is to provide information to the public, it is fitting that there are appropriate education programs. NEWNET has collaborated with several local high schools and colleges by providing them with local NEWNET stations. Some teaching curricula include a study of radiation and detection, data acquisition and plotting, meteorology, or uses of computers.

  3. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist Pipeline/Apprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled journeyworker machinists. It is based on a program developed by the National Institute for Metalworking Skills (NIMS) in conjunction with metalworking trade associations to develop and maintain a globally competitive U.S. workforce. The goal is to develop and implement apprenticeship programs that are aligned with

  4. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  5. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost effective than previous time-based programs Moves apprentices to journeyworker status more quickly Program Coordinator: Heidi Hahn Email: hahn@lanl.gov Phone number:...

  6. Hamiltonian description of the ideal fluid

    SciTech Connect (OSTI)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  7. Tribal Energy Program February 2012 Award Project Descriptions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tribal Energy Program February 2012 Award Project Descriptions Tribal Energy Program February 2012 Award Project Descriptions Project descriptions of the 19 tribal energy projects selected for negotiation of award. PDF icon Tribal Energy Program Feb 2012 Awards Project Descriptions_0.pdf More Documents & Publications Community-Scale Project Development and Finance Workshop Agenda and Presentations: New Mexico 2012 Program Review Meeting Project Reports for Pueblo of Zia - 2012

  8. STEP Energy Coach and Technical Consultant Job Descriptions

    Broader source: Energy.gov [DOE]

    STEP Energy Coach and Technical Consultant Job Descriptions, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  9. COG Software Architecture Design Description Document

    SciTech Connect (OSTI)

    Buck, R M; Lent, E M

    2009-09-21

    This COG Software Architecture Design Description Document describes the organization and functionality of the COG Multiparticle Monte Carlo Transport Code for radiation shielding and criticality calculations, at a level of detail suitable for guiding a new code developer in the maintenance and enhancement of COG. The intended audience also includes managers and scientists and engineers who wish to have a general knowledge of how the code works. This Document is not intended for end-users. This document covers the software implemented in the standard COG Version 10, as released through RSICC and IAEA. Software resources provided by other institutions will not be covered. This document presents the routines grouped by modules and in the order of the three processing phases. Some routines are used in multiple phases. The routine description is presented once - the first time the routine is referenced. Since this is presented at the level of detail for guiding a new code developer, only the routines invoked by another routine that are significant for the processing phase that is being detailed are presented. An index to all routines detailed is included. Tables for the primary data structures are also presented.

  10. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  11. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  12. TH-A-9A-04: Incorporating Liver Functionality in Radiation Therapy Treatment Planning

    SciTech Connect (OSTI)

    Wu, V; Epelman, M; Feng, M; Cao, Y; Wang, H; Romeijn, E; Matuszak, M

    2014-06-15

    Purpose: Liver SBRT patients have both variable pretreatment liver function (e.g., due to degree of cirrhosis and/or prior treatments) and sensitivity to radiation, leading to high variability in potential liver toxicity with similar doses. This work aims to explicitly incorporate liver perfusion into treatment planning to redistribute dose to preserve well-functioning areas without compromising target coverage. Methods: Voxel-based liver perfusion, a measure of functionality, was computed from dynamic contrast-enhanced MRI. Two optimization models with different cost functions subject to the same dose constraints (e.g., minimum target EUD and maximum critical structure EUDs) were compared. The cost functions minimized were EUD (standard model) and functionality-weighted EUD (functional model) to the liver. The resulting treatment plans delivering the same target EUD were compared with respect to their DVHs, their dose wash difference, the average dose delivered to voxels of a particular perfusion level, and change in number of high-/low-functioning voxels receiving a particular dose. Two-dimensional synthetic and three-dimensional clinical examples were studied. Results: The DVHs of all structures of plans from each model were comparable. In contrast, in plans obtained with the functional model, the average dose delivered to high-/low-functioning voxels was lower/higher than in plans obtained with its standard counterpart. The number of high-/low-functioning voxels receiving high/low dose was lower in the plans that considered perfusion in the cost function than in the plans that did not. Redistribution of dose can be observed in the dose wash differences. Conclusion: Liver perfusion can be used during treatment planning potentially to minimize the risk of toxicity during liver SBRT, resulting in better global liver function. The functional model redistributes dose in the standard model from higher to lower functioning voxels, while achieving the same target EUD and satisfying dose limits to critical structures. This project is funded by MCubed and grant R01-CA132834.

  13. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, Venugopal Koikal; Holcomb, David Eugene; Bradley, Eric Craig; Zaharia, Nathaniel M; Cooper, Eliott J

    2012-07-01

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  14. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

    2012-07-15

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt–cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy’s Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  15. Projection techniques as methods of particle-number symmetry restoration

    SciTech Connect (OSTI)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N. [Laboratoire de Physique Theorique, Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria, and Centre de Recherche Nucleaire d'Alger - COMENA, BP 399, Alger-Gare, Algiers (Algeria)

    2007-10-15

    The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.

  16. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996

    SciTech Connect (OSTI)

    Mullet, J.E.

    1997-06-17

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focused on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The research focused on the isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  17. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  18. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  19. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number...

  20. Environmental Compliance and Protection Program Description Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2009-02-26

    The objective of the Environmental Compliance and Protection (EC and P) Program Description (PD) is to establish minimum environmental compliance requirements and natural resources protection goals for the Bechtel Jacobs Company LLC (BJC) Oak Ridge Environmental Management Cleanup Contract (EMCC) Contract Number DE-AC05-98OR22700-M198. This PD establishes the work practices necessary to ensure protection of the environment during the performance of EMCC work activities on the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, by BJC employees and subcontractor personnel. Both BJC and subcontractor personnel are required to implement this PD. A majority of the decontamination and demolition (D and D) activities and media (e.g., soil and groundwater) remediation response actions at DOE sites on the ORR are conducted under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). CERCLA activities are governed by individual CERCLA decision documents (e.g., Record of Decision [ROD] or Action Memorandum) and according to requirements stated in the Federal Facility Agreement for the Oak Ridge Reservation (DOE 1992). Applicable or relevant and appropriate requirements (ARARs) for the selected remedy are the requirements for environmental remediation responses (e.g., removal actions and remedial actions) conducted under CERCLA.

