Powered by Deep Web Technologies
Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photographs  

Office of Energy Efficiency and Renewable Energy (EERE)

These photo collections offer images that can be used to enhance your story or message. Browse the archives to find thousands of photographs that depict DOE's and the national laboratories' various programs and activities.

2

Definition: Azimuth | Open Energy Information  

Open Energy Info (EERE)

Azimuth Azimuth Jump to: navigation, search Dictionary.png Azimuth The angle between true south and the point on the horizon directly below the sun.[1] View on Wikipedia Wikipedia Definition An azimuth is an angular measurement in a spherical coordinate system. The vector from an observer to a point of interest is projected perpendicularly onto a reference plane; the angle between the projected vector and a reference vector on the reference plane is called the azimuth. An example is the position of a star in the sky. The star is the point of interest, the reference plane is the horizon or the surface of the sea, and the reference vector points north. The azimuth is the angle between the north vector and the perpendicular projection of the star down onto the horizon. Azimuth is usually measured in degrees (°). The concept is used

3

Precision stationkeeping with azimuthing thrusters  

E-Print Network [OSTI]

Precision positioning of an unmanned surface vehicle (USV) in a nautical environment is a difficult task. With a dual azimuthing thruster scheme, the optimization of thruster outputs uses an online method to minimize the ...

Doroski, Adam D

2011-01-01T23:59:59.000Z

4

Adaptive photograph retrieval method  

Science Journals Connector (OSTI)

Access to electronic books, electronic journals, and web portals, which may contain graphics (drawings or diagrams) and images, is now ubiquitous. However, users may have photographs that contain graphics or images and want to access an electronic database ... Keywords: Graphics retrieval, Graphics/image classification, Histogram of oriented gradient, Image retrieval, Photograph retrieval, Pixel-based retrieval

Hong-Bo Zhang, Shang-An Li, Shu-Yuan Chen, Song Zhi Su, Der-Jyh Duh, Shao Zi Li

2014-06-01T23:59:59.000Z

5

Photographs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Information for Media » Photographs Information for Media » Photographs Photographs These photo collections offer images that can be used to enhance your story or message. Browse the archives to find thousands of photographs that depict DOE's and the national laboratories' various programs and activities. Please see the Website Policies for more information on using photographs from the EERE website. Department of Energy Flickr Photostream This collection of photos provides images for the general public and the Department of Energy community. Argonne National Laboratory Image Library Argonne's Flickr Image Library offers images for download covering the various scientific activities at the lab. Brookhaven National Laboratory Image Library This collection of images depicts Brookhaven's activities and research.

6

ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC...  

Office of Environmental Management (EM)

CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL,...

7

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

8

Determining Azimuthal Variations in Frontal Froude Number from SAR Imagery  

E-Print Network [OSTI]

supercritical to subcritical flow for 6-12 hours after high water. Internal wave generation occurs regularly plume and ambient coastal waters, contribute to coastal productivity, and exert a major impact

Hickey, Barbara

9

E-Print Network 3.0 - azimuthal asymmetry measured Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison Summary: and selectivity as a func- tion of azimuth and radius. Azimuthal...

10

Manhattan Project: Trinity (Color Photograph)  

Office of Scientific and Technical Information (OSTI)

(COLOR PHOTOGRAPH) (COLOR PHOTOGRAPH) Trinity Test Site (July 16, 1945) Resources > Photo Gallery Trinity, July 16, 1945 (This is the page for the photograph only; see "The Trinity Test" for more information about the test itself.) The photo is courtesy Los Alamos National Laboratories; it is reproduced on the front cover of Los Alamos: Beginning of an Era, 1943-1945 (Los Alamos: Public Relations Office, Los Alamos Scientific Laboratory, ca. 1967-1971). The inside of the front cover describes the history of the photograph this way: Although colored movies were taken of the Trinity test, they were of poor quality and have since deteriorated. This cover photograph, also showing the ravages of time, is the only existing color shot of the test. It was taken, surprisingly enough, by an amateur using his own camera. Jack Aeby, now [ca. 1967-1971] of H-6, was working at Trinity with Emilio Segrè studying delayed gamma rays. Segrè secured permission for Aeby to carry his camera to the site to record the group's activities. Came the test and, as Aeby says, 'it was there so I shot it.' The picture was taken from just outside Base Camp with a Perfex 33 camera using 33 mm film. The photograph provided the basis for the Theoretical Division's earliest calculations of the Trinity weapon's yield and was shortly confiscated by the Army and first published after the announcement was made of the bombing of Japan.

11

DOE Solar Decathlon: 2009 Photographs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a hard hat and Illinois T-shirt and carrying a tray of plants. a hard hat and Illinois T-shirt and carrying a tray of plants. University of Illinois at Urbana-Champaign faculty member Mark Taylor works on the landscaping for Gable Home. Solar Decathlon 2009 Photographs The Solar Decathlon is an inspiring event that celebrates a powerful combination of solar energy, energy efficiency, and the best in home design. We invite you to experience the excitement of the Solar Decathlon through these 2009 photograph collections: Gallery of Homes High-Resolution Daily Photos Flickr Solar Decathlon Photostream. Printable Version Solar Decathlon 2009 Home Teams Final Results Contests and Scoring Juries News Photos & Multimedia Photographs - 2009 Gallery of Homes - 2009 Daily Photos Videos Time-Lapse Images Virtual Tours Product Directory

12

Azimuthal Jet Tomography at RHIC and LHC  

E-Print Network [OSTI]

A generic jet-energy loss model that is coupled to state-of-the-art hydrodynamic fields and interpolates between a wide class of running coupling pQCD-based and AdS/CFT-inspired models is compared to recent data on the azimuthal and transverse momentum dependence of high-pT pion nuclear modification factors and high-pT elliptic flow measured at RHIC and LHC. We find that RHIC data are surprisingly consistent with various scenarios considered. However, extrapolations to LHC energies favor running coupling pQCD-based models of jet-energy loss. While conformal holographic models are shown to be inconsistent with data, recent non-conformal generalizations of AdS holography may provide an alternative description.

Barbara Betz; Miklos Gyulassy

2014-02-14T23:59:59.000Z

13

LRRR Emplacement Range and Azimuth From. LM for Fra Mauro  

E-Print Network [OSTI]

LRRR Emplacement Range and Azimuth From. LM for Fra Mauro Landing Site NO. A Tl\\1- WIO PAGE I REV abovt by LM or other lunar equipment (ALSEP), Potential damage to the .i RRR l'Ould be caused . (}~/ #12;.. ~ospace LRRR Emplacement Range and Azimuth From LM for Fra Mauro Landing Site NO. ATM-890 PAGE

Rathbun, Julie A.

14

The Azimuth Project: an open-access educational resource  

E-Print Network [OSTI]

other things, the Azimuth Project includes: 1. A project to explain climate physics with the help of the glacial cycle. #12;Among other things, the Azimuth Project includes: 1. A project to explain climate Project includes: 1. A project to explain climate physics with the help of software that runs on your

Baez, John

15

Photographic lens manufacturing and production technologies  

E-Print Network [OSTI]

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

16

Analyses of azimuthal seismic anisotrophy in the vertically fractured Spraberry and Dean formations, Midland County, Texas  

E-Print Network [OSTI]

The configuration of a CDP gather from 3-D seismic reflection has source-receiver pairs located at different azimuths. This can be exploited to observe azimuthal variations of P- wave velocity related to azimuthal anisotropy in fractured media...

Sudarmo, Bernadus Supraptomo

2012-06-07T23:59:59.000Z

17

Historical Photographs: Lawrence Berkeley Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

18

E-Print Network 3.0 - azimuthal di-hadron correlations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

minimum of the azimuth modulation, which supports the theoretical correlation between wind direction... and azimuth angle). Combined, we term these parameters the observation...

19

Azimuthal Resistivity to Characterize Fractures in a Glacial Till Mark Boris, University of Saskatchewan  

E-Print Network [OSTI]

of Saskatchewan Jim Merriam, University of Saskatchewan Abstract Azimuthal resistivity was used to characterize

Merriam, James

20

Phenomenology of SIDIS unpolarized cross sections and azimuthal asymmetries  

E-Print Network [OSTI]

I review the phenomenology of unpolarized cross sections and azimuthal asymmetries in semi-inclusive deeply inelastic scattering (SIDIS). The general theoretical framework is presented and the validity of the Gaussian model is discussed. A brief account of the existing analyses is provided.

Vincenzo Barone

2012-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Windowed defocused photographic speckle vibration measurement  

Science Journals Connector (OSTI)

The out-of-plane vibration of a rough surface causes an in-plane vibration of its speckle pattern when observed with a defocused optical photographic system. If the frequency of the...

Diazdelacruz, Jose

2009-01-01T23:59:59.000Z

22

E-Print Network 3.0 - azimuthal signal variations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of the azimuth DTFs of the same ear with gray-scale coding for power (in dB). Note the huge variations in power... .8 The monaural duplex theory 6 1.9 Azimuth Cue...

23

E-Print Network 3.0 - azimuthal angle correlations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to form the swath and to obtain the nec- essary azimuth measurements in order to perform wind retrieval 2... , the resolution in the azimuth dimension is governed by the...

24

Azimuthal harmonics of color fields in a high energy nucleus  

E-Print Network [OSTI]

Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal correlations in high energy proton-nucleus collisions. Final state collective effects can be responsible for many of the observed effects, but it has recently been argued that a part of these correlations are present already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle cumulant azimuthal anisotropy coefficients v_n{2}, n=2,3,4 from fundamental representation Wilson line distributions describing the high energy nucleus. These would correspond to the flow coefficients in very forward proton nucleus scattering. We find significant differences beteen Wilson lines from the MV model and from JIMWLK evolution. The magnitude and transverse momentum dependence of the v_n{2} values suggest that the fluctuations present in the initial fields are a significant contribution to the observed anisotropies.

Lappi, T

2015-01-01T23:59:59.000Z

25

Azimuthal Anisotropies as Stringent Test for Nuclear Transport Models  

E-Print Network [OSTI]

Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600AMeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar center-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

P. Crochet; F. Rami; R. Dona; the FOPI Collaboration

1997-09-15T23:59:59.000Z

26

Clean Cities: Clean Cities Logos, Graphics, and Photographs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Logos, Graphics, and Logos, Graphics, and Photographs to someone by E-mail Share Clean Cities: Clean Cities Logos, Graphics, and Photographs on Facebook Tweet about Clean Cities: Clean Cities Logos, Graphics, and Photographs on Twitter Bookmark Clean Cities: Clean Cities Logos, Graphics, and Photographs on Google Bookmark Clean Cities: Clean Cities Logos, Graphics, and Photographs on Delicious Rank Clean Cities: Clean Cities Logos, Graphics, and Photographs on Digg Find More places to share Clean Cities: Clean Cities Logos, Graphics, and Photographs on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts Clean Cities Logos, Graphics, and Photographs

27

Passport Photo Form 1. Passport Photo Requirements: Your photographs must be  

E-Print Network [OSTI]

Passport Photo Form 1. Passport Photo Requirements: Your photographs must be: · Taken in normal, photo-quality paper · 2 x 2 inches in size · In color · Full face, front view with a plain white or off Photo: 1 photo - $3.00 2 or more photos - $2.00 EACH 3. Number of Photos Requested: 4. Method of Payment

Kostic, Milivoje M.

28

NASA/TM--2001210880 Photographic Analysis Technique  

E-Print Network [OSTI]

NASA/TM--2001­210880 Photographic Analysis Technique for Assessing External Tank Foam Loss Events T'Farrell United Space Alliance, Huntsville, Alabama June 2001 #12;Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program

Christian, Eric

29

Multiparticle azimuthal correlations of negative pions in nucleus-nucleus collisions  

SciTech Connect (OSTI)

Multiparticle azimuthal correlations of {pi}{sup -} mesons have been studied in dC, HeC, CC, CNe, MgMg, (d, He)Ta, CCu, CTa, and OPb collisions at momentum of 4.2, 4.5 GeV/c per nucleon within the standard transverse momentum analysis method of P. Danielewicz and G. Odyniec. The data were obtained by SKM-200-GIBS and Propane Bubble Chamber Collaborations of JINR. The axis has been selected in the phase space and with respect to this axis {pi}{sup -} meson correlations were observed. The values of the coefficient of the correlations linearly depend on the mass numbers of projectile (A{sub P}) and target (A{sub T}) nuclei. The Quark-Gluon String Model satisfactorily describes the experimental results.

Chkhaidze, L. V., E-mail: ichkhaidze@yahoo.com; Djobava, T. D.; Kharkhelauri, L. L. [Tbilisi State University, High Energy Physics Institute (Georgia); Kladnitskaya, E. N. [Joint Institute for Nuclear Research (Russian Federation)

2012-07-15T23:59:59.000Z

30

Performance analysis of Azimuth Tracking Fixed Mirror Solar Concentrator  

Science Journals Connector (OSTI)

Abstract The fixed mirror solar collector (FMSC) fixes reflector and mobiles receiver to collect solar energy. However, this type of concentrator has a low efficiency and short operating duration in practical applications. In this paper, we propose to install the FMSC on an azimuth tracking device (ATFMSC) and the reflectors are arranged by intermission to avoid the shading of neighbor reflector for incidence angle of less than 10 to improve its optical performance. Through the integration of the reflected solar radiation distribution function over any reflection point, and then the whole collector aperture, we develop the analytical expressions of various system efficiencies to numerically simulate the performance of ATFMSC with evacuated tube receiver in different design parameters. It is validated by the ray tracing results. The result shows that the mean annual net heat efficiency of the whole system would be up to 61% with the operating temperature of 400C, which is higher than parabolic trough collector and traditional FMSC. This is because the longitudinal incidence angle of ATFMSC always remains zero by tracking the sun azimuth, so the end loss of the concentrator can be avoided and enables it to operate with high efficiency continually.

Longlong Li; Huairui Li; Qian Xu; Weidong Huang

2015-01-01T23:59:59.000Z

31

Optical performance of an azimuth tracking linear Fresnel solar concentrator  

Science Journals Connector (OSTI)

Abstracts In this paper, a linear Fresnel solar concentrator installed on a solar azimuth tracker is studied. Based on the integration of the effective source distribution for a reflection point and the whole reflector area, we develop an analytical model to calculate the intercept factor of the concentrator and analyze its performance over a year. The prediction of our analytical optical model agrees pretty well with that of the ray tracing program SolTRACE. Then we study the effects of the main design parameters on the performance of the system. The results show that annual mean total efficiency of 61% can be obtained in optimized design when the operational temperature of the receiver is 400C. The performance of the azimuth tracking linear Fresnel solar concentrator (ATLFSC) is compared with that of the parabolic trough collector. It is found that the cosine factor, intercept factor and total efficiency of the ATLFSC are better than those of parabolic trough collector, showing that the ATLFSC may have great potential for solar energy utilization.

Farong Huang; Longlong Li; Weidong Huang

2014-01-01T23:59:59.000Z

32

E-Print Network 3.0 - azimuthally anisotropic electron Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

low-porosity reser-voirs are largely governed by natural fracture networks. Summary: shale formation. A case study of azimuthal AVO analysis with anisotropic spreading...

33

E-Print Network 3.0 - azimuth transform interpolation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transform interpolation Search Powered by Explorit Topic List Advanced Search Sample search results for: azimuth transform interpolation Page: << < 1 2 3 4 5 > >> 1 IEEE...

34

E-Print Network 3.0 - azimuthal anisotropy etude Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resistivity to Characterize Fractures in a Glacial Till Mark Boris, University of Saskatchewan Summary: . There was no interpretable anisotropy in the azimuthal resistivity data....

35

E-Print Network 3.0 - azimuthal map projection Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of tight, low-porosity reser-voirs are largely governed by natural fracture networks. Summary: with borehole measurements, fracture maps obtained from azimuthal...

36

E-Print Network 3.0 - azimuthal energy flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of tight, low-porosity reser-voirs are largely governed by natural fracture networks. Summary: inversion methods that operate with both 3D wide- azimuth surface...

37

E-Print Network 3.0 - azimuth spread estimation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of tight, low-porosity reser-voirs are largely governed by natural fracture networks. Summary: of MASC becomes nec- essary when the azimuthal variation of the...

38

E-Print Network 3.0 - azimuth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of tight, low-porosity reser-voirs are largely governed by natural fracture networks. Summary: inversion methods that operate with both 3D wide- azimuth surface...

39

E-Print Network 3.0 - azimuthally symmetric theory Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by natural fracture networks. Summary: moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case... inversion methods that operate...

40

Windowed defocused photographic speckle vibration measurement  

E-Print Network [OSTI]

The out-of-plane vibration of a rough surface causes an in-plane vibration of its speckle pattern when observed with a defocused optical photographic system. If the frequency of the oscillations is high enough, a time-averaged specklegram is recorded from which the amplitude of the vibration can be estimated. The statistical character of speckle distributions along with the pixel sampling and intensity analog-to-digital conversion inherent to electronic cameras degrade the accuracy of the amplitude measurement to an extent that is analyzed and experimentally tested in this paper. The relations limiting the mutually competing metrological features of a defocused speckle system are also deduced mathematically.

Diazdelacruz, Jose M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect (OSTI)

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

42

TESTING FOR AZIMUTHAL ABUNDANCE GRADIENTS IN M101  

SciTech Connect (OSTI)

New optical spectra of 28 H II regions in the M101 disk have been obtained, yielding 10 new detections of the [O III] {lambda}4363 auroral line. The oxygen abundance gradient measured from these data, combined with previous observations, displays a local scatter of 0.15 {+-} 0.03 dex along an arc in the west side of the galaxy, compared with a smaller scatter of 0.08 {+-} 0.01 dex in the rest of the disk. One of the H II regions in our sample (H27) has a significantly lower oxygen abundance than surrounding nebulae at a similar galactocentric distance, while an additional, relatively nearby one (H128) was already known to have a high oxygen abundance for its position in the galaxy. These results represent marginal evidence for the existence of moderate deviations from chemical abundance homogeneity in the interstellar medium of M101. Using a variety of strong-line abundance indicators, we find no evidence for significant large-scale azimuthal variations of the oxygen abundance across the whole disk of the galaxy.

Li, Yanxia; Bresolin, Fabio [Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States)] [Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)] [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

2013-03-20T23:59:59.000Z

43

Azimuthal Asymmetries and Vibrational Modes in Bubble Pinch-off  

E-Print Network [OSTI]

The pressure-driven inertial collapse of a cylindrical void in an inviscid liquid is an integrable, Hamiltonian system that forms a finite-time singularity as the radius of the void collapses to zero. Here it is shown that when the natural cylindrical symmetry of the void is perturbed azimuthally, the perturbation modes neither grow nor decay, but instead cause constant amplitude vibrations about the leading-order symmetric collapse. Though the amplitudes are frozen in time, they grow relative to the mean radius which is collapsing to zero, eventually overtaking the leading-order symmetric implosion. Including weak viscous dissipation destroys the integrability of the underlying symmetric implosion, and the effect on the stability spectrum is that short-wavelength disturbances are now erased as the implosion proceeds. Introducing a weak rotational flow component to the symmetric implosion dynamics causes the vibrating shapes to spin as the mean radius collapses. The above theoretical scenario is compared to a closely related experimental realization of void implosion: the disconnection of an air bubble from an underwater nozzle. There, the thin neck connecting the bubble to the nozzle implodes primarily radially inward and disconnects. Recent experiments were able to induce vibrations of the neck shape by releasing the bubble from a slot-shaped nozzle. The frequency and amplitude of the observed vibrations are consistent with the theoretical prediction once surface tension effects are taken into account.

Laura E. Schmidt

2011-12-19T23:59:59.000Z

44

U.S. Department of Energy 2012 Annual Inspection - Parkersburg...  

Office of Legacy Management (LM)

compliance with 40 CFR 192. No corrective action was required in 2012. 9.0 Photographs Photo Location Number Azimuth Photograph Description 1 315 View down northeast fence line. 2...

45

Heliostat tilt and azimuth angle charts and the heliostat orientation protractor  

SciTech Connect (OSTI)

This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.

Elsayed, M.M.; Al-Rabghi, O.M. (Thermal Energy Dept., King Abdulaziz Univ., Jeddah 21413 (SA))

1992-02-01T23:59:59.000Z

46

Two photo permits are available: Daily Photographer Permit and Annual Photographer Permit. Daily Photographer Permit is $75 and includes gate admission for up to 15 adults and photographer. To reserve  

E-Print Network [OSTI]

Two photo permits are available: Daily Photographer Permit and Annual Photographer Permit. Daily of the photo session will be $75 plus a $25 processing fee. Your Daily Photo Badge can be picked up the business day before. Any permits purchased on the day of the photo session will be $225 and subject

Netoff, Theoden

47

Columbia Photographic Images and Photorealistic Computer Graphics Dataset  

E-Print Network [OSTI]

Columbia Photographic Images and Photorealistic Computer Graphics Dataset Tian-Tsong Ng, Shih Abstract Passive-blind image authentication is a new area of research. A suitable dataset. In response to the need for a new dataset, the Columbia Photographic Images and Photorealistic Computer

Chang, Shih-Fu

48

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi  

E-Print Network [OSTI]

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

49

Comparison of Discrete Fracture and Effective Media Representation of Fractures on Azimuthal AVO  

E-Print Network [OSTI]

In fractured reservoir development, azimuthal AVO (AVOaz) properties of reflected PP waves from reservoir tops are often used to infer fracture properties. The fracture parameter inversion is based on either an effective ...

Zhang, Yang

2005-01-01T23:59:59.000Z

50

High performance path following for marine vehicles using azimuthing podded propulsion  

E-Print Network [OSTI]

Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

Greytak, Matthew B. (Matthew Bardeen)

2006-01-01T23:59:59.000Z

51

Radiographic apparatus for photographing entire jaws  

SciTech Connect (OSTI)

This disclosure relates to a dental radiographic apparatus for photographing the entire jaw designed to control the rotation of a rotary arm such that the film surface of a film holder mounted at one end of the rotary arm may rotate and move substantially at equal speed substantially equidistantly along the dental arch and that the X-ray beams irradiated upon the film surface from an X-ray generator mounted at the other end of the arm may fall on the dental arch at any point thereof at right angles with the arch. The apparatus makes it possible to obtain a very clear tomographic picture of a curved plane of the entire jaws, the picture being free of a double image of the teeth, partial change in enlargement ratio of the image obtained, and partial difference in the shade of the image obtained.

Nakano, K.

1985-01-22T23:59:59.000Z

52

Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions  

E-Print Network [OSTI]

We use a Monte Carlo approach to study hadron azimuthal angular correlations in high energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energies at mid-rapidity. We build a hadron event generator that incorporates the production of $2\\to 2$ and $2\\to 3$ parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the Quark-Gluon Plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold $p_T^{{\\tiny{thresh}}}=2.4$ GeV. We argue that...

Ayala, Alejandro; Jalilian-Marian, Jamal; Magnin, J; Tejeda-Yeomans, Maria Elena

2012-01-01T23:59:59.000Z

53

Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions  

E-Print Network [OSTI]

We use a Monte Carlo approach to study hadron azimuthal angular correlations in high energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energies at mid-rapidity. We build a hadron event generator that incorporates the production of $2\\to 2$ and $2\\to 3$ parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the Quark-Gluon Plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold $p_T^{{\\tiny{thresh}}}=2.4$ GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, since their interaction with the medium may lead to showers of low momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

Alejandro Ayala; Isabel Dominguez; Jamal Jalilian-Marian; J. Magnin; Maria Elena Tejeda-Yeomans

2012-07-31T23:59:59.000Z

54

Tree height estimation from aerial photographs using a Zoom Stero Transfer Scope and parallax bar  

E-Print Network [OSTI]

heavily on aerial photographs for topographical surveying, The Tennessee Valley Authority was another key agency that increased the use of aerial photographs for mapping purposes. Aerial Photography in Forestry The earliest aerial photographs... heavily on aerial photographs for topographical surveying, The Tennessee Valley Authority was another key agency that increased the use of aerial photographs for mapping purposes. Aerial Photography in Forestry The earliest aerial photographs...

Scott, Wendell Randolph

2012-06-07T23:59:59.000Z

55

AN INVENTORY OF PHOTOGRAPHS OF ZINC ELECTRODEPOSITED FROM ACID ELECTROLYTES  

E-Print Network [OSTI]

Electrical circuit diagram Experimental apparatus Limiting current plaT7~us, 0.05 Levich plot (i vs. :;Electrical Circuit Diagrams Striated Zinc Deposit (GOULD, Inc. Photograph) Typical Striated Deposits Striation Length vs.

Faltemier, J.L.

2011-01-01T23:59:59.000Z

56

Work of Manhattan Project-era photographer Ed Westcott lives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Work of Manhattan ... Work of Manhattan Project-era photographer Ed Westcott lives on Posted: June 13, 2012 - 1:30pm Ed Westcott mans the shutter release for another historic...

57

Azimuthal asymmetries of charged hadrons producedbyhigh-energy muons scatteredofflongitudinallypolariseddeuterons  

Science Journals Connector (OSTI)

Azimuthal asymmetries in semi-inclusive production of positive (h +) and negative hadrons (h ?) have been measured by scattering 160 GeV muons off longitudinally polarised deuteron...

