National Library of Energy BETA

Sample records for number azimuth photograph

  1. A segmented multi-loop antenna for selective excitation of azimuthal mode number in a helicon plasma source

    SciTech Connect (OSTI)

    Shinohara, S.; Tanikawa, T.; Motomura, T.

    2014-09-15

    A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, 1, and 2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ?5 10{sup 12} cm{sup ?3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and 1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.

  2. Azimuthally Anisotropic 3D Velocity Continuation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  3. SHE-2015: Photographs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas A&M University, College Station, Texas, USA March 31 - April 02, 2015 assetsphotosGrouppicture-tumb.jpg Photographs courtesy of Andrey Popeko, FLNR - JINR, Dubna,...

  4. Azimuthally polarized cathodoluminescence from InP nanowires

    SciTech Connect (OSTI)

    Brenny, B. J. M.; Osorio, C. I.; Polman, A.; Dam, D. van; Gómez Rivas, J.

    2015-11-16

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  5. Azimuthal Instabilities in Annular Combustion Chambers | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Azimuthal Instabilities in Annular Combustion Chambers Authors: Wolf, P., Staffelbach, G., Balakrishnan, R., Roux, A., Poinsot, T. Large Eddy Simulations (LES) of a full annular helicopter gas turbine combustor have been performed. Emphasis is placed on the azimuthal mode that often appears in real configurations. The current LES are shown to capture these self-excited modes, with limited impact of the grid resolution. The structure of the azimuthal mode is discussed and

  6. A simple Analytical Model to Study and Control Azimuthal Instabilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers Authors: Parmentier, J-F., Salas, P., Wolf, P., Staffelbach, G., Nicoud, F., ...

  7. Massively Parallel LES of Azimuthal Thermo-Acoustic Instabilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massively Parallel LES of Azimuthal Thermo-Acoustic Instabilities in Annular Gas Turbines Authors: Wolf, P., Staffelbach, G., Roux, A., Gicquel, L., Poinsot, T., Moureau, V. ...

  8. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Azimuthal anisotropy distributions in high-energy collisions Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  9. Synthetic aperture radar images with composite azimuth resolution

    DOE Patents [OSTI]

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  10. EERE Photographs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News » EERE Photographs EERE Photographs These photo collections offer images that can be used to enhance your story or message. Browse the archives to find thousands of photographs that depict the U.S. Department of Energy's and the national laboratories' various programs and activities. Please see the Website Policies for more information on using photographs from the Office of Energy Efficiency and Renewable Energy (EERE) website. Department of Energy Flickr Photostream This collection of

  11. Feedback Control of Azimuthal Oscillations in ExB Devices --...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feedback Control of Azimuthal Oscillations in ExB Devices --- Inventor(s) Martin E. Griswold, C. Leland Ellison, Yevgeny Raitses and Nathaniel J. Fisch Disclosed is a new device...

  12. PHOTOGRAPHIC FILM DEVELOPER

    DOE Patents [OSTI]

    Berry, F.G.

    1958-06-24

    S>An improved photographic developer is presented having very high energy development fine grain characteristics and a long shelf life. These characteristics are obtained by the use of aminoacetic acid in the developer, the other constituents of which are: sodium sulfite, hydroquinone, sodiunn borate, boric acid and potassium bromide, 1-phenyl-3-pyrazolidone.

  13. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC...

    Energy Savers [EERE]

    7: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,...

  14. Azimuthal and Transverse Single Spin Asymmetries in Hadronic Collisions

    SciTech Connect (OSTI)

    Murgia, Francesco

    2010-12-22

    We give a short overview of the phenomenology of azimuthal and transverse single spin asymmetries in (un)polarized high-energy hadronic collisions. We briefly summarize a transverse momentum dependent, generalized parton model approach to these polarization phenomena, and discuss some of its applications. Finally, open points and future developments will be outlined.

  15. Massively Parallel LES of Azimuthal Thermo-Acoustic Instabilities in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annular Gas Turbines | Argonne Leadership Computing Facility Massively Parallel LES of Azimuthal Thermo-Acoustic Instabilities in Annular Gas Turbines Authors: Wolf, P., Staffelbach, G., Roux, A., Gicquel, L., Poinsot, T., Moureau, V. Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines, which are unfortunately more and more prone to combustion instabilities. In the particular field of annular

  16. Manhattan Project: Trinity (Color Photograph)

    Office of Scientific and Technical Information (OSTI)

    Trinity Test Site (July 16, 1945) Resources > Photo Gallery Trinity, July 16, 1945 (This is the page for the photograph only; see "The Trinity Test" for more information about ...

  17. Azimuthal angle dependence of dijet production in unpolarized hadron scattering

    SciTech Connect (OSTI)

    Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2008-08-01

    We study the azimuthal angular dependence of back-to-back dijet production in unpolarized hadron scattering H{sub A}+H{sub B}{yields}J{sub 1}+J{sub 2}+X, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that when the dijet is of two identical quarks (J{sub q}+J{sub q}) or a quark-antiquark pair (J{sub q}+J{sub q}), there is a cos{delta}{phi} angular dependence of the dijet, with {delta}{phi}={phi}{sub 1}-{phi}{sub 2}, and {phi}{sub 1} and {phi}{sub 2} are the azimuthal angles of the two individual jets. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross section, compared with the result from the standard generalized parton model. We estimate the cos{delta}{phi} asymmetry of dijet production at RHIC, showing that the color factor enhancement in the angular dependence of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  18. Multiparticle azimuthal correlations of negative pions in nucleus-nucleus collisions

    SciTech Connect (OSTI)

    Chkhaidze, L. V. Djobava, T. D.; Kharkhelauri, L. L.; Kladnitskaya, E. N.

    2012-07-15

    Multiparticle azimuthal correlations of {pi}{sup -} mesons have been studied in dC, HeC, CC, CNe, MgMg, (d, He)Ta, CCu, CTa, and OPb collisions at momentum of 4.2, 4.5 GeV/c per nucleon within the standard transverse momentum analysis method of P. Danielewicz and G. Odyniec. The data were obtained by SKM-200-GIBS and Propane Bubble Chamber Collaborations of JINR. The axis has been selected in the phase space and with respect to this axis {pi}{sup -} meson correlations were observed. The values of the coefficient of the correlations linearly depend on the mass numbers of projectile (A{sub P}) and target (A{sub T}) nuclei. The Quark-Gluon String Model satisfactorily describes the experimental results.

  19. Azimuthal anisotropy in U+U collisions at STAR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects #12;final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degreemore »Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less

  20. Azimuthal anisotropy in U+U collisions at STAR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degreemore » Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less

  1. Azimuthal anisotropy in U+U collisions at STAR

    SciTech Connect (OSTI)

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)

  2. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS | Department of Energy activities ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS (66.6

  3. From Glimmer to Fireball: Photographing Nuclear Detonations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Glimmer to Fireball National Security Science Latest Issue:July 2015 past issues All Issues submit From Glimmer to Fireball: Photographing Nuclear Detonations How do you...

  4. Appendix A Annual Inspection Checklist, Maps, and Photographs

    Office of Legacy Management (LM)

    Photograph A4. Hole in the location of the former B881 stairwell Photograph A5. Depression in the roadway in the vicinity of former B771 Photograph A6. Cracks in the roadway...

  5. Dijet Azimuthal Decorrelations in pp Collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.

  6. A simple Analytical Model to Study and Control Azimuthal Instabilities in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annular Combustion Chambers | Argonne Leadership Computing Facility A simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers Authors: Parmentier, J-F., Salas, P., Wolf, P., Staffelbach, G., Nicoud, F., Poinsot, T. This study describes a simple analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing experimental, acoustic and large eddy simulation (LES) data obtained in these combustion chambers.

  7. Azimuthal anisotophy in U + U and Au + Au collisions at RHIC

    SciTech Connect (OSTI)

    Adamczyk, L.

    2015-11-24

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2} and v2{4}, for charged hadrons from U+U collisions at √SNN = 193 GeV and Au+Au collisions at √SNN = 200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. As a result, we also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  8. Azimuthal anisotophy in U + U and Au + Au collisions at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-11-24

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2} and v2{4}, for charged hadrons from U+U collisions at √SNN = 193 GeV and Au+Au collisions at √SNN = 200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. As a result, we alsomore » show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.« less

  9. Collegiate Wind Competition Photographs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photographs Collegiate Wind Competition Photographs First place celebration. 1 of 28 First place celebration. Students from The Pennsylvania State University happily carry their first place trophy off stage. Photo by Dennis Schroeder, NREL Date taken: 2016-06-01 19:02 Collegiate Wind Competition 2016 Trophies. 2 of 28 Collegiate Wind Competition 2016 Trophies. The prize table holding all of the trophies to be awarded at the Collegiate Wind Competition 2016. Photo by Dennis Schroeder, NREL Date

  10. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  11. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  12. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS | Department of Energy activities. Many of these records have continuing historical value after they are no longer of use to the Department. This records schedule covers only disposable records ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS (108.4

  13. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  14. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  15. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect (OSTI)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  16. Azimuthal angle dependence of di-jet production in unpolarized hadron scattering

    SciTech Connect (OSTI)

    Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2009-08-04

    We study the azimuthal asymmetry of back-to-back di-jet production in unpolarized hadron scattering, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that there is a cos {delta}{phi} angular dependence of the di-jet, with {delta}{phi} the difference of the azimuthal angle of tow jets respectively. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross-section due to the multiple initial-/final-state interactions, compared with the result from the standard generalized parton model. We estimate the cos {delta}{phi} asymmetry of the total di-jet production at RHIC, showing that the color factor enhancement in the azimuthal asymmetric cross section of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  17. Study of Jet Transverse Momentum and Jet Rapidity Dependence on Dijet Azimuthal Decorrelations

    SciTech Connect (OSTI)

    Chakravarthula, Kiran

    2012-01-01

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT ) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (p$\\bar{p}$) collisions occurring at a center of mass energy of 1.96TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  18. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. I. Local analysis

    SciTech Connect (OSTI)

    Escobar, D.; Ahedo, E.

    2014-04-15

    Results based on a local linear stability analysis of the Hall thruster discharge are presented. A one-dimensional azimuthal framework is used including three species: neutrals, singly charged ions, and electrons. A simplified linear model is developed with the aim of deriving analytical expressions to characterize the stability of the ionization region. The results from the local analysis presented here indicate the existence of an instability that gives rise to an azimuthal oscillation in the +E??B direction with a long wavelength. According to the model, the instability seems to appear only in regions where the ionization and the electric field make it possible to have positive gradients of plasma density and ion velocity at the same time. A more complex model is also solved numerically to validate the analytical results. Additionally, parametric variations are carried out with respect to the main parameters of the model to identify the trends of the instability. As the temperature increases and the neutral-to-plasma density ratio decreases, the growth rate of the instability decreases down to a limit where azimuthal perturbations are no longer unstable.