  1. CHP R&D Project Descriptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP R&D Project Descriptions CHP R&D Project Descriptions The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below: Advanced Reciprocating Engine Systems Advanced Reciprocating Engine Systems (ARES) The ARES program is designed to promote separate, but parallel engine development

  2. 2015 ASP Program Report Description | Department of Energy

    Energy Savers [EERE]

    ASP Program Report Description 2015 ASP Program Report Description This report provides an overview of the ASP's activities for Fiscal Year (FY) 2015 for the United States (U.S.) Department of Energy (DOE or Department), including the National Nuclear Security Administration (NNSA). The ASP is managed by the Office of Environment, Health, Safety and Security (AU), Office of Sustainable Environmental Stewardship. The ASP fiscal year reports supplement the ASP Program Description, March 2016,

  3. Integrated Program Management Report (IPMR) Data Item Description (DID) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report (IPMR) Data Item Description (DID) Integrated Program Management Report (IPMR) combines the Contractor Performance Report (CPR) and Integrated Master Schedule (IMS) reporting requirements on contracts requiring Earned Value Management (EVM) reporting of project/contract performance. Document available for download via link below provides Data Item Description

  4. Section I - FUNDING OPPORTUNITY DESCRIPTION | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Section I - FUNDING OPPORTUNITY DESCRIPTION More Documents & Publications U. S. Department of Energy - Headquarters Advanced Research Projects Agency Advanced Research Projects...

  5. Tank Monitor and Control System (TMACS) Version Description Document (VDD)

    SciTech Connect (OSTI)

    BARNES, D.A.

    2000-07-06

    This document updates the Version Description Document with the changes incorporated in the Revision 12.0 software installation on the Tank Monitor and Control System (TMACS).

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    further description Trainor Guitton Hoversten Nordquist Intani Value of information analysis using geothermal field data accounting for multiple interpretations determining new...

  7. Description of Induced Nuclear Fission with Skyrme Energy Functionals...

    Office of Scientific and Technical Information (OSTI)

    Fragment Properties Citation Details In-Document Search Title: Description of Induced Nuclear Fission with Skyrme Energy Functionals: I. Static Potential Energy Surfaces and...

  8. Description of Induced Nuclear Fission with Skyrme Energy Functionals...

    Office of Scientific and Technical Information (OSTI)

    of Induced Nuclear Fission with Skyrme Energy Functionals: II. Finite Temperature Effects Citation Details In-Document Search Title: Description of Induced Nuclear Fission with ...

  9. Microscopic description of fission dynamics: finite element method...

    Office of Scientific and Technical Information (OSTI)

    Title: Microscopic description of fission dynamics: finite element method resolution of ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    the experimental method and Free Precession Method descriptions and then experimental design elements ending with a summary A new nEDM experiment is under development with a...

  11. Descriptions of ESPC Task Order Schedules and Placement of Pricing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pricing Information (IDIQ Attachment J-5) Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) Document provides task order ...

  12. SSL Selections Descriptions v6.xls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selections Descriptions v6.xls More Documents & Publications Solid-State Lighting Recovery Act Award Selections 2015 Project Portfolio 2014 Solid-State Lighting Project Portfolio

  13. name SRSCRO description url http www srscro org namespaces oembed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    description url http www srscro org namespaces oembed authentication routes namespace methods GET endpoints methods GET args context required false default view links self http...

  14. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  15. Description of Regional Superfund pilots. Excerpts from `Status of Regional Superfund pilots: End-of-year report`

    SciTech Connect (OSTI)

    1994-12-31

    Following are brief descriptions of the Regional Superfund pilots excerpted from OSWER Publication 9202.1-15A entitled, ``Status of Regional Superfund Pilots: End of Year Report`` (NTIS {number_sign}PB94-963216). The above-referenced report provides greater detail on each pilot`s goals, status and results to date.

  16. The Energy Messenger, Number 1, Volume 4

    SciTech Connect (OSTI)

    Stancil, J.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  17. Document Number Q0029500 Significant Activities

    Office of Legacy Management (LM)

    Significant Activities 2.0 Significant Activities Since Preparation of the 1998 RI Document Since data collection for the purposes of preparing the 1998 RI report ended in 1996, several significant activities have occurred on the Millsite and surrounding peripheral properties. The following subsections provide a brief description of these activities. At the conclusion of each subsection, a summary indicates whether the described activity invalidates or results in significant changes to the

  18. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  19. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  20. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report - Calendar Year 2014

    SciTech Connect (OSTI)

    Arnold, Patrick

    2015-02-17

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  1. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  5. DOE-RL Integrated Safety Management System Description

    SciTech Connect (OSTI)

    SHOOP, D.S.

    2000-09-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  6. A9_ISO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2014 1 November 2014 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil spot prices fell from $95/barrel (bbl) on October 1 to $84/bbl at the end of the month. The causes included weakening outlooks for global economic and oil demand growth, the return to the market of previously disrupted Libyan crude oil production, and continued growth in U.S. tight oil production. Brent crude oil spot prices averaged $87/bbl in October, the first month Brent prices have

  7. A=9 Nuclides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A short list of corrections to mistakes found after the evaluation was published Elsevier Electronic Online: Elsevier (Nuclear Physics A) has made available PDF versions of A...

  8. A = 9 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations...

  9. Title list of documents made publicly available: August 1--31, 1997. Volume 19, Number 8

    SciTech Connect (OSTI)

    1997-10-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  10. TECHNICAL/PEER REVIEW RECORD FORM PS-3 Pressure System Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TECHNICAL/PEER REVIEW RECORD FORM PS-3 Pressure System Number Component(s) (if applicable) Design Authority (DA) DA Group/Division Note: Excluded Elements require a Peer Review. Peer Review must be completed by one or more DAs not associated with the project. Technical Review is applicable to code compliant components and can be performed by any DA. Type of Review (check) ____Technical Review ____Peer Review Description: Scope of Review: Applicable Code(s): The undersigned have reviewed the

  11. Title list of documents made publicly available: December 1--31, 1996. Volume 18, Number 12

    SciTech Connect (OSTI)

    1997-03-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  12. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Transfer Actions under 10 CFR 1021, Subpart D, Appendix B, Bl.30 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform transfer actions, in which the predominant activity is transportation, provided that (1)

  13. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 1 MSA Annual Categorical Exclusion for Support Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.l5 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction or modification, and operation of support buildings and

  14. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, Rev 1 MSA Annual Categorical Exclusion for Relocation of Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.22 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform relocation of buildings (including, but not limited to, trailers and

  15. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, Rev 1 MSA Annual Categorical Exclusion for Traffic Flow Adjustments under 10 CFR 1021, Subpart D, Appendix B, Bl.32 for Calendar Year 2014 II. Project Description and location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform traffic flow adjustments to existing roads (including, but not limited

