Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reducing the Nuclear Weapons Stockpile | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the Nuclear Weapons Stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

2

Risk in the Weapons Stockpile  

SciTech Connect (OSTI)

When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

3

National Certification Methodology for the Nuclear Weapons Stockpile  

SciTech Connect (OSTI)

Lawrence Livermore and Los Alamos National Laboratories have developed a common framework and key elements of a national certification methodology called Quantification of Margins and Uncertainties (QMU). A spectrum from senior managers to weapons designers has been engaged in this activity at the two laboratories for on the order of a year to codify this methodology in an overarching and integrated paper. Following is the certification paper that has evolved. In the process of writing this paper, an important outcome has been the realization that a joint Livermore/Los Alamos workshop on QMU, focusing on clearly identifying and quantifying differences between approaches between the two labs plus developing an even stronger technical foundation on methodology, will be valuable. Later in FY03, such a joint laboratory workshop will be held. One of the outcomes of this workshop will be a new version of this certification paper. A comprehensive approach to certification must include specification of problem scope, development of system baseline models, formulation of standards of performance assessment, and effective procedures for peer review and documentation. This document concentrates on the assessment and peer review aspects of the problem. In addressing these points, a central role is played by a 'watch list' for weapons derived from credible failure modes and performance gate analyses. The watch list must reflect our best assessment of factors that are critical to weapons performance. High fidelity experiments and calculations as well as full exploitation of archival test data are essential to this process. Peer review, advisory groups and red teams play an important role in confirming the validity of the watch list. The framework for certification developed by the Laboratories has many basic features in common, but some significant differences in the detailed technical implementation of the overall methodology remain. Joint certification workshops held in June and December of 2001 and continued in 2002 have proven useful in developing the methodology, and future workshops should prove useful in further refining this framework. Each laboratory developed an approach to certification with some differences in detailed implementation. The general methodology introduces specific quantitative indicators for assessing confidence in our nuclear weapon stockpile. The quantitative indicators are based upon performance margins for key operating characteristics and components of the system, and these are compared to uncertainties in these factors. These criteria can be summarized in a quantitative metric (for each such characteristic) expressed as: (i.e., confidence in warhead performance depends upon CR significantly exceeding unity for all these characteristics). These Confidence Ratios are proposed as a basis for guiding technical and programmatic decisions on stockpile actions. This methodology already has been deployed in certifying weapons undergoing current life extension programs or component remanufacture. The overall approach is an adaptation of standard engineering practice and lends itself to rigorous, quantitative, and explicit criteria for judging the robustness of weapon system and component performance at a detailed level. There are, of course, a number of approaches for assessing these Confidence Ratios. The general certification methodology was publicly presented for the first time to a meeting of Strategic Command SAG in January 2002 and met with general approval. At that meeting, the Laboratories committed to further refine and develop the methodology through the implementation process. This paper reflects the refinement and additional development to date. There will be even further refinement at a joint laboratory workshop later in FY03. A common certification methodology enables us to engage in peer reviews and evaluate nuclear weapon systems on the basis of explicit and objective metrics. The clarity provided by such metrics enables each laboratory and our common customers to understand the meaning and logic

Goodwin, B T; Juzaitis, R J

2006-08-07T23:59:59.000Z

4

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Broader source: Energy.gov (indexed) [DOE]

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

5

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Broader source: Energy.gov (indexed) [DOE]

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

6

weapons material protection | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

weapons material protection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

7

Nuclear Weapons Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Weapons Journal Nuclear Weapons Journal x The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2,...

8

Will our nuclear weapons work?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Will our nuclear weapons work? Will our nuclear weapons work? National Security Science magazine Latest Issue:April 2013 All Issues » submit Supercomputers are essential for assessing the health of the U.S. nuclear stockpile Supercomputers provide assurance by simulating nuclear weapons performance March 25, 2013 Graphic of a missile being tested through computer simulation Los Alamos uses supercomputers to make high-resolution 3D simulations that help to assess the health of nuclear weapons like this B-61 bomb. Contact Managing Editor Clay Dillingham Email The nuclear weapons in the U.S. stockpile were designed and built to be replaced with new designs and builds every 10 to 15 years. These weapons have lived beyond their expected lifespans. Supercomputers provide the high-resolution 3D simulations needed for

9

Nuclear weapon reliability evaluation methodology  

SciTech Connect (OSTI)

This document provides an overview of those activities that are normally performed by Sandia National Laboratories to provide nuclear weapon reliability evaluations for the Department of Energy. These reliability evaluations are first provided as a prediction of the attainable stockpile reliability of a proposed weapon design. Stockpile reliability assessments are provided for each weapon type as the weapon is fielded and are continuously updated throughout the weapon stockpile life. The reliability predictions and assessments depend heavily on data from both laboratory simulation and actual flight tests. An important part of the methodology are the opportunities for review that occur throughout the entire process that assure a consistent approach and appropriate use of the data for reliability evaluation purposes.

Wright, D.L. [Sandia National Labs., Albuquerque, NM (United States)

1993-06-01T23:59:59.000Z

10

Weapons | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons | National Nuclear Security Administration Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Weapons Home > Our Mission > Managing the Stockpile > Weapons Weapons The New START Treaty, which was signed in 2010, between the United States and Russian Federation will cap the strategic deployed nuclear arsenals of each country at 1,550 warheads, a nearly 75% reduction compared with the

11

Sandia completes major overhaul of key nuclear weapons test facilities...  

National Nuclear Security Administration (NNSA)

completes major overhaul of key nuclear weapons test facilities | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering...

12

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

13

Strategies for denaturing the weapons-grade plutonium stockpile  

SciTech Connect (OSTI)

In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

Buckner, M.R.; Parks, P.B.

1992-10-01T23:59:59.000Z

14

Verifying a nuclear weapon`s response to radiation environments  

SciTech Connect (OSTI)

The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

Dean, F.F.; Barrett, W.H.

1998-05-01T23:59:59.000Z

15

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

16

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

17

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle | National Nuclear Security Administration Life Cycle | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Weapons Life Cycle Home > Our Mission > Managing the Stockpile > Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the

18

Maintaining the Stockpile | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

the Stockpile B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) announced today...

19

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons  

E-Print Network [OSTI]

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue with a proposal to use weapons-grade uranium and plutonium at the US National Ignition Facility.The facility is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weapons

20

Reconversion of nuclear weapons  

E-Print Network [OSTI]

The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

Kapitza, Sergei P

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AIM-98-3464 RECEIVED THE HISTORY OF NUCLEAR WEAPON SAFETY DEVICES  

Office of Scientific and Technical Information (OSTI)

the thermal weaklink. The dual magnetic stronglink was fielded in the last weapon to enter the nuclear weapon stockpile. See Figure 6. Figure 6. MC383 1 Dual Stronglink Review...

22

Computational Challenges in Nuclear Weapons Simulation  

SciTech Connect (OSTI)

After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

2003-08-29T23:59:59.000Z

23

Identification of nuclear weapons  

DOE Patents [OSTI]

A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

Mihalczo, J.T.; King, W.T.

1987-04-10T23:59:59.000Z

24

Virtual nuclear weapons  

SciTech Connect (OSTI)

The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

Pilat, J.F.

1997-08-01T23:59:59.000Z

25

Why the Nuclear Stockpile Needs Supercomputers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's most advanced computer systems, the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda. With the end of underground testing in 1992, supercomputers are a key part

26

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

27

Chapter 27 - Nuclear weapons  

Science Journals Connector (OSTI)

Abstract This chapter faces the realization that the same atoms that can produce life-saving electricity can also be used to construct weapons of mass destruction. Some facilities, such as enrichment and reprocessing, in the nuclear fuel cycle can also serve dual uses when considering proliferation. The original atomic bombs were constructed of highly enriched uranium and high-grade plutonium, but their development led to thermonuclear devices with much larger yields. Thus far, nuclear war has been avoided by policies such as mutual assured destruction and international agreements such as the Non-Proliferation Treaty. The International Atomic Energy Agency (IAEA) is charged with performing worldwide nuclear material safeguards inspections. The legacy of the nuclear weapons arms race has left considerable weapons-grade materials that must be dealt with.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

28

Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling  

SciTech Connect (OSTI)

Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

Robert Y. Parker

1999-08-01T23:59:59.000Z

29

Defense Experimentation and Stockpile Stewardship  

ScienceCinema (OSTI)

A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

None

2015-01-07T23:59:59.000Z

30

Defense Experimentation and Stockpile Stewardship  

SciTech Connect (OSTI)

A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

None

2014-10-28T23:59:59.000Z

31

stockpile stewardship | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

now available NNSA's current quarterly summary of experiments conducted as part of its science-based stockpile stewardship program is now available here. The quarterly summary...

32

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

33

US nuclear weapons policy  

SciTech Connect (OSTI)

We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

May, M.

1990-12-05T23:59:59.000Z

34

Nuclear weapon detection categorization analysis  

SciTech Connect (OSTI)

This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

NONE

1997-12-01T23:59:59.000Z

35

President Truman Orders Development of Thermonuclear Weapon ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

36

What to do with 50,000 nuclear weapons?  

SciTech Connect (OSTI)

While the world celebrates the peaceful disposal of nuclear weapons, energies now focus on their careful disassembly. Recently, the United States` main focus for dismantling has been the safe dispersal and storage of the various nuclear components and their uses for peaceful purposes rather than weapons of destruction. It should be noted that the treaties currently in effect do not require weapons to be dismantled, only that each country withdraw the weapons from the deployed status and remove the means of delivery. The US current program dismantles weapons into their various components. The disassembly of a nuclear weapon involves numerous components. Many of these components can be disposed of or recycled after changing their shape. The nuclear components create the most safety and proliferation concerns. These nuclear components typically consist of three materials: tritium, highly enriched uranium and plutonium. Some of these nuclear components will be placed in a strategic reserve, while other nuclear components will be declared surplus. Both tritium and uranium can be re-used. The tritium is repurified and used for the active weapons stockpile. The uranium can be blended down and used in commercial nuclear power plants. At this time, plutonium disposal is the most vexing challenge. This paper will briefly describe how a nuclear weapons works, the mission of the Pantex Plant which dismantles the weapons, and the research opportunities for use of dismantled nuclear weapon components.

Klein, D.E. [Univ. of Texas, Austin, TX (United States). Coll. of Engineering

1995-12-31T23:59:59.000Z

37

What's in the U.S. Nuclear Stockpile?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ballistic missiles. VIEW THIS ARTICLE PDF ICON PDF ICON IN THIS ISSUE Detonation: From the Bottom Up What's in the U.S. Nuclear Stockpile? U.K. Is Modernizing for...