  19. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

    SciTech Connect (OSTI)

    Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

    2010-11-24

    KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

  20. Measurement of azimuthal asymmetries of the unpolarized cross section at HERMES

    SciTech Connect (OSTI)

    Giordano, Francesca [INFN and Universita degli studi di Ferrara (Italy); Lamb, Rebecca [University of Illinois (United States)

    2009-08-04

    A multi-dimensional (x, y, z, P{sub hperpendicular}) extraction of cos {phi}{sub h} and cos 2{phi}{sub h} azimuthal asymmetries of unpolarized Semi-Inclusive Deep Inelastic Scattering at HERMES is discussed. The use of data taken with hydrogen and deuterium targets and the separation of positive and negative hadrons allow to access flavor-dependent information about quark intrinsic transverse momenta and spin-orbit correlations. This flavor sensitivity allows for a discrimination between theoretical models in the HERMES kinematic regime.

  1. Azimuthal anisotropy of the scattered radiation in grazing incidence X-ray fluorescence

    SciTech Connect (OSTI)

    Das, Gangadhar Tiwari, M. K.; Singh, A. K.; Ghosh, Haranath

    2015-06-24

    The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-ray fluorescence detection sensitivities.

  2. Azimuthal asymmetries for hadron distributions inside a jet in hadronic collisions

    SciTech Connect (OSTI)

    D'Alesio, Umberto; Pisano, Cristian; Murgia, Francesco

    2011-02-01

    Using a generalized parton model approach including spin and intrinsic parton motion effects, and assuming the validity of factorization for large-p{sub T} jet production in hadronic collisions, we study the azimuthal distribution around the jet axis of leading unpolarized or (pseudo)scalar hadrons, namely pions, produced in the jet fragmentation process. We identify the observable leading-twist azimuthal asymmetries for the unpolarized and single-polarized case related to quark and gluon-originated jets. We account for all physically allowed combinations of the transverse momentum-dependent (TMD) parton distribution and fragmentation functions, with special attention to the Sivers, Boer-Mulders, and transversity quark distributions, and to the Collins fragmentation function for quarks (and to the analogous functions for gluons). For each of these effects we evaluate, at central and forward rapidities and for kinematical configurations accessible at BNL-RHIC, the corresponding potentially maximized asymmetry (for {pi}{sup +} production), obtained by saturating natural positivity bounds (and the Soffer bound for transversity) for the distribution and fragmentation functions involved and summing additively all partonic contributions. We then estimate, for both neutral and charged pions, the asymmetries involving TMD functions for which parametrizations are available. We also study the role of the different mechanisms, and the corresponding transverse single-spin asymmetries, for large-p{sub T} inclusive-jet production.

  3. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2016-04-07

    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max, sensitive to the mass composition of cosmic rays above 3 x 1018 eV. By comparing measurements with predictions from shower simulations, we find for bothmore » of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Furthermore, the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (secθ)max.« less

  4. Particle-type dependence of azimuthal anisotropy and nuclearmodification of particle production in Au+Au collisions at sNN = 200GeV

    SciTech Connect (OSTI)

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman,R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll,J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay,S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gutierrez, T.D.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.K.; et al.

    2003-06-18

    We present STAR measurements of the azimuthal anisotropy parameter v{sub 2} and the binary-collision scaled centrality ratio R{sub CP} for kaons and lambdas ({Lambda} + {bar {Lambda}}) at mid-rapidity in Au+Au collisions at {radical}s{sub NN} = 200 GeV. In combination, the v{sub 2} and R{sub CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p{sub T} {approx} 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K{sub S}{sup 0} and {Lambda} + {bar {Lambda}} v{sub 2} values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

  5. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Dan Nelson; Joseph Hardin; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    2011-09-14

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  6. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Joseph Hardin; Dan Nelson; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    1990-01-01

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  7. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    SciTech Connect (OSTI)

    Joseph Hardin; Dan Nelson; Iosif Lindenmaier; Bradley Isom; Karen Johnson; Alyssa Matthews; Nitin Bharadwaj

    2011-05-24

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dan Nelson; Joseph Hardin; Iosif (Andrei) Lindenmaier; Bradley Isom; Karen Johnson; Nitin Bharadwaj

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  11. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a {Rho} even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

  12. Long-range azimuthal correlations in protonproton and protonnucleus collisions from the incoherent scattering of partons

    SciTech Connect (OSTI)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest partonparton cross-section of ? = 1.5 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in protonproton and protonnucleus collisions at the Large Hadron Collider.

  13. JLab Photographer Greg Adams passed away | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographer Greg Adams passed away Greg Adams Long-time Lab Photographer Greg Adams passed away on June 1; Visitation set for June 10; Celebration of Life service set for June 11 (information updated June 7) Gregory C. "Greg" Adams, 60, Jefferson Lab's photographer for 17 years, passed away on June 1, 2016. He had been battling health problems recently. The Celebration of Life for Greg will be held on Saturday, June 11, at 12 p.m.-noon at Liberty Baptist Church, located at 1021 Big

  14. 3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study

    SciTech Connect (OSTI)

    Grechka, V.; Tsvankin, I.

    1999-08-01

    Reflection moveout recorded over an azimuthally anisotropic medium (e.g., caused by vertical or dipping fractures) varies with the azimuth of the source-receiver line. Normal-moveout (NMO) velocity, responsible for the reflection traveltimes on conventional-length spreads, forms an elliptical curve in the horizontal plane. While this result remains valid in the presence of arbitrary anisotropy and heterogeneity, the inversion of the NMO ellipse for the medium parameters has been discussed so far only for horizontally homogeneous models above a horizontal or dipping reflector. Here, the authors develop an analytic moveout correction for weak lateral velocity variation in horizontally layered azimuthally anisotropic media. The correction term is proportional to the curvature of the zero-offset travel-time surface at the common midpoint and, therefore, can be estimated from surface seismic data. After the influence of lateral velocity variation on the effective NMO ellipses has been stripped, the generalized Dix equation can be used to compute the interval ellipses and evaluate the magnitude of azimuthal anisotropy (measured by P-wave NMO velocity) within the layer of interest. This methodology was applied to a 3-D wide-azimuth data set acquired over a fractured reservoir in the Powder River Basin, Wyoming. The processing sequence included 3-D semblance analysis (based on the elliptical NMO equation) for a grid of common-midpoint supergathers, spatial smoothing of the effective NMO ellipses and zero-offset traveltimes, correction for lateral velocity variation, and generalized Dix differentiation. The estimates of depth-varying fracture trends in the survey area, based on the interval P-wave NMO ellipses, are in good agreement with the results of outcrop and borehole measurements and the rotational analysis of four component S-wave data.

  15. Descriptive logs, skeletonized samples, and photographs of core...

    Open Energy Info (EERE)

    skeletonized samples, and photographs of core from Presco Energy's thermal gradient wells P3-1, P10-1, and P32-2 in the Rye Patch area, Pershing County, Nevada Jump to:...

  16. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, duemore » to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Finally, our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.« less

  17. Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.

  18. Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at ?sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2013-08-02

    The measurement of J/? azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at ?sNN>/sub>=200 GeV. The measured J/? elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/? particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  19. Long-range azimuthal correlations in proton-proton and proton-nucleus collisions from the incoherent scattering of partons

    SciTech Connect (OSTI)

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest partonparton cross-section of ?=1.53 mb?=1.53 mb, naturally explains the long-range two-particle azimuthal correlation as observed in protonproton and protonnucleus collisions at the Large Hadron Collider.

  20. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    SciTech Connect (OSTI)

    Motta, Arthur; Ivanov, Kostadin; Arramova, Maria; Hales, Jason

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  1. Propulsive performance of a finite-temperature plasma flow in a magnetic nozzle with applied azimuthal current

    SciTech Connect (OSTI)

    Ferrario, Lorenzo; Little, Justin M. Choueiri, Edgar Y.

    2014-11-15

    The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application of the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.

  2. Measurement of long-range pseudorapidity correlations and azimuthal harmonics in sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2014-10-09

    We present measurements of two-particle correlation functions and the first five azimuthal harmonics, v1 to v5, using 28 nb₋1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √sNN =5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|ΔΦ|<π/3) and back-to-back pairs (|ΔΦ|>2π/3) over the transverse momentum range 0.4T<12 GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations ismore » Fourier decomposed to obtain the harmonics vn as a function of pT and event activity. The extracted vn values for n = 2 to 5 decrease with n. The v2 and v3 values are found to be positive in the measured pT range. The v1 is also measured as a function of pT and is observed to change sign around pT ≈ 1.5–2.0 GeV and then increase to about 0.1 for pT>4 GeV. The v2(pT), v3(pT), and v4(pT) are compared to the vn coefficients in Pb+Pb collisions at √sNN = 2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average pT of particles produced in the two collision systems.« less

  3. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  4. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Meeee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  5. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and themore » number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.« less

  6. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    SciTech Connect (OSTI)

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.

  7. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  8. Azimuthally sensitive femtoscopy in hydrodynamics with statistical hadronization from the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Kisiel, Adam; Broniowski, Wojciech; Florkowski, Wojciech; Chojnacki, Mikolaj

    2009-01-15

    Azimuthally sensitive femtoscopy for heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) is explored within the approach consisting of the hydrodynamics of perfect fluid followed by statistical hadronization. It is found that for the RHIC initial conditions, employing the Gaussian shape of the initial energy density, the very same framework that reproduces the standard soft observables [including the transverse-momentum spectra, the elliptic flow, and the azimuthally averaged Hanbury-Brown-Twiss (HBT) radii] leads to a proper description of the azimuthally sensitive femtoscopic observables; we find that the azimuthal variation of the side and out HBT radii as well as out-side cross term are very well reproduced for all centralities. Concerning the dependence of the femtoscopic parameters on k{sub T} we find that it is very well reproduced. The model is then extrapolated to the LHC energy. We predict the overall moderate growth of the HBT radii and the decrease of their azimuthal oscillations. Such effects are naturally caused by longer evolution times. In addition, we discuss in detail the space-time patterns of particle emission. We show that they are quite complex and argue that the overall shape seen by the femtoscopic methods cannot be easily disentangled on the basis of simple-minded arguments.

  9. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2)more » and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flash blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  10. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c² the dielectron v₂ measurements are found to be consistent with expectations from π⁰,η,ω, and Φ decay contributions. In the mass region 1.1ee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  11. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    SciTech Connect (OSTI)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c² the dielectron v₂ measurements are found to be consistent with expectations from π⁰,η,ω, and Φ decay contributions. In the mass region 1.1ee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  12. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    SciTech Connect (OSTI)

    Adamczyk, L.; STAR Collaboration

    2014-12-01

    We report on the first measurement of the azimuthal anisotropy (v?) of dielectrons (e?e? pairs) at mid-rapidity from ?(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c the dielectron v? measurements are found to be consistent with expectations from ??,?,?, and ? decay contributions. In the mass region 1.1ee<2.9GeV/c, the measured dielectron v? is consistent, within experimental uncertainties, with that from the cc contributions.

  13. Azimuthal correlations of projectile and target fragments in collisions between gold nuclei of energy 10.6 GeV per nucleon and emulsion nuclei

    SciTech Connect (OSTI)

    Abdurakhmanov, U. U.; Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V. Navotny, V. Sh. Chudakov, V. M.

    2008-03-15

    Intra-and intergroup azimuthal correlations of projectile and target fragments are found in collisions between gold and emulsion nuclei. The statistical significance of these correlations is high. The methodological distortions associated with the measurement errors are investigated in detail and are taken into account.