M. G. Alekseev; V. Yu. Alexakhin; Yu. Alexandrov

2010-11-01T23:59:59.000Z

58

Moveout inversion of wide-azimuth P-wave data for tilted TI media Xiaoxiang Wang1  

E-Print Network [OSTI]

to build an accurate initial anisotropic velocity model for processing of wide-azimuth surveys is typical for dipping shale layers

Tsvankin, Ilya

59

Detection of azimuthal anisotropy from 3-D p-wave seismic data  

E-Print Network [OSTI]

DETECTION OF AZIMUTHAL ANISOTROPV FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Geophysics DETECTION OF AZIMUTHAL ANISOTROPY FROM 3-D P-WAVE SEISMIC DATA A Thesis by ALI YILDIZEL Approved as to style and content by: Steve I . Iarder (Chair of Committee) Joel S. Watkins (Member) Robert R. Berg...

Yildizel, Ali

2012-06-07T23:59:59.000Z

60

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network [OSTI]

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Anisotropic geometrical-spreading correction for wide-azimuth P-wave reflections  

E-Print Network [OSTI]

Anisotropic geometrical-spreading correction for wide-azimuth P-wave reflections Xiaoxia Xu1 spreading in stratified azi- muthally anisotropic media. The P-wave geometrical-spreading factor systems, nonhydrostatic stresses, or dipping trans- versely isotropic layers e.g., shales . The inversion

Tsvankin, Ilya

62

SAR image localization and target recognition research based on the azimuth circle adjustment  

Science Journals Connector (OSTI)

According to the work mechanism of space synthetic aperture radar (SAR), this text introduced the localization algorithms of SAR image and the method of system error adjustment. On the basis of the concept of the azimuth circle and the combination of ... Keywords: ITIL, ITSM, UML, framework, process model

Guang Yang; Xiaojuan Wang; Dejun Li; Bai Zhang; Kun Gao

2009-01-01T23:59:59.000Z

63

3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle  

Science Journals Connector (OSTI)

......partially during the subsequent tectonism of flat Farallon subduction (Humphreys et al...Thick-structured Proterozoic lithosphere of the Rocky Mountain region, GSA Today, 11, 4-9...azimuthal anisotropy beneath the Colorado Rocky Mountains, in The Rocky Mountain Region-An......

Huaiyu Yuan; Barbara Romanowicz; Karen M. Fischer; David Abt

2011-03-01T23:59:59.000Z

64

A semiotic analysis of biotechnology and food safety photographs  

E-Print Network [OSTI]

This study evaluated photographs used in Time, Newsweek, and U.S. News and World Report in stories about biotechnology and food safety issues from the years 2000 and 2001. This study implemented a semiotic methodology to determine if the messages...

Norwood, Jennifer Lynn

2006-04-12T23:59:59.000Z

65

A HYDROGEN ECONOMY MATTVINCENTILLUSTRATION;JOERAEDLEGettyImages(photograph)  

E-Print Network [OSTI]

A HYDROGEN ECONOMY MATTVINCENTILLUSTRATION;JOERAEDLEGettyImages(photograph) Developing cleaner of hydrogen as a transportation fuel. Unfortunately, the commercializa- tion of electric vehicles has been- butionwillbecostly. High Hopes for 94 SCIENTIFIC AMERICAN Will motorists someday fill up their tanks with hydrogen

Kammen, Daniel M.

66

Correspondences: A personal photographic journey between past/Iran and present/Australia.  

E-Print Network [OSTI]

??This project is an autobiographical photography series entitled: Correspondences; A personal photographic journey between past/Iran and present/Australia. This series of photographs are partly influenced by (more)

Javan, Katayoun

2013-01-01T23:59:59.000Z

67

Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry  

SciTech Connect (OSTI)

Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors with different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.

Grechka, V.; Tsvankin, I.

2000-02-01T23:59:59.000Z

68

The influence of the nonverticality of the azimuthal rotation axis of the concentrator (heliostat) on program tracking accuracy  

Science Journals Connector (OSTI)

It is shown that the nonverticality of the azimuthal axis has a significant influence on the accuracy of the program control of the concentrator (heliostat). To eliminate this error, it is...

A. A. Abdurakhmanov; S. A. Orlov; A. S. Saribaev; Kh. K. Fazilov

2010-12-01T23:59:59.000Z

69

Clean Cities: Clean Cities Logos, Graphics, and Photographs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Logos, Graphics, and Photographs Logos, Graphics, and Photographs Clean Cities logos, graphics, and photos are available for use in outreach materials, such as presentations, posters, banners, and marketing publications. See also print products and templates. Appropriate Use If your outreach materials are not intended for lobbying or advocacy efforts, you may download the graphics below. These graphics may not be used for lobbying or advocacy efforts or to indicate affiliation with or endorsement by the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE), or the Vehicle Technologies Office. Funding provided by the U.S. Department of Energy may not be used for any of these efforts. When in doubt, ask. Contact your regional manager to approve use of Clean Cities graphics with your organization's materials. Only designated coalitions may use the Clean Cities logo.

70

On the analysis of small?angle scattering with elliptical azimuthal symmetry  

Science Journals Connector (OSTI)

Inhomogeneities which have azimuthal symmetry around some unique axis exhibit small?angle neutron scattering with elliptical symmetry. It is not necessary that these inhomogeneities have an ellipsoidal shape. The model of Debye e t a l. has been generalized to incorporate an anisotropic correlation length having this symmetry. A method is given for fitting two?dimensional intensity data to this model. This is illustrated by data taken for sections of slate and shale rock cut normal to the direction of the bedding planes and which exhibit both large? and small?pore anisotropies.

Peter L. Hall; D. F. R. Mildner

1983-01-01T23:59:59.000Z

71

Measurement of Dijet Azimuthal Decorrelations in pp Collisions at {radical}(s)=7 TeV  

SciTech Connect (OSTI)

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set ({integral}Ldt=36 pb{sup -1}) acquired by the ATLAS detector during the 2010 {radical}(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime.

Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J. [Fakultaet fuer Mathematik und Physik, Albert-Ludwigs-Universitaet, Freiburg i.Br. (Germany); Abbott, B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma (United States); Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M. [Institut de Fisica d'Altes Energies and Universitat Autonoma de Barcelona and ICREA, Barcelona (Spain)

2011-04-29T23:59:59.000Z

72

Particle-type dependence of azimuthal anisotropy and nuclearmodification of particle production in Au+Au collisions at sNN = 200GeV  

SciTech Connect (OSTI)

We present STAR measurements of the azimuthal anisotropy parameter v{sub 2} and the binary-collision scaled centrality ratio R{sub CP} for kaons and lambdas ({Lambda} + {bar {Lambda}}) at mid-rapidity in Au+Au collisions at {radical}s{sub NN} = 200 GeV. In combination, the v{sub 2} and R{sub CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p{sub T} {approx} 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K{sub S}{sup 0} and {Lambda} + {bar {Lambda}} v{sub 2} values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman,R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll,J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay,S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gutierrez, T.D.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.K.; et al.

2003-06-18T23:59:59.000Z

73

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36 and 38 for Ottawa, which is at a latitude of 45N, and between 32 and 35 for Toronto, which is at a latitude of 44N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4 west of due south and 6 east of due south for Ottawa, and between 1 west of due south and 2 east of due south for Toronto). In conclusion, the importance of solar electricity particularly valuable because of when it is produced and where it can be produced is highlighted, as are future priorities for research.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2011-01-01T23:59:59.000Z

74

The use of composite radar photographs in synoptic weather analysis  

E-Print Network [OSTI]

/acts Heteorologp THH CSE Oy COHPOSZTH ueAH PauZOnueaS II ITIOPTZC II@XIII kIkLYS1$ Approved aa ro eryia aad coaraat bye Cha of Coiaeitres Head of Baparensnt The uss of radar see?her observations in analysis of w*nther charts is considered. Thats observations... (1) 9 199, 9 1CWP J. , 1999 ~pf 1 1 Pf l~lhte 1 t~aai- sis, Chicago, University of Chicaso press, p. L7. to demonstrate ?tat the eimu1tcueoue radar observations of a lar-e portion of e storm incorporated as a composite radar photograph of several...

Smith, G. D.

2012-06-07T23:59:59.000Z

75

ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

76

ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Bharadwaj, Nitin; Widener, Kevin

77

ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

78

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation  

SciTech Connect (OSTI)

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a {Rho} even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

79

Collective flow by the azimuthal correlation of projectile fragments in relativistic heavy-ion collisions  

Science Journals Connector (OSTI)

An analysis that does not require the determination of reaction plane on an event-by-event basis, and involves only azimuthal correlation function of the projectile fragment pairs, has been employed to measure the collective flow of nuclear matter. Using this technique, we study the flow of projectile fragments of charge Z?2 produced in Au197 induced-emulsion reactions at 10.6A GeV. The collective flow is observed to be the most pronounced in semicentral collisions. The results are compared with those of Si28 at 14.5A GeV, U238 at 0.96A GeV, Kr84 at 1.52A GeV, and Fe56 at 1.7A GeV.

G. Singh and P. L. Jain

1994-06-01T23:59:59.000Z

80

Magnetic field stabilization by temperature control of an azimuthally varying field cyclotron magnet  

SciTech Connect (OSTI)

A magnetic field drift, gradual decrease of the order of 10{sup -4} in several tens of hours, was observed with the beam intensity decrease in an operation of an azimuthally varying field (AVF) cyclotron. From our experimental results, we show that the temperature increase of the magnet iron by the heat transfer from the excitation coils can induce such change of the magnetic field as to deteriorate the beam quality. The temperature control of the magnet iron was realized by thermal isolation between the main coil and the yoke and by precise control of the cooling water temperature of the trim coils attached to the pole surfaces in order to prevent temperature change of the magnet iron. The magnetic field stability of {+-}5x10{sup -6} and the beam intensity stability of {+-}2% have been achieved by this temperature control.

Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Sano, M.; Tachikawa, T. [Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Soubiraki, Niihama, Ehime 792-8588 (Japan)

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

82

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

83

An Unusual Aerial Photograph of an Eddy Circulation in Marine Stratocumulus Clouds  

Science Journals Connector (OSTI)

An aerial photograph of a cyclonic, von Karman-like vortex in the marine stratocumulus clouds off the California coast, taken by a commercial pilot near Grover Beach, is presented. It is believed that this is the first photograph of such an eddy, ...

Bradley M. Muller; Christopher G. Herbster; Frederick R. Mosher

84

Microsoft Word - Form to request photographs from the 2011 Secretary Honor Awards_v5.docx  

Broader source: Energy.gov (indexed) [DOE]

to request photographs from the 2011 Secretarial Honor Awards to request photographs from the 2011 Secretarial Honor Awards event of October 27, 2011 at the Forrestal Building Please review the accompanying document with the proof sheets from the event and identify the photographs you would like to receive. Fill in and save the following form (the form is saveable with the free Acrobat Reader) and send it to photo@hq.doe.gov to obtain your copies of the pictures. You may ask for 1) the electronic file, and/or 2) prints of the photograph(s). As possible, organizational offices should request groups of images to be distributed to the participants. Electronic images will be e- mailed, and physical prints will be mailed as soon as possible. Request for Images from 2011 Secretarial Honor Awards Event

85

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\\sqrt{s_{_{NN}}} = 62.4$ and 200~GeV  

E-Print Network [OSTI]

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$=200~GeV and 62.4~GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4~GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\\rm part}$. We observe that $v_2$ divided by eccentricity ($\\varepsilon$) monotonically increases with $N_{\\rm part}$ and scales as ${N_{\\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as...

Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Al-Jamel, A; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J -S; Chang, B S; Charvet, J -L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csand, M; Csrg?, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S -Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H -; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Hur, M G; Ichihara, T; Iinuma, H; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y -S; Kinney, E; Kiss, ; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Krl, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Bornec, Y Le; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Li, X; Li, X H; Lim, H; Lika, T; Litvinenko, A; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Maek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mike, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nouicer, R; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Oka, M; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T -A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slune?ka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarjn, P; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tojo, J; Tomek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesj, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vrtesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J

2014-01-01T23:59:59.000Z

86

Exploration of jet energy loss via direct $?$-charged particle azimuthal correlation measurements  

E-Print Network [OSTI]

The multiplicities of charged particles azimuthally associated with direct photons and $\\pi^{0}$ have been measured for Au+Au, p+p, and d+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV in the STAR experiment. Charged particles with transverse momentum 0.5 $<$ $p_T^{h^{\\pm}}$ $<$ 16 GeV/c for p+p and d+Au, and 3 $<$ $p_T^{h^{\\pm}}$ $<$ 16 GeV/c for Au+Au and pseudorapidity $\\mid\\eta\\mid$ $\\leq$ 1.5 in coincidence with direct photons and $\\pi^{0}$ of high transverse momentum 8 $<$ $p_T^{\\gamma,\\pi^{0}}$ $<$ 16 GeV/c at $\\mid\\eta\\mid$ $\\leq$ 0.9 have been used for this analysis. Within the considered range of kinematics, the observed suppressions of the associated yields per direct $\\gamma$ in central Au+Au relative to p+p and d+Au are similar and constant with direct photon fractional energy $z_{T}$ ($z_{T}=p_{T}^{h^{\\pm}}/p_{T}^{\\gamma}$). The measured suppressions of the associated yields with direct $\\gamma$ are comparable to those with $\\pi^{0}$. The data are compared to theoretical predictions.

A. M. Hamed

2009-09-25T23:59:59.000Z

87

Case Number:  

Broader source: Energy.gov (indexed) [DOE]

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

88

JOB NUMBER  

Broader source: Energy.gov (indexed) [DOE]

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

89

KPA Number  

Broader source: Energy.gov (indexed) [DOE]

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

90

Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil  

Science Journals Connector (OSTI)

Abstract Photovoltaic (PV) generation depends directly on the amount of radiation received by solar modules at a given temperature, and annual irradiation varies according to site location and PV array position. In this paper, the limitations and the solar irradiation levels received by building surfaces in different positions (with azimuth and tilt angle variation) in capital cities in Brazil are shown, making use of the Brazilian global horizontal solar irradiation data provided by the SWERA (Solar and Wind Energy Resource Assessment) project. These data were processed to generate figures on the irradiation at various PV module orientations and slopes for each city, which show the relative radiation levels received on specific azimuth and tilt angles in relation to the ideal position. Results were validated using four real and operating PV systems. In general, variations in azimuth or slope did not cause large annual irradiation losses up to around 20 tilt angles. This shows to PV system planners that under these fairly flexible conditions it is possible to install PV on any orientation, keeping high levels of annual irradiation, and that limitations in orientation and tilt can be relatively low. It also allows a quick analysis of PV retrofit in building-applied photovoltaics (BAPV), when seeking the best building surfaces to incorporate PV.

sis Portolan dos Santos; Ricardo Rther

2014-01-01T23:59:59.000Z

91

Photographic observations of comet Hale-Bopp at the Pulkovo Observatory: The detection of dust envelopes  

Science Journals Connector (OSTI)

The photographic observations of comet Hale-Bopp with the 26-inch Pulkovo Observatory ... in MarchApril, 1998, revealed three hemispherical gas-dust envelopes and one spiral jet in...

Yu. N. Gnedin; A. A. Kiselev; T. P. Kiseleva; K. L. Maslennikov

2001-04-01T23:59:59.000Z

92

Ship trail/cloud dynamic effects from Apollo-Soyuz photograph July 16, 1975  

SciTech Connect (OSTI)

We describe in this paper the results of a preliminary analysis of a ship trail photograph taken by the Apollo-Soyuz crew at 22:21 GMT on 16 July 1975. The photograph was taken from an altitude of 174 km and shows three separate ship trails with two of the trails intersecting. Because these photographs were taken from a non-geosynchronous satellite with a high-resolution camera, the quality of the photograph provides more detail than is usually obtained from meteorological satellites (minimum spatial resolution 14 m compared to 57 m from Landsat). The photograph not only shows enhanced detail of the ship trails themselves, but also cloud free bands generated by the ship trails. The ship trails have maximum photographed widths of 3--6 km. These cloud free bands are an obvious indication of the importance of ship trail cloud dynamics to ship trial development. These cloud dynamical effects are driven both by the initial energy release of the ship's power plant and by latent heat release from the aerosol nucleation process. Since the aerosol nucleation process is the key to understanding ocean aerosol/cloud interactions, it is important to partition these two processes in the ship trial development. We will describe in this paper preliminary numerical modeling efforts to simulate the ship trails using only the energy release from the ship and thereby give an indication of how much more energy input may be required from the nucleation process. 12 refs., 6 figs.

Porch, W.M.; Kao, Chih-yue J.; Kyle, T.G.; Kelley, R.G. Jr.

1988-01-01T23:59:59.000Z

93

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-Print Network [OSTI]

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01T23:59:59.000Z

94

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\\sqrt{s_{_{NN}}} = 62.4$ and 200~GeV  

E-Print Network [OSTI]

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$=200~GeV and 62.4~GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4~GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\\rm part}$. We observe that $v_2$ divided by eccentricity ($\\varepsilon$) monotonically increases with $N_{\\rm part}$ and scales as ${N_{\\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1

A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; H. Al-Bataineh; A. Al-Jamel; J. Alexander; K. Aoki; L. Aphecetche; R. Armendariz; S. H. Aronson; J. Asai; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; G. Baksay; L. Baksay; A. Baldisseri; K. N. Barish; P. D. Barnes; B. Bassalleck; S. Bathe; S. Batsouli; V. Baublis; F. Bauer; A. Bazilevsky; S. Belikov; R. Bennett; Y. Berdnikov; A. A. Bickley; M. T. Bjorndal; J. G. Boissevain; H. Borel; K. Boyle; M. L. Brooks; D. S. Brown; D. Bucher; H. Buesching; V. Bumazhnov; G. Bunce; J. M. Burward-Hoy; S. Butsyk; S. Campbell; J. -S. Chai; B. S. Chang; J. -L. Charvet; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; T. Chujo; P. Chung; A. Churyn; V. Cianciolo; C. R. Cleven; Y. Cobigo; B. A. Cole; M. P. Comets; P. Constantin; M. Csand; T. Csrg?; T. Dahms; K. Das; G. David; M. B. Deaton; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; O. Dietzsch; A. Dion; M. Donadelli; J. L. Drachenberg; O. Drapier; A. Drees; A. K. Dubey; A. Durum; V. Dzhordzhadze; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; A. Enokizono; H. En'yo; B. Espagnon; S. Esumi; K. O. Eyser; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; B. Forestier; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; S. -Y. Fung; T. Fusayasu; S. Gadrat; I. Garishvili; F. Gastineau; M. Germain; A. Glenn; H. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; T. Gunji; H. -. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; M. N. Hagiwara; H. Hamagaki; R. Han; H. Harada; E. P. Hartouni; K. Haruna; M. Harvey; E. Haslum; K. Hasuko; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. M. Heuser; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; M. Holmes; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; D. Hornback; S. Huang; M. G. Hur; T. Ichihara; H. Iinuma; K. Imai; M. Inaba; Y. Inoue; D. Isenhower; L. Isenhower; M. Ishihara; T. Isobe; M. Issah; A. Isupov; B. V. Jacak; J. Jia; J. Jin; O. Jinnouchi; B. M. Johnson; K. S. Joo; D. Jouan; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; M. Kaneta; J. H. Kang; H. Kanou; T. Kawagishi; D. Kawall; A. V. Kazantsev; S. Kelly; A. Khanzadeev; J. Kikuchi; D. H. Kim; D. J. Kim; E. Kim; Y. -S. Kim; E. Kinney; . Kiss; E. Kistenev; A. Kiyomichi; J. Klay; C. Klein-Boesing; L. Kochenda; V. Kochetkov; B. Komkov; M. Konno; D. Kotchetkov; A. Kozlov; A. Krl; A. Kravitz; P. J. Kroon; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; Y. Le Bornec; S. Leckey; D. M. Lee; M. K. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; B. Lenzi; X. Li; X. H. Li; H. Lim; T. Lika; A. Litvinenko; M. X. Liu; B. Love; D. Lynch; C. F. Maguire; Y. I. Makdisi; A. Malakhov; M. D. Malik; V. I. Manko; Y. Mao; L. Maek; H. Masui; F. Matathias; M. C. McCain; M. McCumber; P. L. McGaughey; Y. Miake; P. Mike; K. Miki; T. E. Miller; A. Milov; S. Mioduszewski; G. C. Mishra; M. Mishra; J. T. Mitchell; M. Mitrovski; A. Morreale; D. P. Morrison; J. M. Moss; T. V. Moukhanova; D. Mukhopadhyay; J. Murata; S. Nagamiya; Y. Nagata; J. L. Nagle; M. Naglis; I. Nakagawa; Y. Nakamiya; T. Nakamura; K. Nakano; J. Newby; M. Nguyen; B. E. Norman; R. Nouicer; A. S. Nyanin; J. Nystrand; E. O'Brien; S. X. Oda; C. A. Ogilvie; H. Ohnishi; I. D. Ojha; M. Oka; K. Okada; O. O. Omiwade; A. Oskarsson; I. Otterlund; M. Ouchida; K. Ozawa; R. Pak; D. Pal; A. P. T. Palounek; V. Pantuev; V. Papavassiliou; J. Park; W. J. Park; S. F. Pate; H. Pei; J. -C. Peng; H. Pereira; V. Peresedov; D. Yu. Peressounko; C. Pinkenburg; R. P. Pisani; M. L. Purschke; A. K. Purwar; H. Qu; J. Rak; A. Rakotozafindrabe; I. Ravinovich; K. F. Read; S. Rembeczki; M. Reuter; K. Reygers; V. Riabov; Y. Riabov; G. Roche; A. Romana; M. Rosati; S. S. E. Rosendahl; P. Rosnet; P. Rukoyatkin; V. L. Rykov; S. S. Ryu; B. Sahlmueller; N. Saito; T. Sakaguchi; S. Sakai; H. Sakata; V. Samsonov; H. D. Sato; S. Sato; S. Sawada; J. Seele; R. Seidl; V. Semenov; R. Seto; D. Sharma; T. K. Shea; I. Shein; A. Shevel; T. -A. Shibata; K. Shigaki; M. Shimomura; T. Shohjoh; K. Shoji; A. Sickles; C. L. Silva; D. Silvermyr; C. Silvestre; K. S. Sim; C. P. Singh; V. Singh; S. Skutnik; M. Slune?ka; W. C. Smith; A. Soldatov; R. A. Soltz; W. E. Sondheim; S. P. Sorensen; I. V. Sourikova; F. Staley; P. W. Stankus; E. Stenlund; M. Stepanov; A. Ster; S. P. Stoll; T. Sugitate; C. Suire; J. P. Sullivan; J. Sziklai; T. Tabaru; S. Takagi; E. M. Takagui; A. Taketani; K. H. Tanaka; Y. Tanaka; K. Tanida; M. J. Tannenbaum; A. Taranenko; P. Tarjn; T. L. Thomas; T. Todoroki; M. Togawa; A. Toia; J. Tojo; L. Tomek; H. Torii; R. S. Towell; V-N. Tram; I. Tserruya; Y. Tsuchimoto; S. K. Tuli; H. Tydesj; N. Tyurin; C. Vale; H. Valle

2014-12-02T23:59:59.000Z

95

Low-amplitude magnetic vortex core reversal by non-linear interaction between azimuthal spin waves and the vortex gyromode  

SciTech Connect (OSTI)

We show, by experiments and micromagnetic simulations in vortex structures, that an active dual frequency excitation of both the sub-GHz vortex gyromode and multi-GHz spin waves considerably changes the frequency response of spin wave mediated vortex core reversal. Besides additional minima in the switching threshold, a significant broadband reduction of the switching amplitudes is observed, which can be explained by non-linear interaction between the vortex gyromode and the spin waves. We conclude that the well known frequency spectra of azimuthal spin waves in vortex structures are altered substantially, when the vortex gyromode is actively excited simultaneously.

Sproll, Markus; Noske, Matthias; Kammerer, Matthias; Dieterle, Georg; Weigand, Markus; Stoll, Hermann; Schtz, Gisela [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany)] [Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research), Heisenbergstr. 3, 70569 Stuttgart (Germany); Bauer, Hans; Gangwar, Ajay; Woltersdorf, Georg; Back, Christian H. [Department of Physics, University of Regensburg, Universittsstr. 31, 93040 Regensburg (Germany)] [Department of Physics, University of Regensburg, Universittsstr. 31, 93040 Regensburg (Germany)

2014-01-06T23:59:59.000Z

96

Transition from in-plane to out-of-plane azimuthal enhancement inAu+Au collisions  

SciTech Connect (OSTI)

The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement--E{sub tran} is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle ({Theta}{sub flow}) relative to the beam axis. A systematic decrease of E{sub tran} as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.

Andronic, A.; Stoicea, G.; Petrovici, M.; Simion, V.; Crochet,P.; Alard, J.P.; Averbeck, R.; Barret, V.; Basrak, Z.; Bastid, N.; Bendarag, A.; Berek, G.; Caplar, R.; Devismes, A.; Dupieux, Dzelalija M.; Eskef, M.; Finck, Ch.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Hartmann,O.N.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kim,Y.J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Kress, T.; Kutsche, R.; Lebedev, A.; Lee, K.S.; Leifels, Y.; Manko, V.; Merlitz, H.; Neubert, W.; Pelte, D.; Plettner, C.; Rami, F.; Resdorf, W.; de Schauenberg, B.; Schull, D.; Seres, Z.; Sikora, B.; Sim, K.S.; Siwek-Wilczynska, K.; Smolyankin, V.; Stockmeier, M.R.; Vasiliev, M.; Wagner, P.; Wisniewski,K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A.