38

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,  

Broader source: Energy.gov (indexed) [DOE]

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY "To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and safety by providing dual-agency judgment and responsibility for the safety, security, and use control (surety) of nuclear weapons. To establish nuclear explosive surety standards and nuclear weapon design surety requirements. To address surety vulnerabilities during all phases of the nuclear weapon life cycle and to upgrade surety during weapon stockpile refurbishments and/or new weapon

39

The US nuclear weapon infrastructure and a stable global nuclear weapon regime  

SciTech Connect (OSTI)

US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

40

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Weapon Intern Program visits KCP | National Nuclear Security Weapon Intern Program visits KCP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia Weapon Intern Program visits KCP Sandia Weapon Intern Program visits KCP Posted By Office of Public Affairs Participants in Sandia's Weapon Intern Program recently visited and

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Testing Resumes | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

42

Nuclear weapon system risk assessment  

SciTech Connect (OSTI)

Probabilistic risk assessment (PRA) is a process for evaluating hazardous operations by considering what can go wrong, the likelihood of these undesired events, and the resultant consequences. Techniques used in PRA originated in the 1960s. Although there were early exploratory applications to nuclear weapons and other technologies, the first major application of these techniques was in the Reactor Safety Study, WASH-1400, {sup 1} in which the risks of nuclear power accidents were thoroughly investigated for the first time. Recently, these techniques have begun to be adapted to nuclear weapon system applications. This report discusses this application to nuclear weapon systems.

Carlson, D.D.

1993-11-01T23:59:59.000Z

43

Debunking Six Big Myths about Nuclear Weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Debunking Six Big Myths about Nuclear Weapons National Security Science Latest Issue:December 2014 All Issues submit Debunking Six Big Myths about Nuclear Weapons Is it true...

44

Stewarding a Reduced Stockpile  

SciTech Connect (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

45

U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security  

National Nuclear Security Administration (NNSA)

No Longer Building Any Nuclear Weapons | National Nuclear Security No Longer Building Any Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May 10, 1992 Washington, DC U.S. No Longer Building Any Nuclear Weapons

46

Stockpile Stewardship at Los Alamos(U)  

SciTech Connect (OSTI)

Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

Webster, Robert B. [Los Alamos National Laboratory

2012-06-29T23:59:59.000Z

47

Maintaining the Stockpile | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, and manufacturing. To deal with the changing face of...

48

The gas centrifuge and nuclear weapons proliferation  

SciTech Connect (OSTI)

Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

2014-05-09T23:59:59.000Z

49

Neutrino Counter Nuclear Weapon  

E-Print Network [OSTI]

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Tang, Alfred

2008-01-01T23:59:59.000Z

50

President Obama Calls for an End to Nuclear Weapons | National Nuclear  

National Nuclear Security Administration (NNSA)

Calls for an End to Nuclear Weapons | National Nuclear Calls for an End to Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Obama Calls for an End to ... President Obama Calls for an End to Nuclear Weapons April 05, 2009 Prague, Czech Republic President Obama Calls for an End to Nuclear Weapons

51

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Broader source: Energy.gov (indexed) [DOE]

For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's (DOE) Nuclear Weapons Complex Request...

52

Control of Nuclear Weapon Data  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Cancels DOE O 5610.2.

2011-07-21T23:59:59.000Z

53

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Weapons Strategy Delivered to Congress Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

54

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

55

Fixed denial system for access control of nuclear weapons  

SciTech Connect (OSTI)

The Fixed Denial System (FDS) is a simple, low cost, vertical, underground silo used to store individual nuclear weapons within secured areas of present storage sites. The normal storage position of each weapon is at or near the top of the shaft, allowing rapid operational weapon access and removal. In response to a threat, the weapon within a storage canister can be dropped to the bottom of the shaft where it is automatically locked in place. Once the alert condition is resolved and control of the site reestablished, the weapon canister is unlocked with a coded signal and retrieved. This system offers a high degree of hardening and access denial that is characteristic of Vertical Underground Storage (VUGS) systems. An aboveground test apparatus was constructed to demonstrate the feasibility of using a pneumatic air cushion, which is generated by the free-fall of the weapon container, to control impact velocity and descent time. Stockpile weapons that might be stored in the FDS include the W33, W48, W79, and the W54 ADM.

Willan, V.O.; Gustafson, E.C.

1981-12-01T23:59:59.000Z

56

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2014-08-05T23:59:59.000Z

57

Nuclear weapons testing  

SciTech Connect (OSTI)

The author examines the history of efforts to ban, or at least constrain, nuclear tests. The issue has been marked by shifts in attitude by the superpowers in recent times. The Reagan Administration sees a comprehensive test ban only as a very long-term goal for the U.S. The Soviets, on the other hand, have been pushing extremely hard lately for a ban on all testing. The author discusses the pros and cons of such a ban by examining the arguments of the U.S. Department of Energy, Nobel Laureate Glenn T. Seaborg, and Associate Director for Defense Systems at Lawrence Livermore National Laboratory George H. Miller. Other issues that are discussed include verification, joint testing, and reliability. He concludes with a discussion of the future of the ban.

Heylin, M.

1988-02-15T23:59:59.000Z

58

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons and certify the stockpile without nuclear testing. The National Ignition Facility (NIF) extends HEDP under extreme conditions that approach the high energy density (HED) environments found in a nuclear

59

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Securing NNSA's Nuclear Weapons Complex in a ... Fact Sheet Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World Jan 2, 2009 The National Nuclear Security Administration (NNSA) has several missions

60

The National Nuclear Security Administration's Weapons Dismantlement...  

Office of Environmental Management (EM)

National Nuclear Security Administration's Weapons Dismantlement and Disposition Program OAS-L-13-06 January 2013 Department of Energy Washington, DC 20585 January 29, 2013...

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Y-12 and the National Nuclear Security Administration make continuing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the safety, security and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons of mass destruction; provides the...

62

Welcome to the Los Alamos Field Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from weapons of mass destruction; provides...

63

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Broader source: Energy.gov (indexed) [DOE]

18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

64

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

65

Toward a nuclear weapons free world?  

SciTech Connect (OSTI)

Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

1996-09-01T23:59:59.000Z

66

stockpile modernization  

National Nuclear Security Administration (NNSA)

6%2A en Sandia completes major overhaul of key nuclear weapons test facilities http:nnsa.energy.govblogsandia-completes-major-overhaul-key-nuclear-weapons-test-facilities

67

US?Ukraine stalemate over nuclear weapons  

Science Journals Connector (OSTI)

... Washington. Ukraine's opposition to the complete relinquishment of strategic nuclear weapons located on its soil is ... for the Advancement of Science (AAAS), focused on the disposal of nuclear weapons in Ukraine itself, while a United Nations symposium addressed the wider question of disarmament across the ...

Colin Macilwain

1993-10-14T23:59:59.000Z

68

E-Print Network 3.0 - atomic weapon tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By dissembling random nuclear weapons in the stockpile and closely inspecting and testing... explosives and nuclear materials at the Nevada Test Site to gather diagnostic...

69

Iraq's secret nuclear weapons program  

SciTech Connect (OSTI)

UN inspectors discovered an electromagnetic isotope separation factory that put Iraq just 18-30 months away from having enough material for a bomb. They also found European centrifuge technology and plans for an implosion device. The inspections of Iraq mandated by the United Nations as a cease-fire condition at the end of the Gulf War in February 1991 have revealed a clandestine nuclear materials production and weapons design program of unexpected size and sophistication. The total value of that program, in terms of equipment and personnel deployed between 1981 and 1991, may be on the order of $5-10 billion. The program employed an estimated 7000 scientist and 20,000 workers. 6 refs., 4 figs.

Davis, J.C. (Lawrence Livermore National Lab., CA (United States)); Kay, D.A. (Uranium Institute, London (United Kingdom))

1992-07-01T23:59:59.000Z

70

What do we do with Nuclear Weapons Now?  

E-Print Network [OSTI]

What Do We Do with Nuclear Weapons Now? by Michael M. Maythe Future of U.S. Nuclear Weapons Policy MICHAEL M. MAY wasmajority in nuclear weapons states. Unlike chemical and

May, Michael M

2005-01-01T23:59:59.000Z

71

LEP: Extending stockpile life | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LEP: Extending stockpile ... LEP: Extending stockpile ... LEP: Extending stockpile life Posted: February 7, 2013 - 6:10pm | Y-12 Report | Volume 9, Issue 2 | 2013 The Life Extension Program allows safe, effective weapons to remain in the stockpile well beyond their original service life. Nuclear weapons are intricate and, in a sense, handmade devices that cannot be stored indefinitely - and be expected to function - without ongoing care and maintenance. Weapon components periodically require evaluation and replacement. Fifteen years ago the Life Extension Program, or LEP, funded by Defense Programs, was established to care for and prolong the safety and effectiveness of the nuclear stockpile. Today Y-12 and other sites across the Nuclear Security Enterprise collaborate in that effort.

72

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Office of Environmental Management (EM)

Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

73

Laboratory's role in Cold War nuclear weapons testing program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

74

Passing good judgment, part 1: weapons designers with nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 All Issues submit Passing good judgment, part 1: weapons designers with nuclear testing experience The nuclear weapons designers who developed their skills during...

75

A Sandia nuclear weapon knowledge management program plan for FY 1998--2003. Volume 1: Synopsis  

SciTech Connect (OSTI)

This volume contains a synopsis and briefing charts for a five-year plan which describes a Knowledge Management Program needed to meet Sandia`s responsibility for maintaining safety, security, reliability, and operational effectiveness of the nuclear weapon stockpile. Although the knowledge and expertise required to maintain and upgrade the stockpile continues to be critical to the country`s defense, Sandia`s historical process for developing and advancing future knowledge and expertise needs to be addressed. This plan recommends implementing an aggressive Knowledge Management Program to assure retention and furtherance of Sandia`s expertise, beginning in fiscal year 1998, as an integrated approach to solving the expertise dilemma.

NONE

1998-02-01T23:59:59.000Z

76

Plus c`est la meme chose: The future of nuclear weapons in Europe  

SciTech Connect (OSTI)

Since the end of the Cold War, the United States perhaps more than any other nuclear weapon state has deeply questioned the future role of nuclear weapons, both in a strategic sense and in Europe. It is probably the United States that has raised the most questions about the continuing need for and efficacy of nuclear weapons, and has expressed the greatest concerns about the negative consequences of continuing nuclear weapons deployment. In the US, this period of questioning has now come to a pause, if not a conclusion. In late 1994 the United States decided to continue to pursue reductions in numbers of nuclear weapons as well as other changes designed to reduce the dangers associated with the possession of nuclear weapons. But at the same time the US concluded that some number of nuclear forces would continue to be needed for national security for the foreseeable future. These necessary nuclear forces include a continuing but greatly reduced stockpile of nuclear bombs deployed in Europe under NATO`s New Strategic Concept. If further changes to the US position on nuclear weapons in Europe are to occur, it is likely to be after many years, and only in the context of dramatic additional improvements in the political and geo-political climate in and around Europe. The future role of nuclear weapons in Europe, as discussed in this report, depends in part on past and future decisions by the United States. but it must also be noted that other states that deploy nuclear weapons in Europe--Britain, France, and Russia, as well as the NATO alliance--have shown little inclination to discontinue their deployment of such weapons, whatever the United States might choose to do in the future.