  14. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  15. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  16. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  17. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  18. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  19. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  20. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  1. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  2. Elliptic azimuthal anisotropy of heavy-flavour decay electrons in Pb-Pb collisions at ?(S{sub NN})?=?2.76 TeV measured with ALICE

    SciTech Connect (OSTI)

    ALICE Collaboration, Denise Moreira de Godoy for the

    2014-11-11

    In this paper, we present the ALICE results on the elliptic azimuthal anisotropy of heavy-flavour decay electrons in 20-40% central Pb-Pb collisions at ?(S{sub NN})?=?2.76 TeV. Heavy quarks are produced in the early stages of the collision and they interact with the hot and dense color-deconfined medium created in heavy-ion collisions at high energies, the Quark-Gluon Plasma (QGP). Measurements of the elliptic azimuthal anisotropy of heavy-flavour decay electrons in non-central collisions can be used to investigate the degree of thermalization and energy loss of heavy quarks within the QGP. Theoretical predictions of heavy-quark transport in the medium are compared with the measurement.

  3. Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\\sqrt{s_{NN}}=2.76$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-05-01

    Measurements from the CMS experiment at the LHC of dihadron correlations for charged particles produced in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV are presented. The results are reported as a function of the particle transverse momenta (pt) and collision centrality over a broad range in relative pseudorapidity [Delta(eta)] and the full range of relative azimuthal angle [Delta(phi)]. The observed two-dimensional correlation structure in Delta(eta) and Delta(phi) is characterised by a narrow peak at (Delta(eta), Delta(phi)) approximately (0, 0) from jet-like correlations and a long-range structure that persists up to at least |Delta(eta)| = 4. An enhancement of the magnitude of the short-range jet peak is observed with increasing centrality, especially for particles of pt around 1-2 GeV/c. The long-range azimuthal dihadron correlations are extensively studied using a Fourier decomposition analysis. The extracted Fourier coefficients are found to factorise into a product of single-particle azimuthal anisotropies up to pt approximately 3-3.5 GeV/c for at least one particle from each pair, except for the second-order harmonics in the most central PbPb events. Various orders of the single-particle azimuthal anisotropy harmonics are extracted for associated particle pt of 1-3 GeV/c, as a function of the trigger particle pt up to 20 GeV/c and over the full centrality range.

  4. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  5. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  12. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. Constituent quark scaling violation due to baryon number transport

    SciTech Connect (OSTI)

    Dunlop J. C.; Lisa, M.A., Sorensen, P.

    2011-10-31

    In ultrarelativistic heavy-ion collisions at {radical}s{sub NN} {approx} 200 GeV, the azimuthal emission anisotropy of hadrons with low and intermediate transverse momentum (p{sub T} {approx}< 4 GeV/c) displays an intriguing scaling. In particular, the baryon (meson) emission patterns are consistent with a scenario in which a bulk medium of flowing quarks coalesces into three-quark (two-quark) 'bags.' While a full understanding of this number-of-constituent-quark (NCQ) scaling remains elusive, it is suggestive of a thermalized bulk system characterized by colored dynamical degrees of freedom - a quark-gluon plasma (QGP). In this scenario, one expects the scaling to break down as the central energy density is reduced below the QGP formation threshold; for this reason, NCQ-scaling violation searches are of interest in the energy scan program at the Relativistic Heavy Ion Collider. However, as {radical}s{sub NN} is reduced, it is not only the initial energy density that changes; there is also an increase in the net baryon number at midrapidity, as stopping transports entrance-channel partons to midrapidity. This phenomenon can result in violations of simple NCQ scaling. Still in the context of the quark coalescence model, we describe a specific pattern for the breakdown of the scaling that includes different flow strengths for particles and their antipartners. Related complications in the search for recently suggested exotic phenomena are also discussed.

  16. Measurements of bottom anti-bottom azimuthal production correlations in proton - anti-proton collisions at s**(1/2) = 1.8-TeV

    SciTech Connect (OSTI)

    Acosta, D.; Affolder, Anthony A.; Albrow, M.G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Baroiant, S.; Barone, M.; /Taiwan, Inst. Phys. /Argonne /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, Santa Barbara /Cantabria Inst. of Phys. /Carnegie Mellon U. /Chicago U., EFI /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U. /Harvard U. /Hiroshima U. /Illinois U., Urbana

    2004-12-01

    The authors have measured the azimuthal angular correlation of b{bar b} production, using 86.5 pb{sup -1} of data collected by Collider Detector at Fermilab (CDF) in p{bar p} collisions at {radical}s = 1.8 TeV during 1994-1995. In high-energy p{bar p} collisions, such as at the Tevatron, b{bar b} production can be schematically categorized into three mechanisms. The leading-order (LO) process is ''flavor creation'', where both b and {bar b} quarks substantially participate in the hard scattering and result in a distinct back-to-back signal in final state. The ''flavor excitation'' and the ''gluon splitting'' processes, which appear at next-leading-order (NLO), are known to make a comparable contribution to total b{bar b} cross section, while providing very different opening angle distributions from the LO process. An azimuthal opening angle between bottom and anti-bottom, {Delta}{phi}, has been used for the correlation measurement to probe the interaction creating b{bar b} pairs. The {Delta}{phi} distribution has been obtained from two different methods. one method measures the {Delta}{phi} between bottom hadrons using events with two reconstructed secondary vertex tags. The other method uses b{bar b} {yields} (J/{psi}X)({ell}X') events, where the charged lepton ({ell}) is an electron (e) or a muon ({mu}), to measure {Delta}{phi} between bottom quarks. The b{bar b} purity is determined as a function of {Delta}{phi} by fitting the decay length of the J/{psi} and the impact parameter of the {ell}. Both methods quantify the contribution from higher-order production mechanisms by the fraction of the b{bar b} pairs produced in the same azimuthal hemisphere, f{sub toward}. The measured f{sub toward} values are consistent with both parton shower Monte Carlo and NLO QCD predictions.

  17. Measurement of J/ψ Azimuthal Anisotropy in Au+Au Collisions at √sNN=200 GeV

    SciTech Connect (OSTI)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-08-02

    The measurement of J/ψ azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at √sNN>/sub>=200 GeV. The measured J/ψ elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/ψ particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  18. Measurement of J/ψ Azimuthal Anisotropy in Au+Au Collisions at √sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2013-08-02

    The measurement of J/ψ azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at √sNN>/sub>=200 GeV. The measured J/ψ elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/ψ particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  19. Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at sqrt{s_{NN}} = 2.76 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.,

    2014-04-01

    Measurements are presented by the CMS Collaboration at the Large Hadron Collider (LHC) of the higher-order harmonic coefficients that describe the azimuthal anisotropy of charged particles emitted in sqrt(s[NN]) = 2.76 TeV PbPb collisions. Expressed in terms of the Fourier components of the azimuthal distribution, the n = 3-6 harmonic coefficients are presented for charged particles as a function of their transverse momentum (0.3 < pt < 8.0 GeV), collision centrality (0-70%), and pseudorapidity (abs(eta) < 2.0). The data are analyzed using the event plane, multiparticle cumulant, and Lee-Yang zeros methods, which provide different sensitivities to initial-state fluctuations. Taken together with earlier LHC measurements of elliptic flow (n = 2), the results on higher-order harmonic coefficients develop a more complete picture of the collective motion in high-energy heavy-ion collisions and shed light on the properties of the produced medium.

  20. Development and testing of FIDELE: a computer code for finite-difference solution to harmonic magnetic-dipole excitation of an azimuthally symmetric horizontally and radially layered earth

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1981-04-01

    The FORTRAN IV computer code FIDELE simulates the high-frequency electrical logging of a well in which induction and receiving coils are mounted in an instrument sonde immersed in a drilling fluid. The fluid invades layers of surrounding rock in an azimuthally symmetric pattern, superimposing radial layering upon the horizonally layered earth. Maxwell's equations are reduced to a second-order elliptic differential equation for the azimuthal electric-field intensity. The equation is solved at each spatial position where the complex dielectric constant, magnetic permeability, and electrical conductivity have been assigned. Receiver response is given as the complex open-circuit voltage on receiver coils. The logging operation is simulated by a succession of such solutions as the sonde traverses the borehole. Test problems verify consistency with available results for simple geometries. The code's main advantage is its treatment of a two-dimensional earth; its chief disadvantage is the large computer time required for typical problems. Possible code improvements are noted. Use of the computer code is outlined, and tests of most code features are presented.

  1. Number

    Office of Legacy Management (LM)

    engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...

  2. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  3. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  4. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  5. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  6. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  7. Recent Measurements of the cos(n{phi}{sub h}) Azimuthal Modulations of the Unpolarized Deep Inelastic Scattering Cross-section at HERMES

    SciTech Connect (OSTI)

    Lamb, Rebecca; Giordano, Francesca [University of Illinois (United States)

    2009-12-17

    The cross section for hadron production in deep-inelastic lepton scattering contains azimuthal modulations which can be related to transverse momentum dependent (TMD) distribution and fragmentation functions. The former provide a picture of how the quarks are moving within nucleons. Specifically, the cos{phi}{sub h} and cos2{phi}{sub h} modulations of the unpolarized cross section relate quark spin and quark transverse momentum. These moments have been carefully measured at the HERMES experiment in a fully differential way, as a function of x, y, z, and P{sub hperpendicular} for positive and negative hadrons produced from hydrogen and deuterium targets. These measurements give new access to the flavor dependent TMDs via their charge and target dependence. These data must be compared to comprehensive models to determine which terms contribute significantly to the cos{phi}{sub h} and cos2{phi}{sub h} moments and allow access to the underlying structure functions.

  8. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\\sqrt{s_{NN}} =$ 2.76 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $v_2$ to $v_6$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $v_2$ harmonic becomes significantly smaller than the higher-order $v_n$ (n greater than or equal to 3). The pt-averaged $v_2$ and $v_3$ are found to be equal within 2%, while higher-order $v_n$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.

  9. Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at √s = 7 TeV using the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2014-10-31

    In addition jet activity in dijet events is measured using pp collisions at ATLAS at a centre-of-mass energy of 7TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijet s. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the scalar average of the transverse momenta of the dijet s and of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijet s. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWERHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWERHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data. These measurements use the full data sample collected with the ATLAS detector in 7TeV pp collisions at the LHC and correspond to integrated luminosities of 36.1pb–1 and 4.5fb–1 for data collected during 2010 and 2011, respectively.