  16. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Rev 1 MSA Annual Categorical Exclusion for Site Characterization and Environmental Monitoring under 10 CFR 1021, Subpart D, Appendix B, B3.1 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform site characterization and environmental

  17. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Oil Spill Cleanup under 10 CFR 1021, Subpart D, Appendix B, B5.6 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of oil and contaminated materials recovered in oil spill cleanup operations and

  18. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38, Rev 3 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of

  19. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 MSA Annual Categorical Exclusion for Transfer Actions under 10 CFR 1021, Subpart D, Appendix B, Bl.30 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform transfer actions, in which the predominant activity is transportation, provided that

  20. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 2 MSA Annual Categorical Exclusion for Polychlorinated Biphenyl Removal under 10 CFR 1021, Subpart D, Appendix B, Bl.l7 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of polychlorinated biphenyl (PCB)-containing items

  1. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Building and Equipment Instrumentation under 10 CFR 1021, Subpart D, Appendix B, B2.2 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation of, or improvements to, building and equipment

  2. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 2 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  3. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 2 MSA Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions to conserve energy or water, demonstrate potential

  4. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Radiological Survey Activities in the 600 Area of the Hanford Site Supporting Land Conveyance II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The U.S. Department of Energy, Richland Operations (DOE-RL) proposes to conduct radiological surveys of a portion of the 600 Area of the Hanford Site. The surveys are needed to

  5. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 2 MSA Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, Bl.7 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform acquisition, installation, operation, modification, and removal of electricity

  6. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, Rev 2 MSA Annual Categorical Exclusion for Training Exercises and Simulations under 10 CFR 1021, Subpart D, Appendix B, Bl.2 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform training exercises and simulations (including, but not limited

  7. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 1 MSA Annual Categorical Exclusion for Polychlorinated Biphenyl Removal under 10 CFR 1021, Subpart D, Appendix B, Bl.l7 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform removal of polychlorinated biphenyl (PCB)-containing items

  8. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Disconnection of Utilities under 10 CFR 1021, Subpart D, Appendix B, B1.27 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions that are required for the disconnection of utility services

  9. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, Rev 1 MSA Annual Categorical Exclusion for Installation or Relocation of Machinery and Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.31 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation or relocation and operation of

  10. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, Bl.35 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  11. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 MSA Annual Categorical Exclusion for Facility Safety and Environmental Improvements under 10 CFR 1021, Subpart D, Appendix B, B2.5 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform safety and environmental improvements of a facility

  12. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Rev 1 MSA Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting,

  13. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Rev 1 MSA Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions to conserve energy or water, demonstrate potential

  14. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, Rev 1 MSA Annual Categorical Exclusion for Facilities to Store Packaged Hazardous Waste for 90 Days or Less under 10 CFR 1021, Subpart D, Appendix B, B6.4 for Calendar Year 2014 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  15. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 MSA Annual Categorical Exclusion for Training Exercises and Simulations under 10 CFR 1021, Subpart D, Appendix B, Bl.2 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform training exercises and simulations (including, but not limited to,

  16. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Routine Maintenance and Custodial Services under 10 CFR 1021, Subpart D, Appendix B, Bl.3 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform routine maintenance activities and custodial services for

  17. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, Bl.35 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction,

  18. RL-721 REV? I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MSA Annual Categorical Exclusion for Facilities to Store Packaged Hazardous Waste for 90 Days or Less under 10 CFR 1021, Subpart D, Appendix B, B6.4 for Calendar Year 2015. II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction, modification,

  19. Title list of documents made publicly available: November 1--30, 1997. Volume 19, Number 11

    SciTech Connect (OSTI)

    1998-01-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  20. Attachment I CHPRC CONDITION REPORT FORM Status: Analysis CR NUMBER: CR-2011I 2037

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHPRC CONDITION REPORT FORM Status: Analysis CR NUMBER: CR-2011I 2037 Issue Identification and Processing Initiator: Initiating IDetifed Bannister, Roland J Document: 6/23/2011d Title of Issue: Extent of Condition review for S3000 containers Description of Issue: Extent of Condition Review arose from the Causal Analysis regarding the breached drum found in 2404WB on April 26, 2011. The scope of the review was to assess all other known S3000 (homogenous solids) waste streams to identify

  1. Preconceptual Design Description for Caustic Recycle Facility

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  2. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  3. Hanford 222-S Laboratory Analysis and Testing Services Contract Number DE-EM0003722

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Number DE-EM0003722 Modification 001 J-1 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J - LIST OF ATTACHMENTS Attachment Description Page Number J.1 LIST OF APPLICABLE DOE DIRECTIVES J-2 J.2 LIST OF DELIVERABLES J-5 J.3 HANFORD SITE SERVICES AND INTERFACE REQUIREMENTS MATRIX J-11 J.4 APPLICATIONS, PERMITS, AND NOTICES OF CONSTRUCTION J-120 J.5 DEPARTMENT OF LABOR WAGE DETERMINATIONS  J-5.1 Wage Determination No.: 2005-2570 Rev No.15 Dated 06/19/2013  J-5.2

  4. The Sun Makes You Number One! (Program Document) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Program Document: The Sun Makes You Number One! Citation Details In-Document Search Title: The Sun Makes You Number One! Representing the Solid-State Solar-Thermal Energy Conversion Center (S3TEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most

  5. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  6. LANL Site By The Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By the Numbers The Los Alamos National Laboratory (LANL) was established in 1943 as Site Y of the Manhattan Project for a single purpose: to design and build an atomic bomb. ...

  7. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  8. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  9. Description of Axial Detail for ROK Fuel

    SciTech Connect (OSTI)