Maaranen, S.A.

1996-07-01T23:59:59.000Z

77

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

78

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Robert C. Seamans, Jr. Appointed to Lead ... Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program January 19, 1975

79

NIF system-design requirements for nuclear-weapons physics experiments  

SciTech Connect (OSTI)

One of the objectives of the National Ignition Facility (NIF) is to provide an aboveground experimental capability for conducting weapons-physics experiments, for maintaining nuclear competence. To achieve the high-energy-density regimes needed for a science-based stockpile stewardship program, NIF must produce conditions similar to those in nuclear weapon explosions. This imposes fundamental facility design requirements on NIF. This document summarizes those requirements for opacity, radiation-flow, equation-of-state, non-LTE and x-ray laser, hydrodynamic, and capsule-implosion experiments.

Perry, T.S. [ed.] [Lawrence Livermore National Lab., CA (United States); Wilde, B.H. [ed.] [Los Alamos National Lab., NM (United States)

1995-04-01T23:59:59.000Z

80

EIS-0348: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL) is critical to National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide.

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The history of nuclear weapon safety devices  

SciTech Connect (OSTI)

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

82

Find and neutralize clandestine nuclear weapons  

SciTech Connect (OSTI)

The objective of finding nuclear material at entry portals is to provide a secure perimeter as large as a weapon damage radius so that operations could be conducted within it relatively unencumbered. The objective of wide area search for nuclear material to provide a safe zone of similar dimensions in an area in which it is not possible to maintain a secure perimeter, to provide assurance for civilians living at an area at risk, or to provide rapid, wide area search of regions that could conceal nuclear threats to forces in the field. This rapid, wide-area, and confident detection of nuclear materials is the essential first step in developing the ability to negate terrorist nuclear assemblies or weapons. The ability to detect and negate nuclear materials are necessary to prevent the forced, massive evacuation of urban populations or the disruption of military operations in response to terrorist threats. This paper describes the limitations to current sensors used for nuclear weapon detection and discusses a novel approach to nuclear weapon detection using a combination of directional information (imaging) and gamma ray energy (color) to produce a gamma ray color camera.

Canavan, G.H.

1997-09-01T23:59:59.000Z

83

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

2009-05-14T23:59:59.000Z

84

Stockpile stewardship past, present, and future  

SciTech Connect (OSTI)

The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doing this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.

Adams, Marvin L., E-mail: mladams@tamu.edu [Institute for National Security Education and Research, Texas A and M University, College Station, TX 77843-3133 (United States)

2014-05-09T23:59:59.000Z

85

Security and Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

2001-12-17T23:59:59.000Z

86

E-Print Network 3.0 - atmospheric nuclear weapon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weapon Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapon...

87

E-Print Network 3.0 - atmospheric nuclear weapons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapons...

88

A thousand suns : political motivations for nuclear weapons testing .  

E-Print Network [OSTI]

??Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are… (more)

Raas, Whitney

2006-01-01T23:59:59.000Z

89

The monitoring and verification of nuclear weapons  

SciTech Connect (OSTI)

This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

2014-05-09T23:59:59.000Z

90

Nuclear Explosive and Weapons Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

been linked to this document. Show All Cancels: DOE O 5610.10, Nuclear Explosive and Weapon Surety Program on Apr 29, 1996 Canceled by: DOE O 452.1A, Nuclear Explosive and Weapon...

91

Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and  

E-Print Network [OSTI]

(Biological) and Toxin Weapons and on Their Destruction Signed at London, Moscow and Washington on 10 April and complete disarmament, including the prohibition and elimination of all types of weapons of mass destruction and bacteriological (biological) weapons and their elimination, through effective measures, will facilitate

Sussex, University of

92

Nuclear proliferation: The diplomatic role of non-weaponized programs  

SciTech Connect (OSTI)

The end of the Cold War has not seen the end of reliance on nuclear weapons for deterrence or diplomacy purposes. The use of nuclear weapons for such purposes is as evident in the threshold states as in the nuclear powers. The nuclear weapon states used their nuclear weapons for deterrence, bargaining, and blackmail, even during the early years of the Cold War when the US was essentially non-Weaponized. In the nuclear non-Weaponized states in Asia a non-Weaponized deterrent relationship is developing between India and Pakistan and North Korea has used its nuclear program to restore diplomatic relations with the international community. The role of nuclear weapons in the post Cold War world is determined by the role of non-Weaponized programs in proliferating states. This paper describes examples in South Asia and the Korean peninsula and show that while an increased reliance on nuclear weapons programs may be a threat to the current non-proliferation regime, the focus on non-Weaponized programs rather than on weapons themselves actually improves international security by reducing the threat of nuclear war.

Reynolds, R.R.

1996-01-01T23:59:59.000Z

93

Security and Use Control of Nuclear Explosives and Nuclear Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority,...

94

Nuclear Deterrence | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and reliable U.S. nuclear deterrent, which is essential to national security. Every weapon in the U.S. nuclear stockpile has components manufactured, maintained or ultimately...

95

The IAEA: Neutralizing Iraq's nuclear weapons potential  

SciTech Connect (OSTI)

With support from UNSCOM and staff members from several countries, the IAEA has succeeded in identifying and destroying most of Iraq's nuclear weapons potential. IAEA activities in Iraq have also established a sound basis for long-term monitoring of Iraq. This will involve several procedures and techniques, including the periodic monitoring of Iraq's main bodies of water and unannounced visits of resident inspectors to plants, factories, and research centers.

Zifferero, M.

1993-04-01T23:59:59.000Z

96

American Economic Association How (Not) to Sell Nuclear Weapons  

E-Print Network [OSTI]

American Economic Association How (Not) to Sell Nuclear Weapons Author(s): Philippe Jehiel, Benny://www.jstor.org #12;How (Not)to Sell NuclearWeapons By PHILIPPEJEHIEL,BENNY MOLDOVANU, AND ENNio STACCHETTI) areinterestedto acquirefis- sionable material, or even complete weapon systems from Ukraine. Russia and the United

Franz, Sven Oliver

97

SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS  

National Nuclear Security Administration (NNSA)

http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. Specifically, this SD supports the Order's requirements to implement deliberate unauthorized use (DUU) preventive measures for nuclear explosive operations (NEO) and associated activities and to perform independent evaluations to determine if NEOs

98

History of US nuclear weapon safety assessment: The early years  

SciTech Connect (OSTI)

From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

Spray, S.D.

1996-06-01T23:59:59.000Z

99

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

2006-10-19T23:59:59.000Z

100

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

2010-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

2014-11-19T23:59:59.000Z

102

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect (OSTI)

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

103

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Broader source: Energy.gov (indexed) [DOE]

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities.This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

104

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

105

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Broader source: Energy.gov (indexed) [DOE]

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

106

UN Security Council: Iran violating ban on nuclear weapons programs  

E-Print Network [OSTI]

UN Security Council: Iran violating ban on nuclear weapons programs 7 September 2011 Denouncement weaponization of its nuclear program. The United States, Germany, France and Britain joined forces in exposing of its nuclear activities.' Rice said the installation of a uranium enrichment facility and heavy

107

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS)...

108

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...  

Broader source: Energy.gov (indexed) [DOE]

This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01:...

109

States That End Nuclear Weapons Programs: Implications For Iran.  

E-Print Network [OSTI]

??This thesis seeks to identify factors that cause countries to discontinue their nuclear weapons program using the qualitative case study method. Regime change, regional threats… (more)

Freeman, Shauna Marie

2007-01-01T23:59:59.000Z

110

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

111

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

112

Status of nuclear weapons material disposition in Russia  

SciTech Connect (OSTI)

The security of nuclear weapons and fissile material in Russia, the disposition of weapons-usable fissile material in Russia, the Clinton administration`s policies and programs for assisting Russia in improving its security over nuclear weapons and fissile material, and the disposal of Russian weapons-usable fissile materials are discussed in this paper. There are {approximately}30,000 nuclear warheads in the former Soviet Union, {approximately}1000 t of weapon-usable high-enriched uranium (HEU), {approximately} 160 t of separated plutonium in weapons or available for weapons, and {approximately}30 t of separated civil plutonium stored in Russia. Most, if not all, of these inventories are stored under inadequate conditions of physical security and of material control and accounting.

Cochran, T.B.

1994-12-31T23:59:59.000Z

113

Nuclear energy in a nuclear weapon free world  

SciTech Connect (OSTI)

The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

Pilat, Joseph [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

114

Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons  

SciTech Connect (OSTI)

Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion.

Pruneda, C.; Humphrey, J.

1993-03-01T23:59:59.000Z

115

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning  

Broader source: Energy.gov (indexed) [DOE]

18: Proposed Nuclear Weapons Nonproliferation Policy 18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel. The analysis demonstrates that the impacts on the environmental, workers and the general public of implementing any of the alternative management approaches would be small and within applicable Federal and state regulator limits. PUBLIC COMMENT OPPORTUNITIES

116

U.S. Department of Energy, Defense Programs, activities to support the safe, secure dismantlement of nuclear weapons in the Former Soviet Union  

SciTech Connect (OSTI)

In September 1991 President Bush announced sweeping cuts in the US nuclear weapon stockpile as well as changes in deployment to remove significant numbers of weapons from alert status and to return to the US for storage many weapons formerly based abroad in US sites. In October 1991 President Gorbachev announced similar moves for the Soviet Union. Even though the Gorbachev announcement represented a substantial step forward in reducing tension between the US and the Soviet Union, the US continued to be concerned about the deteriorating situation in the Soviet Union and the prospects for internal stability. As a result, in November 1991 the Administration began talks with the Soviets in a number of areas including field disablement of nuclear weapons to prevent unauthorized use, emergency response in the event of a weapons accident, and command and control of nuclear weapons. The Nunn-Lugar legislation assured assistance to the Soviet Union in the safe, secure dismantlement (SSD) of weapons to implement the Gorbachev commitment and in the development of measures to prevent the proliferation of weapons of mass destruction. The Department of Energy (DOE) is supporting and collaborating with the Department of Defense (DOD) in several areas due to the DOE responsibilities for developing, assembling, and dismantling US warheads and as the custodian of the nuclear materials stockpile. Russia, as the successor state to the Soviet Union, controls the nuclear weapons of the Former Soviet Union. Thus, DOE`s nuclear weapon and nuclear materials expertise are being applied particularly to Russia. However, the DOE is also providing assistance to Belarus and is prepared to assist Ukraine and Kazakhstan as well if agreements can be reached. In this paper, the DOE SSD activities in support of DOD as the US Executive Agent will be discussed. Two areas will not be covered, namely, DOD activities and the purchase of highly enriched uranium.

Turner, J.