2000-08-09T23:59:59.000Z

97

Measurement of the Azimuthal Anisotropy of Neutral Pions in Pb-Pb Collisions at ?sNN=2.76??TeV  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

First measurements of the azimuthal anisotropy of neutral pions produced in Pb-Pb collisions at a center-of-mass energy of ?sNN =2.76??TeV are presented. The amplitudes of the second Fourier component (v2) of the ?0 azimuthal distributions are extracted using an event-plane technique. The values of v2 are studied as a function of the neutral pion transverse momentum (pT) for different classes of collision centrality in the kinematic range 1.6T2(pT) are similar to previously reported ?0 azimuthal anisotropy results from ?sNN=200??GeV Au-Au collisions at RHIC, despite a factor of ?14 increase in the center-of-mass energy. In the momentum range 2.5T<5.0??GeV/c , the neutral pion anisotropies are found to be smaller than those observed by CMS for inclusive charged particles.

Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Er, J.; Fabjan, C.; Friedl, M.; Frhwirth, R.; Ghete, V. M.; Hammer, J.; Hrmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knnz, V.; Krammer, M.; Krtschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; DHondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Lonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Ald Jnior, W. L.; Carvalho, W.; Custdio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Mntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Hrknen, J.; Heikkinen, A.; Karimki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampn, T.; Lassila-Perini, K.; Lehti, S.; Lindn, T.; Luukka, P.; Menp, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Min, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gel, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.

2013-01-01T23:59:59.000Z

98

Camlo Photo is proud to have been chosen as the official photographer for Bishop's University's 185th Convocation.  

E-Print Network [OSTI]

Cam�l�o Photo is proud to have been chosen as the official photographer for Bishop's University's 185th Convocation. Following the ceremony, our photographer will be available for a photo shoot with your teachers, parents and friends. There are no additional charges to have these photos taken

99

Energy Estimation from the Angular Distribution of 20-GeV/c Pion Interactions in Photographic Emulsion  

Science Journals Connector (OSTI)

Interactions of 20-GeV/c negative pions in photographic emulsion have been analyzed in order to compare and test the methods of energy estimation commonly used in high-energy cosmic-ray investigations. The energy of each pion interaction has been determined from the angular distribution of the secondary particles using the median-angle, Castagnoli, Ech, and E(?) methods. The interactions have been divided into various groups according to the number Nh of evaporation prongs and the number ns of secondary particles. The median-angle, Castagnoli, and E(?) methods all overestimate the energy of the group with Nh?5 (ns?4) by factors of 1.5, 1.2, and 1.1, respectively. These same methods underestimate the energy of the group with Nh>5 (ns?4) by factors of 1.3, 2.0, and 2.3, respectively. The Ech method underestimates the energies of the groups with Nh?5 (ns?4) and Nh>5 (ns?4) by factors of 1.3 and 1.5, respectively. These underestimates by the Ech method become 0.9 and 1.0 if the general practice of including the effect of neutral secondaries to the Ech method is adopted. For all the various groupings of Nh and ns considered, the Ech method yields the most consistent and uniform results with the smallest standard deviations than any of the other three methods.

E. R. Goza; S. Krzywdzinski; C. O. Kim; J. N. Park

1970-11-01T23:59:59.000Z

100

Enhancing Photographs with Near Infrared Images Xiaopeng Zhang, Terence Sim, Xiaoping Miao  

E-Print Network [OSTI]

Enhancing Photographs with Near Infrared Images Xiaopeng Zhang, Terence Sim, Xiaoping Miao School of Computing National University of Singapore {zhangxi7,tsim,miaoxiao}@comp.nus.edu.sg Abstract Near Infra-Red, and the dynamic range of RAW format is still quite limited. In contrast, our method uses Near Infrared (NIR) light

Sim, Terence

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Single-spin Azimuthal Asymmetries in Electroproduction of Neutral Pions in Semi-inclusive Deep-inelastic Scattering  

E-Print Network [OSTI]

A single-spin asymmetry in the azimuthal distribution of neutral pions relative to the lepton scattering plane has been measured for the first time in deep-inelastic scattering of positrons off longitudinally polarized protons. The analysing power in the sin(phi) moment of the cross section is 0.019 +/- 0.007(stat.) +/- 0.003(syst.). This result is compared to single-spin asymmetries for charged pion production measured in the same kinematic range. The pi^0 asymmetry is of the same size as the pi^+ asymmetry and shows a similar dependence on the relevant kinematic variables. The asymmetry is described by a phenomenological calculation based on a fragmentation function that represents sensitivity to the transverse polarization of the struck quark.

Airapetian, A; Amarian, M; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Bttcher, Helmut B; Borisov, A; Bouhali, O; Bouwhuis, M; Brack, J; Brauksiepe, S; Brckner, W; Brll, A; Brunn, I; Bulten, H J; Capitani, G P; Chumney, P; Cisbani, E; Ciullo, G; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Dren, M; Ehrenfried, M; Elbakian, G M; Ellinghaus, F; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Grber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Knigsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krauss, B; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lorenzon, W; Maas, A; Makins, N C R; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; Meissner, F; Menden, F; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Raithel, M; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sanjiev, I; Sato, F; Savin, I A; Scarlett, C; Schfer, A; Schill, C; Schmidt, F; Schnell, G; Schler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stsslein, U; Suetsugu, K; Taroian, S P; Terkulov, A R; Teryaev, O V; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G

2000-01-01T23:59:59.000Z

102

Matter Waves and Orbital Quantum Numbers  

E-Print Network [OSTI]

The atom's orbital electron structure in terms of quantum numbers (principal, azimuthal, magnetic and spin) results in space for a maximum of: 2 electrons in the n=1 orbit, 8 electrons in the n=2 orbit, 18 electrons in the n=3 orbit, and so on. Those dispositions are correct, but that is not because of quantum numbers nor angular momentum nor a "Pauli exclusion principle". Matter waves were discovered in the early 20th century from their wavelength, which was predicted by DeBroglie to be, Planck's constant divided by the particle's momentum. But, the failure to obtain a reasonable theory for the matter wave frequency resulted in loss of interest. That problem is resolved in "A Reconsideration of Matter Waves" in which a reinterpretation of Einstein's derivation of relativistic kinetic energy [which produced his famous E = mc^2] leads to a valid matter wave frequency and a new understanding of particle kinetics and the atom's stable orbits. It is analytically shown that the orbital electron arrangement is enforced by the necessity of accommodating the space that each orbiting electron's matter wave occupies.

Roger Ellman

2005-05-18T23:59:59.000Z

103

Changes in Connecticut salt-marsh vegetation as revealed by historical aerial photographs and computer-assisted cartographics  

Science Journals Connector (OSTI)

Procedures are discussed for the interpretation of historical aerial photographs for salt-marsh vegetation mapping, as are techniques for computer-assisted analysis of digital vegetation maps. The mappings ind...

Daniel L. Civco; William C. Kennard; Michael W. Lefor

1986-01-01T23:59:59.000Z

104

Modalities, Sites and Practices of Family Literacy: A Qualitative Interpretation of Family Photographs through Interviews and Observations  

E-Print Network [OSTI]

This qualitative arts-based research study explores family literacy experiences that occur in homes with adults and children through interviews, observations, and the visual analysis of photographs that document such experiences. I employ visual...

Lipsett, Tiffany Marie-Hamlin

2012-10-19T23:59:59.000Z

105

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions  

SciTech Connect (OSTI)

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a {Rho}-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

106

Measurement of long-range pseudorapidity correlations and azimuthal harmonics in sNN=5.02TeV proton-lead collisions with the ATLAS detector  

Science Journals Connector (OSTI)

Measurements of two-particle correlation functions and the first five azimuthal harmonics, v1 to v5, are presented, using 28 nb?1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of sNN=5.02TeV measured with the ATLAS detector at the LHC. Significant long-range ridgelike correlations are observed for pairs with small relative azimuthal angle (|??|2?/3) over the transverse momentum range 0.44 GeV. The v2(pT), v3(pT), and v4(pT) are compared to the vn coefficients in Pb+Pb collisions at sNN=2.76TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average pT of particles produced in the two collision systems.

G. Aad et al. (ATLAS Collaboration)

2014-10-09T23:59:59.000Z

107

Measurement of azimuthal correlations between forward and central jets in proton proton collisions at sqrt(s)=7 TeV  

E-Print Network [OSTI]

The azimuthal correlation between forward and central jets has been measured in proton--proton collisions at the LHC, at the centre-of-mass energy of 7~TeV. The forward jet is reconstructed in the hadronic forward calorimeter, within the pseudorapidity 3.2 $$ 35~GeV. The measurement of the azimuthal angle between the jets is performed for different separations in pseudorapidity, with the largest separation being $\\Delta\\eta$~=~7.5 units. The analysis is carried out for inclusive dijet events and for two subsamples, one where an additional jet is required between the forward and the central jet, and one where the additional jet is vetoed. Comparisons between data and several different Monte Carlo models and tunes show a large sensitivity to the modeling of QCD radiation.

CMS Collaboration

2014-01-01T23:59:59.000Z

108

Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\\sqrt{s_{NN}}= 2.76\\ \\mbox{TeV}$  

SciTech Connect (OSTI)

Measurements from the CMS experiment at the LHC of dihadron correlations for charged particles produced in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV are presented. The results are reported as a function of the particle transverse momenta (pt) and collision centrality over a broad range in relative pseudorapidity [Delta(eta)] and the full range of relative azimuthal angle [Delta(phi)]. The observed two-dimensional correlation structure in Delta(eta) and Delta(phi) is characterised by a narrow peak at (Delta(eta), Delta(phi)) approximately (0, 0) from jet-like correlations and a long-range structure that persists up to at least |Delta(eta)| = 4. An enhancement of the magnitude of the short-range jet peak is observed with increasing centrality, especially for particles of pt around 1-2 GeV/c. The long-range azimuthal dihadron correlations are extensively studied using a Fourier decomposition analysis. The extracted Fourier coefficients are found to factorise into a product of single-particle azimuthal anisotropies up to pt approximately 3-3.5 GeV/c for at least one particle from each pair, except for the second-order harmonics in the most central PbPb events. Various orders of the single-particle azimuthal anisotropy harmonics are extracted for associated particle pt of 1-3 GeV/c, as a function of the trigger particle pt up to 20 GeV/c and over the full centrality range.

Chatrchyan, Serguei; et al.

2012-05-01T23:59:59.000Z

109

Azimuthal anisotropies of reconstructed jets in Pb+Pb collisions at $\\sqrt{s_{_{\\rm NN}}}$ = 2.76 TeV in a multiphase transport model  

E-Print Network [OSTI]

Azimuthal anisotropies of reconstructed jets [$v_{n}^{jet} (n=2, 3)$] have been investigated in Pb+Pb collisions at the center of mass energy $\\sqrt{s_{_{\\rm NN}}}$ = 2.76 TeV within a framework of a multiphase transport (AMPT) model. The $v_{2}^{jet}$ is in good agreement with the recent ATLAS data. However, the $v_{3}^{jet}$ shows a smaller magnitude than $v_{2}^{jet}$, and approaches zero at a larger transverse momentum. It is attributed to the path-length dependence in which the jet energy loss fraction depends on the azimuthal angles with respect to different orders of event planes. The ratio $v_{n}^{jet}/\\varepsilon_{n}$ increases from peripheral to noncentral collisions, and $v_{n}^{jet}$ increases with the initial spatial asymmetry ($\\varepsilon_{n}$) for a given centrality bin. These behaviors indicate that the $v_{n}^{jet}$ is produced by the strong interactions between jet and the partonic medium with different initial geometry shapes. Therefore, azimuthal anisotropies of reconstructed jet are proposed as a good probe to study the initial spatial fluctuations, which are expected to provide constraints on the path-length dependence of jet quenching models.

Mao-Wu Nie; Guo-Liang Ma

2014-07-28T23:59:59.000Z

110

Elements of number theory  

E-Print Network [OSTI]

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

111

Azimuthal reflectivity inversion  

E-Print Network [OSTI]

derivation assumes an isotropic half-space over an anisotropic half-space. This assumption is ..... D., 2010, Principle stress estimation in shale plays using 3D.

mshepher

2012-10-30T23:59:59.000Z

112

Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at sqrt{s_{NN}} = 2.76 TeV  

SciTech Connect (OSTI)

Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in sqrt(s[NN]) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 < pt < 8.0 GeV), collision centrality (0-70%), and pseudorapidity (abs(eta) < 2.0). The data are analyzed using the event plane, multiparticle cumulant, and Lee-Yang zeros methods, which provide different sensitivities to initial-state fluctuations. Taken together with earlier LHC measurements of elliptic flow (n = 2), the results on higher-order harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.

Chatrchyan, Serguei; et al.,

2014-04-01T23:59:59.000Z

113

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

114

ALARA notes, Number 8  

SciTech Connect (OSTI)

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

115

CHROMOSOME NUMBERS IN MAMMALS  

Science Journals Connector (OSTI)

...variables for which the double inte-gral does not exist: R. L. JEFFERY. On the number of elements in a group which have a power in...society will meet at Columbia University, MA ay 2, 1925. W. BENJAMIN FITE Acting Secretary 424 SCIENCE

Theophilus S. Painter

1925-04-17T23:59:59.000Z

116

Baryon Number Violation  

E-Print Network [OSTI]

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

K. S. Babu; E. Kearns; U. Al-Binni; S. Banerjee; D. V. Baxter; Z. Berezhiani; M. Bergevin; S. Bhattacharya; S. Brice; R. Brock; T. W. Burgess; L. Castellanos; S. Chattopadhyay; M-C. Chen; E. Church; C. E. Coppola; D. F. Cowen; R. Cowsik; J. A. Crabtree; H. Davoudiasl; R. Dermisek; A. Dolgov; B. Dutta; G. Dvali; P. Ferguson; P. Fileviez Perez; T. Gabriel; A. Gal; F. Gallmeier; K. S. Ganezer; I. Gogoladze; E. S. Golubeva; V. B. Graves; G. Greene; T. Handler; B. Hartfiel; A. Hawari; L. Heilbronn; J. Hill; D. Jaffe; C. Johnson; C. K. Jung; Y. Kamyshkov; B. Kerbikov; B. Z. Kopeliovich; V. B. Kopeliovich; W. Korsch; T. Lachenmaier; P. Langacker; C-Y. Liu; W. J. Marciano; M. Mocko; R. N. Mohapatra; N. Mokhov; G. Muhrer; P. Mumm; P. Nath; Y. Obayashi; L. Okun; J. C. Pati; R. W. Pattie Jr.; D. G. Phillips II; C. Quigg; J. L. Raaf; S. Raby; E. Ramberg; A. Ray; A. Roy; A. Ruggles; U. Sarkar; A. Saunders; A. Serebrov; Q. Shafi; H. Shimizu; M. Shiozawa; R. Shrock; A. K. Sikdar; W. M. Snow; A. Soha; S. Spanier; G. C. Stavenga; S. Striganov; R. Svoboda; Z. Tang; Z. Tavartkiladze; L. Townsend; S. Tulin; A. Vainshtein; R. Van Kooten; C. E. M. Wagner; Z. Wang; B. Wehring; R. J. Wilson; M. Wise; M. Yokoyama; A. R. Young

2013-11-21T23:59:59.000Z

117

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

118

Simulations of reflected sun beam traces over a target plane for an azimuthelevation tracking heliostat with fixed geometric error sources  

Science Journals Connector (OSTI)

Abstract For a heliostat with geometric errors, the reflected central solar ray from the mirror surface center forms a curved error trace on the target plane during the day rather than staying fixed on one target point. A general azimuthelevation tracking angle formula has been developed for a heliostat with a mirror-pivot offset and other typical geometric errors. This tracking angle formula is re-rewritten here as a series of easily solved expressions. This azimuthelevation tracking angle formula is then used in a new complete geometric model of the sun-beam tracking errors for an azimuthelevation tracking heliostat to simulate the sun beam tracking error trace on the target plane for a heliostat with fixed geometric errors. Here, the analysis is for a point sun and a point heliostat (or the heliostat considered as a small optical flat). The mirror surface center is defined as the orthogonal projection of the heliostat pivot on the mirror surface plane. The reflected sun-beam centre in the target plane is defined as the intersection of the mirror-surface-centre reflected central solar ray with the target plane. Due to a position tracking error in the target plane depending on the position and the orientation of the specific target plane, the position tracking error is further converted to the angular tracking error in the reflection direction to facilitate evaluation of the heliostat tracking performance. Simulations for the artificial #78 heliostat in the Beijing solar tower system on June 21st are shown to illustrate this heliostat tracking error model. This heliostat tracking error model can be used to reveal the effect of various geometrical errors in pedestal tilt etc. on the location of the beam at the target, and thus is useful in setting limits on the various geometrical errors. Essentially this paper allows one to estimate the offset of the reflected solar beam centre due to specific geometrical tracking errors, once the beam centre is computed by some other means. It also allows one to determine a limit on each error or set of errors which are allowable for a given purpose.

Minghuan Guo; Zhifeng Wang; Feihu Sun

2013-01-01T23:59:59.000Z

119

Multiplicity dependence of azimuthal distributions for [sup 36]Ar+[sup 197]Au collisions at [ital E]/[ital A]=35 MeV  

SciTech Connect (OSTI)

Collisions between [sup 36]Ar projectile and [sup 197]Au target nuclei at [ital E]/[ital A]=35 MeV have been studied with the Michigan State University Miniball, a 4[pi] phoswich array with a low detection threshold. Azimuthal distributions of charged particles with respect to the reaction plane are determined via the transverse-momentum-tensor method. Dependence on the kinetic energy of the emitted particles, the collision geometry, and the associated charged particle multiplicity is investigated. Corrections for the intrinsic resolution of the experimental reaction plane determination are applied. Scaling implied by the coalescence model is explored and the data are compared to the results of microscopic calculations within the Boltzmann-Uehling-Uhlenbeck theory.

Tsang, M.B.; Bowman, D.R.; Carlin, N.; Danielewicz, P.; Gelbke, C.K.; Gong, W.G.; Kim, Y.D.; Lynch, W.G.; Phair, L.; de Souza, R.T.; Zhu, F. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States))

1993-06-01T23:59:59.000Z

120

Measurement of the Azimuthal Correlation between the most Forward Jet and the Scattered Positron in Deep-Inelastic Scattering at HERA  

E-Print Network [OSTI]

Deep-inelastic positron-proton scattering events at low photon virtuality Q^2 with a forward jet, produced at small angles with respect to the proton beam, are measured with the H1 detector at HERA. A subsample of events with an additional jet in the central region is also studied. For both samples differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference, Delta phi, between the forward jet and the scattered positron. The sensitivity to QCD evolution mechanisms is tested by comparing the data to predictions of Monte Carlo generators based on different evolution approaches as well as to next-to-leading order calculations.

Aaron, F D; Andreev, V; Backovic, S; Baghdasaryan, A; Baghdasaryan, S; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Belov, P; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Britzger, D; Bruncko, D; Bunyatyan, A; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Ceccopieri, F; Cerny, K; Cerny, V; Chekelian, V; Contreras, J G; Coughlan, J A; Cvach, J; Dainton, J B; Daum, K; Delcourt, B; Delvax, J; De Wolf, E A; Diaconu, C; Dobre, M; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Egli, S; Eliseev, A; Elsen, E; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Grebenyuk, A; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Huber, F; Jacquet, M; Janssen, X; Jonsson, L; Jung, H; Kapichine, M; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Kogler, R; Kostka, P; Kraemer, M; Kretzschmar, J; Kruger, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Lendermann, V; Levonian, S; Lipka, K; List, B; List, J; Lopez-Fernandez, R; Lubimov, V; Makankine, A; Malinovski, E; Marage, P; Martyn, H U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mudrinic, M; Muller, K; Naumann, Th; Newman, P R; Niebuhr, C; Nikitin, D; Nowak, G; Nowak, K; Olsson, J E; Ozerov, D; Pahl, P; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pirumov, H; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Radescu, V; Raicevic, N; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, I; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sykora, T; Thompson, P D; Tran, T H; Traynor, D; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Valkarova, A; Vallee, C; Van Mechelen, P; Vazdik, Y; Wegener, D; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zohrabyan, H; Zomer, F

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ELECTRICAL DISTRICT NUMBER EIGHT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

122

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

123

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

124

Colorado Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

125

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

126

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

127

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

128

Connecticut Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

129

Connecticut Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

130

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

131

Construction Project Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

132

KPA Activity Number  

Broader source: Energy.gov (indexed) [DOE]

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

133

On neutron numbers and atomic masses  

Science Journals Connector (OSTI)

On neutron numbers and atomic masses ... Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers. ...

R. Heyrovsk

1992-01-01T23:59:59.000Z

134

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at sqrt sNN = 9.2 GeV  

SciTech Connect (OSTI)

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at {radical}s{sub NN} = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar {radical}s{sub NN} from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, , and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for {radical}s{sub NN} = 200 GeV, are suitable for the proposed QCD critical point search and exploration of the QCD phase diagram at RHIC.

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

135

Azimuthal correlations between charged hadrons and direct photons at high-p$_{t}$ in $p+p$ and $Au+Au$ collisions at $\\sqrt{s_{NN}}$ = 200 GeV  

E-Print Network [OSTI]

Recent results at STAR for direct $\\gamma$-charged hadron azimuthal correlations in heavy-ion collisions are presented. These correlations are used to study the color charge density of the medium through the medium-induced modification of high-p$_T$ parton fragmentation. Azimuthal correlations of direct photons at high transverse energy 8 $<$ E$_T$ $<$ 16 GeV with away-side charged hadrons of transverse momentum 3 $<$ p$_T$ $<$ 6 GeV/c have been measured over a broad range of centrality for $Au+Au$ collisions and $p+p$ collisions at $\\sqrt{s_{NN}}$ = 200 GeV in the STAR experiment. The per-trigger away-side yield of direct $\\gamma$ is smaller than from $\\pi^{0}$ triggers in the same centrality class.

A. M. Hamed

2008-11-11T23:59:59.000Z

136

Transcendental L2 -Betti numbers  

E-Print Network [OSTI]

Transcendental L2 -Betti numbers Atiyah's question Thomas Schick G¨ottingen OA Chennai 2010 Thomas Schick (G¨ottingen) Transcendental L2 -Betti numbers Atiyah's question OA Chennai 2010 1 / 24 #12 = ~M/) with fundamental domain F. L2-Betti numbers:= normalized dimension( space of L2-harmonic forms

Sunder, V S

137

Data Compression with Prime Numbers  

E-Print Network [OSTI]

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

138

Number  

Broader source: Energy.gov (indexed) [DOE]

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

139

NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SWMU 161 C-743 Trainina Trailer Comolex- Soil Backfill UNIT NAME: . REGULATORY STATUS: AOC LOCATION: Southwest of C-743 building APPROXIMATE DIMENSIONS: 200 feet wide by 200 feet...

140

Compendium of Experimental Cetane Numbers  

SciTech Connect (OSTI)

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Aerial Photo: P. velutina cover derived from June 1996 color-infrared digital ortho-photographs and classified with Maximum Likelihood supervised classification algorithm  

E-Print Network [OSTI]

·· Aerial Photo: P. velutina cover derived from June 1996 color-infrared digital ortho- photographs relationships were then used in conjunction with field surveys and aerial photos to ascertain the extent these to the stand-level using standard vegetation sampling protocols was problematic. · The GIS / aerial photo

Archer, Steven R.

142

Photograph from Ruth Glass Obituary in The Times 9th March 1990. Ruth Adele Glass [ne Lazarus] (1912 1990), sociologist, was born on 30 June 1912 in Berlin,  

E-Print Network [OSTI]

RUTH GLASS Photograph from Ruth Glass Obituary in The Times 9th March 1990. Ruth Adele Glass [née, published in 1939, established her reputation as a social scientist. From 1940 until 1942 Ruth Glass College London, which remained her academic base for the rest of her life. In 1951 Ruth Glass became

143

RNG: A Practitioner's Overview Random Number Generation  

E-Print Network [OSTI]

RNG: A Practitioner's Overview Random Number Generation A Practitioner's Overview Prof. Michael and Monte Carlo Methods Pseudorandom number generation Types of pseudorandom numbers Properties of these pseudorandom numbers Parallelization of pseudorandom number generators New directions for SPRNG Quasirandom

Mascagni, Michael

144

Motion at low Reynolds number  

E-Print Network [OSTI]

The work described in this thesis centers on inertialess motion at low Reynolds numbers at the crossroad between biofluids and microfluids. Here we address questions regarding locomotion of micro-swimmers, transport of ...

Tam, Daniel See Wai, 1980-

2008-01-01T23:59:59.000Z

145

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

2000-12-05T23:59:59.000Z

146

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

2005-01-27T23:59:59.000Z

147

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

148

Texas Rice, Volume V, Number 3  

E-Print Network [OSTI]

of Agriculture. There are old photographs of Billies and Jacks ancestors around the house, kitchenware and tools that date back to the 1800s. Jack takes pride in their family heritage. The man Jack called Grandpa Wendt came to America, like many other rice... Coun- cil for the Blind for his work on vocational rehabilita- tion programs. In 1998 he was bestowed the title of Honorary Member of LULAC (League of United Latin American Citizens) and awarded the Fiestas Patrias Mexicano de Corazon award for his...