    Trellue, Holly R; Galloway, Jack D

    2012-04-20

    For the purpose of NDA simulations of the ROK fuel assemblies, we have developed an axial burnup distribution to represent the pins themselves based on gamma scans of rods in the G23 assembly. For the purpose of modeling the G23 assembly (both at ORNL and LANL), the pin-by-pin burnup map as simulated by ROK is being assumed to represent the radial burnup distribution. However, both DA and NDA results indicate that this simulated estimate is not 100% correct. In particular, the burnup obtained from the axial gamma scan of 7 pins does not represent exactly the same 'average' pin burnup as the ROK simulation. Correction for this discrepancy is a goal of the well-characterized assembly task but will take time. For now, I have come up with a correlation for 26 axial points of the burnup as obtained by gamma scans of 7 different rods (C13, G01, G02, J11, K10, L02, and M04, neglecting K02 at this time) to the average burnup given by the simulation for each of the rods individually. The resulting fraction in each axial zone is then averaged for the 7 different rods so that it can represent every fuel pin in the assembly. The burnup in each of the 26 axial zones of rods in all ROK assemblies will then be directly adjusted using this fraction, which is given in Table 1. Note that the gamma scan data given by ROK for assembly G23 included a length of {approx}3686 mm, so the first 12 mm and the last 14 mm were ignored to give an actual rod length of {approx}366 cm. To represent assembly F02 in which no pin-by-pin burnup distribution is given by ROK, we must model it using infinitely-reflected geometry but can look at the effects of measuring in different axial zones by using intermediate burnup files (i.e. smaller burnups than 28 GWd/MTU) and determining which axial zone(s) each burnup represents. Details for assembly F02 are then given in Tables 2 and 3, which is given in Table 1 and has 44 total axial zones to represent the top meter in explicit detail in addition to the other 26 zones. Note that the MCNP files for F02 were created using the Monte Carlo burnup linkage code Monteburns, which saves MCNP input files with detailed compositions as a function of burnup. The 'intermediate burnup files' produced for F02 include a cooling time of 27 years. The axial location of 5 spacers was also included in the ROK F02 assembly in which each spacer contained a length of 3.81 cm. Note that due to the nature of Monteburns, which was run in a special fashion for this problem, the step number increments after the 27 year decay, so the second column of Table 2 refers to the step number that should be used in the Monteburns files.

  10. Microsoft Word - Appendix D_LegalDescription.doc

    Office of Legacy Management (LM)

    Boundary for the Chemical Plant Area Weldon Spring Site LTS&M Plan U.S. Department of Energy Doc. No. S0079000 July 2005 Page D-4 Legal Description for the Chemical Plant Area All ...

  11. Hanford Site existing irradiated fuel storage facilities description

    SciTech Connect (OSTI)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  12. General integral relations for the description of scattering states using

    Office of Scientific and Technical Information (OSTI)

    the hyperspherical adiabatic basis (Journal Article) | SciTech Connect General integral relations for the description of scattering states using the hyperspherical adiabatic basis Citation Details In-Document Search Title: General integral relations for the description of scattering states using the hyperspherical adiabatic basis In this work we investigate 1+2 reactions within the framework of the hyperspherical adiabatic expansion method. With this aim two integral relations, derived from

  13. OMB 1910-5122, Human Reliability Program - Description of Collections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy OMB 1910-5122, Human Reliability Program - Description of Collections OMB 1910-5122, Human Reliability Program - Description of Collections Human Reliability Program Certification (DOE F 470.3). Under the Department of Energy Human Reliability Program (HRP), individuals who are applicants for or incumbents in designated positions must be evaluated to ensure that they meet the requirements for certification in the program. This form documents that each part of the

  14. Descriptive Model of a Generic WAMS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Descriptive Model of a Generic WAMS Descriptive Model of a Generic WAMS The Department of Energy's (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation's electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the

  15. Summary description of the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Cabell, C.P.

    1980-12-01

    This document has been compiled and issued to provide an illustrated engineering summary description of the FFTF. The document is limited to a description of the plant and its functions, and does not cover the extensive associated programs that have been carried out in the fields of design, design analysis, safety analysis, fuels development, equipment development and testing, quality assurance, equipment fabrication, plant construction, acceptance testing, operations planning and training, and the like.

  16. Toward a Minimal Representation of Aerosols in Climate Models: Description

    Office of Scientific and Technical Information (OSTI)

    and Evaluation in the Community Atmosphere Model CAM5 (Journal Article) | SciTech Connect Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 Citation Details In-Document Search Title: Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the

  17. Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Citation Details In-Document Search Title: Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Authors: Watanabe, Haruki ; Murayama, Hitoshi Publication Date: 2012-06-21 OSTI Identifier: 1103630 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 108; Journal Issue: 25; Journal ID: ISSN

  18. Variational description of continuum states in terms of integral relations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Variational description of continuum states in terms of integral relations Citation Details In-Document Search Title: Variational description of continuum states in terms of integral relations Two integral relations derived from the Kohn variational principle (KVP) are used for describing scattering states. In usual applications the KVP requires the explicit form of the asymptotic behavior of the scattering wave function. This is not the case when the

  19. Consistent description of kinetics and hydrodynamics of dusty plasma

    SciTech Connect (OSTI)

    Markiv, B.; Tokarchuk, M.; National University Lviv Polytechnic, 12 Bandera St., 79013 Lviv

    2014-02-15

    A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

  20. Theoretical Description of the Fission Process

    SciTech Connect (OSTI)

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nations nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic waste and be proliferation-resistant, is a goal for the advanced nuclear fuel cycles program. While in the past the design, construction, and operation of reactors were supported through empirical trials, this new phase in nuclear energy production is expected to heavily rely on advanced modeling and simulation capabilities.

  1. California Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) California Natural ...

  2. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  3. Implementation of a hybrid particle code with a PIC description in r–z and a gridless description in ϕ into OSIRIS

    SciTech Connect (OSTI)

    Davidson, A.; Tableman, A.; An, W.; Tsung, F.S.; Lu, W.; Vieira, J.; Silva, L.O.

    2015-01-15

    For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r–z grid and a procedure for calculating the complex current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r–z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.

  4. New Mexico Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of...

  5. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    423,703 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1987-2014 Sales 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 ...

  6. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  7. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    489,349 490,185 494,970 504,138 513,492 522,658 1986-2014 Sales 489,380 494,065 503,241 512,110 521,460 1997-2014 Transported 805 905 897 1,382 1,198 1997-2014 Commercial Number of...

  8. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  9. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  10. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  11. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  12. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  13. Microscopic description of fission dynamics: finite element method...

    Office of Scientific and Technical Information (OSTI)

    Report Number(s): LLNL-PROC-678472 DOE Contract Number: AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: Wonder 2015: Fourth International ...

  14. Waste receiving and processing plant control system; system design description

    SciTech Connect (OSTI)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  15. DOE-RL Integrated Safety Management System Program Description

    SciTech Connect (OSTI)

    SHOOP, D.S.

    2000-06-29

    The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight.