1993-12-31T23:59:59.000Z

117

Sandia National Laboratories: National Security Missions: Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and...

118

Lawrence Livermore National Laboratory | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets. The lab is managed by...

119

Constraining potential nuclear-weapons proliferation from civilian reactors  

SciTech Connect (OSTI)

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

120

EIS-0236-S2: Supplemental Programmatic Environmental Impact Statement Stockpile Stewardship and Management for a Modern Pit Facility  

Broader source: Energy.gov [DOE]

DOE's NNSA is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Pursuant to National Environmental Policy Act of 1969, NNSA has prepared a Supplement to the Programmatic Environmental Impact Statement on: (1) whether to proceed with a Modern Pit Facility (MPF); and (2) if so, where to locate a MPF.

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Y-12, the Cold War, and nuclear weapons dismantlement ? Or:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a huge mission for Y-12 bringing about substantial growth and continued to do so until nuclear testing ended in 1992. The United States tested nuclear weapons from July 16, 1945...

122

Sandia National Laboratories/Production Agency Weapon Waste Minimization Plan  

SciTech Connect (OSTI)

This Plan describes activities to reduce the usage of hazardous materials and the production of hazardous material waste during the development, production, stockpile, and retirement phases of war reserve nuclear weapons and nuclear weapon test units. Activities related to the development and qualification of more benign materials and processes for weapon production and the treatment and disposal of these materials from weapon retirement are described in separate plans.

Skinrood, A.C.; Radosevich, L.G.

1991-07-01T23:59:59.000Z

123

Nuclear-weapon-free zones: Coming of age  

SciTech Connect (OSTI)

Nuclear-weapon-free-zone agreements present a potentially effective option to supplement international efforts to prevent the proliferation of nuclear weapons and roll back proliferation where it has already occurred. NWFZs can also be used to create mutually binding obligations that go beyond the current obligations under the NPT, without risking the potentially disastrous consequences of an amendment debate at the 1995 NPT Review and Extension Conference. The negotiations leading toward regional agreements could also contribute significantly toward reducing tensions and building confidence. In pursuing its national goal of preventing nuclear proliferation, the US should give greater priority and support to nuclear-weapon-free-zones.

Wolfsthal, J.B.

1993-03-01T23:59:59.000Z

124

The future of the Non-Proliferation Treaty and U.S. nuclear weapons policy .  

E-Print Network [OSTI]

??This thesis addresses the viability of the Treaty on the Non-Proliferation of Nuclear Weapons – NPT for short – in light of U.S. nuclear weapons… (more)

Claussen, Bjørn Ragnar

2008-01-01T23:59:59.000Z

125

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability models that are used to assess and certify the stockpile without nuclear testing. The National Ignition that approach the high-energy density (HED) environments found in a nuclear explosion. Virtually all

126

Stability of nuclear forces versus weapons of mass destruction  

SciTech Connect (OSTI)

The model derived for nuclear missile exchanges is used to describe the interaction between two forces, of which one has nuclear weapons and the other has weapons of mass destruction (WMD). The model equations are solved analytically for exchanges, costs, and stability indices by analytically minimizing the cost of first strikes. The analysis is restricted to theater operations, as WMD are inferior to nuclear weapons in strategic counter force operations, but quite adequate for theater operations against exposed forces. The analysis treats only in-theater forces as companion papers show that ex-theater forces, which enter as survivable forces, cancel out of the theater balances treated here. Optimal nuclear weapon and WMD allocations are proportional to the opponent`s carriers and inversely proportional to one`s own weapons. Thus, as WMD increase, WMD allocations to nuclear forces fall, reflecting a shift from damage limiting to inflicting damage with surviving forces. Nuclear weapon kill probabilities degrade rapidly against dispersed forces. As they fall, their allocation to WMD falls sharply as they become ineffective and are reallocated to value. Thus, damage limiting is primarily effective for undispersed forces, which produces an incentive for the nuclear side to use his weapons while they are still effective.

Canavan, G.H.

1997-12-01T23:59:59.000Z

127

Nuclear proliferation and testing: A tale of two treaties  

SciTech Connect (OSTI)

Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

Corden, Pierce S.; Hafemeister, David

2014-04-01T23:59:59.000Z

128

Physicist Seymour Sack dies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

1964. Sack was instrumental in developing the first stages of all of the two-stage thermonuclear devices within the nuclear stockpile. His weapon design programs introduced...

129

Transparency in nuclear arms: Toward a nuclear weapons register  

SciTech Connect (OSTI)

In his press conference to present a {open_quotes}10-point non-proliferation initiative{close_quotes} last December, German Foreign Minister Klaus Kinkel included a proposal calling for an international register for nuclear weapons, analogous to the UN Conventional Arms Register. When German diplomats explained the initiative to their allies in London, Paris and Washington, they were sharply rebuffed. Apparently the three nuclear-weapon states were strongly opposed to the idea and therefore discouraged Germany from pursuing it further in the Conference on Disarmament (CD) in Geneva, where the ad hoc group on transparency in armaments would be an appropriate forum for further discussion. Faced with these cold responses, German diplomats shelved the idea for the time being and concentrated on initiatives that promised better chances for agreement, such as the comprehensive test ban (CTB) treaty currently under discussion, a fissile material cutoff agreement and an international plutonium management regime.

Mueller, H. [Peace Research Institute, Frankfurt (Germany)

1994-10-01T23:59:59.000Z

130

Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects  

E-Print Network [OSTI]

The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

Gsponer, A

2005-01-01T23:59:59.000Z

131

A nuclear-weapon-free world: Desirable? Feasible?  

SciTech Connect (OSTI)

The authors seeks answers to two key questions: Is an nuclear-weapons-free-world (NWFW) desirable, and is it feasible? Organized into six parts, the book begins with a historical review of attempts to abolish nuclear weapons. Five subsequent parts address the desirability of an NWFW, its feasibility, alternative routes to this goal, and intermediate steps to this end. The authors deals with many obstacles and difficulties facing those who wish to progress from today`s world of 50,000 or more nuclear weapons to one where none exist and strong international verification assures that no rogue state will resurrect these dread devices.

Rotblat, J.; Steinberger, J.; Udgaonkar, B. [eds.

1993-12-31T23:59:59.000Z

132

Tiny device can detect hidden nuclear weapons, materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tiny Tiny device can detect hidden nuclear weapons, materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Tiny device can detect hidden nuclear weapons, materials This tiny wafer can detect hidden nuclear weapons and materials NUCLEAR DETECTOR -- This small wafer could become the key component in

133

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect (OSTI)

One of the common waste streams generated throughout the nuclear weapon complex is ``hardware`` originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-03-01T23:59:59.000Z

134

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect (OSTI)

One of the common waste streams generated throughout the nuclear weapon complex is hardware'' originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-01-01T23:59:59.000Z

135

Briefing, Classification of Nuclear Weapons-Related Information- June 2014  

Broader source: Energy.gov [DOE]

This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

136

The role of nuclear weapons in the year 2000  

SciTech Connect (OSTI)

This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

Not Available

1990-01-01T23:59:59.000Z

137

How to optimally interdict a belligerent project to develop a nuclear weapon .  

E-Print Network [OSTI]

??Despite decades of energetic international control efforts, nuclear weapons technology continues to spread worldwide. To understand how these complex weapons programs can be developed, we… (more)

Skroch, Eric M.

2004-01-01T23:59:59.000Z

138

The politics of verification: Limiting the testing of nuclear weapons  

SciTech Connect (OSTI)

From 1982 to 1990, the United States and the Soviet Union renegotiated verification arrangements for two unratified arms control agreements that had nevertheless been observed since 1977: the Threshold Test Ban Treaty and the Peaceful Nuclear Explosions Treaty. The negotiations yielded new verification procedures, changed attitudes regarding Soviet compliance, and established useful precedents for further restrictions on nuclear testing. The negotiations also demonstrated how technical arguments can be misused to promote a particular political agenda-in this case, the continued testing of nuclear weapons. By misrepresenting the uncertainties in US monitoring procedures, and then falsely characterizing these uncertainties as a fatal flaw of seismic verification techniques, opponents of a nuclear test ban clouded the sensitive issue of verification enough to delay progress towards a complete ban on nuclear weapons testing. The primary obstacle to further restrictions on nuclear testing was not the feasibility of adequate verification, but rather the unwillingness of several US administrations to address the real question of whether the United States and other nuclear weapon states should, in the interest of global nuclear nonproliferation, end the development of new nuclear weapons designs that require confirmation by underground nuclear tests. 51 refs., 6 figs.

Vink, G.E. van der (IRIS Consortion on Seismology, Arlington, VA (United States)); Paine, C.E. (Natural Reources Defense Council, Washington, DC (United States))

1993-01-01T23:59:59.000Z

139

Solid Phase Microextraction for the Analysis of Nuclear Weapons  

SciTech Connect (OSTI)

This document is a compendium of answers to commonly asked questions about solid phase microextraction as it relates to the analysis of nuclear weapons. We have also included a glossary of terms associated with this analytical method as well as pertinent weapons engineering terminology. Microextraction is a new collection technique being developed to nonintrusively sample chemicals from weapon headspace gases for subsequent analysis. The chemicals that are being targeted outgas from the high explosives and other organic materials used in the weapon assembly. This technique is therefore a valuable tool to: (1) remotely detect and assess the aging of Lawrence Livermore National Laboratory (LLNL) and, in some cases, Sandia National Laboratory (SNL) organic materials; and (2) identify potential compatibility issues (i.e., materials interactions) that should be more carefully monitored during surveillance tear-downs. Microextraction is particularly attractive because of the practical constraints inherent to the weapon surveillance procedure. To remain transparent to other core surveillance activities and fall within nuclear safety guidelines, headspace analysis of the weapons requires a procedure that: (1) maintains ambient temperature conditions; (2) allows practical collection times of less than 20 min; (3) maintains the integrity of the weapon gas volume; (4) provides reproducible and quantitative results; and (5) can identify all possible targets.

Chambers, D M

2001-06-01T23:59:59.000Z

140

The future of nuclear weapons: Proliferation in South Asia  

SciTech Connect (OSTI)

The signing of the Intermediate-Range Nuclear Forces (INF) Treaty in December 1987, followed by the dramatic changes in East-West relations since 1989 and the more recent Soviet-American strategic arms limitation agreement, have greatly eased public concerns about the danger of nuclear war. The context has also changed for the Nonaligned Movement, which had made nuclear disarmament and condemnation of the concept of nuclear deterrence the primary themes of its multilateral disarmament diplomacy. More important would be the interrelationship among the states possessing nuclear weapons (Russia, Ukraine, Belarus, and Kazakhstan). In any case, there is little risk of a revival of nuclear competition. Both France and China have decided to sign the Treaty on the Nonproliferation of Nuclear Weapons (NPT); they are the only two nuclear-weapon states that have stayed outside the regime. Meanwhile, Brazil and Argentina have moved further down the nonproliferation road by engaging in confidence-building measures and moving closer to joining the Latin American nuclear-weapons-free zone established under the Treaty of Tlatelolco in 1967. South Africa has also agreed to embrace the NPT as well as a nuclear-weapons-free zone regime for the entire African continent, while North Korea has agreed to sign a safeguard agreement with the International Atomic Energy Agency (IAEA), thereby allowing in principle international inspection of its nuclear facilities. In the third world regions, the dangers of nuclear proliferation and competitive nuclear buildup are most pronounced in South Asia, a region where a variety of complicating problems exist: acute threat perceptions, historical emity, religious and sectarian animosity, ethnic antagonism, territorial disputes, ambitions for regional dominance, and domestic political instability. This chapter will focus primarily on South Asia, although references will also be made to other regions, where relevant. 17 refs.