149

Document ID Number: RL-721  

Broader source: Energy.gov (indexed) [DOE]

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

150

On rings of structural numbers  

E-Print Network [OSTI]

structural numbers over the set X, and let B(X) have the operations defined above with equality also as before. Theorem I. l. If X is any set, then B(X) is a commutative ring with identity. Proof. The structural number 0 is the additive identity element... with identity g. Definition I. 7. If A, B e S(X) then A'B = (P U q ( p e A, q e B, p Il q = &f and p U q can be formed in an odd number of ways). ~E1 t. 4. L t A = (( . b), (bj. 7 )) 4 B = ((b, c), (b), (a)) be in S(X) for some X. Then AD B = {{b, a), {a...

Powell, Wayne Bruce

2012-06-07T23:59:59.000Z

151

Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02 TeV proton-lead collisions with the ATLAS detector  

E-Print Network [OSTI]

Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range ``ridge-like'' correlations are observed for pairs with small relative azimuthal angle ($|\\Delta\\phi|2\\pi/3$) over the transverse momentum range $0.44$ GeV. The $v_2(p_{\\rm T})$, $v_3(p_{\\rm T})$ and $v_4(p_{\\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\\sqrt{s_{\\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\\rm T}$ of particles produced in the two collision systems.

ATLAS Collaboration

2014-09-05T23:59:59.000Z

152

Response: Issue Numbers and Librarianship  

Science Journals Connector (OSTI)

...some time. Put back the issue number. ALISON BAKER Librawy Jackson Laboratot), Bar...passage in which he supposes some unusually wise ape-like animal to have first thought...the approving nods and kindly grunts ofmy wise and most respected chief. And now I feel...

DANIEL E. KOSHLAND; JR.

1986-05-23T23:59:59.000Z

153

Computing Betti Numbers via Combinatorial Laplacians  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians method to compute Betti numbers of sim- plicial complexes. This has a number of advantages over are the Betti numbers, the i-th Betti number, bi= bi(X), being the rank of Hi(X). The Betti numbers often have

Friedman, Joel

154

RIN Number 1904-AB68  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Procurement of Energy Efficient Products Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209

155

RIN Number 1904-AB68  

Broader source: Energy.gov (indexed) [DOE]

RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752

156

RL·721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

Document ID Number: Document ID Number: REV 3 NEPA REVIEW SCREENING FORM DOE/CX-00045 . J.proj(;l~t Titl~: - - - -- - - - - - - - - - - - - - - - - - -- --------- ------_. . _ - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - LIMITED FIREBREAK MAINTENANCE ON THE HANFORD SITE DURING CALENDAR YEAR 2012 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions· e.g., acres displaced/disturbed, excavation length/depth, etc.): The Department of Energy (DOE) proposes to perform firebreak maintenance in selected areas of the Hanford Site during calendar year 2012 with limited use of physical, chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously disturbed

157

cession Numb Main Entry Title Description Restrictions Material type Extent in container Location Slides Map Case M/A Date MM/DD/YY Accession date Notes Folder List 81-002 Froman, Lenore Photographs, 1959  

E-Print Network [OSTI]

Slides Map Case M/A Date MM/DD/YY Accession date Notes Folder List 81-002 Froman, Lenore Photographs, 1959 Five color 35mm slides depicting the departure of R/V Stranger on Naga Expedition, 15 June 1959. Photographs 5 items Slides 1A 1A 7/21/1981 1981 Not Needed 81-003 SIO Ship Operations and Marine Technical

Russell, Lynn

158

Searching for Comets on the World Wide Web: The Orbit of 17P/Holmes from the Behavior of Photographers  

Science Journals Connector (OSTI)

We performed an image search for "Comet Holmes," using the Yahoo! Web search engine, on 2010 April 1. Thousands of images were returned. We astrometrically calibratedand therefore vettedthe images using the Astrometry.net system. The calibrated image pointings form a set of data points to which we can fit a test-particle orbit in the solar system, marginalizing over image dates and detecting outliers. The approach is Bayesian and the model is, in essence, a model of how comet astrophotographers point their instruments. In this work, we do not measure the position of the comet within each image, but rather use the celestial position of the whole image to infer the orbit. We find very strong probabilistic constraints on the orbit, although slightly off the Jet Propulsion Lab ephemeris, probably due to limitations of our model. Hyperparameters of the model constrain the reliability of date meta-data and where in the image astrophotographers place the comet; we find that ~70% of the meta-data are correct and that the comet typically appears in the central third of the image footprint. This project demonstrates that discoveries and measurements can be made using data of extreme heterogeneity and unknown provenance. As the size and diversity of astronomical data sets continues to grow, approaches like ours will become more essential. This project also demonstrates that the Web is an enormous repository of astronomical information, and that if an object has been given a name and photographed thousands of times by observers who post their images on the Web, we can (re-)discover it and infer its dynamical properties.

Dustin Lang; David W. Hogg

2012-01-01T23:59:59.000Z

159

Computing Betti Numbers via Combinatorial Joel Friedman  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians Joel Friedman Department of Mathematics 1984 Abstract We use the Laplacian and power method to compute Betti numbers of sim­ plicial complexes. This has are the Betti numbers, the i­th Betti number, b i = b i (X), being the rank of H i (X). The Betti numbers often

Friedman, Joel

160

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

162

RL-721 Document ID Number:  

Broader source: Energy.gov (indexed) [DOE]

4 4 NEPA REVIEW SCREENING FORM DOE/CX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The proposed action includes design, procurement, and construction of a pre-engineered metal building for transformer management; including inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered electrical utilities lay-down yard west of the 2101-M Building in 200 East Area of the Hanford Site. The building footprint

163

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

164

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

165

Mathematics from a Photograph  

Science Journals Connector (OSTI)

......his BSc and Diploma in Education from the University...study of the higher education system in Australia...taught mathematics and science in three Australian...to courses in Higher Education which require mathematics...material a display/poster area will be made available......

P. GALBRAITH

1987-01-01T23:59:59.000Z

166

The first photographic eclipse?  

Science Journals Connector (OSTI)

......outer roof which was kept wet to lower the temperature...starting a fire in nearby corn which threatened the whole...would have threshed their corn with hand flails. The...were sensitized by the wet collodion process; they...version of an industrial milling machine, a table controlled......

Peter D Hingley

2001-02-01T23:59:59.000Z

167

Verification Challenges at Low Numbers  

SciTech Connect (OSTI)

Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of Going to Zero. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100s of warheads, and then 10s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100s, 10s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

2013-06-01T23:59:59.000Z

168

Betti numbers, Morse theory, and homology Perturbations  

E-Print Network [OSTI]

Betti numbers, Morse theory, and homology Perturbations Cascades Multicomplexes Morse and Morse Hurtubise Morse and Morse-Bott Homology #12;Betti numbers, Morse theory, and homology Perturbations Cascades Multicomplexes Betti numbers, Morse theory, and homology Betti numbers Morse inequalities Transversality Morse

Hurtubise, David E.

169

h-analogue of Fibonacci Numbers  

E-Print Network [OSTI]

In this paper, we introduce the h-analogue of Fibonacci numbers for non-commutative h-plane. For h h'= 1 and h = 0, these are just the usual Fibonacci numbers as it should be. We also derive a collection of identities for these numbers. Furthermore, h-Binet's formula for the h-Fibonacci numbers is found and the generating function that generates these numbers is obtained.

H. B. Benaoum

2009-09-30T23:59:59.000Z

170

Department for Analysis and Computational Number Theory Additive functions and number systems  

E-Print Network [OSTI]

Department for Analysis and Computational Number Theory Additive functions and number systems systems April 7, 2010 1 / 35 #12;Department for Analysis and Computational Number Theory Outline Number #12;Department for Analysis and Computational Number Theory Examples for number systems b Z, b -2

171

Prime number generation and factor elimination  

E-Print Network [OSTI]

We have presented a multivariate polynomial function termed as factor elimination function,by which, we can generate prime numbers. This function's mapping behavior can explain the irregularities in the occurrence of prime numbers on the number line. Generally the different categories of prime numbers found till date, satisfy the form of this function. We present some absolute and probabilistic conditions for the primality of the number generated by this method. This function is capable of leading to highly efficient algorithms for generating prime numbers.

Vineet Kumar

2014-10-06T23:59:59.000Z

172

,"New York Number of Natural Gas Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Residential" "Sourcekey","NA1501SNY8","NA1508SNY8","NA1509SNY8" "Date","New York Natural Gas Number of Residential Consumers (Count)","New York Natural Gas Number...

173

Analysis of Random Number Generators Parijat Naik  

E-Print Network [OSTI]

1 Analysis of Random Number Generators Parijat Naik Department of Computer Science Oregon State generation used in practice and a comparison of their efficiency. The paper focuses on the techniques used Random number generators are used for generating an array of numbers that have a random distribution

174

Growth of Betti Numbers Bryan Clair  

E-Print Network [OSTI]

Growth of Betti Numbers Bryan Clair _____________________________________________________________________________ Introduction Let X = fX= be a finite simplicial complex. We study the growth rate of the Betti numbers of X. It is easy to see that the sequence of Betti numbers {bq(Xi)} can grow at most linearly

Clair, Bryan

175

Computing Betti Numbers via Combinatorial Joel Friedman  

E-Print Network [OSTI]

Computing Betti Numbers via Combinatorial Laplacians Joel Friedman Department of Mathematics 1984 Abstract We use the Laplacian and power method to compute Betti numbers of sim- plicial complexes. This has, involving higher dimensional spaces (see [Cha95]). 1 #12;A part of the homology groups are the Betti numbers

Friedman, Joel

176

Betti Numbers of Graph Sean Jacques  

E-Print Network [OSTI]

ii Betti Numbers of Graph Ideals Sean Jacques Thesis submitted to the University of She but there are formulae for finding the Betti numbers (part of the information which comprises a minimal free resolution especially explicit or useful descriptions of the Betti numbers. However we restrict our attention to those

Katzman, Moty

177

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

178

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

179

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

180

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

182

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

183

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

184

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

185

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

186

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

187

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

188

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

189

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

190

Comparing the accuracy of machine classified landsat imagery to manually delineated aerial photographs for county appraisal district use  

E-Print Network [OSTI]

MATERIALS AND METHODS Study Site. Imagery. Classification of the Imagery. Classification of the Chester Quadrangle Map Area Classification of the Boggy Lake Quadrangle Map Area Sample Selection Sample Size and Distribution. Data Verification. 7 7..., Hame (1984) states that if a pixel straddles the border between two sites and the border is sharp, the pixel may get its value from both sites and therefore may be classified as its own type. With finer resolution, a decrease in the number of mixed...

Falter, Matthew Palmer

2012-06-07T23:59:59.000Z

191

Computing the Betti Numbers of Arrangements  

E-Print Network [OSTI]

1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College complexity of a set S are the Betti numbers. i(S). · i(S) is the rank of the Hi (S) (the i-th co. · An important measure of the topological complexity of a set S are the Betti numbers. i(S). · i(S) is the rank

Basu, Saugata

192

BETTI NUMBERS OF HYPERSURFACE COMPLEMENTS LAURENTIU MAXIM  

E-Print Network [OSTI]

L2 ­BETTI NUMBERS OF HYPERSURFACE COMPLEMENTS LAURENTIU MAXIM Abstract. In [DJL07] it was shown that if A is an affine hyperplane arrange- ment in Cn, then at most one of the L2­Betti numbers b (2) i (Cn \\ A, id of [FLM09, LM06] about L2­Betti numbers of plane curve complements. 1. Introduction Let M be any

Maxim, Laurentiu-George

193

REFINED BOUNDS ON THE NUMBER OF CONNECTED ...  

E-Print Network [OSTI]

Apr 6, 2011 ... Smith inequality (see Theorem 2.5) a bound on the number of semi- ... then using Smith inequality, have been used before in several different...

2011-04-06T23:59:59.000Z

194

Battling bird flu by the numbers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging...

195

Company number 5857955 Wellcome Trust Finance plc  

E-Print Network [OSTI]

Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2013 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report For the year ended 30 September 2013 Report of the Directors

Rambaut, Andrew

196

Company number 5857955 Wellcome Trust Finance plc  

E-Print Network [OSTI]

Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2012 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report for the year ended 30 September 2012 Report of the Directors

Rambaut, Andrew

197

GENERAL CHEMISTRY TEXTBOOK LIST ISBN Number  

E-Print Network [OSTI]

FALL 2013 GENERAL CHEMISTRY TEXTBOOK LIST Course Number ISBN Number Title of Text and/or Material Edition Author Publishers 11100 978-1-2591-9687-4 Introduction to Chemistry, 3rd ed. (packaged w 978-1-2591-6192-6 Chemistry, The Molecular Nature of Matter and Change, 6e (packaged w

Jiang, Wen

198

High speed optical quantum random number generation  

E-Print Network [OSTI]

High speed optical quantum random number generation Martin F¨urst1,2,, Henning Weier1,2, Sebastian, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the ran- domness directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant

Weinfurter, Harald

199

Compare Activities by Number of Computers  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Computers Number of Computers Compare Activities by ... Number of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type with more than one computer per employee. Religious worship and food sales buildings had the fewest computers per square foot. Percent of All Computers by Building Type Figure showing percent of all computers by building type. If you need assistance viewing this page, please call 202-586-8800. Computer Data by Building Type Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Computers (thousand) Computers per Million Square Feet Computers per Thousand Employees All Buildings 4,657

200

Stockpile Stewardship Quarterly Volume 1, Number 4  

National Nuclear Security Administration (NNSA)

1, Number 4 * February 2012 1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication Highlights 9 2011 NNSA Stewardship Science Graduate Fellowship Class S tockpile Stewardship Science is not for wimps, and

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Azimuthal p analysis in anisotropic media  

Science Journals Connector (OSTI)

......horizontal layering of a shale formation. Periodic...medium, five basic anisotropic parameters are required...using several different anisotropic models. Synthetic Examples...results of brine saturated shale samples and another...Schoenberg Helbig (1997). Anisotropic and isotropic parameters......

Samik Sil; Mrinal K. Sen

2008-11-01T23:59:59.000Z

202

Climate Zone Number 1 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 1 Climate Zone Number 1 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC Dry(1B) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC . The following places are categorized as class 1 climate zones: Broward County, Florida Hawaii County, Hawaii Honolulu County, Hawaii Kalawao County, Hawaii Kauai County, Hawaii Maui County, Hawaii Miami-Dade County, Florida Monroe County, Florida Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_Number_1&oldid=21604" Category: ASHRAE Climate Zones What links here Related changes Special pages Printable version Permanent link Browse properties

203

What's Behind the Numbers? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

What's Behind the Numbers? What's Behind the Numbers? What's Behind the Numbers? June 24, 2011 - 3:39pm Addthis What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the price of gasoline at the pump. But what is behind the price of crude oil? This week the U.S. Energy Information Administration (EIA) launched a new web-based assessment highlighting key factors that can affect crude oil

204

REFINED BOUNDS ON THE NUMBER OF CONNECTED ...  

E-Print Network [OSTI]

Nov 6, 2011 ... closure imply using the well-known Smith inequality (see Theorem 2.4) a bound on the number of semi-algebraically connected components of...

2011-11-06T23:59:59.000Z

205

Analytical number-projected BCS nuclear model  

Science Journals Connector (OSTI)

Transforming both the overlap energy kernel and overlap functionals into polynomial forms, the well-known integral of the number-projected BCS theory is performed analytically. We then obtain the projected ground state BCS energy in the closed form.

Mauro Kyotoku

1988-05-01T23:59:59.000Z

206

Regulation of Numbers of Intracellular Algae  

Science Journals Connector (OSTI)

...Regulation of Numbers of Intracellular Algae L. Muscatine R. R. Pool Members of three classes of unicellular algae have exploited an intracellular habitat...is poorly understood. Steady-state algae:host cell ratios might be achieved by...

1979-01-01T23:59:59.000Z

207

Elastic tail propulsion at low Reynolds number  

E-Print Network [OSTI]

A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

Yu, Tony S. (Tony Sheung)

2007-01-01T23:59:59.000Z

208

Utility Priority Number Evaluation for FMEA  

Science Journals Connector (OSTI)

Traditionally, decisions on how to improve an operation are based on risk priority number (RPN) in the failure mode and effects analysis (FMEA). Many scholars questioned the RPN method ... make a decision on impr...

Jih Kuang Chen

2007-10-01T23:59:59.000Z

209

Baryon number violation in particle decays  

Science Journals Connector (OSTI)

It has been argued in the past that in baryogenesis via out-of-equilibrium decays one must consider loop diagrams that contain more than one baryon number violating coupling. In this paper we argue that the requirement with regard to baryon number violating couplings in loop diagrams is that the interaction between the intermediate on-shell particles and the final particles should correspond to a net change in baryon number and that this can be satisfied even if the loop diagram contains only one baryon number violating coupling. Put simply, we show that to create a baryon asymmetry there should be net B violation to the right of the cut in the loop diagram. This is of relevance to some works involving the out-of-equilibrium decay scenario.

Rathin Adhikari and Raghavan Rangarajan

2002-03-25T23:59:59.000Z

210

Implementation of a Distributed Pseudorandom Number Generator  

Science Journals Connector (OSTI)

In parallel Monte Carlo simulations, it is highly desirable to have a system of pseudo-random number generators that has good statistical properties and allows ... processes. In this work, we discuss a distributed

Jian Chen; Paula Whitlock

1995-01-01T23:59:59.000Z

211

Entropy of pseudo-random-number generators  

Science Journals Connector (OSTI)

Since the work of Ferrenberg et al. [Phys. Rev. Lett. 69, 3382 (1992)] some pseudo-random-number generators are known to yield wrong results in cluster Monte Carlo simulations. In this contribution the fundamental mechanism behind this failure is discussed. Almost all random-number generators calculate a new pseudo-random-number xi from preceding values, xi=f(xi?1,xi?2,,xi?q). Failure of these generators in cluster Monte Carlo simulations and related experiments can be attributed to the low entropy of the production rule f() conditioned on the statistics of the input values xi?1,,xi?q. Being a measure only of the arithmetic operations in the generator rule, the conditional entropy is independent of the lag in the recurrence or the period of the sequence. In that sense it measures a more profound quality of a random-number generator than empirical tests with their limited horizon.

Stephan Mertens and Heiko Bauke

2004-05-21T23:59:59.000Z

212

Algorithms for Algebraic Number Theory II  

Science Journals Connector (OSTI)

We now leave the realm of quadratic fields where the main computational tasks of algebraic number theory mentioned at the end of Chapter 4 were relatively simple (although as we have seen many conjectures rema...

Henri Cohen

1993-01-01T23:59:59.000Z

213

Bridge Numbers of Torus Knots Jennifer Schultens  

E-Print Network [OSTI]

contained proof of the following result of H. Schubert: If K is a (p, q)-torus knot, then the bridge number below all maxima of h|K, then we say that K is in bridge position with respect to h. The bridge number of whether or not we require K to be in bridge position. Indeed, if h|K has n maxima, then the maxima of h

Schultens, Jennifer

214

Chemical kinetics of cetane number improving agents  

SciTech Connect (OSTI)

The increasing demand for diesel fuels has resulted in the use of greater percentage of cracked distillates having poor ignition properties. The ignition properties of diesel fuels can be rated in terms of their cetane number and diesel fuels having low cetane number may have poor ignition properties such as diesel knock, difficulties to start engines in the cold weather and so on. Such diesel fuels need cetane number improving agents. In the 1940s and 1950s alkyl nitrates, alkyl nitrites and organic peroxides were found to be effective cetane number improving additives. Our recent study suggests that free radicals produced from thermal decomposition just before ignition should have an important role to improve their ignition properties. However no studies on the reaction mechanism for improving effect of these additives have been attempted because of complex nature of spontaneous ignition reaction of hydrocarbons. In order to clarify the reaction mechanism for improving effects of cetane number improving agents. We here have attempted to simulate the spontaneous ignition of n-butane as a model compound in the presence of alkyl nitrites as cetane number improving agents.

Hashimoto, K.; Akutsu, Y.; Arai, M.; Tamura, M. [Univ. of Tokyo (Japan)

1996-12-31T23:59:59.000Z

215

aeroacoustics volume 9 number 3 2010 pages 253272 253 Aeroacoustic investigation of a single  

E-Print Network [OSTI]

and unsteady pressure measurements on the airfoil and the casing plate as well as far field pressure in fan-OGV secondary flows, not to mention compressor, turbine, and combustion noise that are believed important but not acoustically since the azimuthal velocity is much lower at the hub; stator self noise

Paris-Sud XI, Université de

216

Climate Zone Number 7 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Number 7 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 7 is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7 climate zones: Aitkin County, Minnesota Aleutians East Borough, Alaska Aleutians West Census Area, Alaska Anchorage Borough, Alaska Aroostook County, Maine Ashland County, Wisconsin Baraga County, Michigan Barnes County, North Dakota Bayfield County, Wisconsin Becker County, Minnesota Beltrami County, Minnesota Benson County, North Dakota Bottineau County, North Dakota Bristol Bay Borough, Alaska Burke County, North Dakota Burnett County, Wisconsin Carlton County, Minnesota Cass County, Minnesota

217

SPRNG Parallel Random Number Generators at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPRNG SPRNG SPRNG Description The SPRNG libraries of generators produce good quality random numbers, and are also fast. They have been subjected to some of the largest random number tests, with around 10^13 RNs per test. SPRNG provides both FORTRAN and C (also C++) interfaces for the use of the parallel random number generators. Access SPRNG v2.0 is available on Carver (gcc, intel and pgi) and Cray systems (pgi and cce). Use the module utility to load the software. module load sprng Using SPRNG On Cray systems: ftn sprng_test.F $SPRNG -lsprng On Carver: mpif90 sprng_test.F $SPRNG -lsprng Documentation On Carver there are various documents in $SPRNG/DOCS and various examples in $SPRNG/EXAMPLES. See the SPRNG web site at Florida State University for complete details. For help using SPRNG at NERSC contact the

218

Microsoft Word - Document Numbering Plan.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

document Number Plan 11/3/2005 document Number Plan 11/3/2005 All documents numbers start with a 9 9 _ _ ___ | | | | | Document per chart | Generation (i.e. PSS has 1,2&3, FEEPS has 1&2) Use 0 when the document doesn't apply to any of these System 0- Non system Specific (group wide) 1- PSS 2- Reserved for PSS expansion 3- FEEPS 4- Reserved for FEEPS expansion 5- BLEPS 6- Reserved for BLEPS expansion 7- DIW 8- Reserved for future use 9- Reserved for future use 000-099 Requirements 000 - Statement of work For x.1.4.1.4 - Design Statement of Work For Beamlines - Installation Statement of Work 001-009 Reserved for Statement of Works for upgrade, revisions, add-ons, etc. 010 - Cost Estimate 011-019 Additional Cost Estimates

219

Notices OMB Control Number: 1850-0803.  

Broader source: Energy.gov (indexed) [DOE]

870 Federal Register 870 Federal Register / Vol. 78, No. 140 / Monday, July 22, 2013 / Notices OMB Control Number: 1850-0803. Type of Review: Extension without change of an existing collection of information. Respondents/Affected Public: Individuals or households. Total Estimated Number of Annual Responses: 135,000. Total Estimated Number of Annual Burden Hours: 27,000. Abstract: This is a request for a 3-year renewal of the generic clearance to allow the National Center for Education Statistics (NCES) to continue to develop, test, and improve its survey and assessment instruments and methodologies. The procedures utilized to this effect include but are not limited to experiments with levels of incentives for various types of survey operations, focus groups, cognitive laboratory

220

Number Counts and Dynamical Vacuum Cosmologies  

E-Print Network [OSTI]

We study non-linear structure formation in an interacting model of the dark sector of the Universe in which the dark energy density decays linearly with the Hubble parameter, $\\rho_{\\Lambda} \\propto H$, leading to a constant-rate creation of cold dark matter. We derive all relevant expressions to calculate the mass function and the cluster number density using the Sheth-Torman formalism and show that the effect of the interaction process is to increase the number of bound structures of large masses ($M \\gtrsim 10^{14} M_{\\odot}h^{-1}$) when compared to the standard $\\Lambda$CDM model. Since these models are not reducible to each other, this number counts signature can in principle be tested in future surveys.

N. Chandrachani Devi; H. A. Borges; S. Carneiro; J. S. Alcaniz

2014-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Number Counts and Dynamical Vacuum Cosmologies  

E-Print Network [OSTI]

We study non-linear structure formation in an interacting model of the dark sector of the Universe in which the dark energy density decays linearly with the Hubble parameter, $\\rho_{\\Lambda} \\propto H$, leading to a constant-rate creation of cold dark matter. We derive all relevant expressions to calculate the mass function and the cluster number density using the Sheth-Torman formalism and show that the effect of the interaction process is to increase the number of bound structures of large masses ($M \\gtrsim 10^{14} M_{\\odot}h^{-1}$) when compared to the standard $\\Lambda$CDM model. Since these models are not reducible to each other, this number counts signature can in principle be tested in future surveys.