  16. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  17. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  18. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shatters records in first year of accelerated shipping effort October 3, 2012 Los Alamos National Laboratory shatters records in first year of accelerated shipping effort Volume, Number of Shipments Surpass Goals LOS ALAMOS, NEW MEXICO, October 3, 2012-In the first year of an effort to accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP), Los Alamos National Laboratory shattered its own record with 59 more shipments than planned, and became one of the largest

  19. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  20. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Number of

  1. Table B14. Number of Establishments in Building, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  2. Unified description of superconducting pairing symmetry in electron-doped

    Office of Scientific and Technical Information (OSTI)

    Fe-based-122 compounds (Journal Article) | SciTech Connect Unified description of superconducting pairing symmetry in electron-doped Fe-based-122 compounds Citation Details In-Document Search This content will become publicly available on June 25, 2016 Title: Unified description of superconducting pairing symmetry in electron-doped Fe-based-122 compounds Authors: Li, Bo ; Pan, Lihua ; Tai, Yuan-Yen ; Graf, Matthias J. ; Zhu, Jian-Xin ; Bassler, Kevin E. ; Ting, C. S. Publication Date:

  3. Data:B0c510db-7e64-4d8c-a9ae-f8521cbb8489 | Open Energy Information

    Open Energy Info (EERE)

    d8c-a9ae-f8521cbb8489 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic...

  4. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting AktNF-?B and MAPK signaling pathways

    SciTech Connect (OSTI)

    Omar, Hany A.; Arafa, El-Shaimaa A.; Salama, Samir A.; Arab, Hany H.; Wu, Chieh-Hsi; Weng, Jing-Ru

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Aktnuclear factor-kappa B (NF-?B) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of AktNF-?B and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of AktNF-?B and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: The antiangiogenic activity of OSU-A9 in HUVECs was explored. OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. OSU-A9 targeted signaling pathways mediated by Akt-NF-kB, VEGF, and MMP-2. The anti-angiogenic activity of OSU-A9 supports its clinical promise.

  5. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481 563 655 728 848 NA 787 2010's 774

  6. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  7. Savannah River Site Cleanup By the Numbers | Department of Energy

    Office of Environmental Management (EM)

    Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers Savannah River Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites ...

  8. ARM Evaluation Product : Droplet Number Concentration Value-Added...

    Office of Scientific and Technical Information (OSTI)

    Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number ...

  9. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  10. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number: 1910-5165 Expires: 04/30/2015 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit the Semi-Annual Davis-Bacon Enforcement Report in the Performance and Accountability for Grants in Energy (PAGE) system. If you do not have access to the PAGE system, please submit this form to DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All Agency

  11. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  12. OMB Control Number: 1910-5165

    Energy Savers [EERE]

    OMB Control Number: 1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All

  13. Tank Waste Remediation System (TWRS) Technical Baseline Summary Description

    SciTech Connect (OSTI)

    TEDESCHI, A.R.

    2000-04-21

    This revision notes the supersedure of the subject document by concurrent issuance of HNF-1901 ''Technical Baseline Summary Description for the Tank Farm Contractor'', Revision 2. Safe storage mission technical baseline information was absorbed by the new revision of HNF-1901.

  14. Tank waste remediation system technical baseline summary description

    SciTech Connect (OSTI)

    Raymond, R.E.

    1998-01-08

    This document is one of the tools used to develop and control the mission work as depicted in the included figure. This Technical Baseline Summary Description document is the top-level tool for management of the Technical Baseline for waste storage operations.

  15. SPEAR fuel reliability code system. General description. [PWR; BWR

    SciTech Connect (OSTI)

    Christensen, R.

    1980-03-01

    A general description is presented for the SPEAR fuel reliability code system. Included is a discussion of the methodology employed and the structure of the code system, as well as discussion of the major components: the data preparation routines, the mechanistic fuel performance model, the mechanistic cladding failure model, and the statistical failure model.

  16. A climatological description of the Savannah River Site

    SciTech Connect (OSTI)

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  17. ACTION DESCRIPTION MEMORANDUM PROPOSED DECONTAMINATION OF THREE BUILDINGS AT THE

    Office of Legacy Management (LM)

    ACTION DESCRIPTION MEMORANDUM PROPOSED DECONTAMINATION OF THREE BUILDINGS AT THE UNIVERSITY OF CHICAGO CONTAMINATED AS A RESULT OF PREVIOUS MED/AEC ACTIVITIES Prepared by Environmental Research Division Argonne National Laboratory Argonne, Illinois December 1983 Prepared for U.S. Department of Energy Oak Ridge Operations Technical Services Division Oak Ridge, Tennessee II-39 CONTENTS Page Summary of Proposed Action ....................... 1 Setting . . . . . . . . . . . . . . . . . . . . . . . .

  18. Computer System, Cluster, and Networking Summer Institute Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, Cluster, and Networking Summer Institute Program Description The Computer System, Cluster, and Networking Summer Institute (CSCNSI) is a focused technical enrichment program targeting third-year college undergraduate students currently engaged in a computer science, computer engineering, or similar major. The program emphasizes practical skill development in setting up, configuring, administering, testing, monitoring, and scheduling computer systems, supercomputer clusters, and computer

  19. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  20. Title list of documents made publicly available. Volume 16, Number 5

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Title List of Documents Made Publicly Available contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  1. Title list of documents made publicly available: February 1--29, 1996. Volume 18, Number 2

    SciTech Connect (OSTI)

    1996-04-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  2. Title list of documents made publicly available: October 1--31, 1994. Volume 16, Number 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  3. Title list of documents made publicly available: June 1--30, 1995. Volume 17, Number 6

    SciTech Connect (OSTI)

    1995-08-01

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  4. Title list of documents made publicly available: February 1--28, 1995. Volume 17, Number 2

    SciTech Connect (OSTI)

    1995-04-01

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index. NRC documents that are publicly available may be examined without charge at the NRC Public Document Room (PDR).

  5. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    SciTech Connect (OSTI)

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS.

  6. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  7. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 210 212 1,089 1,024 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  8. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  9. North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 1990's 103 100 104 101 104 99 108 104 99 96 2000's 94 95 100 117 117 148 200 200 194 196 2010's 188 239 211 200 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  10. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 24 27 26 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  11. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 277 185 159 170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  12. THE SUN MAKES YOU NUMBER ONE!