  10. Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at √s = 7 TeV using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-10-31

    In addition jet activity in dijet events is measured using pp collisions at ATLAS at a centre-of-mass energy of 7TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijet s. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the scalar average of the transverse momenta of the dijet s and ofmore » the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijet s. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWERHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWERHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data. These measurements use the full data sample collected with the ATLAS detector in 7TeV pp collisions at the LHC and correspond to integrated luminosities of 36.1pb–1 and 4.5fb–1 for data collected during 2010 and 2011, respectively.« less

  11. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $$\\sqrt{s_{NN}} =$$ 2.76 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $v_2$ to $v_6$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $v_2$ harmonic becomes significantly smaller than the higher-order $v_n$ (n greater than or equal to 3). The pt-averaged $v_2$ and $v_3$ are found to be equal within 2%, while higher-order $v_n$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less

  12. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  13. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  14. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  15. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  16. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  17. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  19. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  20. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  2. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    SciTech Connect (OSTI)

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  3. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  4. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  5. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  13. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  18. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  20. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  2. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  8. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  5. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  6. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  8. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  11. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  12. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  14. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  16. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  17. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  20. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  8. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  11. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  12. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  14. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  17. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Connecticut Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 - = No Data Reported; -- = Not

  20. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  7. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  14. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  16. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  19. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  1. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  2. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  4. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  7. Predicting the Velocity and Azimuth of Fragments Generated by the Range Destruction or Random Failure of Rocket Casings and Tankage

    SciTech Connect (OSTI)

    Eck, Marshall B.; Mukunda, Meera

    1988-10-01

    The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling techniques to liquid-tankage-over-pressure failures are also discussed. These methods have been calibrated against observed SRM ascent failures and on-orbit tankage failures. Casing-quadrant sized fragments with velocities exceeding 100 m/s resulted from Titan 34D-SRM range destruct actions at 10 sec mission elapsed time (MET). Casing-quadrant sized fragments with velocities of approximately 200 m/s resulted from STS-SRM range destruct actions at 110 sec MET. Similar sized fragments for Ariane third stage and Delta second stage tankage were predicted to have maximum velocities of 260 m/s and 480 m/s respectively. Good agreement was found between the predictions and observations for five specific events and it was concluded that the methods developed have good potential for use in predicting the fragmentation process of a number of generically similar casing and tankage systems. There are three copies in the file, one of these is loose.

  8. Azimuthal decorrelations and multiple parton interactions in photon+2 jet and photon+3 jet events in ppbar collisions at sqrt{s}=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Serpukhov, IHEP

    2011-01-01

    Samples of inclusive {gamma} + 2 jet and {gamma} + 3 jet events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} in p{bar p} collisions at {radical}s = 1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (p{sub T}) of the {gamma} + leading jet system (jets are ordered in p{sub T}) and p{sub T} of the other jet for {gamma} + 2 jet, or p{sub T} sum of the two other jets for {gamma} + 3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the pythia and sherpa Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the pythia MPI models with p{sub T}-ordered showers and by sherpa with the default MPI model. The {gamma} + 2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet p{sub T}.

  9. Cost analysis of aerial photographic and satellite imagery for monitoring mined land reclamation

    SciTech Connect (OSTI)

    Green, J.E.; Buschur, J.P.

    1980-12-01

    Five sections of the Surface Mining Control and Reclamation Act of 1977 require information that is easily and efficiently obtainable by aerial photographic and remote sensing methods. Most states in which mining is important and to which the Act most specifically applies, maintain or have available to them aerial photographic or remotely sensed information of the type required. This information could be used to meet the requirements of the Act which call for monitoring reclamation progress, identifying land areas unsuitable for mining and determining land use prior to mining to name a few examples. At the regional scale, LANDSAT imagery of a scale of 1:250,000 provides a good combination of aerial coverage and detail for regional problem solving. At the local scale, such coverage as is provided by the Agricultural Stabilization and Conservation Service through their aerial observation method of compliance technique can supply local, detailed information to meet site specific needs.

  10. Method for the recovery of silver from waste photographic fixer solutions

    DOE Patents [OSTI]

    Posey, Franz A.; Palko, Aloysius A.

    1984-01-01

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  11. Method for the recovery of silver from waste photographic fixer solutions

    DOE Patents [OSTI]

    Posey, F.A.; Palko, A.A.

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  12. SAR image formation with azimuth interpolation after azimuth transform

    DOE Patents [OSTI]

    Doerry; Armin W. , Martin; Grant D. , Holzrichter; Michael W.

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  13. Observation of long-range elliptic azimuthal anisotropies in √s = 13 and 2.76 TeV pp collisions with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2016-04-27

    In this study, ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, ΔΦ, and pseudorapidity, Δη, in √s = 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval |η|<2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at ΔΦ~0 that extends over a wide range of Δη, which has been referred to as the “ridge.” Per-trigger-particle yields, Y(ΔΦ), are measured over 2<|Δη|<5. For both collision energies, the Y(ΔΦ) distribution in all multiplicity intervals is found to be consistent with a linearmore » combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by cos(2ΔΦ). The fitted Fourier coefficient, v2,2, exhibits factorization, suggesting that the ridge results from per-event cos(2Φ) modulation of the single-particle distribution with Fourier coefficients v2. The v2 values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a pT dependence similar to that measured in p+Pb and Pb+Pb collisions. The v2 values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p+Pb collisions, and that the dynamics responsible for the ridge has no strong √s dependence.« less

  14. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  15. DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME

    DOE Patents [OSTI]

    Gilbert, F.C.

    1962-03-13

    A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)

  16. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect (OSTI)

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  17. A photographic method for estimating wear of coal tar sealcoat from parking lots

    SciTech Connect (OSTI)

    Mateo Scoggins; Tom Ennis; Nathan Parker; Chris Herrington

    2009-07-01

    Coal-tar-based sealcoat has been recognized as an important source of PAHs to the environment through wear and transport via stormwater runoff. Sealcoat removal rates have not been measured or even estimated in the literature due to the complex array of physical and chemical process involved. A photographic study was conducted that incorporates all sources of wear using 10 coal tar-sealed parking lots in Austin, Texas, with sealcoat age ranging from 0 to 5 years. Randomly located photographs from each parking lot were analyzed digitally to quantify black sealed areas versus lighter colored unsealed areas at the pixel level. The results indicate that coal tar sealcoat wears off of the driving areas of parking lots at a rate of approximately 4.7% per year, and from the parking areas of the lots at a rate of approximately 1.4% per year. The overall annual loss of sealcoat was calculated at 2.4%. This results in an annual delivery to the environment of 0.51 g of PAHs per m{sup 2} of coal tar-sealed parking lot. These values provide a more robust and much higher estimate of loading of PAHs from coal tar sealcoated parking lots when compared to other available measures. 20 refs., 6 figs.

  18. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  19. Silver-halide/organic-composite structures: Toward materials with multiple photographic functionalities

    SciTech Connect (OSTI)

    Bringley, Joseph F. . E-mail: joseph.bringley@kodak.com; Rajeswaran, Manju; Olson, Leif P.; Liebert, Nancy M.

    2005-10-15

    We report the synthesis and structure of the novel silver-halide-based organic-inorganic hybrids Ag{sub 2}Br{sub 6}(PPD){sub 2}, Ag{sub 2}Br{sub 6}(CD-2){sub 2}.H{sub 2}O, Ag{sub 2}Br{sub 4}(TMBD), and Ag{sub 2}I{sub 6}(CD-2){sub 2}.H{sub 2}O. 1,4-phenylenediammonium hexabromodiargentate(I) [Ag{sub 2}Br{sub 6}(PPD){sub 2}] crystals are monoclinic (P2{sub 1}/n), with unit-cell dimensions, a=10.1915(3)A, b=7.7562(2)A, c=12.4340(5)A and {beta}=93.109(1){sup o}. N,N-diethyl-2-methyl-1,4-benzenediammonium hexabromodiargentate(I) monohydrate [Ag{sub 2}Br{sub 6}(CD-2){sub 2}.H{sub 2}O] crystals are monoclinic (space group P2{sub 1}/c) with a=10.8434(2)A, b=11.4293(2)A, c=14.3729(1)A, and {beta}=96.153(1){sup o}. N,N,N',N'-tetramethyl-1,4-benzenediammonium tetrabromodiargentate(I) [Ag{sub 2}Br{sub 4}(TMBD)] crystals are orthorhombic (space group Pbcn) with a=17.0030(6)A, b=6.6163(2)A, and c=15.9762(6)A. N,N-diethyl-2-methyl-1,4-benzenediammonium hexaiododiargentate(I) monohydrate, [Ag{sub 2}I{sub 6}(CD-2){sub 2}.H{sub 2}O], are monoclinic (C2/c), with unit-cell dimensions, a=21.4691(4)A, b=12.1411(2)A, c=14.3102(2)A, and {beta}=98.657(1){sup o}. The novel structures are members of a class of silver-halide-based organic-inorganic hybrids based upon the assembly of [Ag{sub a}X{sub b}]{sup n-} clusters and protonated organoamines in aqueous mineral acids. The clusters display short intracluster Ag-Ag distances, and computational methods are used to evaluate intracluster Ag-Ag bonding. The diverse stoichiometries and cluster connectivities observed suggest a rich compositional and structural chemistry based upon the general assembly method. We have extended the methodology to include a silver-halide-organoamonium chemistry in which the organic moiety is chosen to serve a specific photographic function and demonstrate the first examples of such materials. The methodology allows for the direct assembly of [Ag{sub a}X{sub b}]{sup n-} clusters with commercial photographic color

  20. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  1. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  2. On the binary expansions of algebraic numbers

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  3. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  5. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster ...

  6. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  7. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-04-29 11:34:50

  8. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  9. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  10. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  11. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  12. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  13. Approximate resolution of hard numbering problems

    SciTech Connect (OSTI)

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  14. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  15. WIPP Documents - All documents by number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  16. Battling bird flu by the numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  17. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  18. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  19. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  20. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  1. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  2. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  3. Oklahoma Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 94,314 92,430 93,903 94,537 95,385 96,004 1987-2014 Sales 88,217 89,573 90,097 90,861 91,402 1998-2014 Transported 4,213 4,330 4,440 4,524 4,602 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 439 452 430 382 464 489 1967-2014 Industrial Number of Consumers 2,618 2,731 2,733 2,872 2,958 3,063 1987-2014

  4. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  5. WIPP Site By The Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 ft. By the Numbers The Waste Isolation Pilot Plant (WIPP) is a Department of Energy facility designed to safely isolate defense- related transuranic (TRU) waste from people and the environment. WIPP, which began waste disposal operations in 1999, is located 26 miles outside of Carlsbad, New Mexico. Waste temporarily stored at sites around the country is shipped to WIPP and permanently disposed in rooms mined out of an ancient salt formation below the surface. TRU waste destined for WIPP

  6. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  7. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Number of Producing Gas

  8. Table B14. Number of Establishments in Building, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  9. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of

  10. Measurement of the azimuthal angle distribution of leptons from W boson decays as a function of the W transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

    SciTech Connect (OSTI)

    Acosta, D.; Affolder, Anthony A.; Albrow, M.G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Baroiant, S.; Barone, M.; /Taiwan, Inst. Phys. /Argonne /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, Santa Barbara /Cantabria Inst. of Phys. /Carnegie Mellon U. /Chicago U., EFI /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U. /Harvard U. /Hiroshima U. /Illinois U., Urbana

    2005-04-01

    We present the first measurement of the A{sub 2} and A{sub 3} angular coefficients of the W boson produced in proton-antiproton collisions. We study W {yields} ev{sub e} and W {yields} {mu}{nu}{sub {mu}} candidate events produced in association with at least one jet at CDF, during Run Ia and Run Ib of the Tevatron at {radical}s = 1.8 TeV. The corresponding integrated luminosity was 110 pb{sup -1}. The jet balances the transverse momentum of the W and introduces QCD effects in W boson production. The extraction of the angular coefficients is achieved through the direct measurement of the azimuthal angle of the charged lepton in the Collins-Soper rest-frame of the W boson. The angular coefficients are measured as a function of the transverse momentum of the W boson. The electron, muon, and combined results are in good agreement with the Standard Model prediction, up to order {alpha}{sub s}{sup 2} in QCD.