Devi, N Chandrachani; Carneiro, S; Alcaniz, J S

2014-01-01T23:59:59.000Z

222

Climate Zone Number 3 | Open Energy Information  

Open Energy Info (EERE)

Number 3 Number 3 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 3 is defined as Warm - Humid(3A) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Dry(3B) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Warm - Marine(3C) with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3 climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alameda County, California Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina

223

Probing lepton number violation on three frontiers  

SciTech Connect (OSTI)

Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

2013-12-30T23:59:59.000Z

224

Table B14. Number of Establishments in Building, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

4. Number of Establishments in Building, Number of Buildings, 1999" 4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1897,272,"Q","Q","Q",164 "5,001 to 10,000 ..............",1110,802,222,17,"Q","Q","Q" "10,001 to 25,000 .............",708,506,121,51,12,"Q",17 "25,001 to 50,000 .............",257,184,33,15,15,"Q","Q"

225

Beamline Phone Numbers| Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Map Interactive Map Beamlines Map Beamlines Directory Techniques Directory Sectors Directory Beamline Phone Numbers Status and Schedule Beamline Phone Numbers From on-site, dial 2, then a number listed below. From off-site, dial 630-252 and a number listed below. Sector 1 1-BM-A: 1701 1-BM-C: 5468 1-ID: 1801 Sector 2 2-BM: 1702 2-ID-B: 1628 2-ID-D: 1802 2-ID-E: 3711 Sector 3 3-ID: 1803 Sector 4 4-ID-C: 1704 4-ID-D: 1804 Sector 5 5-BM: 1705 5-ID: 1805 Sector 6 6-ID-B: 1806 6-ID-C: 1406 6-ID-D: 1606 Sector 7 7-ID-B: 1607 7-ID-C: 1707 7-ID-D: 1807 7-ID-E: 1207 Sector 8 8-ID-E: 1908 8-ID-I: 1808 Sector 9 9-BM-B: 1709 9-ID-B: 0349 9-ID-C: 1809 Column 95: 4705 Sector 10 10-BM-B: 6792 10-ID-B: 1710 Sector 11 11-BM-B: 5877 11-ID-B: 1711 11-ID-C: 1711 11-ID-D: 2162 Laser lab: 0379 Sector 12 12-BM-B: 0378 12-ID-B,C: 1712

226

March 2005 Number 238 CARBON CAPTURE AND  

E-Print Network [OSTI]

March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 stages: CO2 capture, transport and storage. CO2 capture Carbon capture is best applied to large

Mather, Tamsin A.

227

Colorado Number of Natural Gas Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

,606,602 1,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1986-2013 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1997-2013 Transported 5 5 5 5 1997-2013 Commercial Number of...

228

Report Number: _____________ UNIVERSITY OF CONNECTICUT HEALTH CENTER  

E-Print Network [OSTI]

Report Number: _____________ UNIVERSITY OF CONNECTICUT HEALTH CENTER EMPLOYEE SAFETY HAZARD REPORT health, life or property are to be reported by phone to "7777" on campus and "911" off campus. Employees are to use this form to report other hazards. The employee is then to distribute copies of this completed

Kim, Duck O.

229

Heat Transfer at Small Grashof Numbers  

Science Journals Connector (OSTI)

...January 1957 research-article Heat Transfer at Small Grashof Numbers J. J...physical arguments suggest that the heat transfer from a body, immersed in a fluid...the problem is small. However, heat-transfer rates predicted in this fashion...

1957-01-01T23:59:59.000Z

230

Estimate octane numbers using an enhanced method  

SciTech Connect (OSTI)

An improved model, based on the Twu-Coon method, is not only internally consistent, but also retains the same level of accuracy as the previous model in predicting octanes of gasoline blends. The enhanced model applies the same binary interaction parameters to components in each gasoline cut and their blends. Thus, the enhanced model can blend gasoline cuts in any order, in any combination or from any splitting of gasoline cuts and still yield the identical value of octane number for blending the same number of gasoline cuts. Setting binary interaction parameters to zero for identical gasoline cuts during the blending process is not required. The new model changes the old model`s methodology so that the same binary interaction parameters can be applied between components inside a gasoline cut as are applied to the same components between gasoline cuts. The enhanced model is more consistent in methodology than the original model, but it has equal accuracy for predicting octane numbers of gasoline blends, and it has the same number of binary interaction parameters. The paper discusses background, enhancement of the Twu-Coon interaction model, and three examples: blend of 2 identical gasoline cuts, blend of 3 gasoline cuts, and blend of the same 3 gasoline cuts in a different order.

Twu, C.H.; Coon, J.E. [Simulation Sciences Inc., Brea, CA (United States)

1997-03-01T23:59:59.000Z

231

Student's Department: Course/Section Number  

E-Print Network [OSTI]

Student's Department: Course/Section Number: Course Title: Instructor: Explanation of why coursework has not yet been completed: Description of coursework remaining to be completed: Graduate Student is Requested: Arts & Sciences Students: Shriver Hall 28 (Graduate Affairs and Admissions Office) Engineering

Weaver, Harold A. "Hal"

232

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network [OSTI]

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

233

Connecticut Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

487,320 489,349 490,185 494,970 504,138 513,492 1986-2013 Sales 489,380 494,065 503,241 512,110 1997-2013 Transported 805 905 897 1,382 1997-2013 Commercial Number of Consumers...

234

Volume 22, Number 2, 2014 ENGINEERING  

E-Print Network [OSTI]

-users [2,3,4,5] reduce health risks [6,7,8], and mitigate the greenhouse gas impact of lighting techVolume 22, Number 2, 2014 LIGHT & ENGINEERING Znack Publishing House, Moscow ISSN 0236-2945 #12 Advisory Board: Lou Bedocs, Thorn Lighting Limited, United Kingdom Wout van Bommel, Philips Lighting

Jacobson, Arne

235

Idaho Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

36,191 342,277 346,602 350,871 353,963 359,889 1987-2013 Sales 346,602 350,871 353,963 359,889 1997-2013 Commercial Number of Consumers 37,320 38,245 38,506 38,912 39,202 39,722...

236

Gorilla numbers doubled in the Congo  

Science Journals Connector (OSTI)

... previously thought, according to a census of the northern regions of the Republic of the Congo. Led by the New-York-based Wildlife Conservation Society (WCS), the count found ... attributes the high numbers to successful management of protected areas in the Republic of the Congo, a food-rich habitat and the remoteness and inaccessibility of the region. The ...

2008-08-13T23:59:59.000Z

237

Paper Number (Assigned by IFPE Staff)  

E-Print Network [OSTI]

Paper Number (Assigned by IFPE Staff) Compressed Air Energy Storage for Offshore Wind Turbines pumped hydro, compressed air energy storage, a variety of battery chemistries, capacitors, flywheels of this paper, compressed air energy storage, is highly scalable, reasonably inexpensive, provides moderate ramp

Li, Perry Y.

238

The New Element Curium (Atomic Number 96)  

DOE R&D Accomplishments [OSTI]

Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

Seaborg, G. T.; James, R. A.; Ghiorso, A.

1948-00-00T23:59:59.000Z

239

Quantum random-number generator based on a photon-number-resolving detector  

Science Journals Connector (OSTI)

We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

Min Ren; E Wu; Yan Liang; Yi Jian; Guang Wu; Heping Zeng

2011-02-23T23:59:59.000Z

240

Betti Numbers, Spectral Sequences and Algorithms for computing them  

E-Print Network [OSTI]

1 Betti Numbers, Spectral Sequences and Algorithms for computing them Saugata Basu School on the number of connected components, Betti numbers etc. In terms of: #12;4 Complexity of Semi-algebraic Sets Uniform bounds on the number of connected components, Betti numbers etc. In terms of: The number

Basu, Saugata

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate  

E-Print Network [OSTI]

End Time: Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate and vegetable oil containers; ovenable food trays. 2 high density polyethylene Milk jugs, juice bottles; bleach, piping, candy wrappers 4 low density polyethylene Squeezable bottles; bread, frozen food, dry cleaning

Schladow, S. Geoffrey

242

Battling bird flu by the numbers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May » May » Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

243

Contractor: Contract Number: Contract Type: Total Estimated  

Broader source: Energy.gov (indexed) [DOE]

Number: Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 $2,550,203 FY2009 $39,646,446 FY2010 $64,874,187 FY2011 $66,253,207 FY2012 $41,492,503 FY2013 $0 FY2014 FY2015 FY2016 FY2017 FY2018 Cumulative Fee Earned $214,816,546 Fee Available $2,550,203 Minimum Fee $77,931,569 $69,660,249 Savannah River Nuclear Solutions LLC $458,687,779 $0 Maximum Fee Fee Information $88,851,963 EM Contractor Fee Site: Savannah River Site Office, Aiken, SC Contract Name: Management & Operating Contract September 2013 DE-AC09-08SR22470

244

Entanglement Distillation Protocols and Number Theory  

E-Print Network [OSTI]

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

245

Entanglement distillation protocols and number theory  

SciTech Connect (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z{sub D}{sup n} associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z{sub D}{sup n} into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

Bombin, H.; Martin-Delgado, M.A. [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

2005-09-15T23:59:59.000Z

246

Case Numbers: TBH-0063, TBZ-0063  

Broader source: Energy.gov (indexed) [DOE]

May 21, 2008 May 21, 2008 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion To Dismiss Name of Case: Richard L. Urie Dates of Filing: May 15, 2007 July 19, 2007 Case Numbers: TBH-0063 TBZ-0063 This Decision concerns a Complaint filed by Richard L. Urie (hereinafter referred to as "Mr. Urie" or "the Complainant") against Los Alamos National Laboratory (hereinafter referred to as "LANL" or "the Respondent"), his former employer, under the Department of Energy's (DOE) Contractor

247

On real number labelings and graph invertibility  

Science Journals Connector (OSTI)

For non-negative real x"0 and simple graph G, @l"x"""0","1(G) is the minimum span over all labelings that assign real numbers to the vertices of G such that adjacent vertices receive labels that differ by at least x"0 and vertices at distance two receive ... Keywords: ?-invertible, ?j,k-labeling, ?x,1-labeling, Distance-constrained labeling, Kneser graphs, Self-complementary graphs

Jeong-Ok Choi; John Georges; David Mauro; Yan Wang

2012-10-01T23:59:59.000Z

248

Laser interrogation of latent vehicle registration number  

SciTech Connect (OSTI)

A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

1994-09-01T23:59:59.000Z

249

Texas Rice, Volume VII, Number 2  

E-Print Network [OSTI]

Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas April 2007 Volume VII Number 2 Texas Rice Latest News on the Farm Bill continued on page 6 Agriculture Secretary, Mike Johanns, appears... News on the Farm Bill Welcome to the latest edition of Texas Rice. The 2007 crop season is starting off very slow. Unseasonably cool weather, combined with continuing damp conditions, has greatly delayed plantings. Many of the fields that were...

250

Winding number versus Chern--Pontryagin charge  

E-Print Network [OSTI]

In the usual d dimensional SO(d) gauged Higgs models with $d$-component Higgs fields, the 'energies' of the topologically stable solitons are bounded from below by the Chern-Pontryagin charges. A new class of Higgs models is proposed here, whose 'energies' are stabilised instead by the winding number of the Higgs field itself, with no reference to the gauge group. Consequently, such Higgs models can be gauged by SO(N), with 2 \\le N \\le d.

Tigran Tchrakian

2002-04-04T23:59:59.000Z

251

Electroweak strings, zero modes and baryon number  

Science Journals Connector (OSTI)

The Dirac equations for leptons and quarks in the background of an electroweak Zstring have zero mode solutions. If two loops of electroweak string are linked, the zero modes on one of the loops interacts with the other loop via an Aharanov-Bohm interaction. The effects of this interaction are briefly discussed and it is shown that the fermions induce a baryon number on linked loops of Zstring.

Tanmay Vachaspati

1995-01-01T23:59:59.000Z

252

Property:PhoneNumber | Open Energy Information  

Open Energy Info (EERE)

PhoneNumber PhoneNumber Jump to: navigation, search This is a property of type String. Pages using the property "PhoneNumber" Showing 25 pages using this property. (previous 25) (next 25) 1 1st Light Energy, Inc. + 209-824-5500 + 2 21-Century Silicon, Inc. + 972-591-0713 + 3 3Degrees + 415.449.0500 + 3M + 1-888-364-3577 + 4 4C Offshore Limited + +44 (0)1502 509260 + 4th Day Energy + 877-484-3291 + @ @Ventures (California) + (650) 322-3246 + @Ventures (Massachusetts) + (978) 658-8980 + A A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or 415-729-4210 + ABC Solar, Inc. + 1-866-40-SOLAR + ABS Alaskan Inc + (800) 235-0689 + ACME solar works + 877-226-3004 + ACORE + 202-393-0001 +

253

Tidal Love Numbers of Neutron Stars  

SciTech Connect (OSTI)

For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

Hinderer, Tanja [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)], E-mail: tph25@cornell.edu

2008-04-20T23:59:59.000Z

254

CHAPTER XVIII - INDEX-NUMBERS OF PRICES PRICE INDEX-NUMBERS  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of index numbers. If a term is expressed in a statistical series comparing similar events at different times or in different places as a relative number to another term, called the base, of the same series one obtains an index number of the simplest form. If the terms of a series of prices of a given commodity are expressed as ratio to a fixed base and a number of such series are combined into a group, a frequency distribution is obtained. The first purpose of constructing price index numbers was the measurement of changes in the purchasing power of money considered as a reciprocal of the general price level. Another purpose of constructing price index numbers is the splitting of changes in aggregate values into their price and quantity components. While it is easy to split changes in aggregate values into price changes and quantity changes in the case of a single commodity, it is extremely difficult to do so in the case of a group of commodities. Theoretically, six fundamental types of price index numbers may be distinguished.

ISAAC PAENSON

1970-01-01T23:59:59.000Z

255

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

256

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

257

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

258

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

259

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

260

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

262

Notices Total Estimated Number of Annual  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update student financial aid records using telecommunication software. Eligible respondents include the following, but are not limited to, institutions of higher education that participate in Title IV, HEA assistance programs, third-party servicers of eligible institutions,

263

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

264

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

265

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

266

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

267

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

268

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

269

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

270

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

271

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

272

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

273

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

274

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

275

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

276

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

277

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

278

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

279

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

280

Stockpile Stewardship Quarterly, Volume 2, Number 1  

National Nuclear Security Administration (NNSA)

1 * May 2012 1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in Non-hydrostatic Behavior in the Diamond Anvil Cell 8 Emission of Shocked Inhomogeneous Materials 9 2012 NNSA Stewardship Science Academic

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

282

Number Suppletion in North American Indian Languages  

E-Print Network [OSTI]

been elimina ted from consideration. A total of 32 languages from 13 distinct genetic groupings were found to have suppletive verbs marking ergative plurality, i.e. the suppletive verb form cross-references the number of the subject of an intransitive... cry, die carry, put, stand throw sit go, run handle, put down lie, sit, fall, run stand lie, sit, float/glide carry, give, stand run/fly, put swim, turn, walk/go be locat- .arrive , be little die ed, lie, return sit,stand lie, sit falloff big, long...

Booker, Karen M.

1982-01-01T23:59:59.000Z

283

Texas Rice, Volume VII, Number 7  

E-Print Network [OSTI]

Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas September 2007 Volume VII Number 7 Texas Rice Nobel Peace Prize Recipient Dr. Norman Borlaug continued on page 4 September of 2003 was a time etched... Tabien, and Dr. Lee Tarpley. Four years ago this month, the Texas A&M Research and Exten- sion Center at Beaumont was hon- ored to welcome one of the most influential people in agriculture. Nobel Peace Prize recipient, Dr. Norman Borlaug, has a long...

284

The New Element Berkelium (Atomic Number 97)  

DOE R&D Accomplishments [OSTI]

An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

1950-04-26T23:59:59.000Z

285

Probing Dark Energy with Neutrino Number  

E-Print Network [OSTI]

From measurements of the cosmic microwave background (CMB), the effective number of neutrino is found to be close to the standard model value Neff = 3.046 for the \\LambdaCDM cosmology. One can obtain the same CMB angular power spectrum as that of \\LambdaCDM for the different value of Neff by using the different dark energy model (i.e. for the different value of w). This degeneracy between Neff and w in CMB can be broken from future galaxy survey using the matter power spectrum.

Seokcheon Lee

2014-10-06T23:59:59.000Z

286

Probing Dark Energy with Neutrino Number  

E-Print Network [OSTI]

From measurements of the cosmic microwave background (CMB), the effective number of neutrino is found to be close to the standard model value Neff = 3.046 for the \\LambdaCDM cosmology. One can obtain the same CMB angular power spectrum as that of \\LambdaCDM for the different value of Neff by using the different dark energy model (i.e. for the different value of w). This degeneracy between Neff and w in CMB can be broken from future galaxy survey using the matter power spectrum.

Lee, Seokcheon

2014-01-01T23:59:59.000Z

287

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

288

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

289

Comparison of Pseudorandom Numbers Generators and Chaotic Numbers Generators used in Differential Evolution  

Science Journals Connector (OSTI)

Differential evolution is one of the great family of evolutionary algorithms. As well as all evolutionary algorithms differential evolution uses pseudorandom numbers generators in many steps of algorithm. In this...

Lenka Skanderova; Adam ?eho?

2014-01-01T23:59:59.000Z

290

Integrality of L2-Betti numbers.  

E-Print Network [OSTI]

The Atiyah conjecture predicts that the L2-Betti numbers of a finite CW-complex with torsion-free fundamental group are integers. We show that the Atiyah conjecture holds (with an additional technical condition) for direct and inverse limits of directed systems of groups for which it is true. As a corollary it holds for residually torsion-free solvable groups, e.g. for pure braid groups or for positive 1-relator groups with torsion free abelianization. Putting everything together we establish a new class of groups for which the Atiyah conjecture holds, which contains all free groups and in particular is closed under taking subgroups, direct sums, free products, extensions with elementary amenable quotient, and under direct and inverse limits of directed systems. This is a corrected version of an older paper with the same title. The proof of Proposition 2.1 of the earlier version contains a gap, as was pointed out to me by Pere Ara. This gap could not be fixed. Consequently, in this new version everything based on this result had to be removed. Please take the errata to "L2-determinant class and approximation of L2-Betti numbers" into account, which are added, rectifying some unproved statements about "amenable extension". As a consequence, throughout, amenable extensions should be extensions with normal subgroups.

Thomas Schick (Georg-August-Universitt Gttingen).; Muenster; Preprint No. 73.; no. 4; 727--750. and Math. Ann. 322 (2002); no. 2; 421--422

291

The New Element Californium (Atomic Number 98)  

DOE R&D Accomplishments [OSTI]

Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

1950-06-19T23:59:59.000Z

292

U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of  

Gasoline and Diesel Fuel Update (EIA)

Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57 66 62 63 64 65 64 2007 63 63 68 71 70 69 69 71 73 77 79 75 2008 76 77 75 72 73 73 72 72 NA 77 72 73 2009 75 76 72 70 65 60 61 60 60 63 62 63 2010 64 65 63 66 67 67 67 65 64 62 62 62

293

Mach number dependence of the coherent structure in high speed subsonic jets  

E-Print Network [OSTI]

by Armstrong , morrison 32 and Nattanachayakul , and the current investigation. The 33 two later investigations used two hot-wire probes positioned at the radial location of maximum flow fluctuation level with an azimuthal separation of 180 0 Armstrong... 12 X/0 :-igure 21. Axial phase distributions, . '1=0. 8 figures show that all frequencies studied were coherent over the same region of the jet. This result was also observable in the data of Armstrong . Since the 32 frequencies studied included...

Whitaker, Kevin William

1982-01-01T23:59:59.000Z

294

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

295

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

296

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

297

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

298

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

299

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

300

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

302

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

303

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

304

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

305

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

306

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

307

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

308

Case Numbers: TBH-0098, TBZ-0098  

Broader source: Energy.gov (indexed) [DOE]

November 9, 2010 November 9, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Motion to Dismiss Initial Agency Decision Names of Petitioners: Mark D. Siciliano Battelle Energy Alliance LLC Dates of Filings: March 15, 2010 August 16, 2010 Case Numbers: TBH-0098 TBZ-0098 This Decision will consider a Motion to Dismiss filed by Battelle Energy Alliance LLC (Battelle), the Management and Operating Contractor for the Department of Energy's (DOE) Idaho National Laboratory (INL), in connection with the pending Complaint of Retaliation filed by Mark Siciliano against Battelle under the DOE's Contractor Employee Protection Program and its governing regulations set forth at 10 C.F.R. Part 708. The Office of Hearings and Appeals

309

Case Numbers: TBH-0073, TBH-0075  

Broader source: Energy.gov (indexed) [DOE]

9, 2008 9, 2008 DECISION AND ORDER OF THE DEPARMENT OF ENERGY Initial Agency Decision Names of Petitioners: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: February 1, 2008 Case Numbers: TBH-0073 TBH-0075 This Initial Agency Decision involves two whistleblower complaints, one filed by Jonathan K. Strausbaugh (Case No. TBH-0073) and the other filed by Richard L. Rieckenberg (Case No. TBH-0075) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Both complainants were employees of KSL Services, Inc. ("KSL" or "the contractor"), a contractor providing technical services on the site of the DOE Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, where they were employed until June 14, 2007. In their respective

310

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

311

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

312

Case Numbers: TBH-0080, TBZ-0080  

Broader source: Energy.gov (indexed) [DOE]

7, 2009 7, 2009 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Order to Show Cause Motion for Summary Judgment Initial Agency Decision Name of Cases: Billy Joe Baptist Dates of Filing: December 19, 2008 February 18, 2009 Case Numbers: TBH-0080 TBZ-0080 This decision will consider an Order to Show Cause that I issued on February 3, 2009, regarding a March 6, 2008, whistleblower complaint filed by Billy Joe Baptist (Baptist) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708, against his employer, CH2M-WG Idaho, LLC (CWI). I will also consider in this decision as a Motion for Summary Judgment that CWI filed on February 18, 2009 regarding this complaint. Pursuant to Part 708, an OHA attorney conducted an investigation of Baptist's whistleblower

313

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

314

Climate Zone Number 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Dry(5B) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Marine(5C) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5 climate zones: Ada County, Idaho Adair County, Iowa Adair County, Missouri Adams County, Colorado Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Adams County, Washington Albany County, New York Allegan County, Michigan Alleghany County, North Carolina

315

Case Numbers: TBD-0073, TBD-0075  

Broader source: Energy.gov (indexed) [DOE]

16, 2008 16, 2008 DECISION AND ORDER OFFICE OF HEARINGS AND APPEALS Motion to Compel Discovery Case Names: Jonathan K. Strausbaugh Richard L. Rieckenberg Date of Filing: April 2, 2008 Case Numbers: TBD-0073 TBD-0075 Pending before me is a consolidated Motion to Compel Discovery filed with the Office of Hearings and Appeals (OHA) on behalf of Jonathan K. Strausbaugh and Richard L. Rieckenberg (the complainants) by their attorney. This Motion relates to a hearing requested by the complainants under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708), in connection with the Part 708 complaints they filed against KSL Services, Inc. (KSL). The OHA has assigned Mr. Strausbaugh's and Mr. Rieckenberg's hearing

316

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

317

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

318

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

319

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

320

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

322

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

323

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

324

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

325

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

326

Title, Location, Document Number Estimated Cost Description  

Broader source: Energy.gov (indexed) [DOE]

Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Title, Location, Document Number Estimated Cost Description EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $65,000 Annual NEPA Planning Summary NEPA Reviews of Proposals to Implement Enterprise SRS Initiatives unknown The Savannah River Site Strategic Plan for 2011 - 2015 describes 12 initiatives that Enterprise SRS will pursue by applying SRS's management core competencies in nuclear materials. Implementation of new missions resulting from this effort will likely require NEPA review. However, until firm proposals are developed

327

Case Numbers: TBH-0087, TBZ-0087  

Broader source: Energy.gov (indexed) [DOE]

January 22, 2010 January 22, 2010 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Initial Agency Decision Motion to Dismiss Name of Case: David P. Sanchez Dates of Filing: October 30, 2009 December 21, 2009 Case Numbers: TBH-0087 TBZ-0087 This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory ("LANL" or "the Respondent"). LANL seeks dismissal of a pending complaint filed by David P. Sanchez ("Mr. Sanchez" or "the Complainant") against his employer, Los Alamos National Security, L. L. C. ("LANS"), 1 on October 30, 2009, under the Department of Energy's (DOE) Contractor Employee Protection Program, set for that 10 C.F.R. Part 708. OHA has assigned Mr. Sanchez' hearing request Case No. TBH-0087, and the present Motion to Dismiss Case No.

328

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

329

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

330

Mo Year Report Period: EIA ID NUMBER:  

U.S. Energy Information Administration (EIA) Indexed Site

Version No: 2013.01 Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 PADD 4 Type of Report (Check One ): (Thousands of dollars) (Thousands of barrels) PADD 2 PADD 3 PAD DISTRICT (a) Revision to Report:

331

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

332

Pseudo winding numbers and the spherical ansatz  

Science Journals Connector (OSTI)

The path-dependent surface/time integral contribution to the topological charge in an SO(3) Yang - Mills theory is studied for paths in field space that interpolate between a background gauge field in the remote past and a gauge transform of it in the remote future. The possibility of existence of such paths along which this integral vanishes for a given initial background gauge field is related to the action of the group of gauge transformations of real, pseudo winding numbers on the physical states of the theory in the background gauge field. The analysis takes a particularly transparent form for the spherically-symmetric fields of the spherical ansatz, leading to a simple interpretation of the results.

Ahmed Abouelsaood

1997-01-01T23:59:59.000Z

333

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

334

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

335

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

336

Fact #857 January 26, 2015 Number of Partner Workplaces Offering...  