    Office of Scientific and Technical Information (OSTI)

    SUN MAKES YOU NUMBER ONE! (A S to ry From th e S3TEC Team) Hi friend! W here did you get the energy to make that lunch? Oh no! x H ow will I i°l be first now? the sun! Why, I got it from the same place as all the life around us.. M atter is also made of balls of energy. You see, light from the sun is made of balls of energy that move very fast. The sun's energy makes this food hot- and it / can make your little-car go forward! / W hen the fast-moving light balls knock into the matter balls,

  13. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 0 0 0 0 0 1 1 1 1 1 1 1 2016 1 1

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer

  14. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task Descriptions Center for Bio-Inspired Solar Fuel Production Central to design of a complete system for solar water oxidation and hydrogen production is incorporation of synthetic components inspired by natural systems into one operational unit. The research effort of the Center is naturally divided into the following subtasks: Subtask 1. Total systems analysis, assembly and testing The solar water splitting device consists of four subsystems, each of which is being investigated by one of the

  15. Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research program offers the opportunity for appointees to perform research in a robust scientific R&D environment, present and publish research, advance knowledge in basic and applied science, and strengthen national scientific and technical capabilities. Program Mission The Postdoctoral Program provides the opportunity for appointees to perform scientifically rich research, showcase their work through publishing and

  16. 2010-12-1-DICE-Diagnostic-Service-Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Editor: Joe Metzger Status: DRAFT (v1.0) Date: 2010-12-1 1 General Service Description for DICE Network Diagnostic Services The DICE collaboration network diagnostic service will simplify the process of debugging, isolating, and correcting multi-domain network performance problems. The diagnostic service will allow users to measure network characteristics across multi-domain network paths. The service is designed to support network engineers in situations where a customer is experiencing

  17. ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE

    Office of Legacy Management (LM)

    ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE PROPOSED INTERIM REMEDIAL ACTIONS FOR FY 1983-85 ACCELERATED PROGRAM (1984 VICINITY PROPERTIES CLEANUP) Prepared by Environmental Research Division Argonne National Laboratory Argonne, Illinois July 1984 Prepared for U.S. Department of Energy Oak Ridge Operations Technical Services Division Oak Ridge, Tennessee CONTENTS Page SUMMARY OF PROPOSED ACTION AND RELATED ACTIVITIES ........... 1 HISTORY AND ENVIRONMENTAL SETTING

  18. ARM Value-Added Cloud Products: Description and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value-Added Cloud Products: Description and Status M. A. Miller, K. L. Johnson, and D. T. Troyan Brookhaven National Laboratory Upton, New York E. E. Clothiaux Pennsylvania State University University Park, Pennsylvania E. J. Mlawer Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts G. G. Mace University of Utah Salt Lake City, Utah Introduction The Atmospheric Radiation Measurement (ARM) Program operates a variety of state-of-the-art active and passive remote sensors at its

  19. Community College Institute (CCI) Program Description The Community College Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community College Institute (CCI) Program Description The Community College Internship (CCI) program seeks to encourage community college students to enter technical careers relevant to the DOE mission by providing technical training experiences at the DOE laboratories. Selected students participate as interns appointed at one of 15 participating DOE laboratories. They work on technologies or instrumentation projects at major research facilities supporting DOE's mission under the guidance of

  20. Reducing uncertainty in geostatistical description with well testing pressure data

    SciTech Connect (OSTI)

    Reynolds, A.C.; He, Nanqun; Oliver, D.S.

    1997-08-01

    Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.

  1. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 100,966 96,617 97,618 98,279 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,418,986 - =

  3. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  4. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  5. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522

  6. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 834 1990's 822 913 1,006 1,061 1,303 1,127 1,339 1,475 1,643 1,978 2000's 4,178 4,601 3,005 3,220 3,657 4,092 4,858 5,197 5,578 5,774 2010's 6,075 6,469 6,900 7,030 7,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 752 1990's 819 886 1,153 1,426 1,470 1,671 1,671 2,046 2,388 2,752 2000's 3,051 3,521 3,429 3,506 3,870 4,132 5,179 5,735 6,426 7,303 2010's 7,470 7,903 7,843 7,956 7,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,240 1990's 37,500 37,800 38,250 33,716 39,830 36,144 35,148 31,000 39,072 36,575 2000's 42,475 42,000 45,000 46,203 47,117 49,335 53,003 48,215 49,364 50,602 2010's 52,498 56,813 50,700 54,920 60,000 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  9. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 30,101 32,000 32,468 38,346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 - = No Data Reported; -- = Not Applicable; NA = Not

  12. District of Columbia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 - = No Data Reported; --

  13. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 - = No Data Reported; -- = Not Applicable; NA = Not

  16. New Jersey Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,869,903 1,918,185 1,950,165 1990's 1,982,136 2,005,020 2,032,115 2,060,511 2,089,911 2,123,323 2,147,622 2,193,629 2,252,248 2,245,904 2000's 2,364,058 2,466,771 2,434,533 2,562,856 2,582,714 2,540,283 2,578,191 2,609,788 2,601,051 2,635,324 2010's 2,649,282 2,659,205 2,671,308 2,686,452

  17. New Mexico Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,444 36,940 36,960 1990's 38,026 38,622 40,312 40,166 39,846 38,099 37,796 38,918 42,067 43,834 2000's 44,164 44,306 45,469 45,491 45,961 47,745 47,233 48,047 49,235 48,846 2010's 48,757 49,406 48,914 50,163 55,689 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,087 1990's 17,124 20,021 18,040 20,846 23,292 23,510 24,134 27,421 28,200 26,007 2000's 33,948 35,217 35,873 37,100 38,574 40,157 41,634 42,644 44,241 44,784 2010's 44,748 32,302 28,206 27,073 27,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,703 1,668 1,653 1990's 1,407 1,337 141 152 1,097 1,065 1,365 1,366 1,549 1,482 2000's 1,517 1,875 1,356 1,270 1,164 988 1,062 470 383 471 2010's 438 360 121 123 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. New Mexico Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 348,759 356,192 361,521 1990's 369,451 379,472 389,063 397,681 409,095 421,896 428,621 443,167 454,065 473,375 2000's 479,894 485,969 496,577 498,852 509,119 530,277 533,971 547,512 556,905 560,479 2010's 559,852 570,637 561,713 572,224 614,313 - = No Data Reported; -- = Not Applicable; NA = Not

  1. New York Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,859 270,218 285,031 1990's 281,717 310,941 315,974 298,020 301,499 308,760 315,855 314,613 348,694 352,026 2000's 361,524 363,913 367,440 386,479 367,597 376,566 397,737 393,997 373,798 375,603 2010's 377,416 378,005 379,396 381,228 389,889 - = No Data Reported; -- = Not Applicable; NA = Not

  2. New York Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,304 1990's 5,525 5,737 5,906 5,757 5,884 6,134 6,208 5,731 5,903 6,422 2000's 5,775 5,913 6,496 5,878 5,781 5,449 5,985 6,680 6,675 6,628 2010's 6,736 6,157 7,176 6,902 7,119 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. New York Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,810,577 3,839,952 3,859,413 1990's 3,917,354 4,472,005 4,522,274 3,990,564 4,008,868 4,030,702 4,048,166 4,077,385 4,117,307 4,150,731 2000's 4,162,450 4,243,130 4,258,205 4,218,180 4,199,456 4,232,374 4,315,203 4,379,937 4,303,342 4,308,592 2010's 4,335,006 4,353,668 4,364,169 4,387,456

  4. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 46,717 35,104 32,664 32,967 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 54,347 55,136 53,762 70,400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  7. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  8. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 885,257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  9. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  10. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  11. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522 66,375,134 66,812,393

  12. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,005,081 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  14. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  15. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  20. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    QUANTUM COMPUTER WITH A LARGE NUMBER OF QUBITS G BERMAN ET AL CLASSICAL AND QUANTUM MECHANICS GENERAL PHYSICS GENERAL AND MISCELLANEOUS MATHEMATICS COMPUTING AND INFORMATION...