  11. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  12. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  13. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  14. Experimental Stations by Number | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 5000 to 37000 eV Ryan Davis

  15. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  16. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 322 270 357 310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  17. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 24 27 26 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  18. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 8 9 7 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  19. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 53 100 26 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  20. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 885,257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next

  1. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 277 185 159 170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016

  2. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  3. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  4. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  5. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 210 212 1,089 1,024 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  6. Michigan Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    3,169,026 3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 1987-2014 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 1997-2014 Transported 199,918 207,388 221,340 230,034 207,492 1997-2014 Commercial Number of Consumers 252,017 249,309 249,456 249,994 250,994 253,127 1987-2014 Sales 217,325 213,995 212,411 213,532 219,240 1998-2014 Transported 31,984 35,461 37,583 37,462 33,887 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 649 611 656 578 683 736 1967-2014 Industrial

  7. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57

  8. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12

  9. 10a- Azimuthal modesNEW.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and not in lab expts. ILLUSTRATION IN LAB EXPERIMENTS * DAWSON Experiment (Cambridge 2011) 3 Fluctuating heat release 4 5 Ecole Centrale Experiment 20132014...

  10. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 0 0 0 0 0 1 1 1 1 1 1 1 2016 1 1 1 1 0 0

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per

  11. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 - = No Data Reported; -- = Not Applicable; NA = Not

  12. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,265 6,123 6,079 1990's 5,976 8,444 11,474 11,224 10,608 10,362 10,139 17,625 16,282 10,089 2000's 9,686 9,247 8,473 9,027 8,947 8,500 8,245 8,036 7,680 7,871 2010's 7,505 7,391 7,290 7,216 7,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,276 24,654 27,426 1990's 25,008 28,837 28,198 23,833 21,833 22,484 15,300 23,099 5,294 6,136 2000's 6,553 6,501 3,068 2,984 2,963 3,752 3,642 7,484 7,080 6,634 2010's 6,236 6,609 5,910 6,311 6,313 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 46,717 35,104 32,664 32,967 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 54,347 55,136 53,762 70,400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  18. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,248 1990's 11,713 12,169 12,483 12,836 13,036 13,311 13,501 13,825 14,381 14,750 2000's 13,487 14,370 14,367 12,900 13,920 14,175 15,892 16,563 16,290 17,152 2010's 17,670 14,632 17,936 19,494 19,256 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 21,235 19,792 19,528 19,251 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 11,100 10,900 10,550 10,500 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 5,732 1,669 1,967 1,645 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  5. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,431 1990's 2,600 2,821 3,111 3,615 3,942 4,196 4,510 5,160 5,166 4,950 2000's 9,907 13,978 15,608 18,154 20,244 23,734 25,052 27,350 28,969 25,710 2010's 26,124 26,180 22,171 22,358 22,091 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  7. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  8. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522 66,375,134 66,812,393

  9. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,005,081 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 1,308 1,423 1,335 1,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 30,101 32,000 32,468 38,346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  13. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 - = No Data Reported; -- = Not Applicable; NA = Not

  14. District of Columbia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 - = No Data Reported; --

  15. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 100,966 96,617 97,618 98,279 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,418,986 - =

  17. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  18. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  19. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522

  20. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  1. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  2. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  3. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    Open Energy Info (EERE)

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  4. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    Open Energy Info (EERE)

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  5. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  6. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  7. Local Energy Assurance Planning: Map of States with Number of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States with Number of Cities Selected Local Energy Assurance Planning: Map of States with Number of Cities Selected Map of the United States identifying the States with cities ...

  8. West Valley Demonstration Project Site Cleanup By the Numbers...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the ...

  9. Fact #857 January 26, 2015 Number of Partner Workplaces Offering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Partner Workplaces with Electric Vehicle Charging Stations, November 2014 Graph showing number of partner workplaces with electric vehicle charging stations from the ...

  10. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active) Project Registration Number Assignments (Active) As of: May 2016 Provides a table of Project Registration Number Assignments (Active) Project Registration Number Assignment (Active) (511.76 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Completed

  11. Project Registration Number Assignments (Completed) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completed) Project Registration Number Assignments (Completed) As of: May 2016 Provides a table of Project Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) (406.85 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active

  12. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 8. 3. Special radar, radio, and photographic studies of weapons effects. Part 1, 2, 3, and 4

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    Contents include: Part 1--radar-scope photography; Part 2--effects of atomic detonation on radio propagation; Part 3; photographic assessment of bomb damage; Part 4--film fogging studies.

  13. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221

  14. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  15. Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

  16. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  17. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). Baseline Inventory.pdf (23.65 KB) More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  18. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link (for microcomputers). Data file

    SciTech Connect (OSTI)

    1995-11-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN Case Number order with `P` case numbers sorted first, followed by `Y` case numbers. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition and its 1990 Supplement. New versions of this file may be issued in the future. No search software is provided with this DOS formatted diskette.

  19. Random Number Generation for Petascale Quantum Monte Carlo

    SciTech Connect (OSTI)

    Ashok Srinivasan

    2010-03-16

    The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.

  20. Energy Technology Engineering Center (ETEC) Cleanup By the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) Cleanup By the Numbers Energy Technology Engineering Center (ETEC) Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of

  1. Prediction of cloud droplet number in a general circulation model

    SciTech Connect (OSTI)

    Ghan, S.J.; Leung, L.R.

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  2. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act Developing and Enhancing Workforce Training Programs: Number of Projects by State (389.21 KB) More Documents & Publications Workforce Development Wind Projects

  3. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  4. Truly Random Number Generator Promises Stronger Encryption Across All

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. March 4, 2016 Random Number Generator Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. They were awarded a third patent

  5. Savannah River Site by the Numbers August 2015

    Office of Environmental Management (EM)

    Also built were a number of support facilities including two chemical separations plants, a heavy water extraction plant, a nuclear fuel and target fabrication facility, a tritium ...

  6. Regulation Identifier Number Title/Subject/Purpose Rule Type

    Broader source: Energy.gov (indexed) [DOE]

    Regulation Identifier Number TitleSubjectPurpose Rule Type Status 1990-AA40 ... Amend DOE's statutory prescribed regulation, which set forth the procedural rules ...

  7. The Charge Conjugation Quantum Number in Multiquark Systems

    SciTech Connect (OSTI)

    Stancu, Fl.

    2008-08-29

    We discuss the charge conjugation quantum number for tetraquarks or meson-meson molecules, seen as possible interpretations of the newly found XYZ charmonium-like resonances.

  8. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters; Journal Volume: 103; Journal Issue: 6 ...

  9. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dependence of Band Renormalization Effect on the Number of Copper-oxide ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  10. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  11. Temporary EPA ID Number Request | Open Energy Information

    Open Energy Info (EERE)

    Temporary EPA ID Number RequestLegal Abstract A developer that may "generate hazardous waste only from an episodic event" may instead apply for a temporary hazardous waste...

  12. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  13. Request for Proposals Number RHB-5-52483

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Renewable Energy Laboratory Managed and Operated by the Alliance for Sustainable Energy, LLC Request for Proposals Number RHB-5-52483 "Subsurface Utility Engineering...

  14. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect (OSTI)

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  15. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users ...

  16. Crosswalk of Directives Numbering System - DOE Directives, Delegations,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Requirements Crosswalk of Directives Numbering System by Website Administrator PDF document icon CROSWLK-3-27-2014.pdf - PDF document, 132 KB (135996 bytes

  17. Mass, quark-number, and sqrt sNN dependence of the second andfourth flow harmonics in ultra-relativistic nucleus-nucleuscollisions

    SciTech Connect (OSTI)

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-01-06

    We present STAR measurements of the azimuthal anisotropyparameter v_2 for pions, kaons, protons, Lambda, bar Lambda, Xi+bar Xi,and \\Omega + bar Omega, along with v_4 for pions, kaons, protons, andLambda + bar Lambda at mid-rapidity for Au+Au collisions at sqrt sNN=62.4and 200 GeV. The v_2(p_T) values for all hadron species at 62.4 GeV aresimilar to those observed in 130 and 200 GeV collisions. For observedkinematic ranges, v_2 values at 62.4, 130, and 200 GeV are as little as10 percent-15 percent larger than those in Pb+Pb collisions at sqrt s NN=17.3 GeV. At intermediate transverse momentum (p_T from 1.5-5 GeV/c),the 62.4 GeV v_2(p_T) and v_4(p_T) values are consistent with thequark-number scaling first observed at 200 GeV. A four-particle cumulantanalysis is used to assess the non-flow contributions to pions andprotons and some indications are found for a smaller non-flowcontribution to protons than pions. Baryon v_2 is larger than anti-baryonv_2 at 62.4 and 200 GeV perhaps indicating either that the initialspatial net-baryon distribution is anisotropic, that the mechanismleading to transport of baryon number from beam- to mid-rapidity enhancesv_2, or that anti-baryon and baryon annihilation is larger in thein-plane direction.

  18. Fact #803: November 11, 2013 Average Number of Transmission Gears...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Average Number of Gears for New Light Vehicles, Model Years 1979-2012 Model Year Average Number of Gears 1979 3.3 1980 3.5 1981 3.5 1982 3.6 1983 3.7 1984 3.7 1985 3.8 1986 3.8 ...

  19. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the Toxic Substances Control Act (TSCA) Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition and its 1990 Supplement. New versions of this file may be issued in the future.

  20. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square

  1. Galaxy number counts to second order and their bispectrum

    SciTech Connect (OSTI)

    Dio, Enea Di; Durrer, Ruth; Marozzi, Giovanni; Montanari, Francesco E-mail: Ruth.Durrer@unige.ch E-mail: Francesco.Montanari@unige.ch

    2014-12-01

    We determine the number counts to second order in cosmological perturbation theory in the Poisson gauge and allowing for anisotropic stress. The calculation is performed using an innovative approach based on the recently proposed ''geodesic light-cone'' gauge. This allows us to determine the number counts in a purely geometric way, without using Einstein's equation. The result is valid for general dark energy models and (most) modified gravity models. We then evaluate numerically some relevant contributions to the number counts bispectrum. In particular we consider the terms involving the density, redshift space distortion and lensing.

  2. Semi-device-independent random-number expansion without entanglement

    SciTech Connect (OSTI)

    Li Hongwei; Yin Zhenqiang; Wu Yuchun; Zou Xubo; Wang Shuang; Chen Wei; Guo Guangcan; Han Zhengfu

    2011-09-15

    By testing the classical correlation violation between two systems, true random numbers can be generated and certified without applying classical statistical method. In this work, we propose a true random-number expansion protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared with the device-independent random-number expansion protocol based on entanglement, our protocol is much easier to implement and test.

  3. Mailing Addresses and Information Numbers for Operations, Field, and Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offices | Department of Energy About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley

  4. Property:NumberOfUsers | Open Energy Information

    Open Energy Info (EERE)

    property "NumberOfUsers" Showing 25 pages using this property. (previous 25) (next 25) H HOMER + 578 + HOMER + 14 + HOMER + 1 + HOMER + 34 + HOMER + 6 + HOMER + 68 + HOMER + 89...