Kamal, N. [Institute of Strategic Studies, Islamabada (Pakistan)

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The unique signal concept for detonation safety in nuclear weapons  

SciTech Connect (OSTI)

The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

Spray, S.D.; Cooper, J.A.

1993-06-01T23:59:59.000Z

142

An Introduction to Risk with a Focus on Design Diversity in the Stockpile  

SciTech Connect (OSTI)

The maintenance and security of nuclear weapons in the stockpile involves decisions based on risk analysis and quantitative measures of risk. Risk is a factor in all decisions, a particularly important factor in decisions of a large scale. One example of high-risk decisions we will discuss is the risk involved in design diversity within the stockpile of nuclear weapons arsenal. Risk is defined as 'possibility of loss or injury' and the 'degree of probability of such loss' (Kaplan and Garrick 12). To introduce the risk involved with maintaining the weapons stockpile we will draw a parallel to the design and maintenance of Southwest Airlines fleet of Boeing 737 planes. The clear benefits for cost savings in maintenance of having a uniform fleet are what historically drove Southwest to have only Boeing 737s in their fleet. Less money and resources are need for maintenance, training, and materials. Naturally, risk accompanies those benefits. A defect in a part of the plane indicates a potential defect in that same part in all the planes of the fleet. As a result, safety, business, and credibility are at risk. How much variety or diversity does the fleet need to mitigate that risk? With that question in mind, a balance is needed to accommodate the different risks and benefits of the situation. In a similar way, risk is analyzed for the design and maintenance of nuclear weapons in the stockpile. In conclusion, risk must be as low as possible when it comes to the nuclear weapons stockpile. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk, and to help balance options in stockpile stewardship.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-13T23:59:59.000Z

143

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or launching a weapon, with its nuclear components removed, to assess performance and reliability. Component tests involve the destructive analysis of the five primary weapon components: pits, secondaries, detonators, cable assemblies, and the gas transfer valves systems

144

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Follow-up Audit on Stockpile Surveillance Testing, IG-0744 Significant backlogs existed in each of the three types of tests Surveillance Testing conducted in the Surveillance Testing Program---laboratory tests, flight tests, and component tests---as of September 30? 2005. Laboratory tests are conducted on weapons' non-nuclear systems to detect defects due to handling, aging, manufacturing, or design. Flight tests involve dropping or launching a weapon, with its nuclear components removed, to assess performance and reliability. Component tests involve the destructive analysis of the five primary weapon components: pits, secondaries, detonators, cable assemblies, and the gas transfer valves systems

145

Managing nuclear weapons in a changing world: Proceedings  

SciTech Connect (OSTI)

The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

Not Available

1992-12-31T23:59:59.000Z

146

National Day of Remembrance HSS Honors Former Nuclear Weapons Program  

Broader source: Energy.gov (indexed) [DOE]

National Day of Remembrance HSS Honors Former Nuclear Weapons National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - 3:11pm Addthis Color Guard | National Day of Remembrance - October 25, 2013 Color Guard | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Glenn Podonsky, Chief Health Safety and Security Officer | National Day of Remembrance - October 25, 2013

147

Nuclear dependence| The Russian Federation's future reliance on nuclear weapons for national security.  

E-Print Network [OSTI]

?? The Russian Federation's reliance on nuclear weapons for national security will steadily increase over time. Based on current evidence and historical data, the Russian… (more)

Lukszo, Adam J.

2011-01-01T23:59:59.000Z

148

NNSA's Summary of Experiments Conducted in Support of Stockpile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the 1st quarter of FY2012 prepared by NNSA's for the 1st quarter of FY2012 prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments performed at each facility during each quarter of the fiscal year. The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within

149

NNSA's Summary of Experiments Conducted in Support of Stockpile  

National Nuclear Security Administration (NNSA)

for the 1st quarter of FY2012 prepared by NNSA's for the 1st quarter of FY2012 prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the most sophisticated scientific research facilities in the world including, the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The summary also provides the number of experiments performed at each facility during each quarter of the fiscal year. The U.S. Stockpile Stewardship Program is a robust program of scientific inquiry used to sustain and assess the nuclear weapons stockpile without the use of underground nuclear tests. The experiments carried out within

150

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network [OSTI]

and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-at the Hanford Nuclear Weapons Facility MASTER DISTRIBUTIONAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

Britton, Julie

2010-01-01T23:59:59.000Z

151

Stockpile Stewardship: Los Alamos  

ScienceCinema (OSTI)

"Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

2014-08-12T23:59:59.000Z

152

E-Print Network 3.0 - america nuclear weapons Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: america nuclear weapons Page: << < 1 2 3 4 5 > >> 1 First strike Sixty years ago,...

153

Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components  

SciTech Connect (OSTI)

This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

Coleman, J.T.; Bickford, D.F.

1991-01-01T23:59:59.000Z

154

Operation TEAPOT, 1955 continental nuclear weapons test series. Technical report  

SciTech Connect (OSTI)

This report describes the activities of an estimated 11,000 DOD personnel, both military and civilian, in Operation TEAPOT, the fifth atmospheric nuclear weapons testing series conducted in Nevada from 18 February to 15 May 1955. Activities engaging DOD personnel included Exercise Desert Rock VI observer programs, troop tests, and technical service programs; AEC scientific and diagnostic experiments to evaluate the effects of the nuclear device; DOD operational programs; and air support.

Ponton, J.; Maag, C.; Wilkinson, M.; Shepanek, R.F.

1981-11-23T23:59:59.000Z

155

Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2  

E-Print Network [OSTI]

1 Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2] The end of the Cold policy objectives and risks compromising the value that nuclear weapons continue to make through. A declaratory U.S. policy of moving to eliminate nuclear weapons in a distant future will have no direct effect

Deutch, John

156

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

1997-01-17T23:59:59.000Z

157

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

2001-08-06T23:59:59.000Z

158

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

2009-04-14T23:59:59.000Z

159

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

160

Nuclear weapons in Ukraine: Hollow threat, wasting asset  

SciTech Connect (OSTI)

When Ukrainian Prime Minister Leonid Kuchma declared on June 3 at a closed session of the Ukrainian parliament (Rada) that it should ratify START I and the May 1992 Lisbon Protocol, but temporarily retain some of the nuclear weapons on Ukrainian territory, concern increased over Kiev`s delay in carrying out its commitments to become a non-nuclear-weapon state. These continuing delays threaten an arms control process codified in START I and START II with far broader security implications. The delays and constant mixed signals from Kiev can be explained two ways, but a closer examination of each of the alternative security options Ukrainians are discussing shows they are built on false premises and would ultimately be counterproductive to genuine Ukrainian security.

Kincade, W.H.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Why Model-Based Engineering and Manufacturing Makes Sense for the Plants and Laboratories of the Nuclear Weapon Complex  

SciTech Connect (OSTI)

The purpose of this White Paper is to outline the benefits we expect to receive from Model-Based Engineering and Manufacturing (MBE/M) for the design, analysis, fabrication, and assembly of nuclear weapons for upcoming Life Extension Programs (LEPs). Industry experiences with model-based approaches and the NNSA/DP investments and experiences, discussed in this paper, indicate that model-based methods can achieve reliable refurbished weapons for the stockpile with less cost and time. In this the paper, we list both general and specific benefits of MBE/M for the upcoming LEPs and the metrics for determining the success of model-based approaches. We also present some outstanding issues and challenges to deploying and achieving long-term benefit from the MBE/M. In conclusion, we argue that successful completion of the upcoming LEPs--with very aggressive schedule and funding restrictions--will depend on electronic model-based methods. We ask for a strong commitment from LEP managers throughout the Nuclear Weapons Complex to support deployment and use of MBE/M systems to meet their program needs.

Franklin, K W; Howell, L N; Lewis, D G; Neugebauer, C A; O'Brien, D W; Schilling, S A

2001-05-15T23:59:59.000Z

162

Long range planning at former nuclear weapon plants  

SciTech Connect (OSTI)

This paper discusses the approach to planning the cleanup of former nuclear weapon manufacturing plants. The limit of backward planning is the knowledge horizon. Extension of backward planning beyond this horizon is futile. Forward planning is the customary method for planning missions extending beyond that horizon. Planning the future of former plant sites is a political activity by political decision makers. Scientists, professional planners, and public interest groups have an advisory role in this activity.

Vrouwes, J.H. [EG & G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

163

Use of commercial manipulator to handle a nuclear weapon component  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) has developed a manipulator workcell to load and unload nuclear weapon pit assemblies from a cart. To develop this workcell, PNL procured a commercially available manipulator, equipped it with force-sensing and vision equipment, and developed manipulator control software. Manipulator workcell development demonstrated that commercially available manipulator systems can successfully perform this task if the appropriate manipulator is selected and the manipulator workcell tooling and software are carefully designed.

Baker, C.P.

1994-08-01T23:59:59.000Z

164

Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences  

Broader source: Energy.gov [DOE]

This report described each step in the cycle of nuclear weapons production and defined for the first time a planned disposition path for all waste streams generated prior to 1992 as a result of weapons production.

165

Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?  

SciTech Connect (OSTI)

In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

166

NNSA highlights Stockpile Stewardship Program, commemorates 20th...  

National Nuclear Security Administration (NNSA)

Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile...

167

National Security, Weapons Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

168

Radioactive ''hot spots'' from nuclear weapons test fallout  

SciTech Connect (OSTI)

In a paper presented on January 8, 1985, at the Health Physics Society Midyear Symposium, Franke and Alvarez claimed that radioactivity observed on the Savannah River Plant site on March 14, 1955, was the result of a reactor accident. The source of the observed radioactivity was, in fact, rainwater containing radioactive products from a nuclear weapon test made two days earlier in Nevada. The weapon test TEAPOT HORNET was shown to be the source of the contamination at the time, and this has been corroborated in two recent papers. The aim of this review is to show that the highly-localized radioactive fallout on the Savannah River Plant site was not unique but part of a widespread phenomenon occurring all over the United States in the 1950s and early 1960s. 18 references, 2 figures, 2 tables.