Energy Savers [EERE]

7 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 Fact 857 January 26, 2015 Number of Partner Workplaces Offering...

337

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

338

T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates...  

Broader source: Energy.gov (indexed) [DOE]

5: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection...

339

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

340

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Riverpoint Campus Security 358-7995 (24-hour number)  

E-Print Network [OSTI]

: Age: Number at which call received: Time: Date: CALLER'S VOICE: Calm Nasal Angry Stutter Slow Lisp

Collins, Gary S.

342

Quantifiers for randomness of chaotic pseudo-random number generators  

Science Journals Connector (OSTI)

...randomness of chaotic pseudo-random number generators L. De Micco 1 H. A. Larrondo 1...connection with pseudo-random number generators (PRNGs). Workers in the field are...notion to generate pseudo-random number generators (PRNGs) because random numbers are...

2009-01-01T23:59:59.000Z

343

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL  

E-Print Network [OSTI]

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL Abstract. The virtual Betti number conjecture states that any hyperbolic three-manifold has a finite cover with positive first Betti number. We that the virtual Betti number conjecture would follow if it were known that the derived series of the fundamental

Gadgil, Siddhartha

344

Betti numbers in multidimensional persistent homology are stable functions  

E-Print Network [OSTI]

Betti numbers in multidimensional persistent homology are stable functions Andrea Cerri Barbara Di can be studied through their persistent Betti numbers, i.e. the dimensions of the images of persistent Betti numbers. Varying the lower level sets, we get that persistent Betti numbers can be seen

Frosini, Patrizio

345

Von Neumann Betti numbers and Novikov type inequalities  

E-Print Network [OSTI]

It is shown that the Novikov inequalities for critical points of closed 1-forms hold with the von Neumann Betti numbers replacing the Novikov numbers. As a corollary we obtain a vanishing theorem for $L^2$ cohomology, generalizing a theorem of W. Lueck. We also prove that von Neumann Betti numbers coincide with the Novikov numbers for free abelian coverings.

Michael Farber

1998-10-18T23:59:59.000Z

346

"L -Betti numbers of mapping tori and groups" by  

E-Print Network [OSTI]

2 "L -Betti numbers of mapping tori and groups-Betti numbers of a manifold fibered over S1 are trivial. Secondly, the first L2-Betti number * *of aspherical manifold M be fibered over the circle S1. Then all L2-* *Betti numbers bp(M) are trivial. Let

Lück, Wolfgang

347

FAST METHODS FOR COMPUTING ISOSURFACE TOPOLOGY WITH BETTI NUMBERS  

E-Print Network [OSTI]

FAST METHODS FOR COMPUTING ISOSURFACE TOPOLOGY WITH BETTI NUMBERS Shirley F. Konkle University, Davis joy@cs.ucdavis.edu Keywords: Betti Numbers, Isosurface topology. Abstract Betti numbers can present a fast algorithm for the calculation of Betti numbers for triangulated isosurfaces, along

Hamann, Bernd

348

Mass, quark-number, and sqrt sNN dependence of the second andfourth flow harmonics in ultra-relativistic nucleus-nucleuscollisions  

SciTech Connect (OSTI)

We present STAR measurements of the azimuthal anisotropyparameter v_2 for pions, kaons, protons, Lambda, bar Lambda, Xi+bar Xi,and \\Omega + bar Omega, along with v_4 for pions, kaons, protons, andLambda + bar Lambda at mid-rapidity for Au+Au collisions at sqrt sNN=62.4and 200 GeV. The v_2(p_T) values for all hadron species at 62.4 GeV aresimilar to those observed in 130 and 200 GeV collisions. For observedkinematic ranges, v_2 values at 62.4, 130, and 200 GeV are as little as10 percent-15 percent larger than those in Pb+Pb collisions at sqrt s NN=17.3 GeV. At intermediate transverse momentum (p_T from 1.5-5 GeV/c),the 62.4 GeV v_2(p_T) and v_4(p_T) values are consistent with thequark-number scaling first observed at 200 GeV. A four-particle cumulantanalysis is used to assess the non-flow contributions to pions andprotons and some indications are found for a smaller non-flowcontribution to protons than pions. Baryon v_2 is larger than anti-baryonv_2 at 62.4 and 200 GeV perhaps indicating either that the initialspatial net-baryon distribution is anisotropic, that the mechanismleading to transport of baryon number from beam- to mid-rapidity enhancesv_2, or that anti-baryon and baryon annihilation is larger in thein-plane direction.

Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

2007-01-06T23:59:59.000Z

349

Property:NumberOfEZFeedDsirePolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedDsirePolicies NumberOfEZFeedDsirePolicies Jump to: navigation, search Property Name NumberOfEZFeedDsirePolicies Property Type Number Description Number for query that includes EZ policies and DSIRE entries. Populated from Template:StatisticsForPlace Pages using the property "NumberOfEZFeedDsirePolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 +

350

Abstract 5089: Survivin safeguards chromosome numbers and protects from aneuploidy  

Science Journals Connector (OSTI)

...April 5-9, 2014; San Diego, CA Abstract 5089: Survivin safeguards chromosome numbers and protects from aneuploidy Ralf Wiedemuth...Evelin Schroeck, Gabriele Schackert, Achim Temme. Survivin safeguards chromosome numbers and protects from aneuploidy. [abstract...

Ralf Wiedemuth; Barbara Klink; Evelin Schroeck; Gabriele Schackert; Achim Temme

2014-10-01T23:59:59.000Z

351

Closed manifolds with transcendental L2-Betti numbers.  

E-Print Network [OSTI]

In this paper, we show how to construct examples of closed manifolds with explicitly computed irrational, even transcendental L2 Betti numbers, defined via the universal covering. We show that every non-negative real number shows up as an L2-Betti number of some covering of a compact manifold, and that many computable real numbers appear as an L2-Betti number of a universal covering of a compact manifold (with a precise meaning of computable given below). In algebraic terms, for many given computable real numbers (in particular for many transcendental numbers) we show how to construct a finitely presented group and an element in the integral group ring such that the L2-dimension of the kernel is the given number. We follow the method pioneered by Austin in "Rational group ring elements with kernels having irrational dimension" arXiv:0909.2360) but refine it to get very explicit calculations which make the above statements possible.

Mikal Pichot (University of Tokyo (IPMU)); Thomas Schick (Georg-August-Universitt Gttingen); Andrzej Zuk (Paris 7)

352

Families and clustering in a natural numbers network  

Science Journals Connector (OSTI)

We develop a network in which the natural numbers are the vertices. The decomposition of natural numbers by prime numbers is used to establish the connections. We perform data collapse and show that the degree distribution of these networks scales linearly with the number of vertices. We explore the families of vertices in connection with prime numbers decomposition. We compare the average distance of the network and the clustering coefficient with the distance and clustering coefficient of the corresponding random graph. In case we set connections among vertices each time the numbers share a common prime number the network has properties similar to a random graph. If the criterion for establishing links becomes more selective, only prime numbers greater than pl are used to establish links, where the network has high clustering coefficient.

Gilberto Corso

2004-03-18T23:59:59.000Z

353

A Closer Look at Security in Random Number Generators Design  

E-Print Network [OSTI]

A Closer Look at Security in Random Number Generators Design Viktor Fischer Laboratoire Hubert of random number generation is crucial for the im- plementation of cryptographic systems. Random numbers are often used in key generation processes, authentication protocols, zeroknowledge pro- tocols, padding

Paris-Sud XI, Université de

354

Parent--daughter system: D Number of daughter atoms, today  

E-Print Network [OSTI]

- t ) + # , - #12;) . Parent--daughter system: D = N0 ­N D ­ Number of daughter atoms, today N ­ Number of parent atoms, today N0 ­ Number of parent atoms, initially present N0 = D + N, hence: D + N = Net , or D = N et as atoms are transferred from the liquid melt to the solid crystal. Some of the elements incorporated

Siebel, Wolfgang

355

Reducing the Cost of Generating APH-distributed Random Numbers  

E-Print Network [OSTI]

Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 for generating PH-distributed random numbers. In this work, we discuss algorithms for generating random numbers from PH distributions and propose two algorithms for reducing the cost associated with generating

Telek, Miklós

356

On the Betti Numbers of Chessboard Joel Friedman  

E-Print Network [OSTI]

On the Betti Numbers of Chessboard Complexes Joel Friedman Phil Hanlon May 14, 1997 Abstract In this paper we study the Betti numbers of a type of simpli- cial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us

Friedman, Joel

357

Some remarks on Betti numbers of random polygon Clment Dombry  

E-Print Network [OSTI]

Some remarks on Betti numbers of random polygon spaces Clment Dombry and Christian Mazza September be approached by computing Betti numbers, the Euler characteristics, or the related Poincar´e poly- nomial. We study the average values of Betti numbers of dimension pn when pn as n . We also focus

Paris-Sud XI, Université de

358

GROWTH OF BETTI NUMBERS BRYAN CLAIR AND KEVIN WHYTE  

E-Print Network [OSTI]

GROWTH OF BETTI NUMBERS BRYAN CLAIR AND KEVIN WHYTE Introduction Let X = eX= be a finite simplicial complex. We study the growth rate of the Betti numbers coverings of X. It is easy to see that the sequence* * of Betti numbers {bq(Xi)} can grow at most

Whyte, Kevin

359

-Betti numbers of mapping tori and groups" Wolfgang Luck  

E-Print Network [OSTI]

"L2 -Betti numbers of mapping tori and groups" by Wolfgang L¨uck Abstract: We prove the following two conjectures of Gromov. Firstly, all L2-Betti numbers of a manifold fibered over S1 are trivial. Secondly, the first L2-Betti number of a finitely presented group vanishes provided that is an extension

Lück, Wolfgang

360

On the Betti Numbers of Chessboard Joel Friedman # Phil Hanlon +  

E-Print Network [OSTI]

On the Betti Numbers of Chessboard Complexes Joel Friedman # Phil Hanlon + May 14, 1997 Abstract In this paper we study the Betti numbers of a type of simpli­ cial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us

Friedman, Joel

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An Incremental Algorithm for Betti Numbers of Simplicial Complexes*  

E-Print Network [OSTI]

An Incremental Algorithm for Betti Numbers of Simplicial Complexes* Cecil Jose A. Delfinado. Abstract A general and direct method for computing the betti numbers of the homology groups of a finite!ied to the family of a-shapes of a finite point set in R3 ittakes time O(ncz(n)) to compute the betti numbers of all

Kazhdan, Michael

362

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN  

E-Print Network [OSTI]

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN Abstract. This paper produces a recursive formula of the Betti numbers of certain Stanley­ Reisner ideals (graph ideals associated refer to as the ith Betti numbers of degree d of R/I, are independent of the choice of graded minimal

Katzman, Moty

363

Lower Bounds for Betti Numbers of Special Extensions  

E-Print Network [OSTI]

Lower Bounds for Betti Numbers of Special Extensions Melvin Hochster Benjamin Richert University 0 !M ! 0; where f#11; M 0 ; : : : ; #11; M n g are the Betti numbers of M . Giving lower bounds for these Betti numbers has been a long standing problem in commutative algebra. In fact, in 1977, Buchsbaum

Hochster, Melvin

364

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN  

E-Print Network [OSTI]

THE BETTI NUMBERS OF FORESTS SEAN JACQUES AND MORDECHAI KATZMAN Abstract. This paper produces a recursive formula of the Betti numbers of certain Stanley- Reisner ideals (graph ideals associated Betti numbers of degree d of R/I, are independent of the choice of graded minimal finite free resolution

Katzman, Moty

365

Different bounds on the different Betti numbers of semialgebraic sets #  

E-Print Network [OSTI]

Different bounds on the different Betti numbers of semi­algebraic sets # Saugata Basu School­ plexity (the sum of the Betti numbers) of basic semi­algebraic sets. This bound is tight as one can were known on the individual higher Betti numbers. In this paper we prove separate bounds on the di

Basu, Saugata

366

BETTI NUMBERS OF 3SASAKIAN QUOTIENTS OF SPHERES BY TORI  

E-Print Network [OSTI]

BETTI NUMBERS OF 3­SASAKIAN QUOTIENTS OF SPHERES BY TORI Roger Bielawski Abstract. We give a formula for the Betti numbers of 3­Sasakian manifolds or orbifolds which can be obtained as 3­Sasakian], Boyer, Galicki, Mann and Rees have calculated the second Betti number of a 7­dimensional 3­Sasakian

Bielawski, Roger

367

Grant Title: SBE DOCTORAL DISSERTATION RESEARCH IMPROVEMENT GRANTS Funding Opportunity Number: NSF 11-547. CFDA Number(s): 47.075.  

E-Print Network [OSTI]

11-547. CFDA Number(s): 47.075. Agency/Department: National Science Foundation; Directorate for Social, Behavioral & Economic Sciences; Division of Behavioral and Cognitive Sciences; Division of Social and Economic Sciences; Division of Science Resources Statistics; SBE Office of Multidisciplinary Activities

Farritor, Shane

368

P:\\Room Numbering Standard\\MSU Room Number Standard 2012.doc 3/12/2012 Page 1 MSU Room Numbering Standard  

E-Print Network [OSTI]

and other spaces in university facilities. Numbering standards ensure continuity within the buildings is a customized standard that: · Accommodates a logical flow and pedestrian movement through buildings Numbering Standard. Minor renovations or additions to an existing building may continue to use existing room

Maxwell, Bruce D.

369

Property:NumberOfUtilityCompanies | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:NumberOfUtilityCompanies Jump to: navigation, search Property Name NumberOfUtilityCompanies Property Type Number Description Number of Utility Companies. Pages using the property "NumberOfUtilityCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 +

370

Property:NumberOfEZFeedPolicies | Open Energy Information  

Open Energy Info (EERE)

NumberOfEZFeedPolicies NumberOfEZFeedPolicies Jump to: navigation, search Property Name NumberOfEZFeedPolicies Property Type Number Pages using the property "NumberOfEZFeedPolicies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

371

Property:NumberOfIncentives | Open Energy Information  

Open Energy Info (EERE)

NumberOfIncentives NumberOfIncentives Jump to: navigation, search Property Name NumberOfIncentives Property Type Number Pages using the property "NumberOfIncentives" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

372

Property:NumberOfEmployees | Open Energy Information  

Open Energy Info (EERE)

NumberOfEmployees NumberOfEmployees Jump to: navigation, search Property Name NumberOfEmployees Property Type Number Description The number of employees in a company or organization. This is a property of type Number. Subproperties This property has the following 10 subproperties: A American Electric Power Co., Inc. B BMW D Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH G General Electric S Saudi Aramco T Texas Department of Transportation The Hartford V Veolia Energy W World Bank X Xcel Energy Pages using the property "NumberOfEmployees" Showing 25 pages using this property. (previous 25) (next 25) 2 21-Century Silicon, Inc. + 11 + 3 3Degrees + 51 + 3TIER + 51 + 5 5 boro biofuel + 11 + A A.O. Smith + 10,000 + A1 Sun, Inc. + 1 + A10 Power + 1 + AAON + 1,001 +

373

Random Number Generation for Petascale Quantum Monte Carlo  

SciTech Connect (OSTI)

The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.

Ashok Srinivasan

2010-03-16T23:59:59.000Z

374

Property:GRR/SectionNumber | Open Energy Information  

Open Energy Info (EERE)

SectionNumber SectionNumber Jump to: navigation, search Property Name GRR/SectionNumber Property Type Number Description The section number of a section in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the section template and is used in sorting sections on the GRR Home page. Subproperties This property has the following 2 subproperties: G GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit GRR/Section 7 - Power Plant Siting/Construction Overview Pages using the property "GRR/SectionNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Section 1 - Land Use Overview + 1 + GRR/Section 1-AK-a - Land Use Considerations + 1 + GRR/Section 1-CA-a - State Land Use Planning + 1 +

375

T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates  

Broader source: Energy.gov (indexed) [DOE]

05: Linux Kernel Weakness in Sequence Number Generation 05: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks T-705: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks August 30, 2011 - 3:46am Addthis PROBLEM: A remote user can conduct packet injection attacks. PLATFORM: Linux Kernel ABSTRACT: Linux Kernel Weakness in Sequence Number Generation Facilitates Packet Injection Attacks. reference LINKS: SecurityTracker Alert ID: 1025977 CVE-2011-3188 (under review) The Linux Kernel Archives IMPACT ASSESSMENT: Medium Discussion: A vulnerability was reported in the Linux Kernel. A remote user can conduct packet injection attacks. The kernel's sequence number generation function uses partial MD4 with 24-bits unguessable. A remote user may be able to brute-force guess a valid sequence number to inject a packet into a

376

Property:GRR/SubsectionElementNumber | Open Energy Information  

Open Energy Info (EERE)

SubsectionElementNumber SubsectionElementNumber Jump to: navigation, search Property Name GRR/SubsectionElementNumber Property Type Number Description The subsection element number of an element in the Geothermal Regulatory Roadmap. The value of this property is derived automatically by the element template and is used in sorting elements within a section. Pages using the property "GRR/SubsectionElementNumber" Showing 25 pages using this property. (previous 25) (next 25) G GRR/Elements/14-CA-b.1 - NPDES Permit Application + 1 + GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit + 10 + GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit + 11 + GRR/Elements/14-CA-b.12 - Were all EPA objections resolved + 12 + GRR/Elements/14-CA-b.13 - NPDES Permit issued + 13 +

377

Betti number signatures of homogeneous Poisson point processes  

E-Print Network [OSTI]

The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: B_0 is the number of connected components and B_k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centred spheres with radius alpha. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha-shapes, a construction from computational geometry that deserves to be more widely known in the physics community.

Vanessa Robins

2006-09-22T23:59:59.000Z

378

Betti number signatures of homogeneous Poisson point processes  

Science Journals Connector (OSTI)

The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: ?0 is the number of connected components and ?k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centered spheres with radius ?. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha shapes, a construction from computational geometry that deserves to be more widely known in the physics community.

Vanessa Robins

2006-12-11T23:59:59.000Z

379

Rack Number Assignments Location TFTR TFTR NSTX NSTX  

E-Print Network [OSTI]

Rack Number Assignments Location TFTR TFTR NSTX NSTX Prefix Number range Prefix Number range-853 C-Site RF Balcony CRFB 900,901 CRFB 900,901 Most Safety Racks CSS 949-973 CSS 949-973 Oddball Control Room CCR 999 Pump Room CCI-IR 1-3 CCI-IR 1-3 Pump House CPH 1 CPH 1 Bakeout Racks VVS-ETC- 001

Princeton Plasma Physics Laboratory

380

Logistic map: A possible random-number generator  

Science Journals Connector (OSTI)

The logistic map is one of the simple systems exhibiting order to chaos transition. In this work we have investigated the possibility of using the logistic map in the chaotic regime (logmap) for a pseudorandom-number generator. To this end we have performed certain statistical tests on the series of numbers obtained from the logmap. We find that the logmap passes these tests satisfactorily and therefore it possesses many properties required of a pseudorandom-number generator.

S. C. Phatak and S. Suresh Rao

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Extremal Graph Numbers of Graphs on Few May 4, 2012  

E-Print Network [OSTI]

Extremal Graph Numbers of Graphs on Few Vertices John Kim May 4, 2012 1 Introduction Let H this number to be the extremal graph number of H on n vertices, and we denote it by ex(n, H). When H(n, K3) n 2 2 . A precise formula for ex(n, K3) is given by: ex(n, K3) = n 2 n + 1 2 . The extremal

Zeilberger, Doron

382

Property:NumberOfNonCorporateOrganizations | Open Energy Information  

Open Energy Info (EERE)

NumberOfNonCorporateOrganizations NumberOfNonCorporateOrganizations Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfNonCorporateOrganizations" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 0 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 +

383

Property:NumberOfOrganizations | Open Energy Information  

Open Energy Info (EERE)

NumberOfOrganizations NumberOfOrganizations Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfOrganizations" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 1 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 + Aberdeen, North Carolina + 0 +

384

The Effect of Temperature, Cations, and Number of Acyl Chains...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(i.e., number of acyl chains), cation type, and temperature influence the phase transition, aggregate structure, and endotoxic activity of Lipid-A. We have applied an...

385

SWMU ASSESSMENT REPORT NUMBER: NAME: Northeast Groundwater Plume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NUMBER: NAME: Northeast Groundwater Plume DATE: July 21 REGULATORY STATUS: AOC LOCATION: Inside and outside security fence east, northeast ofplant operations. See attached map for...

386

Modeling the Number of Ignitions Following an Earthquake: Developing...  

Office of Environmental Management (EM)

Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Modeling the Number of Ignitions Following an Earthquake:...

387

On the Degeneration of Turbulence at High Reynolds Numbers  

E-Print Network [OSTI]

Turbulent fluctuations in a fluid wind down at a certain rate once stirring has stopped. The role of the most basic parameter in fluid mechanics, the Reynolds number, in setting this decay rate is not generally known. This paper concerns the high-Reynolds-number limit of the process. In a wind-tunnel experiment that reached higher Reynolds numbers than ever before and covered more than two decades in the Reynolds number ($10^4 speed of the flow, $M$ the forcing scale, and $\

Sinhuber, Michael; Bewley, Gregory P

2014-01-01T23:59:59.000Z

388

Property:NumberOfCompanies | Open Energy Information  

Open Energy Info (EERE)

NumberOfCompanies NumberOfCompanies Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfCompanies" Showing 25 pages using this property. (previous 25) (next 25) A Aaronsburg, Pennsylvania + 0 + Abbeville County, South Carolina + 0 + Abbeville, Alabama + 0 + Abbeville, Georgia + 0 + Abbeville, Louisiana + 0 + Abbeville, Mississippi + 0 + Abbeville, South Carolina + 0 + Abbot, Maine + 0 + Abbotsford, Australia + 1 + Abbotsford, Wisconsin + 0 + Abbott, Texas + 0 + Abbottstown, Pennsylvania + 0 + Abbyville, Kansas + 0 + Abercrombie, North Dakota + 0 + Aberdeen Gardens, Washington + 0 + Aberdeen Proving Ground, Maryland + 0 + Aberdeen, Idaho + 0 + Aberdeen, Maryland + 0 + Aberdeen, Mississippi + 0 + Aberdeen, North Carolina + 0 +

389

Mach number correlation for a two-dimensional helicopter rotor-blade analysis in the tip region  

E-Print Network [OSTI]

. Comparison of chordwise pressure distributions between TRANDES and flight test (TAAT) results. Flight condition B, P = 90 degrees, radius = 86. 4 percent 16 17 3 c. Comparison of chordwise pressure distributions between TRANDES and flight test (TAAT.... 066 CP/SIG = 0. 008 Figure 3 c. Comparison of chordwise TRANDES and flight test 90 degrees, radius AZIMUTH = 90. 0 / RADIUS = 91. 0 MRCH NQ. (QRTRHAPI = 0. 813 CN = 0. 104 RLP(TRRNDESI = 0. 414 pressure distributions between (TAAT) results...

Schillings, John Joseph

1983-01-01T23:59:59.000Z

390

Active Automobile Engine Vibration Analysis Technical Report Number 1  

E-Print Network [OSTI]

Active Automobile Engine Vibration Analysis Technical Report Number 1 Page 1 of 26 DISTRIBUTION STATEMENT: Distribution authorized to all. Active Automobile Engine Vibration Analysis Technical Report at the University of Southern California #12;Active Automobile Engine Vibration Analysis Technical Report Number 1

Levi, Anthony F. J.

391

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 11, Number 6, 2004  

E-Print Network [OSTI]

to the tree-graph representation of the RNA secondary structure. Along with the free energy of the structure, being the most impor- tant scalar number in the prediction of RNA folding by energy minimization methods the maximum number of base pairings in an RNA sequence. Energy-minimization methods by dynamic programming

Barash, Danny

392

Effect of Number of Fractionating Trays on Reactive Distillation Performance  

E-Print Network [OSTI]

Effect of Number of Fractionating Trays on Reactive Distillation Performance Muhammad A. Al and rectifying sec- tions of a reacti®e distillation column can degrade performance. This effect, if true®e distillation columns cannot use conser®ati®e estimates of tray numbers, that is, we cannot simply add excess

Al-Arfaj, Muhammad A.

393

The minimal number of generators of an invertible ideal  

E-Print Network [OSTI]

The minimal number of generators of an invertible ideal Bruce Olberding1 and Moshe Roitman2 1 New of an integral ideal). We denote the minimal number of generators of an ideal I of R by R(I). If R is a Dedekind ideal I; moreover, I is strongly 2- generated, in the sense that one of the generators can

Olberding, Bruce

394

Pseudorandom number generators based on random covers for finite groups  

E-Print Network [OSTI]

Pseudorandom number generators based on random covers for finite groups Pascal Marquardt Pavol describe a new approach for construct- ing pseudorandom number generators using random covers for large- ness of binary sequences generated from these generators. We successfully carry out an extensive test

Trung, Tran van

395

The Lattice Structure of Pseudo-Random Number Generators  

Science Journals Connector (OSTI)

...Structure of Pseudo-Random Number Generators B. D. Ripley The pairs, triples...congruential pseudo-random number generators are known to lie on a lattice, and...in the quality of the output of the generator. Various characteristics of the lattices...