  5. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics » Users and Projects Through the Years Number of NERSC Users and Projects Through the Years These numbers exclude staff and vendor accounts. Year Number of Users Number of Projects 2014 5,950 846 2013 5.191 768 2012 4,659 728 2011 4,934 641 2010 4,294 540 2009 3,731 506 2008 3,271 464 2007 3,111 404 2006 2,978 385 2005 2,677 348 2004 2,416 347 2003 2,323 318 2002 2,594 337 2001

  6. Property:Buildings/ReportNumber | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsReportNumber" Showing 2 pages using this property. G General Merchandise 50%...

  7. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the ...

  8. Conducting Your Annual VPP Self-Evaluation by the Numbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VPP Annual Self-Evaluation: By the Numbers Presented to: 25 th National VPPPA Conference August 26, 2009 San Antonio, Texas Presented by: Jack Griffith HNF-42179 CHPRC0907-38 VPP Annual Self-evaluation: By the Numbers Who is Jack Griffith: - Hanford Atomic Metal Trades Council Union Safety / Site VPP representative - 32-year member of United Brotherhood of Carpenters - Member and officer of Local 2403 Carpenters and Millwrights - Life member of Harley Owners Group - Certified Motorcycle Safety

  9. Video: Recovery Act by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video: Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the

  10. Record Number Attend EM's Science Alliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  11. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation deer10_klindt.pdf (866.03 KB) More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  12. NNSA Achievements: 2015 by the Numbers | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Achievements: 2015 by the Numbers VIDEO: 2015 by the numbers How did we perform this year? What did we accomplish? NNSA's nuclear security enterprise - including its laboratories, production facilities, and sites - provides unique technical solutions to solve the national security challenges of today and the future. In 2015, in addition to the Stockpile Stewardship and Management Plan and Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear

  13. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  14. Los Alamos National Laboratory attracts record number of students this

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    summer LANL attracts record number of students Los Alamos National Laboratory attracts record number of students this summer More than 1,300 students interned in both technical and nontechnical fields. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  15. Simulation of High Reynolds Number Turbulent Boundary Layers | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility A visualization of the velocity in a boundary layer at Reynolds numbers up to 2100 shows the growth of the turbulence structures out into the free stream as it evolves downstream (to the right) and the intermittent uneven boundary of the turbulent region. Juan Sillero, Universidad Politécnica de Madrid. Simulation of High Reynolds Number Turbulent Boundary Layers PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas at Austin

  16. California's Efforts for Advancing Ultrafine Particle Number Measurements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Clean Diesel Exhaust | Department of Energy California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_huai.pdf (791.33 KB) More Documents & Publications Measurement of

  17. Low Mach Number Modeling of Type Ia Supernovae

    SciTech Connect (OSTI)

    Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Michael

    2005-08-05

    We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional an elastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.

  18. INTERSTELLAR SONIC AND ALFVENIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

    SciTech Connect (OSTI)

    Tofflemire, Benjamin M.; Burkhart, Blakesley; Lazarian, A.

    2011-07-20

    In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 512{sup 3}. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For three-dimensional density, column density, and Position-Position-Velocity data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfvenic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.

  19. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) Federal Offshore ...

  20. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  1. Nusselt numbers in rectangular ducts with laminar viscous dissipation

    SciTech Connect (OSTI)

    Morini, G.L.; Spiga, M.

    1999-11-01

    The need for high thermal performance has stimulated the use of rectangular ducts in a wide variety of compact heat exchangers, mainly in tube-fin and plate-fin exchangers, in order to obtain an enhancement in heat transfer, with the same cross-sectional area of the duct. In this paper, the steady temperature distribution and the Nusselt numbers are analytically determined for a Newtonian incompressible fluid in a rectangular duct, in fully developed laminar flow with viscous dissipation, for any combination of heated and adiabatic sides of the duct, in H1 boundary condition, and neglecting the axial heat conduction in the fluid. The Navier-Stokes and the energy balance equations are solved using the technique of the finite integral transforms. For a duct with four uniformly heated sides (4 version), the temperature distribution and the Nusselt numbers are obtained as a function of the aspect ratio and of the Brinkman number and presented in graphs and tables Finally it is proved that the temperature field in a fully developed T boundary condition can be obtained as a particular case of the H1 problem and that the corresponding Nusselt numbers do not depend on the Brinkman number.

  2. Table B15. Number of Establishments in Building, Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Number of Establishments in Building, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",67338,43343,10582,3574,3260,4811,1769 "Building Floorspace" "(Square Feet)" "1,001

  3. Table B8. Year Constructed, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  4. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOE Patents [OSTI]

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  5. Contract Number DE-AC27-10RV15051

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Number DE-AC27-10RV15051 Modification 106 SF-30 Attachment Attachment DE-AC27-10RV15051 MODIFICATION 106 Replacement Pages (Total: 53, including this Cover Page)  Section B.1, Type of Contract - Items Being Acquired, Page B-8  Section H, Special Contract Requirements, Pages i, ii, and H-27  Section I, Contract Clauses, Pages I-1 thru I-48 222-S LAS&T Contract DE-AC27-10RV15051 Conformed thru Contract Modification No. 106 B-8 (e) OPTION PERIOD III: CLIN Number Description

  6. Treatability study Number PDC-1-O-T. Final report

    SciTech Connect (OSTI)

    1998-04-22

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream {number_sign}1, Stream {number_sign}3, Stream {number_sign}6, and Stream {number_sign}7. Stream {number_sign}1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream {number_sign}3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream {number_sign}6 was packaged in three 30-gallon drums and a 100 ft{sup 3} wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream {number_sign}7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network`s mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable

  7. Photographic%20credit%E2%80%9CArchitect%20of%20the%20Capitol.%E2%80%9D%202010%20LED%20Tree.jpg

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information Photographic%20credit%E2%80%9CArchitect%20of%20the%20Capitol.%E2%80%9D%202010%20LED%20Tree

  8. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  9. Survey of lepton number violation via effective operators

    SciTech Connect (OSTI)

    Gouvea, Andre de; Jenkins, James [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2008-01-01

    We survey 129 lepton number violating effective operators, consistent with the minimal standard model gauge group and particle content, of mass dimension up to and including 11. Upon requiring that each one radiatively generates the observed neutrino masses, we extract an associated characteristic cutoff energy scale which we use to calculate other observable manifestations of these operators for a number of current and future experimental probes, concentrating on lepton number violating phenomena. These include searches for neutrinoless double-beta decay and rare meson, lepton, and gauge boson decays. We also consider searches at hadron/lepton collider facilities in anticipation of the CERN LHC and the future ILC. We find that some operators are already disfavored by current data, while more are ripe to be probed by next-generation experiments. We also find that our current understanding of lepton mixing disfavors a subset of higher dimensional operators. While neutrinoless double-beta decay is the most promising signature of lepton number violation for the majority of operators, a handful is best probed by other means. We argue that a combination of constraints from various independent experimental sources will help to pinpoint the ''correct'' model of neutrino mass, or at least aid in narrowing down the set of possibilities.

  10. Energy By The Numbers: Collegiate Wind Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collegiate Wind Competition Energy By The Numbers: Collegiate Wind Competition Addthis The U.S. Department of Energy Collegiate Wind Competition prepares students from multiple disciplines to enter tomorrow's wind energy workforce. As part of the competition, undergraduate students build and test a wind turbine, establish a deployment strategy, and develop and deliver a business plan.

  11. General displaced SU(1, 1) number states: Revisited

    SciTech Connect (OSTI)

    Dehghani, A. E-mail: a-dehghani@tabrizu.ac.ir

    2014-04-15

    The most general displaced number states, based on the bosonic and an irreducible representation of the Lie algebra symmetry of su(1, 1) and associated with the Calogero-Sutherland model are introduced. Here, we utilize the Barut-Girardello displacement operator instead of the Klauder-Perelomov counterpart, to construct new kind of the displaced number states which can be classified in nonlinear coherent states regime, too, with special nonlinearity functions. They depend on two parameters, and can be converted into the well-known Barut-Girardello coherent and number states, respectively, depending on which of the parameters equal to zero. A discussion of the statistical properties of these states is included. Significant are their squeezing properties and anti-bunching effects which can be raised by increasing the energy quantum number. Depending on the particular choice of the parameters of the above scenario, we are able to determine the status of compliance with flexible statistics. Major parts of the issue is spent on something that these states, in fact, should be considered as new kind of photon-added coherent states, too. Which can be reproduced through an iterated action of a creation operator on new nonlinear Barut-Girardello coherent states. Where the latter carry, also, outstanding statistical features.

  12. Table B6. Building Size, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings

  13. Total number of longwall faces drops below 50

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-02-15

    For the first time since Coal Age began its annual Longwall Census the number of faces has dropped below 50. A total of five mines operate two longwall faces. CONSOL Energy remains the leader with 12 faces. Arch Coal operates five longwall mines; Robert E. Murray owns five longwall mines. West Virginia has 13 longwalls, followed by Pennsylvania (8), Utah (6) and Alabama (6). A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs., 1 photo.

  14. Quarkyonic Matter and Quark Number Scaling of Elliptic Flow

    SciTech Connect (OSTI)

    Csernai, L. P.; Zschocke, S.; Horvat, Sz.; Cheng Yun; Mishustin, I. N.

    2011-05-23

    The constituent quark number scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model with rapid dynamical transition from ideal, deconfined and chirally symmetric Quark Gluon Plasma, to final non-interacting hadrons. In this transition a Bag model of constituent quarks is considered, where the quarks gain constituent quark mass while the background Bag-field breaks up and vanishes. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down one after the other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling, with assumptions on the details of the non-equilibrium processes.