Sanders, S.M.

1985-02-11T23:59:59.000Z

169

A hazard separation system for dismantlement of nuclear weapon components  

SciTech Connect (OSTI)

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

1995-04-01T23:59:59.000Z

170

The Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean  

SciTech Connect (OSTI)

The Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean, known as the Treaty of Tlatelolco, seeks to establish a nuclear-weapon-free zone (NWFZ) that will extend from the US-Mexican border to Antarctica`s territorial boundaries, including large areas of open ocean. Under the treaty, signatory states pledge not to test, use, produce, manufacture or acquire nuclear weapons; to use nuclear materials and facilities {open_quotes}exclusively for peaceful purposes;{close_quotes} and not to permit the stationing or development of nuclear weapons on their territories.

NONE

1994-03-01T23:59:59.000Z

171

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Weapons and Global Security Data Analysis Nuclear Weapons and Global Security Data Analysis Physics Division applies advanced imaging techniques to many applications, from brain imaging to neutron imaging in inertial fusion to threat detection from airborne cameras. A particular strength is the quantitative analysis of penetrating radiography using techniques such as the Bayesian Inference Engine (BIE). An example from the Nuclear Event Analysis Team shows a test object (Figure 1) that is subsequently radiographed using the Dual-Axis Radiography Hydrodynamic Test (DARHT) facility. Figures 2 and 3 show the radiograph and the inferred density of the object using the BIE, which can be compared to the known object to determine accurate error estimation. Test object Figure 1. The test object consists of a 1 cm-radius cavity void surrounded by a 4.5 cm radius surrogate fissile material of tungsten, tantalum, or depleted uranium. This sphere is surrounded by a 6.5 cm-radius copper sphere. At is thickest point, the tantalum test object has an areal density of 180 g/cm2, equivalent to 9" of steel.

172

2002-2003 Engineering Accomplishments: Unconventional Nuclear Weapons Detection  

SciTech Connect (OSTI)

The Defense Threat Reduction Agency, DTRA, is a federal agency charged with safeguarding the nation from weapons of mass destruction, in particular nuclear weapons such as crude devices, and radiological dispersal devices (RDD), also known as dirty bombs. Both of which could be delivered using unconventional means such as by transporting them by a car or boat. Two years ago DTRA partnered with NNSA to evaluate commercially available technologies that could be deployed quickly to defend against threats posed by unconventional nuclear weapons under a program called the Unconventional Nuclear Warfare Defense (UNWD) Program. Lawrence Livermore National Laboratory (LLNL) was one of several National laboratories that participated in this program, which consisted in developing, deploying, and demonstrating detection systems suitable for military base protection. Two key contributions to this program by the LLNL team were the development of two Radiation Detection Buoys (RDB) deployed at Naval Base in Kings Bay in Georgia, and the Detection and Tracking System (DTS) demonstrated at Fort Leonard Wood Missouri, headquarters for the Total Force's Maneuver Support Center (MANSCEN). The RDB's were designed to detect the potential transportation of an unconventional nuclear or radiological weapon by a boat. The RDB's consisted of two commercial marine buoys instrumented with several types of detectors sensitive to gamma rays and neutrons, two key modes of energy emitted by radioactive materials. The engineering team selected a standard marine buoy as the overall system platform for this deployment since buoys are already designed to sustain the harsh marine environment, and also for their covertness, since once deployed, they look just like any other buoy on the water. Since this was the first time such a system was ever deployed, the team choose to instrument the buoys with a suite of different types of detectors with the goal to learn which detectors would be best suited for future deployments of this kind. This goal has now being achieved, and through a combination of computer modeling and experimental data, the team has gain the necessary knowledge to better understand the capabilities and limitations of RDB's, and the tradeoffs involve in the selection of the different detectors. The two LLNL RDB's are currently operational at Kings Bay, and the team is looking forward to another opportunity to design the next generation RDB's.

Hernandez, J E; Valentine, J

2004-04-09T23:59:59.000Z

173

Regime Security Theory: Why Do States With No Clear Strategic Security Concerns Obtain Nuclear Weapons? .  

E-Print Network [OSTI]

??Current realist explanations of why states decide to develop nuclear weapons cannot account for the behavior of states that lack a clear strategic threat. An… (more)

Beasley, Matthew

2009-01-01T23:59:59.000Z

174

Abolishing the taboo: President Eisenhower and the permissible use of nuclear weapons for national security.  

E-Print Network [OSTI]

??As president, Dwight Eisenhower believed that nuclear weapons, both fission and fusion, were permissible and desirable assets to help protect U.S. national security against the… (more)

Jones, Brian Madison

2008-01-01T23:59:59.000Z

175

COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton University The United States and eight other countries...

176

Strategic culture and non-nuclear weapon outcomes: the cases of Australia, South Africa and Sweden .  

E-Print Network [OSTI]

??This thesis uses a "strategic culture" approach to gain insights into non-nuclear weapon outcomes in Australia, South Africa and Sweden. Strategic culture refers to the… (more)

Poore, S.E.

2000-01-01T23:59:59.000Z

177

Steps toward a Middle East free of nuclear weapons  

SciTech Connect (OSTI)

In the aftermath of the Gulf War, all eyes are focused on the dangers of proliferation in the Middle East. President Bush, in his postwar address to Congress, called for immediate action to control the proliferation of weapons of mass destruction and the missiles used to deliver them, warning that it would be tragic if the nations of the Middle East and Persian Gulf were now, in the wake of war, to embark on a new arms race. Secretary of State James Baker has recently returned from a tour of the region, and consultations on proliferation were reportedly high on his agenda. At the same time, the fierce political antagonisms and unbridled military competitions that have long characterized the Middle East leave many skeptical as to what can realistically be done. While all states in the region - including Israel - have publicly supported the idea of establishing a nuclear-weapon-free zone (NWFZ) in the Middle East, doubt over the feasibility of the proposal runs high. Why on earth, it is asked, would Israelis give up the protection of their nuclear monopoly What assurances from their Arab adversaries or from the US could possibly replace this ultimate deterrent

Leonard, J.

1991-04-01T23:59:59.000Z

178

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network [OSTI]

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Dombey, Norman

2011-01-01T23:59:59.000Z

179

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network [OSTI]

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Norman Dombey

2011-12-10T23:59:59.000Z

180

Gamma-ray identification of nuclear weapon materials  

SciTech Connect (OSTI)

There has been an accelerating national interest in countering nuclear smuggling. This has caused a corresponding expansion of interest in the use of gamma-ray spectrometers for checkpoint monitoring, nuclear search, and within networks of nuclear and collateral sensors. All of these are fieldable instruments--ranging from large, fixed portal monitors to hand-held and remote monitoring equipment. For operational reasons, detectors with widely varying energy resolution and detection efficiency will be employed. In many instances, such instruments must be sensitive to weak signals, always capable of recognizing the gamma-ray signatures from nuclear weapons materials (NWM), often largely insensitive to spectral alteration by radiation transport through intervening materials, capable of real-time implementation, and able to discriminate against signals from commonly encountered legitimate gamma-ray sources, such as radiopharmaceuticals. Several decades of experience in classified programs have shown that all of these properties are not easily achieved and successful approaches were of limited scope--such as the detection of plutonium only. This project was originally planned as a two-year LDRD-ER. Since funding for 1997 was not sustained, this is a report of the first year's progress.

Gosnell, T. B., LLNL; Hall, J. M.; Jam, C. L.; Knapp, D. A.; Koenig, Z. M.; Luke, S. J.; Pohl, B. A.; Schach von Wittenau, A.; Wolford, J. K.

1997-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stockpile Stewardship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

only U.S. facility designed to perform experimental studies of fusion ignition and thermonuclear burn, the phenomenon that gives rise to the immense energy of modern nuclear...

182

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect (OSTI)

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A. [Sandia National Labs., Albuquerque, NM (United States). Quality Engineering Department

1993-12-31T23:59:59.000Z

183

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect (OSTI)

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A.

1993-07-01T23:59:59.000Z

184

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect (OSTI)

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A.

1993-01-01T23:59:59.000Z

185

A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods  

E-Print Network [OSTI]

A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

Sentell, Dennis Shannon, 1971-

2002-01-01T23:59:59.000Z

186

U.S. Nuclear Policy and the NPT  

National Nuclear Security Administration (NNSA)

Demonstrating the U.S. Demonstrating the U.S. Commitment to Nuclear Disarmament October 18, 2011 Thomas P. D'Agostino, Administrator National Nuclear Security Administration 2 Outline - Reducing nuclear weapons - Ceasing production of weapons materials - Disposing of excess weapons materials - Managing a smaller stockpile - Strengthening the nuclear security enterprise - Transparency and verification 3 Toward a World Without Nuclear Weapons * President Obama stated the U.S. commitment to the peace and security of a world without nuclear weapons * Continue focus on preventing nuclear proliferation and nuclear terrorism * Strengthen regional security architectures while placing increased reliance on non-nuclear deterrence capabilities * Engage with Russia in negotiations aimed at achieving substantial

187

ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS  

E-Print Network [OSTI]

ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS CONVENTION ON THE PROHIBITION OF THE DEVELOPMENT, PRODUCTION, STOCKPILING AND USE OF CHEMICAL WEAPONS AND ON THEIR DESTRUCTION OPCW #12;#12;CONVENTION ON THE PROHIBITION OF THE DEVELOPMENT, PRODUCTION, STOCKPILING AND USE OF CHEMICAL WEAPONS

Sussex, University of

188

The doctrine of the nuclear-weapon states and the future of non-proliferation  

SciTech Connect (OSTI)

Less than a year remains before the critical conference in April 1995 to review and extend the nuclear Non-Proliferation Treaty (NPT), the main international barrier to the proliferation of nuclear weapons. This is a critical moment for the United States. With the end of the Cold War, the likelihood of nuclear war with the states of the former Soviet Union has been radically reduced, but there is greatly increased concern over the potential threats from states or sub-state groups seeking to develop or acquire nuclear weapons and other weapons of mass destruction.

Panofsky, W.K.H.; Bunn, G.

1994-07-01T23:59:59.000Z

189

Nuclear fuel reprocessing and the problems of safeguarding against the spread of nuclear weapons  

SciTech Connect (OSTI)

In 1977, the executive branch reversed its long-standing support for nuclear fuel reprocessing, primarily because of the rick of spreading nuclear weapons. GAO reviewed safeguards technology designed to reduce such risks in Federal reprocessing facilities and found that concerns are warranted. Material in sufficient quantities to construct a nuclear weapon could be diverted and go undetected for a long time. Effective international control and safeguards over the production, storage, and use of separated plutonium are lacking. The United States should increase its efforts to: develop and ensure the use of effective safeguards for reprocessing facilities; and establish, in conjunction with major nuclear fuel users, suppliers, and reprocessors, an international system to control the storage and use of excess plutonium.

Staats, E.B.