  3. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    Open Energy Info (EERE)

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  4. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    Open Energy Info (EERE)

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  5. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  6. Energy Technology Engineering Center (ETEC) Cleanup By the Numbers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) ...

  7. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  8. Local Energy Assurance Planning: Map of States with Number of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States with Number of Cities Selected Local Energy Assurance Planning: Map of States with Number of Cities Selected Map of the United States identifying the States with cities ...

  9. System Advisor Model, SAM 2014.1.14: General Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Advisor Model, SAM 2014.1.14: General Description Nate Blair, Aron P. Dobos, Janine Freeman, Ty Neises, and Michael Wagner National Renewable Energy Laboratory Tom Ferguson, Paul Gilman, and Steven Janzou Independent Consultants Technical Report NREL/TP-6A20-61019 February 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the

  10. PBS ABB Title ABB Description/Scope ORP-0014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title ABB Description/Scope ORP-0014 242A Evaporator/222-S Laboratory * Operate and maintain the 242-A Evaporator * 222-S Safe and Compliant Operations * 222-S Facililty Reliability * 222-S Analytical Support/Equipment * 222-S Process Chemistry and Waste Handling ORP-0014 A/AX - Farm Retrieval Design, procurement, construction, readiness assessments, start-up, and operations of waste retrieval systems for 241-A and 241-AX Tank Farms. New systems will: 1) retrieve waste from 241-A and 241-AX

  11. Requirements Management System Browser (RMSB) software design description

    SciTech Connect (OSTI)

    Frank, D.D.

    1996-09-30

    The purpose of this document is to provide an ``as-built`` design description for the Requirements Management System Browser (RMSB) application. The Graphical User Interface (GUI) and database structure design are described for the RMSB application, referred to as the ``Browser.`` The RMSB application provides an easy to use PC-based interface to browse systems engineering data stored and managed in a UNIX software application. The system engineering data include functions, requirements, and architectures that make up the Tank Waste Remediation System (TWRS) technical baseline.

  12. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    SciTech Connect (OSTI)

    MAY TH

    2008-08-12

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

  13. 850/sup 0/C VHTR plant technical description

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report describes the conceptual design of an 842-MW(t) process heat very high temperature reactor (VHTR) plant having a core outlet temperature of 850/sup 0/C (1562/sup 0/F). The reactor is a variation of the high-temperature gas-cooled reactor (HTGR) power plant concept. The report includes a description of the nuclear heat source (NHS) and of the balance of reactor plant (BORP) requirements. The design of the associated chemical process plant is not covered in this report. The reactor design is similar to a previously reported VHTR design having a 950/sup 0/C (1742/sup 0/F) core outlet temperature.

  14. Advances in the ab initio description of nuclear three-cluster...

    Office of Scientific and Technical Information (OSTI)

    description of nuclear three-cluster systems Citation Details In-Document Search Title: Advances in the ab initio description of nuclear three-cluster systems Authors: Redondo, C R ...

  15. Electric Markets Technical Assistance Program: FY2002 Grant Descriptions and Contact Information

    Broader source: Energy.gov [DOE]

    Grant descriptions and contact information for grants awarded in FY 2002 under the Electric Markets Technical Assistance Program

  16. Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document provides task order schedule descriptions and information on the placement of pricing for energy savings performance contracts (ESPCs).

  17. Electric Markets Technical Assistance Program: FY2003 Grant Descriptions and Contact Information

    Broader source: Energy.gov [DOE]

    Grant descriptions and contact information for grants awarded during FY2003 under the Electric Markets Technical Assistance Program

  18. Electric Markets Technical Assistance Program: FY2001 Grant Descriptions and Contact Information

    Broader source: Energy.gov [DOE]

    Grant descriptions and contact information for grants awarded under the Electric Markets Technical Assistance Program in FY 2001.

  19. Portsmouth_Site_By_The_Numbers_August_2015

    Office of Environmental Management (EM)

    Background » Paducah Site Description Paducah Site Description The 3,556-acre Paducah Site is located in western Kentucky The 3,556-acre Paducah Site is located in western Kentucky Paducah state Map The Paducah Gaseous Diffusion (PGDP) Site is located in McCracken County, Kentucky, 10 miles west of the city of Paducah. The plant is located on a 3,556-acre DOE site, of which approximately 750 acres are within the fenced security area. The PGDP footprint has more than 500 facilities, 19 miles of

  20. Electric energy supply systems: description of available technologies

    SciTech Connect (OSTI)

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  1. Focused Crawling of the Deep Web Using Service Class Descriptions

    SciTech Connect (OSTI)

    Rocco, D; Liu, L; Critchlow, T

    2004-06-21

    Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address these challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.

  2. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active) Project Registration Number Assignments (Active) As of: May 2016 Provides a table of Project Registration Number Assignments (Active) PDF icon Project Registration Number Assignment (Active) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Completed

  3. Project Registration Number Assignments (Completed) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completed) Project Registration Number Assignments (Completed) As of: May 2016 Provides a table of Project Registration Number Assignments (Completed) PDF icon Project Registration Number Assignments (Completed) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active

  4. Community College Institute (CCI) Program Description The Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding: 70,000 Program Cost: 70,000 Cost per participant: 10,000 Program Duration: 10 weeks Program Coordinator: Scott Robbins Email: srobbins@lanl.gov Phone number: 663-562...

  5. Geometry Description Markup Language for Physics Simulation And Analysis Applications.

    SciTech Connect (OSTI)

    Chytracek, R.; McCormick, J.; Pokorski, W.; Santin, G.; /European Space Agency

    2007-01-23

    The Geometry Description Markup Language (GDML) is a specialized XML-based language designed as an application-independent persistent format for describing the geometries of detectors associated with physics measurements. It serves to implement ''geometry trees'' which correspond to the hierarchy of volumes a detector geometry can be composed of, and to allow to identify the position of individual solids, as well as to describe the materials they are made of. Being pure XML, GDML can be universally used, and in particular it can be considered as the format for interchanging geometries among different applications. In this paper we will present the current status of the development of GDML. After having discussed the contents of the latest GDML schema, which is the basic definition of the format, we will concentrate on the GDML processors. We will present the latest implementation of the GDML ''writers'' as well as ''readers'' for either Geant4 [2], [3] or ROOT [4], [10].