  15. NNSS by the Numbers 07-29-15

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Numbers Nevada National Security Site Cleanup The Nevada National Security Site (NNSS) is a vast, unique and diverse research, evaluation and development complex encompassing 1,360 square miles. NNSS staff are dedicated to supporting national security and defense, nuclear nonproliferation and homeland security initiatives. NNSS mission activities include ensuring the safety and reliability of the nation's nuclear stockpile in the absence of underground nuclear testing; and providing

  16. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential mentor.) What goals do you want to work on during your participation in the mentoring program? Is there someone you would like to be your mentor? Yes No If yes, please list their name and any other possible mentors in order of preference: Expectations of the Mentoring Program How long? 6-months

  17. Regulation Identifier Number Title/Subject/Purpose Rule Type

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2016. Highlighted areas denote changes from the last update. Regulation Identifier Number Title/Subject/Purpose Rule Type Status 1990-AA40 Adminstrative Requirements for Other Transactions: revise requirements for technology investment agreements to broaden to support all types of other transactions. NOPR Drafting Notice of Proposed Rule-making for Federal Register 1901-AB37 Enforcement of Classified Information Security Requirements: Amend DOE's statutory prescribed regulation, which set

  18. Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are

  19. Savannah River Site by the Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SRS), a 310-square-mile (198,344 acres) Department of Energy (DOE) site, is located in the sand-hills region of South Carolina. The site was constructed during the early 1950s to produce the basic materials used in the fabrication of nuclear weapons, primarily tritium and plutonium-239, in support of our nation's defense programs. Five reactors were built to produce these materials. Also built were a number of support facilities including two chemical separations plants, a heavy water

  20. FINAL MECHANICAL EXAMINATION FORM PS-6 Pressure System Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MECHANICAL EXAMINATION FORM PS-6 Pressure System Number: Pressure System Name: Design Authority: CHECK IF COMPLETE, N/A IF NOT APPLICABLE: Materials, components and products meet specifications and the requirements of engineering design Applicable procedures for assembly, glue bonding, etc. Assembly of threaded, bolted and other joints conforms to Code and engineering design Alignment, supports and/or cold spring meet engineering design Dimensional checks of components and materials meet Code

  1. Maria Goeppert Mayer, the Nuclear Shell Structure, and Magic Numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maria Goeppert-Mayer, the Nuclear Shell Model, and Magic Numbers Resources with Additional Information Maria Goeppert-Mayer Courtesy Argonne National Laboratory While working at Argonne National Laboratory (ANL) in 1948, physicist Maria Goeppert-Mayer developed the explanation of how neutrons and protons within atomic nuclei are structured. Called the "nuclear shell model," her work explains why the nuclei of some atoms are more stable than others and why some elements have many

  2. TYPES OF COMPLIANCE REQUIREMENTS: CFDA Number Program Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number Program Title Activities Allowed or Unallowed Allowable Costs/Cost Principles Cash Management Davis Bacon Act Eligibility Equipment and Real Property Management Matching, Level of Effort, Earmarking Period of Availability of Federal Funds Procurement/ Suspension/ Debarment Program Income Real Property Acquisition/ Relocation Reporting Subrecipient Monitoring NEPA National Historic Preservation Act Special Tests and Provisions 81.036 Inventions and Innovations Yes Yes Yes Yes Yes Yes Yes

  3. Buildings Residential Network: Lessons Learned: Peer Exchange Calls, Number 7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn T he Better Buildings Residential Network hosts a series of Peer Exchange Calls that connect energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Following are lessons learned shared by Residential Network members during Peer Exchange Calls held in Winter 2016 that prove seeing is believing when it comes to helping

  4. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  5. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional...

    Gasoline and Diesel Fuel Update (EIA)

    Three-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar...

  6. Numberical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect (OSTI)

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/ C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numberical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. (5 tables, 8 figs, 12 refs.)

  7. Quantum Statistical Testing of a Quantum Random Number Generator

    SciTech Connect (OSTI)

    Humble, Travis S

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  8. MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: is interested in this program because: Are you willing to act as a mentor for ? Yes No Expectations of the Mentoring Program How long? 6-months minimum commitment. Are you willing to commit to the 6-months minimum timeframe? Yes No How much time? You decide with your mentee; 1-4 hours/month is recommended. Please return completed form to Ames Lab Human Resources, 105 TASF. Are you willing to commit 1-4 hours per month

  9. In Archive} Re: Number of ships at JBC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Re: Number of ships at JBC Jeffrey Galan to: Maxcine Maxted 07/31/2015 06:02 PM Cc: Michael Dunsmuir History: This message has been forwarded. Archive: This message is being viewed in an archive. Hey Maxine, I spoke to my Joint Base Charleston contact and he told me that JBC gets an average of 8-10 vessels a year at Wharf Alpha and 35-45 vessels base wide. Jeff Galan Program Manager U.S.-Origin Nuclear Material Removal Program Office of Material Management and Minimization National Nuclear

  10. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER NNSA HQ, NA-63, Deputy Director, Office of Acquisition and Supply Management Barbara H. Stearrett > $25M 202-586-7439 NNSA Service Center, Associate Director, Office of Business Services, Albuquerque, NM Donald J. Garcia < or equal to $25M 505-845-5878 Site offices do not have any HCA authority. NNSA SITE OFFICE CO NAME PHONE M&O CONTRACTOR NAME Bettis/Knolls Atomic Power Laboratory Mark Dickinson 202-781-6237 Bechtel

  11. Energy By The Numbers: Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Energy By The Numbers: Recovery Act Addthis America is now a world leader in clean energy. But how did we get there? One key reason is the Recovery Act of 2009, a historic investment to revitalize the economy during the worst financial crisis since the Great Depression. This investment created millions of jobs -- including thousands of clean energy jobs in sectors that never even existed before. For example, in 2009 there was not a single utility-scale photovoltaic solar farm in the

  12. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Contractor: Contract Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Period: Minimum Fee Maximum Fee Performance Period Fee Available Fee Earned FY2011 $6,190,992 $5,779,687 FY2012 $16,380,944 $14,173,044 FY2013 $16,972,816 $12,693,413 FY2014 $15,520,007 $13,207,526 FY2015 $14,269,197 $10,503,998 FY2016 Base Period $24,350,863 March 29, 2016- September 30, 2017 $28,251,114 $6,823,811 October 1, 2017- September 30, 2018 $18,834,076 October 1, 2018-

  13. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  14. Poster Title LA-UR Number Author(s) Thumbnail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Individual Permit Posters 1 December 4, 2013 Poster Title LA-UR Number Author(s) Thumbnail Contributions of Nitrite-Nitrogen, Nitrate-Nitrogen, and Orthophosphate Levels in Surface Water Runoff from Wildfire Severity Classes from the Las Conchas Fire in the Jemez Mountains, New Mexico, 2012 July 2013 Student Symposium LA-UR-13-25819 Anita Lavadie Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau July 2013 Student Symposium LA-UR-13-25505 Daria Cuthbertson

  15. Contract Number DE-AC27-10RV15051

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Number DE-AC27-10RV15051 Modification 100 SF-30 Attachment Attachment DE-AC27-10RV15051 MODIFICATION 100 Replacement Pages (Total: 37, including this Cover Page)  Section B.1, Type of Contract - Items Being Acquired, Page B-i and B-1  Section G.1(d), Electronic Media for Reports/Plans/Documents, Page G-1  Section J, Attachment 1, DOE Directives Applicable to the 222-S Lab, Pages J-1 thru J-3  Section J, Attachment 4, Washington Department of Labor Wage Determination, Pages

  16. Contract Number DE-AC27-10RV15051

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number DE-AC27-10RV15051 Modification 116 SF-30 Attachment Attachment DE-AC27-10RV15051 MODIFICATION 116 Replacement Pages (Total: 21, including this Cover Page)  Section J, Attachment 7, Performance Evaluation and Measurement Plan, Pages J-127 thru J-146 ¡ ¢ £ ¤ ¢ ¥ ¦ § ¨ ©       ¨    ¡ ¤ §  ¡  ! "  # #  § ¨ © $ ¨  % & '  (  ) § ¨ ©      0 ¨ ' 1 $ 1 

  17. Toxic Substances Control Act (TSCA)-PMN file: ASCII text data. TSCA chemical substances inventory: PMN number to EPA accession number link, August 1996 (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-08-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN case Number order with `P` case numbers sorted first, followed by `Y` case numbers.

  18. Message passing with a limited number of DMA byte counters

    SciTech Connect (OSTI)

    Blocksome, Michael; Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.

    2011-10-04

    A method for passing messages in a parallel computer system constructed as a plurality of compute nodes interconnected as a network where each compute node includes a DMA engine but includes only a limited number of byte counters for tracking a number of bytes that are sent or received by the DMA engine, where the byte counters may be used in shared counter or exclusive counter modes of operation. The method includes using rendezvous protocol, a source compute node deterministically sending a request to send (RTS) message with a single RTS descriptor using an exclusive injection counter to track both the RTS message and message data to be sent in association with the RTS message, to a destination compute node such that the RTS descriptor indicates to the destination compute node that the message data will be adaptively routed to the destination node. Using one DMA FIFO at the source compute node, the RTS descriptors are maintained for rendezvous messages destined for the destination compute node to ensure proper message data ordering thereat. Using a reception counter at a DMA engine, the destination compute node tracks reception of the RTS and associated message data and sends a clear to send (CTS) message to the source node in a rendezvous protocol form of a remote get to accept the RTS message and message data and processing the remote get (CTS) by the source compute node DMA engine to provide the message data to be sent.

  19. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  20. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  1. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect (OSTI)

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup ?2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock ?(t)?dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  2. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New York Natural Gas ...

  3. New Mexico Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) New Mexico Natural ...

  4. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  5. Projection techniques as methods of particle-number symmetry restoration

    SciTech Connect (OSTI)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N. [Laboratoire de Physique Theorique, Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria, and Centre de Recherche Nucleaire d'Alger - COMENA, BP 399, Alger-Gare, Algiers (Algeria)

    2007-10-15

    The accuracy of the variation before (VBP) and after (VAP) particle-number projection methods, the Lipkin-Nogami (LN) prescription, and the projected Lipkin-Nogami (PLN) method have been studied using two exactly solvable models. It is shown that the VBP and the LN methods are rather dubious not only in a weak pairing regime, but also in strong pairing for the evaluation of quantities other than the ground state energy. The PLN method provides good results for the ground and the excited state energies, but it must be used with caution for the occupation probabilities and the observables that strongly depend on it. It seems that the VAP is the only suitable method for a global description of the nuclear properties.

  6. Statistical evaluation of PACSTAT random number generation capabilities

    SciTech Connect (OSTI)

    Piepel, G.F.; Toland, M.R.; Harty, H.; Budden, M.J.; Bartley, C.L.

    1988-05-01

    This report summarizes the work performed in verifying the general purpose Monte Carlo driver-program PACSTAT. The main objective of the work was to verify the performance of PACSTAT's random number generation capabilities. Secondary objectives were to document (using controlled configuration management procedures) changes made in PACSTAT at Pacific Northwest Laboratory, and to assure that PACSTAT input and output files satisfy quality assurance traceability constraints. Upon receipt of the PRIME version of the PACSTAT code from the Basalt Waste Isolation Project, Pacific Northwest Laboratory staff converted the code to run on Digital Equipment Corporation (DEC) VAXs. The modifications to PACSTAT were implemented using the WITNESS configuration management system, with the modifications themselves intended to make the code as portable as possible. Certain modifications were made to make the PACSTAT input and output files conform to quality assurance traceability constraints. 10 refs., 17 figs., 6 tabs.

  7. Parameterized reduced-order models using hyper-dual numbers.

    SciTech Connect (OSTI)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize the effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.

  8. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Periods: Minimum Fee Maximum Fee Performance Period Fee Available Fee Earned FY2009/2010 $22,386,342 $19,332,431 FY2011 $26,164,766 $23,956,349 FY2012 $21,226,918 $19,099,251 FY2013 $21,030,647 $19,352,402 FY2014 $18,986,489 $16,518,626 FY2015 $21,043,816 $18,776,345 FY2016 $21,027,870 FY2017 Cumulative Fee $151,866,848 $117,035,404 $151,866,848 EM Contractor Fee Richland Operations Office - Richland, WA

  9. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Number: Contract Type: Total Estimated Contract Cost: Contract Base Period: Contract Option Period: Minimum Fee Target Fee Maximum Fee Performance Period Fee Available (N/A) Fee Earned (Equals 10% of Target) FY2005 $223,991 FY2006 $1,548,986 FY2007 $1,170,889 FY2008 $1,270,755 FY2009 $1,567,325 FY2010 $2,374,992 FY2011 $2,498,835 FY2012 $1,440,273 FY2013 $1,595,460 FY2014 $33,113,257 FY2015 $1,546,386 FY2016 $6,553,927 Cumulative Fee $54,905,075 N/A EM Contractor Fee Richland Operations Office -

  10. Axial asymmetry, finite particle number and the IBA

    SciTech Connect (OSTI)

    Casten, R.F.