1980-03-18T23:59:59.000Z

190

Office of Weapons Material Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

that gradually transfers responsibility for maintaining the security systems to Russia. Related Topics material protection MPC&A SLD second line of defense weapons material...

191

Final text of the African nuclear-weapon-free zone treaty  

SciTech Connect (OSTI)

In early 1996, African leaders will travel to Cairo, Egypt, to sign the African nuclear-weapon-free zone treaty, capping African countries` 35-year effort to ban all such weapons on the continent. Informally called the Pelindaba Treaty (ironically, the site of the South African nuclear research center where some of Pretoria`s nuclear weapons work was conducted), the accord will prohibit the development, manufacture, acquisition or possession of any nuclear explosive device as well as the dumping of radioactive material within the zone. Once it enters into force-after the 28th state deposits its instrument of ratification-Africa will become the world`s fourth nuclear-weapon-free zone. The treaty`s final text is printed provided.

NONE

1996-01-01T23:59:59.000Z

192

Topics in stockpile evaluation  

SciTech Connect (OSTI)

This report is a compilation of previously unpublished papers pertinent to Stockpile Evaluation, Reliability, and Safety activities at Sandia.

Mueller, F.W.

1993-09-01T23:59:59.000Z

193

Multiscale science for science-based stockpile stewardship  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to develop and apply the methods of multi scale science to the problems of fluid and material mixing due to instability and turbulence, and of materials characterization. Our specific focus has been on the SBSS (science-based stockpile stewardship) issue of assessing the performance of a weapons with off-design, aged, or remanufactured components in the absence of full-scale testing. Our products are physics models, based on microphysical principles and parameters, and suitable for implementation in the large scale design and assessment codes used in the nuclear weapons program.

Margolin, L.; Sharp, D.

2000-12-01T23:59:59.000Z

194

Source terms for plutonium aerosolization from nuclear weapon accidents  

SciTech Connect (OSTI)

The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

Stephens, D.R.

1995-07-01T23:59:59.000Z

195

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

196

NNSA highlights Stockpile Stewardship Program, commemorates 20th  

National Nuclear Security Administration (NNSA)

highlights Stockpile Stewardship Program, commemorates 20th highlights Stockpile Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA highlights Stockpile Stewardship Program, commemorates 20th ... NNSA highlights Stockpile Stewardship Program, commemorates 20th

197

NNSA highlights Stockpile Stewardship Program, commemorates 20th  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

highlights Stockpile Stewardship Program, commemorates 20th highlights Stockpile Stewardship Program, commemorates 20th Anniversary of Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA highlights Stockpile Stewardship Program, commemorates 20th ... NNSA highlights Stockpile Stewardship Program, commemorates 20th

198

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network [OSTI]

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

199

The Myth of Strategic Superiority: Us Nuclear Weapons and Limited Conflicts, 1945-1954.  

E-Print Network [OSTI]

??The nuclear age provided U.S. soldiers and statesmen with unprecedented challenges. the U.S. military had to incorporate a weapon into strategic calculations without knowing whether… (more)

Morse, Eric

2012-01-01T23:59:59.000Z

200

Total Quality Management and nuclear weapons: A historian`s perspective  

SciTech Connect (OSTI)

Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

Meade, R.A.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Iraqi nuclear weapons development program. Final report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

This is an abstract of the final report focusing on the collection, collation, analysis, and recording of information pertaining to Iraqi nuclear weapons development and on the long term monitoring of Iraq.

Not Available

1993-09-30T23:59:59.000Z

202

The nuclear-weapon states and article VI of the NPT  

SciTech Connect (OSTI)

The Non-Proliferation Treaty rests on a basic bargain between the five declared nuclear-weapon states - the United States, Russia, Britain, France and China and 167 states that do not possess nuclear weapons. In addition, to the arms control and disarmaments commitments in Article VI, the parties pledge in the treaty`s pramble their determination to seek a comprehensive test ban (CTB) and express the understanding that in connection with the treaty on general and complete disarmament the parties should seek the cessation of manufacture of nuclear weapons, the liquidation of all their existing stock piles, and the elimination from national arsenals of nuclear weapons and means of their delivery. The author discusses the status of these agreements and the extent to which they have been fulfilled.

Mendelsohn, J.; Lockwood, D.

1995-03-01T23:59:59.000Z

203

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network [OSTI]

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

204

Stopping the emergence of nuclear weapon states in the Third World: An examination of the Iraq weapons inspection program. Study project  

SciTech Connect (OSTI)

The end of the Gulf War and the implementation of United Nation (UN) resolutions uncovered an Iraqi multi-billion dollar nuclear weapons program. Iraq's ability to pursue this clandestine program for more than a decade, despite periodic inspections, suggest that the myriad of treaties and agreements designed to curb proliferation may be inadequate. Clearly more must be done to deter and counter the spread of these deadly weapon. The UN weapons inspections in Iraq provide insight into possible solutions to the proliferation of nuclear weapons technology in the developing world. This study examines the policy and operational aspects associated with an intrusive United Nations inspection program. In its final analysis, this paper suggests that an effective challenge inspection program is a necessary element in countering the spread of weapons of mass destruction. Further, it suggests that the UN, as the only internationally accepted enforcement organization, be fully engaged in nonproliferation issues and support the challenge inspection program.

Block, D.A.

1993-01-31T23:59:59.000Z

205

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

1, Number 3 * October 2011 1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation Performance 5 The Detonation Sandwich 6 Joint DoD/DOE Munitions Technology Development Program-High Explosives 9 New Faces at the Office of Stockpile Stewardship

206

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

Message from the (Acting) Assistant Deputy Administrator for Research, Development, Test, and Evaluation, Roger A. Lewis Defense Programs Stockpile Stewardship in Action Volume...

207

Site map | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

map | National Nuclear Security Administration map | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Site map Site map Front page Front page of National Nuclear Security Administration NNSA Site Navigation Our Mission Managing the Stockpile Stockpile Stewardship Program Quarterly Experiments Dismantlement and Disposition Weapons NPT Compliance

208

Notice of Intent to Revise DOE O 452.4B, Security and Control of Nuclear Explosives and Nuclear Weapons, dated 1-11-2010  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Recent events have revealed that there are organizations that are seeking to insert malicious software and/or components into the nuclear weapon supply chain that can alter the functionality of the weapon and possible cause DAU.

2014-09-18T23:59:59.000Z

209

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

210

Laboratory's role in Cold War nuclear weapons testing program focus of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. Contact Steve Sandoval Communications Office (505) 665-9206 Email "Los Alamos National Laboratory's role in conjunction with the Department of Defense in meeting this challenge with new nuclear weapon

211

Nuclear weapons: Emergency preparedness planning for accidents can be better coordinated  

SciTech Connect (OSTI)

Nuclear weapons will be carried on some of the ships the Navy plans to add to existing and new U.S. homeports. Coordination and planning with states and localities for public safety in the event of a nuclear weapon accident varies by service. The Navy and Army generally have not coordinated this planning as they have for other types of disasters because they believe to do so would compromise national security. The Air Force coordinates its emergency planning for all types of disasters. DOD believes that while it is possible for Navy homeports to coordinate preparedness plans on an unclassified basis it is not possible to do so at nuclear weapons storage sites because of security constraints.

Not Available

1987-01-01T23:59:59.000Z

212

Managing nuclear materials from retired weapons: An overview of U.S. plans, programs and goals  

SciTech Connect (OSTI)

In September 1993, the Congressional Office of Technology Assessment (OTA) published a report entitled ``Dismantling the Bomb and Managing the Nuclear Materials``. That study evaluated the current activities as well as the future challenges inherent in retiring many thousands of nuclear weapons in the US and Russia; dismantling the warheads; and safely and securely disposing of the constituent materials.The warhead dismantlement process has been underway for a few years in both nations but long-range plans and policies are still in the early stages of development. At present both the plutonium and highly-enriched uranium removed from retired weapons is stored temporarily awaiting decisions about its ultimate fate.

Johnson, P.A. [Office of Technology Assessment, Washington, DC (United States)

1995-12-31T23:59:59.000Z

213

The origin of Iraq's nuclear weapons program: Technical reality and Western hypocrisy  

E-Print Network [OSTI]

This report is based on a series of papers written between 1980 and 2005 on the origin of Iraq's nuclear weapons program, which was known to one of the authors in the late 1970s already, as well as to a number of other physicists, who independently tried without success to inform their governments and the public. It is concluded that at no point did the Western governments effectively try to stop Iraq's nuclear weapons program, which suggests that its existence was useful as a foreign policy tool, as is confirmed by its use as a major justification to wage two wars on Iraq.

Erkman, S; Hurni, J P; Klement, S; Erkman, Suren; Gsponer, Andre; Hurni, Jean-Pierre; Klement, Stephan

2005-01-01T23:59:59.000Z

214

Out of (South) Africa: Pretoria`s nuclear weapons experience. Final report  

SciTech Connect (OSTI)

The primary focus of this paper is the impact of key South African leaders on the successful developments and subsequent rollbacks of South Africa`s nuclear weapons capability. It highlights the key milestones in the development of South Africa`s nuclear weapon capability. It also relates how different groups within South Africa (scientists, politicians, military and technocrats) interacted to successfully produce South Africa`s nuclear deterrent. It emphasizes the pivotal influence of the senior political leadership to pursue nuclear rollback given the disadvantages of its nuclear means to achieve vital national interests. The conclusions drawn from flu`s effort are the South African nuclear program was an extreme response to its own identity Crisis. Nuclear weapons became a means to achieving a long term end of a closer affiliation with the West. A South Africa yearning to be identified as a Western nation and receive guarantees of its security rationalized the need for a nuclear deterrent. The deterrent was intended to draw in Western support to counter a feared total onslaught by Communist forces in the region. Two decades later, that same South Africa relinquished its nuclear deterrent and reformed its domestic policies to secure improved economic and political integration with the West.

Horton, R.E.

1998-04-01T23:59:59.000Z

215

Stopping the spread of nuclear weapons. The Heritage lectures; No. 506  

SciTech Connect (OSTI)

This lecture is on the proliferation of nuclear arms. More precisely, it will be on how best to prevent the proliferation of nuclear arms. For as much as the policy community may disagree about the proper policies for preventing nuclear proliferation, the author thinks all share the goal of preventing proliferation. The best prescription for preventing all sorts of proliferation - biological, chemical, missile, and space technology, as well as nuclear is for the U.S. government to pursue a balanced non-proliferation policy. Such a balanced policy requires bringing four distinct approaches to addressing the proliferation problem together in a coherent fashion. These distinct approaches are: (1) deterring the use of the weapon in question, (2) defending against the use of the weapon in question, (3) destroying preemptively the weapon in question, and (4) controlling the spread of the weapon in question directly through arms control. In the authors view, a balanced and effective nonproliferation policy should not shun or slight any of these approaches. All make a unique contribution toward the whole and serve to reinforce one another in limiting the effects of proliferation and ultimately discouraging proliferation itself. This does not mean, however, that there is no requirement to make trade-offs among the four. Indeed, the real trick is assuring that there is an appropriate division of labor among the four. The author explains this general policy in terms of the specific challenges posed by the proliferation of nuclear arms.