  6. Use of seismic attributes in geological description of carbonate rocks

    SciTech Connect (OSTI)

    Castrejon-Vacio, F.; Porres-Luna, A.A.

    1994-12-31

    Seismic attributes have been used widely in order to obtain geological description of petroleum reservoirs, especially as a support for the definition of horizontal continuity of strata, with special emphasis on terrigeneous formations. Nevertheless the application of seismic attributes to the study of carbonate and naturally fractured reservoirs has been limited. This paper shows the application of seismic attributes and seismic inversion to the geological and petrophysical characterization of a naturally fractured reservoir with complex lithology, which is characteristic of the most important producing formations in Mexico. The results from these techniques provide the basis for the definition of a realistic geological model, which is of prime concern for the reservoir`s characterization, numerical studies and EOR applications.

  7. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  8. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  9. Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

  10. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221

  11. Title list of documents made publicly available: January 1--31, 1996. Volume 18, Number 1

    SciTech Connect (OSTI)

    1996-03-01

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index. Some of the topics relate to: low-level radioactive disposal sites, source material, production and utilization facilities, special nuclear material, packaging and transport and spent fuel storage.

  12. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  13. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo

  14. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). PDF icon Baseline Inventory.pdf More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  15. A9R7296.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  16. A9R7298.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  17. A9_ISO.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  18. A9_iso.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  19. Hanford Facility Beryllium Fact Sheet Building Number/Name:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1713F Offices For Technical Personnel And Drafting Operation March 25, 1998 February 9, 2012 N/A Kristy Kimmerle, CIH PAST OPERATIONS Beryllium brought in facility: No Form of beryllium: N/A Period of beryllium operations (dates): Start: 1973 End: 1973 Location(s) in facility that contained beryllium materials: Potential beryllium contamination in the small animal quarters was investigated in 1973. Description of beryllium activities: Rats were exposed to beryllium oxide dust in the 331 Building

  20. Hanford Facility Beryllium Fact Sheet Building Number/Name:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responsible Contractor: Contact: 2714W March 25, 1998 February 9, 2012 N/A Kristy Kimmerle, CIH PAST OPERATIONS Beryllium brought in facility: Potential Form of beryllium: SOLID (trace on coveralls) Period of beryllium operations (dates): Mid 1960s End: 1991 Location(s) in facility that contained beryllium materials: Laundering area and exterior settling pond. Description of beryllium activities: Potentially beryllium-contaminated laundry was laundered in the facility and wash water was

  1. Hanford Facility Beryllium Fact Sheet Building Number/Name:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    71B B Plant Support Building March 25, 1998 February 9, 2012 CHPRC Kristy Kimmerle, CIH PAST OPERATIONS Beryllium brought in facility: NO Form of beryllium: N/A Period of beryllium operations (dates): N/A End: N/A Location(s) in facility that contained beryllium materials: None that were known. Description of beryllium activities: This facility appeared on the original list of possible beryllium facilities. Reviews of documentation, facility personnel, a UW research representative, and DOE-RL

  2. Building Number/Name: Date prepared: Responsible Contractor:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-AW Feb 10,2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s End: Present Location(s) in facility that contained beryllium materials: Tool Crib and adjacent Supply Room, and Mechanical Maintenance Area. Description of beryllium activities: Beryllium tools (beryllium-copper alloy containing about 2% beryllium) are stored in the Tool Crib and given to employees for use in Tank Farms,

  3. Building Number/Name: Date prepared: Responsible Contractor:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WA February 7, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s End: Present Location(s) in facility that contained beryllium materials: Tool Crib inside Maintenance Shop Supply Room Description of beryllium activities: Beryllium tools (beryllium-copper alloy containing about 2% beryllium) are stored in the tool crib and given to employees for use in Tank Farms. These tools are

  4. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    SciTech Connect (OSTI)

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations, stochasticity criteria for quasilinear theory, formal aspects of resonance-broadening theory, Novikov's theorem, the treatment of weak inhomogeneity, the derivation of the Vlasov weak-turbulence wave kinetic equation from a fully renormalized description, some features of a code for solving the direct-interaction approximation and related Markovian closures, the details of the solution of the EDQNM closure for a solvable three-wave model, and the notation used in the article.

  5. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the sites geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the sites environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  6. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the sites geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the sites environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  7. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    SciTech Connect (OSTI)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  8. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  9. Reference design description for a geologic repository: Revision 01

    SciTech Connect (OSTI)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.

  10. Preliminary paper - Development of the Reference Design Description for a geologic repository

    SciTech Connect (OSTI)

    Daniel, Russell B.; Rindskopf, M. Sam

    1997-11-20

    This report describes the current Reference Design Description (RDD) design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada.

  11. 2009-01 "Improved Description of Data in the Next Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Data in the Next Environmental Surveillance Report" 2009-01 "Improved Description of Data in the Next Environmental Surveillance Report" The intent of this recommendation ...

  12. Two-fluid description of wave-particle interactions in strong...

    Office of Scientific and Technical Information (OSTI)

    Title: Two-fluid description of wave-particle interactions in strong Buneman turbulence To understand the nature of anomalous resistivity in magnetic reconnection, we investigate ...

  13. Heavy pair production currents with general quantum numbers in

    Office of Scientific and Technical Information (OSTI)

    dimensionally regularized nonrelativistic QCD (Journal Article) | SciTech Connect Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD Citation Details In-Document Search Title: Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and

  14. West Valley Demonstration Project Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste

  15. Moab Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moab Site Cleanup By the Numbers Moab Site Cleanup By the Numbers Moab Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Moab Site Cleanup By the

  16. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  17. Oak Ridge Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Site Cleanup By the Numbers Oak Ridge Site Cleanup By the Numbers Oak Ridge Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Oak Ridge Site

  18. Idaho Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Site Cleanup By the Numbers Idaho Site Cleanup By the Numbers Idaho Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Idaho Site Cleanup By the

  19. Paducah Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Site Cleanup By the Numbers Paducah Site Cleanup By the Numbers Paducah Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Paducah Site Cleanup

  20. Portsmouth Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Site Cleanup By the Numbers Portsmouth Site Cleanup By the Numbers Portsmouth Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository Available for Download PDF icon Portsmouth