1983-01-01T23:59:59.000Z

396

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE  

E-Print Network [OSTI]

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE Gabriel Paillard Laboratoire d distributed approach for generating all prime numbers up to a given limit. From Er- atosthenes, who elaborated. In this work, we propose a new distributed algorithm which generates all prime num- bers in a given finite

Paris-Sud XI, Université de

397

HAWLEY, SHERRY, AND JOHNSON JEM --VOLUME 5, NUMBER 136  

E-Print Network [OSTI]

HAWLEY, SHERRY, AND JOHNSON JEM -- VOLUME 5, NUMBER 136 JEM -- VOLUME 5, NUMBER 1 Hawley, A.W.L., E.E. Sherry, and C.J. Johnson. 2004. A biologists' perspective on amalgamating traditional environmental and resource management Alex W.L. Hawley1 , Erin E. Sherry2 , and Chris J. Johnson3 Abstract Recent transitions

Johnson, Chris

398

JOHNSON, PARKER, HEARD, AND SEIP JEM --VOLUME 5, NUMBER 122  

E-Print Network [OSTI]

JOHNSON, PARKER, HEARD, AND SEIP JEM -- VOLUME 5, NUMBER 122 Extension Note BC Journal during winter: Implications for forest practices in British Columbia Chris J. Johnson1 , Katherine L, NUMBER 1 Johnson, C.J., K.L. Parker, D.C. Heard, and D.R. Seip. 2004. Movements, foraging habits

Johnson, Chris

399

Using random number generators in Monte Carlo simulations  

Science Journals Connector (OSTI)

One of the standard tests for Monte Carlo algorithms and for testing random number generators is the two-dimensional Ising model. We show that at least in the present case, where we study the two-state clock model, good random number generators can give inconsistent values for the critical temperature.

F. J. Resende and B. V. Costa

1998-10-01T23:59:59.000Z

400

NUMBER: ACAF 4.00 SECTION: Academic Affairs  

E-Print Network [OSTI]

NUMBER: ACAF 4.00 SECTION: Academic Affairs SUBJECT: Graduate Assistantships DATE: February 1, 1995 number of hours of work required per week is ten, and the maximum is twenty. The minimum and maximum assistants who are appointed after the first 20 days of a semester or after the first ten days of a Summer

Almor, Amit

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bubble Number in a Caviting Flow Henri Gouin  

E-Print Network [OSTI]

Bubble Number in a Caviting Flow Henri Gouin C.N.R.S. U.M.R. 6181 & Universit´e d of bubbles (a number of bubbles per unit of volume in the flow). The maximum intensity of cavitation; Bubble formation; Bubble dynamics; Cavitation. PACS: 47.55.Ca; 47.55.db; 47.55.dd; 47.55.dp 1

Paris-Sud XI, Université de

402

Property:NumberOfResourceAssessmentsEnergy | Open Energy Information  

Open Energy Info (EERE)

NumberOfResourceAssessmentsEnergy NumberOfResourceAssessmentsEnergy Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfResourceAssessmentsEnergy" Showing 25 pages using this property. (previous 25) (next 25) A Afghanistan + 1 + Albania + 0 + Algeria + 1 + Andorra + 0 + Angola + 0 + Anguilla + 0 + Antigua and Barbuda + 1 + Argentina + 0 + Armenia + 1 + Aruba + 0 + Australia + 3 + Austria + 0 + Azerbaijan + 0 + B Bahamas + 1 + Bahrain + 0 + Bangladesh + 1 + Barbados + 1 + Belarus + 0 + Belgium + 0 + Belize + 2 + Benin + 0 + Bermuda + 0 + Bhutan + 0 + Bolivia + 1 + Bosnia and Herzegovina + 0 + (previous 25) (next 25) Retrieved from "http://en.openei.org/w/index.php?title=Property:NumberOfResourceAssessmentsEnergy&oldid=314431

403

Navigating the Numbers: Greenhouse Gas Data and International Climate  

Open Energy Info (EERE)

Navigating the Numbers: Greenhouse Gas Data and International Climate Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory, Policies/deployment programs Resource Type: Publications Website: pdf.wri.org/navigating_numbers.pdf References: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy[1] Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies implications of the data for international cooperation on global climate change. Emissions are assessed within the broader socioeconomic context faced by countries,

404

New Paradigm for Baryon and Lepton Number Violation  

E-Print Network [OSTI]

The possible discovery of proton decay, neutron-antineutron oscillation, neutrinoless beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.

Perez, Pavel Fileviez

2015-01-01T23:59:59.000Z

405

An avalanche-photodiode-based photon-number-resolving detector  

E-Print Network [OSTI]

Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.

B. E. Kardynal; Z. L. Yuan; A. J. Shields

2008-07-02T23:59:59.000Z

406

Property:NumberOfSolarResources | Open Energy Information  

Open Energy Info (EERE)

NumberOfSolarResources NumberOfSolarResources Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfSolarResources" Showing 25 pages using this property. (previous 25) (next 25) A Afghanistan + 1 + Albania + 0 + Algeria + 1 + Andorra + 0 + Angola + 0 + Anguilla + 0 + Antigua and Barbuda + 0 + Argentina + 2 + Armenia + 0 + Aruba + 0 + Australia + 0 + Austria + 0 + Azerbaijan + 0 + B Bahamas + 0 + Bahrain + 0 + Bangladesh + 0 + Barbados + 0 + Belarus + 0 + Belgium + 0 + Belize + 0 + Benin + 0 + Bermuda + 0 + Bhutan + 2 + Bolivia + 0 + Bosnia and Herzegovina + 0 + (previous 25) (next 25) Retrieved from "http://en.openei.org/w/index.php?title=Property:NumberOfSolarResources&oldid=313617#SMWResults" What links here

407

ARM - Evaluation Product - Droplet Number Concentration Value-Added Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsDroplet Number Concentration Value-Added ProductsDroplet Number Concentration Value-Added Product Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Droplet Number Concentration Value-Added Product 2005.01.01 - 2010.12.30 Site(s) SGP General Description Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al.

408

VOLUME 19 NUMBER 2, October 2008 THE JEPSON GLOBEA Newsletter from the Friends of The Jepson Herbarium  

E-Print Network [OSTI]

Database Director's Column: Teaching and Research on Moorea (French Polynesia) at the Gump Research Station By Brent D. Mishler Photographs by Albert Park The University of California, Berkeley, has a broad's Richard B. Gump South Pacific Research Station on Moorea in French Polynesia (http:// moorea

409

Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phone Numbers for Beam Lines and Other Services Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221 2-2 5222 2-3 5223 3-3 5233 3-4 5234 4-1 5241 4-2 5242 4-3 5243 5-2 5252 5-3 5253 5-4 5254 6-2 5262 7-1 5271 7-2 5272 7-3 5273 8-1 5281 8-2 5282 9-1 5291 9-2 5292 9-3 5293 10-1 5101 10-2 5102 11-1 8648 11-2 8650 11-3 8656 12-2 5212 13-1 5131 13-2 5132 13-3 5133 User Labs/Services Building Lab/Service Extension

410

Table B15. Number of Establishments in Building, Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

5. Number of Establishments in Building, Floorspace, 1999" 5. Number of Establishments in Building, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",67338,43343,10582,3574,3260,4811,1769 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5358,857,"Q","Q","Q",512 "5,001 to 10,000 ..............",8238,5952,1630,137,"Q","Q","Q" "10,001 to 25,000 .............",11153,7812,1982,784,"Q","Q",296

411

Improved approximation algorithm for the jump number of interval orders  

Science Journals Connector (OSTI)

Abstract The jump number problem for posets is to find a linear extension in which the number of incomparable adjacent pairs is minimized. In this paper the class of interval orders is considered. Three 3/2-approximation algorithms for this problem have been known for some time. By a previous work of Mitas, the problem may be reformulated as a subgraph packing task. We prove that the problem reduces also to a set cover task, and we establish an improved bound of 1.484 to the approximation ratio of the jump number on interval orders.

Przemys?aw Krysztowiak

2013-01-01T23:59:59.000Z

412

Formulation of functional theory for pairing with particle number restoration  

SciTech Connect (OSTI)

The restoration of particle number within energy density functional theory is analyzed. It is shown that the standard method based on configuration mixing leads to a functional of both the projected and nonprojected densities. As an alternative that might be advantageous for mass models, nuclear dynamics, and thermodynamics, we propose to formulate the functional in terms directly of the one-body and two-body density matrices of the state with good particle number. Our approach does not contain the pathologies recently observed when restoring the particle number in an energy density functional framework based on transition density matrices and can eventually be applied with functionals having arbitrary density dependencies.

Hupin, Guillaume; Lacroix, Denis [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, F-14076 Caen (France); Bender, Michael [Universite Bordeaux, Centre d'Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France); CNRS/IN2P3, Centre d'Etudes Nucleaires de Bordeaux Gradignan, UMR5797, F-33175 Gradignan (France)

2011-07-15T23:59:59.000Z

413

The structure of the real and complex numbers  

E-Print Network [OSTI]

. Then there exists z such that z 5 [Z] and z f [YJ . Furthermore X F S implies z F [X] and hence t K [X"j implies z & t. Thus z Q [Y] which is contradictory. ~T~og~2. 8 The real numbers form a complete ordered field. 5 See Appendix 5 Garrett Birkhoff... cf both systems are exhibited. f'rom the viewpoint of abstract algebra. Order is defined for the real numbers and its properties developed therefrom. Theorem 3. 20 demonstrates that the complex numbers cannot be algebraically ordered. Theorem 2. 2...

Linnstaedter, Jerry Leroy

1961-01-01T23:59:59.000Z

414

Record Number Attend EM's Science Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous Diffusion Plant site for the fourth annual Science Alliance earlier this month. That is a record number of students and schools that participated in the science fair, which includes demonstrations related to science, technology, engineering and math (STEM) and provides the students with career

415

Property:NumberOfUnits | Open Energy Information  

Open Energy Info (EERE)

NumberOfUnits NumberOfUnits Jump to: navigation, search This is a property of type Number. Subproperties This property has the following 8 subproperties: B Black River Farm Solar Project H Hall's Warehouse Corp Solar Project L Lightning Dock Geothermal Facility S Sacramento Municipal Utility District Solar Array Sacramento Soleil Solar Project Salton Sea IV Geothermal Facility Sun Harvest Solar Project W Windy Flats Phase III Pages using the property "NumberOfUnits" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + 1 + A AB Tehachapi Wind Farm + 31 + AFCEE MMR Turbines + 2 + AG Land 1 + 1 + AG Land 2 + 1 + AG Land 3 + 1 + AG Land 4 + 1 + AG Land 5 + 1 + AG Land 6 + 1 + AVTEC + 1 + Adair Wind Farm I + 1 + Adair Wind Farm II + 230 + Adams Wind Project + 12 +

416

ORISE: Report shows number of health physics degrees for 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

report shows number of health physics degrees increased for report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report, Health Physics Enrollments and Degrees Survey, 2010 Data, surveyed 24 academic programs with enrollment and degree data and included students majoring in health physics or in an option program equivalent to a major, such as other health physics-based programs embedded in life

417

Mailing Addresses and Information Numbers for Operations, Field, and Site  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » Mailing Addresses and Information Numbers for About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 510-486-5784 U.S. Department of Energy Bonneville Power Administration P.O. Box 3621 905 NE 11th Avenue Portland, OR 97232 Bonneville Power Administration General and Regional Offices 503-230-3000 U.S. Department of Energy Brookhaven Site Office Upton, NY 11973 631-344-5050

418

Filtering Number States of the Vibrational Motion of an Ion  

E-Print Network [OSTI]

We propose a scheme to generate number states (and specific superpositions of them) of the vibrational motion of a trapped ion. In particular, we show that robust to noise qubits can be generated with arbitrary amplitudes.

Moya-Cessa, H

2000-01-01T23:59:59.000Z

419

Propulsion devices for locomotion at low-Reynolds number  

E-Print Network [OSTI]

We have designed, built, and tested three novel devices that use low-Reynolds number flows for self propulsion. The three-link swimmer is designed to swim through in a free viscous fluid using cyclic flipping motion of two ...

Chan, Brian, 1980-

2004-01-01T23:59:59.000Z

420

Single Payment Vendor Number Request Page 1 of 1  

E-Print Network [OSTI]

. Each payment must be less then $600.00 and may not be a royalty payment. The Single Payment Vendor not be a royalty payment. The single payment vendor number is used for refunds of deposits, human subject payments

Weiblen, George D

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Uniform Laws of Large Numbers Carlos C. Rodriguez  

E-Print Network [OSTI]

Uniform Laws of Large Numbers Carlos C. Rodr´iguez http://omega.albany.edu:8008/ September 30, 2004 of probability theory. It was discovered for the case of random coin flips by James Bernoulli at around 1700

Rodriguez, Carlos

422

Examining A Hypersonic Turbulent Boundary Layer at Low Reynolds Number  

E-Print Network [OSTI]

The purpose of the current study was to answer several questions related to hypersonic, low Reynolds number, turbulent boundary layers, of which available data related to turbulence quantities is scarce. To that end, a unique research facility...

Semper, Michael Thomas

2013-05-15T23:59:59.000Z

423

A law of large numbers for nearest neighbour statistics  

Science Journals Connector (OSTI)

...for nearest neighbour statistics Dafydd Evans...neighbours|geometric probability|difference-based...numbers in geometric probability. Ann. Appl. Prob...inequality for nonsymmetric statistics. Ann. Stat. 14...Yukich, J. E. 1998 Probability theory of classical...

2008-01-01T23:59:59.000Z

424

Solving for the Particle-Number-Projected HFB Wavefunction  

E-Print Network [OSTI]

Recently we proposed a particle-number-conserving theory for nuclear pairing [Jia, Phys. Rev. C 88, 044303 (2013)] through the generalized density matrix formalism. The relevant equations were solved for the case when each single-particle level has a distinct set of quantum numbers and could only pair with its time-reversed partner (BCS-type Hamiltonian). In this work we consider the more general situation when several single-particle levels could have the same set of quantum numbers and pairing among these levels is allowed (HFB-type Hamiltonian). The pair condensate wavefunction (the HFB wavefunction projected onto good particle number) is determined by the equations of motion for density matrix operators instead of the variation principle. The theory is tested in the simple two-level model with factorizable pairing interactions and the semi-realistic model with the zero-range delta interaction.

Jia, L Y

2015-01-01T23:59:59.000Z

425

Investment dynamics and the timeliness properties of accounting numbers  

E-Print Network [OSTI]

This paper examines the properties of accounting numbers using a real investment framework that predicts asymmetric timeliness of both investment and its outcomes (i.e. sales, earnings and operating cash flows) even in the ...

Papadakis, George, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

426

L^2-Betti numbers, isomorphism conjectures and noncommutative localization.  

E-Print Network [OSTI]

In this paper we discuss how the question about the rationality of L^2-Betti numbers is related to the Isomorphism Conjecture in algebraic K-theory and why in this context noncommutative localization appears as an important tool.

Holger Reich.

427

Determination of the X(3872) Meson Quantum Numbers  

E-Print Network [OSTI]

The quantum numbers of the X(3872) meson are determined to be J[superscript PC]=1[superscript ++] based on angular correlations in B[superscript +]?X(3872)K[superscript +] decays, where X(3872)??[superscript +]?[superscript ...

Williams, Michael

428

Search advanced FYI Number 139: September 27, 2005  

E-Print Network [OSTI]

Search advanced search FYI Number 139: September 27, 2005 Chief of Majority Staff for Science." He said that the main issue will be timing. Search FYI Subscribe to FYI FYI This Month 2005 Archives

429

On the structure of inversive pseudorandom number generators  

Science Journals Connector (OSTI)

We analyze the lattice structure and linear complexity of a new inversive pseudorandom number generator recently introduced by Niederreiter and Rivat. In particular, we introduce a new lattice test which is much stronger than its predecessors and prove ...

Harald Niederreiter; Arne Winterhof

2007-12-01T23:59:59.000Z

430

Chromosome numbers and generic relationships in subtribe Stephanomeriinae (Compositae: Ichorieae)  

Science Journals Connector (OSTI)

Chromosome numbers are reported from over 230 populations representing species in eight genera. First counts are reported for three species ofStephanomeria, five species ofLygodesmia, and one species ofPinaropapp...

A. Spencer Tomb

431

A pragmatic approach to temporary payment card numbers  

Science Journals Connector (OSTI)

With the push towards electronic payments that use a smart card and authenticate the cardholder by his or her personal identification number, much fraud has switched to the residual payment methods that just rely on knowing the card number: card-not-present transactions. There are various countermeasures; notably some issuers allocate temporary card numbers (TCNs). The snag is that this is an online solution that requires the cardholder to be identified and authenticated over a separate and direct link between the cardholder and card issuer each time a number is allocated. Some off-line mechanisms have been proposed but those TCNs do not act as the cardholder's identifier. This paper examines a sample of online and off-line TCN mechanisms and then proposes an off-line mechanism that gives a comparable service to the online mechanisms. The cardholder's privacy is protected whilst still allowing proof of payment.

David J. Boyd

2009-01-01T23:59:59.000Z

432

Table B10. Employment Size Category, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

0. Employment Size Category, Number of Buildings, 1999" 0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1567,482,226,66,"Q","Q","N" "5,001 to 10,000 ..............",1110,511,180,249,144,"Q","Q","N" "10,001 to 25,000 .............",708,250,105,146,157,46,"Q","Q"

433

Paper Number -1-Simulation model of dispersions in turning process  

E-Print Network [OSTI]

Paper Number -1- Simulation model of dispersions in turning process Wolff Valery 1, Lefebvre Arnaud. In this paper, an extent of the simulation model of dispersions in turning process first exposed in [W1

Paris-Sud XI, Université de

434

bounding the betti numbers and computing the euler-poincar ...  

E-Print Network [OSTI]

ing the Betti numbers of closed semi-algebraic sets defined by polynomials of ...... has multiple eigen-values), the retraction is still well-defined since it only...

2008-06-24T23:59:59.000Z

435

Nucleon semimagic numbers and low-energy neutron scattering  

E-Print Network [OSTI]

It is shown that experimental values of the cross sections of inelastic low-energy neutron scattering on even-even nuclei together with the description of these cross sections in the framework of the coupled channel optical model may be considered as a reliable method for finding nuclei with a semimagic number (or numbers) of nucleons. Some examples of the application of this method are considered.

D. A. Zaikin; I. V. Surkova

2010-04-09T23:59:59.000Z

436

Density Functional Theory for Fractional Particle Number: Derivative Discontinuity of the Energy at the Maximum Number of Bound Electrons  

E-Print Network [OSTI]

The derivative discontinuity in the exact exchange-correlation potential of ensemble Density Functional Theory (DFT) is investigated at the specific integer number that corresponds to the maximum number of bound electrons, $J_{max}$. A recently developed complex-scaled analog of DFT is extended to fractional particle numbers and used to study ensembles of both bound and metastable states. It is found that the exact exchange-correlation potential experiences discontinuous jumps at integer particle numbers including $J_{max}$. For integers below $J_{max}$ the jump is purely real because of the real shift in the chemical potential. At $J_{max}$, the jump has a non-zero imaginary component reflecting the finite lifetime of the $(J_{max}+1)$ state.

Daniel L. Whitenack; Yu Zhang; Adam Wasserman

2011-11-08T23:59:59.000Z

437

Electrophysiological evidence for the involvement of the approximate number system in preschoolers' processing of spoken number words  

Science Journals Connector (OSTI)

Little is known about the neural underpinnings of number word comprehension in young children. Here we investigated the neural processing of these words during the crucial developmental window in which children learn their meanings and asked whether ...

Michal Pinhas, Sarah E. Donohue, Marty G. Woldorff, Elizabeth M. Brannon

2014-09-01T23:59:59.000Z

438

USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME  

SciTech Connect (OSTI)

Comparing galaxies across redshifts at fixed cumulative number density is a popular way to estimate the evolution of specific galaxy populations. This method ignores scatter in mass accretion histories and galaxy-galaxy mergers, which can lead to errors when comparing galaxies over large redshift ranges (?z > 1). We use abundance matching in the ?CDM paradigm to estimate the median change in cumulative number density with redshift and provide a simple fit (+0.16 dex per unit ?z) for progenitors of z = 0 galaxies. We find that galaxy descendants do not evolve in the same way as galaxy progenitors, largely due to scatter in mass accretion histories. We also provide estimates for the 1? range of cumulative number densities corresponding to galaxy progenitors and descendants. Finally, we discuss some limits on cumulative number density comparisons, which arise due to difficulties measuring physical quantities (e.g., stellar mass) consistently across redshifts. A public tool to calculate cumulative number density evolution for galaxies, as well as approximate halo masses, is available online.

Behroozi, Peter S.; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States)] [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)] [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Muzzin, Adam [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)] [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Papovich, Casey [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)] [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Stefanon, Mauro [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States)] [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States)

2013-11-01T23:59:59.000Z

439

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings, 1999" B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4657,2348,1110,708,257,145,59,23,7 "Principal Building Activity" "Education ....................",327,119,61,52,49,30,10,5,"Q" "Food Sales ...................",174,138,"Q","Q","Q","Q","Q","N","N"

440

Property:Number of Devices Deployed | Open Energy Information  

Open Energy Info (EERE)

Devices Deployed Devices Deployed Jump to: navigation, search Property Name Number of Devices Deployed Property Type Number Pages using the property "Number of Devices Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 3 + 1 + MHK Projects/ADM 5 + 1 + MHK Projects/AW Energy EMEC + 1 + MHK Projects/AWS II + 2 + MHK Projects/Admirality Inlet Tidal Energy Project + 450 + MHK Projects/Agucadoura + 3 + MHK Projects/Alaska 18 + 100 + MHK Projects/Alaska 36 + 100 + MHK Projects/Algiers Cutoff Project + 40 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Property:Number of Color Cameras | Open Energy Information  

Open Energy Info (EERE)

Color Cameras Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + 2 + Alden Small Flume + 2 + Alden Tow Tank + 2 + Alden Wave Basin + 2 + C Chase Tow Tank + 1 + Conte Large Flume + 5 + Conte Small Flume + 5 + D Davidson Laboratory Tow Tank + 2 + DeFrees Flume 1 + 5 + DeFrees Flume 2 + 5 + DeFrees Flume 3 + 5 + DeFrees Flume 4 + 5 + DeFrees Large Wave Basin + 5 + DeFrees Small Wave Basin + 5 + F Flood Fighting Research Facility + 1 + H Haynes Tow Tank + 6 + Haynes Wave Basin + 6 + Hinsdale Wave Basin 1 + 20 + Hinsdale Wave Basin 2 + 20 + M MIT Tow Tank + 1 + MMA Tugboat/ Barge/ Vessel + 1 +

442

Property:Number of Prime Movers | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Number of Prime Movers Jump to: navigation, search This is a property of type Number. Pages using the property "Number of Prime Movers" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + 1 + Distributed Generation Study/615 kW Waukesha Packaged System + 1 + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + 1 + Distributed Generation Study/Arrow Linen + 2 + Distributed Generation Study/Dakota Station (Minnegasco) + 1 + Distributed Generation Study/Elgin Community College + 4 + Distributed Generation Study/Emerling Farm + 1 + Distributed Generation Study/Floyd Bennett + 2 + Distributed Generation Study/Harbec Plastics + 25 +

443

Los Alamos National Laboratory attracts record number of students this  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL attracts record number of students LANL attracts record number of students Los Alamos National Laboratory attracts record number of students this summer More than 1,300 students interned in both technical and nontechnical fields. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

444

Turning Numbers into Knowledge: Mastering the Art of Problem Solving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Numbers into Knowledge: Mastering the Art of Problem Solving Turning Numbers into Knowledge: Mastering the Art of Problem Solving Speaker(s): Jonathan Koomey Date: February 12, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner In this talk, Jonathan Koomey, Staff Scientist and Group Leader in the End-use Forecasting Group, will summarize key "tricks of the trade" summarized in his new book "Turning Numbers into Knowledge: Mastering the Art of Problem Solving". The book focuses on many lessons relevant to working effectively in the research world, including being prepared, creating appropriate documentation, doing back of the envelope calculations, and making good tables and graphs. For more details, check out the book's web site at: http://www.numbersintoknowledge.com

445

Table B8. Year Constructed, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings, 1999" B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,227,270,359,321,367,413,390 "5,001 to 10,000 ..............",1110,107,102,240,166,193,156,145 "10,001 to 25,000 .............",708,63,90,97,84,130,179,65 "25,001 to 50,000 .............",257,13,20,39,53,44,43,44 "50,001 to 100,000 ............",145,7,9,19,24,26,33,27

446

A Low Mach Number Model for Moist Atmospheric Flows  

E-Print Network [OSTI]

We introduce a low Mach number model for moist atmospheric flows that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius--Clapeyron formula for moist thermodynamics. Unlike the pseudo--incompressible formulation, this model allows a general equation of state. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here, latent heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. We numerically assess the validity of the l...

Duarte, Max; Bell, John B

2014-01-01T23:59:59.000Z

447

Is there quantum chaos in the prime numbers?  

E-Print Network [OSTI]

A statistical analysis of the prime numbers indicates possible traces of quantum chaos. We have computed the nearest neighbor spacing distribution, number variance, skewness, and excess for sequences of the first N primes for various values of N. All four statistical measures clearly show a transition from random matrix statistics at small N toward Poisson statistics at large N. In addition, the number variance saturates at large lengths as is common for eigenvalue sequences. This data can be given a physical interpretation if the primes are thought of as eigenvalues of a quantum system whose classical dynamics is chaotic at low energy but regular at high energy. We discuss some difficulties with this interpretation in an attempt to clarify what kind of physical system might have the primes as its quantum eigenvalues.