    1984-01-01

    Although the IBA-1 contains no solutions corresponding to a rigid triaxial shape, it does contain an effective asymmetry. This arises from zero point motion in a ..gamma..-soft potential leading to a non-zero mean or rms ..gamma... Three aspects of this feature will be discussed: (1) The relation between IBA-1 calculations and the corresponding ..gamma... This point is developed in the context of the Consistent Q Formalism (CQF) of the IBA. (2) The dependence of this asymmetry on boson number, N, and the exploitation of this dependence to set limits on both the relative and absolute values of N for deformed nuclei. (3) The relation between this asymmetry and the triaxiality arising from the introduction of cubic terms into the IBA Hamiltonian. Various observables will be inspected in order both to determine their sensitivity to these two structural features and to explore empirical ways of distinguishing which origin of asymmetry applies in any given nucleus. 16 references.

  11. Level repulsion, nuclear chaos, and conserved quantum numbers

    SciTech Connect (OSTI)

    Garrett, J.D.

    1993-12-01

    A statistical analysis of the distribution of level spacings for states with the same spin and parity is described in which the average spacing is calculated for the total ensemble. Though the resulting distribution of level spacings for states of deformed nuclei with Z = 62 - 75 and A = 155 - 185 is the closest to that of a Poisson distribution yet obtained for nuclear levels, significant deviations are observed for small level spacings. Many, but not all, of the very closely-spaced levels have K-values differing by several units. The analysis of level spacings in {sup 157}Ho indicate that considerable caution should be excerised when drawing conclusions from such an analysis for a single deformed nucleus, since the sizable number of spacings that can be obtained from a few rotational bands are not all independent.

  12. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema (OSTI)

    Oganessian, Yuri [Flerov Laboratory of Nuclear Reactions, Russia and Joint Institute for Nuclear Research

    2010-09-01

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  13. Search for baryon number violation in top-quark decays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-02-20

    A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less

  14. Kubo relations and radiative corrections for lepton number washout

    SciTech Connect (OSTI)

    Bdeker, Dietrich; Laine, M. E-mail: laine@itp.unibe.ch

    2014-05-01

    The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.

  15. Azimuthal anisotropy distributions in high-energy collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.

    2015-03-01

    Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decreasemoreas the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of ?/s 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of ?/s is robust against non-linear effects.less

  16. Azimuthal inhomogeneity of turbulence structure and its impact...

    Office of Scientific and Technical Information (OSTI)

    Research Institute for Applied Mechanics, Kyushu ... Omuta 836-8505 (Japan) Research Center for Plasma ... OSTI Identifier: 22489835 Resource Type: Journal Article ...

  17. Anisotropic parton escape is the dominant source of azimuthal...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands Language: English Word Cloud More Like This Free Publicly Accessible Full Text Publisher's Version of ...

  18. Survival rate of initial azimuthal anisotropy in a multiphase...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text This ...

  19. Spatial potential ripples of azimuthal surface modes in topological...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  20. Randall-Sundrum graviton spin determination using azimuthal angular...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2012-05-09 OSTI Identifier: 1098902 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 85; ...

  1. Spatial potential ripples of azimuthal surface modes in topological...

    Office of Scientific and Technical Information (OSTI)

    ... NW placed on top of two gold elec- trodes are produced, separated by 1 p m gap (Fig. 1). ... whose depth is around 200 nm that is equivalent to the thickness of the gold electrodes. ...

  2. Spatial potential ripples of azimuthal surface modes in topological...

    Office of Scientific and Technical Information (OSTI)

    ... CA 94720, USA. 4Institute of Nanostructure and Solid State Physics, Universitat Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany. "These authors contributed equally to this work. ...

  3. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    the National Technical Information Service, Springfield, VA at www.ntis.gov. Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  4. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 742; Journal Issue: C; Related Information: CHORUS Timestamp: 2016-06-02 01:39:23; Journal ID: ISSN 0370-2693 Publisher: Elsevier ...

  5. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 742; Journal Issue: C; Journal ID: ISSN 0370-2693 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Netherlands Language: English Word...

  6. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link, February 1996 (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-02-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, an EPA special flags. The sequence of the file is in ascending PMN case Number order with `P` case numbers sorted first, followed by `Y` case numbers. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition (PB87-129409) and its 1990 Supplement (PB91-159665 and PB91-145458). New versions of this file may be issued in the future. No search software is provided with this DOS formatted diskette.

  7. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. DOCUMENT RELEASE FORM S (1) Document Number: RPP-RPT-42296

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORM S (1) Document Number: RPP-RPT-42296 (2) Revision Number: 0 (3) Effective Date: 04122010 (4) Document Type: EQ Digital Image El Hard copy (a) Number of pages (including the...

  9. Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink Fact 649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink The number ...

  10. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two-Dimensional Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr...

  11. ORISE: Number of health physics degrees granted in 2013 has increased...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Number of health physics degrees granted in 2013 has increased for undergraduates, ... OAK RIDGE, Tenn.-The number of college students graduating with majors in health physics ...

  12. Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle dealerships from 1947 to 2012. See table below for more detailed information. Supporting Information Number of Franchised New-Car Dealerships, 1947-2012 Year Number of ...

  13. Table B37. Water Heating Equipment, Number of Buildings and Floorspace...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of ... ,"All Buildings","All Buildings with Water Heating","Type of Water Heating ...

  14. Fact #874: May 25, 2015 Number of Electric Stations and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact 874: May 25, 2015 Number of Electric Stations and Electric Charging Units ...

  15. Los Alamos National Laboratory Site Cleanup By the Numbers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Status of the Los Alamos Cleanup Activities as of May 2016 LANL-Site-By-The-Numbers-May-2016.pdf (778.6 KB) More Documents & Publications Los Alamos National Laboratory Site Cleanup By the Numbers Los Alamos National Laboratory Site Cleanup By the Numbers Audit Report: IG-0793 CX-010905: Categorical Exclusion Determination

  16. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  17. ORISE: Number of health physics degrees granted in 2013 has increased for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduates, declined for graduates Number of undergraduate health physics degrees dropped in 2015 to lowest level in more than a decade Despite number of bachelor's degrees decreasing, number of master's and doctorate degrees increased* FOR IMMEDIATE RELEASE Aug. 3, 2016 FY16-33.1 OAK RIDGE, Tenn.-The number of undergraduate students who graduated in 2015 with bachelor's degrees in health physics dropped to the lowest level in more than a decade, while the number of master's and

  18. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    piping, valve pits, diversion boxes, vaults, inactive miscellaneous underground storage tanks IMUST etc.), contaminated soils, and contaminated groundwater. The process...

  19. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  20. Section Number:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plants and Material 10 CFR Part 708 DOE Contractor Employee Protection Program 10 CFR Part 851 Worker Safety and Health Program 40 CFR Part 191 Environmental Radiation ...

  1. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tank Space Evaluation and Milestone M-46-01 for Ecology concurrence of Additional Tank Acquisition and incorporates those requirements into modifications pursuant to Milestone...

  2. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  3. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  4. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change I - Signatories X II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in...

  5. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plateau 376-7435 Class of Change X I - Signatories II - Executive Manager III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in...

  6. Report Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANLNE-133 Pseudo-Transient Demonstration with PROTEUS-SN Nuclear Engineering Division ... LLC. ANLNE-133 Pseudo-Transient Demonstration with PROTEUS-SN prepared by E. R. ...

  7. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date Approved Disapproved L. Hoffman, Ecology Interim Director Date Approved Disapproved Tri-Party...

  8. A Record Number of Proposals Received for HFIR and SNS (Journal...

    Office of Scientific and Technical Information (OSTI)

    A Record Number of Proposals Received for HFIR and SNS Citation Details In-Document Search Title: A Record Number of Proposals Received for HFIR and SNS No abstract prepared. ...

  9. U.S. Lower 48 States Offshore Maximum Number of Active Crews...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Offshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 167...

  10. U.S. Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 435 512...

  11. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Gasoline and Diesel Fuel Update (EIA)

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481...

  12. Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing

    Office of Energy Efficiency and Renewable Energy (EERE)

    The number of franchised new light vehicle dealerships peaked in 1949 with more than 49,000 dealers. By 2012, the number is less than half of that – 17,540 dealers.

  13. Property:NEPA LeadAgencyDocNumber | Open Energy Information

    Open Energy Info (EERE)

    LeadAgencyDocNumber Jump to: navigation, search Property Name NEPA LeadAgencyDocNumber Property Type String This is a property of type String. Pages using the property "NEPA...

  14. PRESSURE RELIEF DEVICE DATA SHEET FORM PS-5 Pressure System Number: Date:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELIEF DEVICE DATA SHEET FORM PS-5 Pressure System Number: Date: Pressure System Name: Pressure Vessel Number (if Applicable): Device installed directly on vessel?: __Yes __No Code: System Fluid: Code Year: Fluid State: Fluid Category: RELIEF DEVICE DATA Device Type ___Safety Relief Valve ____Rupture Disk ___Other (specify) Certification Type: ___ASME ___CE/PED ___Other (specify) Manufacturer Rated Flow Capacity: Part Number Converted Flow Capacity: Serial Number Set Pressure Inspection/Test

  15. Picosecond pulses produced by mode locking a Nd:glass laser with Kodak dye number26

    SciTech Connect (OSTI)

    Schiller, N.H.; Foresti, M.; Alfano, R.R.

    1985-05-01

    Kodak dye number26 was used to generate picosecond laser pulses by mode locking a Nd:glass laser. The intensity profiles and characteristics of the pulses were compared with those of pulses emitted using dyes number5 and number9860.

  16. Search for baryon-number and lepton-number violating decays of $Lambda$ hyperons using the CLAS detector at Jefferson Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range $(4-200)\\times 10^{-7}$moreat the $90\\%$ confidence level.less

  17. Search for baryon-number and lepton-number violating decays of Λ hyperons using the CLAS detector at Jefferson Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π+) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 –more » 200) x 107 at the 90% confidence level.« less

  18. Search for baryon-number and lepton-number violating decays of $Lambda$ hyperons using the CLAS detector at Jefferson Laboratory

    SciTech Connect (OSTI)

    McCracken, Michael E.

    2015-10-09

    We present a search for ten baryon-number violating decay modes of $\\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\\Lambda \\rightarrow m \\ell$) and conserve either the sum or the difference of baryon and lepton number ($B \\pm L$). The tenth decay mode ($\\Lambda \\rightarrow \\bar{p}\\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range $(4-200)\\times 10^{-7}$ at the $90\\%$ confidence level.

  19. Nevada National Security Site Cleanup By the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada National Security Site Cleanup By the Numbers Nevada National Security Site Cleanup By the Numbers Nevada National Security Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an underground repository

  20. Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an