Todd Timberlake; Jeffery Tucker

2007-08-19T23:59:59.000Z

448

Conditional preparation of states containing a definite number of photons  

E-Print Network [OSTI]

A technique for conditionally creating single- or multimode photon-number states is analyzed using Bayesian theory. We consider the heralded N-photon states created from the photons produced by an unseeded optical parametric amplifier when the heralding detector is the time-multiplexed photon-number-resolving detector recently demonstrated by Fitch, et al. [Phys. Rev. A 68, 043814 (2003).] and simultaneously by Achilles, et al. [Opt. Lett. 28, 2387 (2003).]. We find that even with significant loss in the heralding detector, fields with sub-Poissonian photon-number distributions can be created. We also show that heralded multimode fields created using this technique are more robust against detector loss than are single-mode fields.

Malcolm N. O'Sullivan; Kam Wai Clifford Chan; Vasudevan Lakshminarayanan; Robert W. Boyd

2007-09-28T23:59:59.000Z

449

Property:FERC License Docket Number | Open Energy Information  

Open Energy Info (EERE)

License Docket Number License Docket Number Jump to: navigation, search This is a property of type string. Pages using the property "FERC License Docket Number" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/Admirality Inlet Tidal Energy Project + P-12690 + MHK Projects/Algiers Light Project + P-12848 + MHK Projects/Anconia Point Project + P-12928 + MHK Projects/Astoria Tidal Energy + P-12665 + MHK Projects/Avalon Tidal + P-14228 + MHK Projects/Avondale Bend Project + P-12866 + MHK Projects/BW2 Tidal + P-14222 + MHK Projects/Bar Field Bend + P-12942 + MHK Projects/Barfield Point + P-13489 + MHK Projects/Bayou Latenache + P-13542 + MHK Projects/Belair Project + P-13125 + MHK Projects/Bondurant Chute + P-13477 + MHK Projects/Breeze Point + P-13480 +

450

Azimuthal impact directions from oblique impact crater morphology  

Science Journals Connector (OSTI)

......methods: laboratory|methods: numerical|comets: general|minor planets, asteroids...craters made by the impact of asteroids and comets on the planets be as revealing? Craters...very limited areas around some Apollo landing sites. Fig. 9 shows a digital elevation......

D. Wallis; M. J. Burchell; A. C. Cook; C. J. Solomon; N. McBride

2005-05-21T23:59:59.000Z

451

Vacuum Calculations in Azimuthally Symmetric Geometry \\Lambda M. S. Chance  

E-Print Network [OSTI]

the volume integrated perturbed magnetic energy in the vacuum region or through the continuity requirements plasma­vacuum boundary. The method is based upon using Green's second identity and the method.S. Department of Energy Contract No. DE­AC02­76­CHO­3073. #12; shell since most tokamak devices need to have

452

Vacuum Calculations in Azimuthally Symmetric Geometry M. S. Chance  

E-Print Network [OSTI]

energy in the vacuum region or through the continuity requirements for the normal component. The method is based upon using Green's second identity and the method of collocation. As useful byproducts symmetric gap in the Work supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073. #12;shell

453

Tsunami response at Wake Island: azimuthal mode analysis  

E-Print Network [OSTI]

Committee: Dr. Andrew C. Vastano This is sn extension of previous studies (numerical and hydraulic) of the relative amplitude response at Wake Island associated with plane progressive incident waves of stipulated time history, whose spectrum includes... of the island, Van Dorn cautioned that the influence of Wake Island topography on the wave spectrum really remains unknown. In a later study of the same data, by Royer (1969), it was concluded that the island topography may modify waves of certain periods...

Creswell, Wiltie Austin

2012-06-07T23:59:59.000Z

454

Feedback Control of Azimuthal Oscillations in ExB Devices --...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency of the thruster by increasing electron transport to the anode. Electromagnetic interference from plasma oscillations in the thruster can also interfere with satellite...

455

Beam-Helicity Azimuthal Asymmetry measured with the Recoil Detector  

E-Print Network [OSTI]

Wasserstoff- und Deuterium-Target von HERMES genommen. Die erste Kalibrierung und Rekonstruk- tion dieser¨uglich der Strahlhelizit¨at aus den Daten von 2007 am Wasserstoff-Target wurden in dieser Arbeit durchgef

456

Name Name Address Place Zip Category Sector Telephone number Website  

Open Energy Info (EERE)

Category Sector Telephone number Website Category Sector Telephone number Website Coordinates Testing Facilities Overseen References Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street Shrewsbury Street Holden Massachusetts Category Testing Facility Operators Hydro Hydro http www aldenlab com http www aldenlab com Alden Tow Tank Alden Wave Basin Alden Small Flume Alden Large Flume Bucknell University Bucknell University Civil Mechanical Engineering Departments Hydraulic Flume Moore Avenue Dana Engineering Building Lewisburg Pennsylvania Category Testing Facility Operators Hydro http www bucknell edu x16287 xml Bucknell Hydraulic Flume Colorado State University Hydrodynamics Colorado State University Hydrodynamics Daryl B Simons Building Engineering Research Center Campus Delivery

457

Probability Tables for Mendelian Ratios with Small Numbers.  

E-Print Network [OSTI]

-called ex- Total ...-...-..-..-....-.--. .9999 pected may lead to error in interpretation rather than serving as a valuable aid as it does with large numbers. Examples with other small numbers could be given, but this should iIIustrate the points... is set off so as to show the point beyond which the total probability in that direction is .0050 or less. Mendelian Ratios Combi- 1 130 121 112 10 3 9 4 8 5 7 6 6 7 5 8 4 9 3 10 2 11 .On95 0028 .O002 .. -- I ---- - 1 12 .0016 .0004...

Warwick, B. L. (Bruce L.)

1932-01-01T23:59:59.000Z

458

The sigma term and the quark number operator in QCD  

E-Print Network [OSTI]

We discuss the relationship of the forward matrix element of the operator $\\bar\\psi\\psi$, related to the so-called sigma term, to the quark number. We show that in the naive quark model in the canonical formalism these quantities coincide in the limit of small average quark momenta. In the QCD parton model defined through light-front quantization this result is preserved at leading perturbative order but it receives radiative corrections. We analyze the theoretical and phenomenological consequences of this result, which provides a bridge between a current algebra quantity, the sigma term, and a deep-inelastic quantity, the parton number.

Mauro Anselmino; Stefano Forte

1993-05-03T23:59:59.000Z

459

Photon number density operator iE^?A^  

Science Journals Connector (OSTI)

A photon number density operator proportional to the dot product of the electric field and the vector potential is introduced as an alternative to the Mandel operator. In the Lorentz gauge it is the time component of the four-vector obtained by contracting the electromagnetic field tensor with the vector potential. Its other components can be interpreted as a current-density vector, and these number and current-density operators satisfy a continuity equation. The photon density operators introduced here are all products of operators that satisfy Maxwells equations and whose Lorentz and gauge transformation properties are well known.

M. Hawton and T. Melde

1995-05-01T23:59:59.000Z

460

Grid sensitivity in low Reynolds number hypersonic continuum flows  

SciTech Connect (OSTI)

A computational scheme is presented to solve the unsteady Navier-Stokes equations over a blunt body at high altitude, high Mach number atmospheric reentry flow conditions. This continuum approach is directed to low Reynolds/low density hypersonic flows by accounting for non-zero bulk viscosity effects in near frozen flow conditions. A significant difference from previous studies is the inclusion of the capability to model non-zero bulk viscosity effects. The grid definition for these low Reynolds number, viscous dominated flow fields is especially important in terms of numerical stability and accurate heat transfer solutions. 11 refs., 15 figs.

Rutledge, W.H. (Sandia National Labs., Albuquerque, NM (USA)); Hoffmann, K.A. (Wichita State Univ., KS (USA). Dept. of Aerospace Engineering)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Efficient photon number detection with silicon avalanche photodiodes  

E-Print Network [OSTI]

We demonstrate an efficient photon number detector for visible wavelengths using a silicon avalanche photodiode. Under subnanosecond gating, the device is able to resolve up to four photons in an incident optical pulse. The detection efficiency at 600 nm is measured to be 73.8%, corresponding to an avalanche probability of 91.1% of the absorbed photons, with a dark count probability below 1.1x10^{-6} per gate. With this performance and operation close to room temperature, fast-gated silicon avalanche photodiodes are ideal for optical quantum information processing that requires single-shot photon number detection.

O. Thomas; Z. L. Yuan; J. F. Dynes; A. W. Sharpe; A. J. Shields

2010-07-21T23:59:59.000Z

462

Extended Coherence Time with Atom-Number Squeezed Sources  

E-Print Network [OSTI]

Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state BEC interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times.

Wei Li; Ari K. Tuchman; Hui-Chun Chien; Mark A. Kasevich

2006-09-02T23:59:59.000Z

463

Extended Coherence Time with Atom-Number Squeezed States  

SciTech Connect (OSTI)

Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein condensate interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times.

Li Wei; Tuchman, Ari K.; Chien, H.-C.; Kasevich, Mark A. [Physics Department, Stanford University, Stanford, California 94305 (United States)

2007-01-26T23:59:59.000Z

464

Property:NEPA SerialNumber | Open Energy Information  

Open Energy Info (EERE)

SerialNumber SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + NV-020-08-01 + C CA-670-2010-107 + GDP-670-10-1 + D DOI-BLM-CA-ES-2013-002+1793-EIS + CACA 054722 + DOI-BLM-ID-110-2009-3825-CE + IDI-036864 + DOI-BLM-ID-B010-2010-??-CX + IDI-036869 + DOI-BLM-ID-I020-2012-0017-CX + IDI-37208 + DOI-BLM-ID-T020-2012-0003-CX + IDI-37320 + DOI-BLM-NM-L000-2012-0020-DNA + L000-2012-0020 + DOI-BLM-NM-L000-2012-0042-DNA + L000-2012-0042 + DOI-BLM-NM-L000-2012-0046-CX + NMNM-120643 + DOI-BLM-NM-L000-2012-0111-DNA + L000-2012-0111 + DOI-BLM-NM-L000-2012-0200-DNA + L000-2012-0200 +

465

Measurement of Black Carbon and Particle Number Emission Factors from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Black Carbon and Particle Number Emission Factors from Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks Title Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks Publication Type Journal Article Year of Publication 2009 Authors Ban-Weiss, George, Melissa M. Lunden, Thomas W. Kirchstetter, and Robert A. Harley Journal Environmental Science and Technology Abstract Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and COB2B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were

466

REVSTAT Statistical Journal Volume 10, Number 2, June 2012, 181210  

E-Print Network [OSTI]

phenomena are modeled. For instance, ocean wave, thermodynamics of earthquakes, wind energy, risk assessmentREVSTAT ­ Statistical Journal Volume 10, Number 2, June 2012, 181­210 ON AN EXTREME VALUE VERSION data; likelihood method; R computer language. AMS Subject Classification: · 60E05, 62G32, 62N02, 62N99

Alves, Maria Isabel Fraga

467

JOHN KORMENDY ADDRESS AND TELEPHONE NUMBER: Department of Astronomy  

E-Print Network [OSTI]

VITA JOHN KORMENDY ADDRESS AND TELEPHONE NUMBER: Department of Astronomy University of Texas@astro.as.utexas.edu (email) EDUCATION: B. Sc. 1970, Honours Mathematics, Physics and Chemistry (Astronomy Division), University of Toronto Ph. D. 1976, Astronomy, California Institute of Technology, Pasadena, CA POSITIONS: Apr

Kormendy, John

468

PHE publications gateway number: 2014299 Published: August 2014  

E-Print Network [OSTI]

PHE publications gateway number: 2014299 Published: August 2014 Ebola: advice and risk assessment for universities and further educational establishments There is currently an outbreak of Ebola Virus Disease in that country). Ebola is a rare but serious viral infection. However, people in the UK are not at risk of Ebola

Strathclyde, University of

469

MAXIMAL JORDAN ALGEBRAS OF MATRICES WITH BOUNDED NUMBER OF EIGENVALUES  

E-Print Network [OSTI]

1 MAXIMAL JORDAN ALGEBRAS OF MATRICES WITH BOUNDED NUMBER OF EIGENVALUES L. Grunenfelder, T. Kosir, M. Omladic, and H. Radjavi Abstract. We consider maximal Jordan algebras of matrices with bounded, and we also give a list of some reducible such algebras. We also study automorphisms of Jordan algebras

Ko?ir, Toma?

470

72 Los Alamos Science Number 24 1996 Russian Federation  

E-Print Network [OSTI]

Federation Ronald H. Augustson and John R. Phillips as told to Debra A. Daugherty Russian-American MPC&A #1272 Los Alamos Science Number 24 1996 Russian Federation Sverdlovsk-44 St. Petersburg Arzamas-16-to-Government Government-to-Government Figure 1. The map of the Russian Feder- ation below shows the nuclear facilities

471

Student ID Number Date of birth Cell Phone  

E-Print Network [OSTI]

Name Student ID Number Date of birth Cell Phone New Housing Student Current Housing Student All's phone Crime 2 Information about charges or crime convicted of Date of conviction Court convicted in Sentence received Probation dates Probation officer's name Probation officer's phone Consent: I authorize

Pantaleone, Jim

472

Impact of random numbers on parallel Monte Carlo application  

SciTech Connect (OSTI)

A number of graduate students are involved at various level of research in this project. We investigate the basic issues in materials using Monte Carlo simulations with specific interest in heterogeneous materials. Attempts have been made to seek collaborations with the DOE laboratories. Specific details are given.

Pandey, Ras B.

2002-10-22T23:59:59.000Z

473

NUCLEAR PHYSICS THIRD SERIES, VOLUME 32, NUMBER 6 DECEMBER 1985  

E-Print Network [OSTI]

NUCLEAR PHYSICS THIRD SERIES, VOLUME 32, NUMBER 6 DECEMBER 1985 Coulomb energy systematics and the missing J =--, ' + state in 98 R. Sherr Department ofPhysics, Princeton University, Princeton, Xeiv Jersey 08544 Cr. Bertsch Department ofPhysics, University of Tennessee, Knoxville, Tennessee 37996 (Received 22

Bertsch George F.

474

Intercommutation of Z-boson string loops violates baryon number  

Science Journals Connector (OSTI)

We show that delinking of Z-boson string loops changes the helicity and thus violates baryon number. The key point is that an unlinked vortex loop cannot be twisted. The helicity of an eventual magnetic twist when averaged in time is zero.

Jacek Dziarmaga

1995-07-15T23:59:59.000Z

475

Pinch spot formation in high atomic number z discharges  

Science Journals Connector (OSTI)

A nonlinear, quasi-two-dimensional model for pinch spot formation in radiation-dominated, high atomic number z pinches is presented that reproduces the experimental electrical and radiation characteristics. The high line-radiation rates of such discharges produce localized, high-density pinch spots in contrast to the spindle pinches predicted for hydrogenic discharges.

D. Mosher and D. Colombant

1992-04-27T23:59:59.000Z

476

Fertilizer Facts: December 1999, Number 22 Canola Nutrient Management  

E-Print Network [OSTI]

Fertilizer Facts: December 1999, Number 22 Canola Nutrient Management Grant Jackson Western Triangle Ag. Research Center, Conrad With the development of more reliable pest control methods, canola has become an important oilseed crop that offers small grain producers an excellent rotational crop. Canola

Lawrence, Rick L.

477

BAT RESEARCH NEWS Volume 37: Number 4 Winter 1996  

E-Print Network [OSTI]

, BAT RESEARCH NEWS Volume 37: Number 4 Winter 1996 Bat Collisions with Wind Turbines colliding with a lighthouse at LODg POlDL. OnWlo. Bat collisions with wind turbines used to produce e \\IIRA IS a 25·megawau faciluy and conSISts cf 73 KVS-33 wind turbines thaI were grouped InlO 10 Stnngs

478

Unsteady aerodynamic models for agile flight at low Reynolds numbers  

E-Print Network [OSTI]

Unsteady aerodynamic models for agile flight at low Reynolds numbers Steven L. Brunton , Clarence W for the unsteady aerodynamic forces on a small wing in response to agile maneuvers and gusts. In a previous study, it was shown that Theodorsen's and Wagner's unsteady aerodynamic models agree with force data from DNS

Rowley, Clarence W.

479

ENVIRONMENTAL ENGINEERING SCIENCE Volume 20, Number 1, 2003  

E-Print Network [OSTI]

- ergy technology assessment, and eco-industrial parks (Ausubel and Sladovich, 1989; Jelinski et al-cycle assessment (LCA), industrial ecology can complement and enhance the single-pollutant risk-based frameworkENVIRONMENTAL ENGINEERING SCIENCE Volume 20, Number 1, 2003 © Mary Ann Liebert, Inc. Industrial

Illinois at Chicago, University of

480

USF System USF USFSP USFSM Number: 6-018  

E-Print Network [OSTI]

or gas-powered carts and/or similar utility type vehicles (carts) on all non-public roads of allPOLICY USF System USF USFSP USFSM Number: 6-018 Subject: Cart/Utility Vehicle Operation Date-29-13 _____________________________________________________________________________________________ I. INTRODUCTION ( Purpose and Intent) This policy outlines requirements for the use of electric

Meyers, Steven D.

Note: This page contains sample records for the topic "number azimuth photograph" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Unsteady Aerodynamic Models for Agile Flight at Low Reynolds Numbers  

E-Print Network [OSTI]

-time Lyapunov exponent fields, which highlight separated flows and wake structures. A new fast method of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re = 100, and in a wind tunnel of computing these fields is presented. In addition, we generalize the immersed boundary projec- tion method

Rowley, Clarence W.

482

Number-phase uncertainty relations: Verification by balanced homodyne measurement  

Science Journals Connector (OSTI)

It is shown that fundamental uncertainty relations between photon number and canonical phase of a single-mode optical field can be verified by means of a balanced homodyne measurement. All the relevant quantities can be sampled directly from the measured phase-dependent quadrature distribution.

T. Opatrn; M. Dakna; D.-G. Welsch

1998-03-01T23:59:59.000Z

483

Testing the lepton number of charged heavy leptons  

Science Journals Connector (OSTI)

The lepton-number assignment of the charged heavy leptons (suggested by the SLAC-LBL ?e? events) has definite signatures which can be tested experimentally. We study the signatures and calculate the decay rates when the neutral currents are also contributing.

Ahmed Ali and T. C. Yang

1976-12-01T23:59:59.000Z

484

Volume 20 Number 3 2004 THE JOURNAL OF MARINE EDUCATION  

E-Print Network [OSTI]

Volume 20 · Number 3 · 2004 THE JOURNAL OF MARINE EDUCATION 2 MARINE PROTECTED AREAS MARINE, areas were set aside for scientific research (e.g., Friday Harbor Laboratory's Marine Biological.g., replenishing fish stocks); maintenance of biodiversity; research and education; preservation of cultural

Coble, Theresa G.

485

POLICY NUMBER 2009-03 October 16, 2009  

E-Print Network [OSTI]

POLICY NUMBER 2009-03 October 16, 2009 POLICY: Institutional Conflicts of Interest in Research Table of Contents Purpose 2 Policy Statement 2 Definitions 3 Applicable Guidelines 6 Key Elements of the Policy 6 Procedures for Identifying an Institutional Conflict 6 of Interest (ICOI) Maintenance of Records

Oliver, Douglas L.

486

POLICY NUMBER 2005-03 January 28, 2005  

E-Print Network [OSTI]

POLICY NUMBER 2005- 03 January 28, 2005 POLICY: UCHC HIPAA SECURITY ADMINISTRATION PURPOSE: UCHC will comply with the HIPAA Security Rule's requirements pertaining to policies and procedures and documentation requirements and the appointment of an Information Security Officer (ISO). SCOPE: This policy

Oliver, Douglas L.

487

POLICY NUMBER 2003-40 October 16, 2009  

E-Print Network [OSTI]

POLICY NUMBER 2003-40 October 16, 2009 Policy: Non-Retaliation Policy Purpose To define how, in good faith, participate in investigations or report alleged violations of policies, laws, rules or regulations applicable to the University of Connecticut. Policy Statement The University encourages

Oliver, Douglas L.

488

POLICY NUMBER 2012-04 April 10, 2012  

E-Print Network [OSTI]

POLICY NUMBER 2012-04 April 10, 2012 POLICY: CONTRACT SIGNATURE AUTHORITY PURPOSE: This policy UCHC employees, suppliers and contractors. POLICY STATEMENT: Only authorized UCHC personnel may sign contracts on behalf of UCHC. For the purpose of this Policy, a "contract" is defined as a written agreement

Oliver, Douglas L.

489

POLICY NUMBER 2006-18 April 10, 2012  

E-Print Network [OSTI]

1/ 2 POLICY NUMBER 2006-18 April 10, 2012 POLICY: AUTHORITY TO PURCHASE AND CONTRACT PURPOSE: This policy addresses the University of Connecticut Health Center's purchasing and contracting authority. SCOPE: All University of Connecticut Health Center ("UCHC") faculty and staff. POLICY STATEMENT: UCHC

Oliver, Douglas L.

490

Chapter Number1 Biomass Prediction in Tropical Forests:2  

E-Print Network [OSTI]

Chapter Number1 Biomass Prediction in Tropical Forests:2 The Canopy Grain Approach3 Christophe France9 1. Introduction10 The challenging task of biomass prediction in dense and heterogeneous tropical different forest structures may indeed present similar above ground biomass (AGB) values.13 This is probably

Paris-Sud XI, Université de

491

USF System USF USFSP USFSM Number: 0-611  

E-Print Network [OSTI]

is responsible for the costs associated with the alcohol and/or controlled substances testing and the USF system-designated to be a positive test and will result in termination. The USF system will make available to applicants and providePOLICY USF System USF USFSP USFSM Number: 0-611 Subject: Alcohol and Drug Testing Responsible

Meyers, Steven D.

492

USF System USF USFSP USFSM Number: 0-611  

E-Print Network [OSTI]

for the costs associated with the alcohol and/or controlled substances testing and the USF System-designated to be a positive test and will result in termination. The USF System will make available to applicants and providePOLICY USF System USF USFSP USFSM Number: 0-611 Subject: Alcohol and Drug Testing Date of Origin

Meyers, Steven D.

493

Grant Title: STARR FOUNDATION Funding Opportunity Number: N/A  

E-Print Network [OSTI]

Grant Title: STARR FOUNDATION Funding Opportunity Number: N/A Agency/Department: Starr Foundation Grants Program. Area of Research: The foundation makes grants in the following areas: education, medicine and post-secondary schools. Grants for medicine and health care include capital grants to hospitals

Farritor, Shane

494

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 15 3 Project management and coordination 15 4 Cost breakdown 15 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality;cation: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

495

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 17 3 Project management and coordination 17 4 Cost breakdown 17 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality Classification: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

496

General Displaced SU (1,1) number states-revisited  

E-Print Network [OSTI]

The most general displaced number states, based on the bosonic and an irreducible representation(IREP) of the Lie algebra symmetry of su(1, 1) and associated to the Calogero-Sutherland model are introduced. Here, we utilize the Barut-Girardello displacement operator instead of the Klauder- Perelomov counterpart, to construct new kind of the displaced number states which can be classified in nonlinear coherent states regime, too, with special nonlinearity functions. They depend on two parameters, and can be converted into the well known Barut-Girardello coherent and number states respectively, depending on which of the parameters equal to zero. A discussion of the statistical properties of these states is included. Significant are their squeezing properties and anti bunching effects which can be raised by increasing the energy quantum number. Depending on the particular choice of the parameters of the above scenario, we are able to determine the status of compliance with flexible statistics. Major parts of the issue is spent on something that these states, in fact, should be considered as new kind of photon-added coherent states, too. Which can be reproduced through an iterated action of a creation operator on new nonlinear Barut-Girardello coherent states. Where the latter carry, also, outstanding statistical features.

A. Dehghani

2014-04-21T23:59:59.000Z

497

Improving random number generators by chaotic Application in data hiding  

E-Print Network [OSTI]

Improving random number generators by chaotic iterations Application in data hiding Christophe of this new generator are improved: the generated sequences can pass all the DieHARD statistical test suite. In addition, this generator behaves chaotically, as defined by Devaney. This makes our generator suitable

Paris-Sud XI, Université de

498

USF System USF USFSP USFSM Number: 0-615  

E-Print Network [OSTI]

history background check through validated national database sources, and a check of the National SexPOLICY USF System USF USFSP USFSM Number: 0-615 Subject: Criminal History Background Checks Date environment, the USF System requires that a criminal history background check be conducted on prospective

Meyers, Steven D.

499

Chapter Number 18 Two stage approaches for modeling pollutant  

E-Print Network [OSTI]

Chapter Number 18 Two stage approaches for modeling pollutant emission of diesel engine based) emissions, and fuel consumption. In the first stage, we estimate the response directly from the controllable for the manufacturers to be able to produce fuel-economic vehicles, which respect pollutant emissions standards

Paris-Sud XI, Université de

500

Materials by numbers: Computations as tools of discovery  

Science Journals Connector (OSTI)

...conversation with her tutor: God's truth, Septimus, if there...the ability to study many-particle systems (i.e., a large number...Spatial and Temporal Scales If God created the world, his...of multimillion interacting particles, are possible; refs. 87...

Uzi Landman

2005-01-01T23:59:59.000Z