Spring, B.

1994-12-31T23:59:59.000Z

216

DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

217

Safety issues in robotic handling of nuclear weapon parts  

SciTech Connect (OSTI)

Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems.

Drotning, W.; Wapman, W.; Fahrenholtz, J.

1993-12-31T23:59:59.000Z

218

The B61-based "Robust Nuclear Earth Penetrator:" Clever retrofit or headway towards fourth-generation nuclear weapons?  

E-Print Network [OSTI]

It is scientifically and technically possible to build an earth penetrating device that could bury a B61-7 warhead 30 meters into concrete, or 150 meters into earth, before detonating it. The device (based on knowledge and technology that is available since 50 years) would however by large and cumbersome. Better penetrator materials, components able to withstand larger stresses, higher impact velocities, and/or high-explosive driven penetration aids, can only marginally improve the device. It is conclude that the robust nuclear earth penetrator (RNEP) program may be as much motivated by the development of new technology directly applicable to next generation nuclear weapons, and by the political necessity to periodically reasses the role and utility of nuclear weapons, then by the perceived military need of a weapon able to destroy deeply buried targets.

Gsponer, A

2005-01-01T23:59:59.000Z

219

Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants  

SciTech Connect (OSTI)

The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail.

Pyper, J.W.

1984-06-01T23:59:59.000Z

220

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues  

Broader source: Energy.gov [DOE]

Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B....

222

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled...

223

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A....

224

Utility of tactical nuclear weapons following 1990 Conventional Forces Europe reduction agreement. Final report  

SciTech Connect (OSTI)

Not so long ago, the world was changing rapidly, the Cold War faded. At least one arms agreement, the Intermediate Nuclear Forces (INF) Treaty, which reduced the U.S. Pershing II and the Russian SS-21's missiles in the European theater, was in place. Then the euphoria evaporated. The Kremlin hardliners regained power and balked at signing a Conventional Forces Europe (CFE) agreement - a treaty which only a year ago would have reduced to approximate parity the size of United States and Soviet Forces in Europe. Was America ready for this new Soviet challenge. Thankfully the answer is still yes. The United States continues to maintain its Nuclear Triad -- land, sea and air deliverable nuclear weapons system's. On the European battlefield the U.S. maintains the ability to deliver tactical nuclear weapons to overcome the Russian Army's numerical advantage and remain responsive to the ground commander. All of this should give Kremlin hardliners (strict communist power brokers, primarily in the military and KGB) reason to pause. Given the reemergence of hostile Soviet leaders, this paper addresses the future need for land based Theater Army delivered tactical nuclear weapons in the European Theater and within Regional Theaters. It also, analyzes regional powers, indicating how they might influence nuclear strategy in a world where the Soviet Union may well be moving away from us again.

Keating, A.J.

1991-04-29T23:59:59.000Z

225

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

226

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

227

Plutonium gamma-ray measurements for mutual reciprocal inspections of dismantled nuclear weapons  

SciTech Connect (OSTI)

The O`Leary-Mikhailov agreement of March 1994 stated that the U.S. and the Russian Federation would engage in mutual reciprocal inspections (MRI) of fissile materials removed from dismantled nuclear weapons. It was decided to begin with the plutonium (Pu) removed from dismantled weapons and held in storage containers. Later discussions between U.S. and Russian technical experts led to the conclusion that, to achieve the O`Leary-Mikhailov objectives, Pu MRI would need to determine that the material in the containers has properties consistent with a nuclear-weapon component. Such a property is a {sup 240}Pu/{sup 239}Pu ratio consistent with weapons-grade material. One of the candidate inspection techniques under consideration for Pu MRI is to use a narrow region (630-670 keV) of the plutonium gamma-ray spectrum, taken with a high-purity germanium detector, to determine that it is weapons-grade plutonium as well as to estimate the minimum mass necessary to produce the observed gamma-ray intensity. We developed software (the Pu600 code) for instrument control and analysis especially for this purpose. In November 1994, U.S. and Russian scientists met at the Lawrence Livermore National Laboratory for joint experiments to evaluate candidate Pu MRI inspection techniques. In one of these experiments, gamma-ray intensities were measured from three unclassified weapons-grade plutonium source standards and one reactor-grade standard (21% {sup 240}pu). Using our software, we determined the {sup 240}Pu/{sup 239}Pu ratio of these standards to accuracies within {+-}10%, which is adequate for Pu MRI. The minimum mass estimates varied, as expected, directly with the exposed surface area of the standards.

Koenig, Z.M.; Carlson, J.B.; Clark, D.; Gosnell, T.B.

1995-07-01T23:59:59.000Z

228

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surety (NEWS) Program, which was established to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. o452.1E-Draft-8-5-14.pdf --...

229

CHEMICAL WEAPONS CONVENTION BULLETIN News, Background and Comment on Chemical and Biological Warfare Issues  

E-Print Network [OSTI]

CHEMICAL WEAPONS CONVENTION BULLETIN News, Background and Comment on Chemical and Biological DUPLICATION Graham S Pearson HSP Advisory Board The Biological and Toxin Weapons Convention (BTWC) was opened biological weapons and prohibit their development, produc- tion, stockpiling, acquisition and retention

Sussex, University of

230

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Broader source: Energy.gov (indexed) [DOE]

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

231

Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant  

SciTech Connect (OSTI)

Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996.

Guidice, S.J.; Inlow, R.O. [USDOE Albuquerque Operations Office, NM (United States)

1995-12-31T23:59:59.000Z

232

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

2 * July 2012 2 * July 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 2 Inside this Issue 2 Exploring Shock-Induced Chemistry on Ultrafast Timescales 3 Toward Exascale Simulation of Re-Entry Flight Environment 4 Probing Inertial Confinement Fusion Plasmas 5 Shock Physics 6 Inertial Confinement Fusion 7 Modeling Polar Direct Drive Implosions on NIF 8 Developing Improved Physics Models for Predictive Simulations 9 Developing X-ray Sources for Extreme Radiation Environments on the Z Machine 11 Awards and Highlights O ur NNSA laboratories-Los Alamos National

233

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

2, Number 3 * November 2012 2, Number 3 * November 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 3 Inside this Issue 2 Jupiter - An Intermediate-Scale Laser User Facility 4 Trident Intermediate-Scale Laser Facility 5 Mach-Zehnder Fiber-Optic Links for Inertial Confinement Fusion Diagnostics 7 High Energy Density Experiments at the OMEGA Laser Facility 9 Doubling the Electric Power Generated by an LTD Cavity 10 Reproducibility of Sandia National Laboratories' 80-terawatt Z Accelerator

234

Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors  

SciTech Connect (OSTI)

A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

2010-04-16T23:59:59.000Z

235

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Broader source: Energy.gov (indexed) [DOE]

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

236

Nuclear testing: Executive summary  

SciTech Connect (OSTI)

The authors have examined the experimental and analytic bases for understanding the performance of each of the weapon types that are currently planned to remain in the US enduring nuclear stockpile. They have also examined whether continued underground tests at various nuclear yield thresholds would add significantly to the confidence in this stockpile in the years ahead. The starting point for this examination was a detailed review of past experience in developing and testing modern nuclear weapons, their certification and recertification processes, their performance margins, and evidence of aging or other trends over time for each weapon type in the enduring stockpile. The findings, as summarized in Conclusions 1 through 6, are consistent with US agreement to enter into a Comprehensive Test Ban Treaty (CTBT) of unending duration, that includes a standard ``supreme national interest`` clause. Recognizing that the challenge of maintaining an effective nuclear stockpile for an indefinite period without benefit of underground tests is an important and also a new one, the US should affirm its readiness to invoke the supreme national interest clause should the need arise as a result of unanticipated technical problems in the enduring stockpile.

Drell, S.; Cornwall, J.; Dyson, F. [and others

1995-08-01T23:59:59.000Z

237

A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests  

SciTech Connect (OSTI)

Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics. 10 refs., 1 fig., 2 tabs.

Simon, S.L. [Radiation Effects Research, Washington, DC (United States); Robison, W.L. [Lawrence Livermore National Lab., CA (United States)

1997-07-01T23:59:59.000Z

238

Principal Associate Director - Weapons Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

encompasses the activities necessary to assure the stockpile without underground nuclear testing. This mission includes physics and engineering design, small-scale...

239

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Broader source: Energy.gov [DOE]

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

240

Citizen-State Interaction and Technical Controversy: The U.S. Army Chemical Stockpile Disposal Program  

E-Print Network [OSTI]

This paper explores the development and transformation of a local collective campaign opposing the U.S. Army's ChemicaL Weapons Stockpile Disposal Program into a social movement with national and international dimensions. ...

Futrell, Robert

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect (OSTI)

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. (Westinghouse Hanford Co., Richland, WA (United States)); Walter, C.E. (Lawrence Livermore National Lab., CA (United States))

1993-02-05T23:59:59.000Z

242

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect (OSTI)

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ``Fission Options`` provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. [Westinghouse Hanford Co., Richland, WA (United States); Walter, C.E. [Lawrence Livermore National Lab., CA (United States)

1993-02-05T23:59:59.000Z

243

hspthe harvard sussex program on chemical and biological weapons (CBW)  

E-Print Network [OSTI]

hspthe harvard sussex program on chemical and biological weapons (CBW) Resource Guide of the use of chemical weapons Never to develop, produce, otherwise acquire, stockpile or retain chemical weapons Never to assist, encourage or induce, in any way, anyone to engag To destroy chemical weapons

Sussex, University of

244

Stockpile Stewardship Quarterly, Volume 2, Number 1  

National Nuclear Security Administration (NNSA)

1 * May 2012 1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in Non-hydrostatic Behavior in the Diamond Anvil Cell 8 Emission of Shocked Inhomogeneous Materials 9 2012 NNSA Stewardship Science Academic

245

CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing  

Office of Legacy Management (LM)

tudies/B ackground tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada under contract DE-AC08-85NV10384 A p r i l 1988 CONTENTS VOLUME I I. INTRODUCTION 1.1 11. NEVADA TEST SITE TESTING AREAS 2.1 Frenchman Flat (Area 5) 2.1.1 2.2 Yucca Flat (Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, and 15)

246

Nuclear weapons, proliferation, and terrorism: U.S. response in the twenty-first century  

SciTech Connect (OSTI)

As the remaining superpower in the post-Cold War world, the US needs to re-evaluate its policy toward the growing threat to US national interests and the effects of weapons of mass destruction (WMD), specifically nuclear devices, and their use by terrorist groups against US interests abroad. As the world reacts to the implosion of the former Soviet Union, there are increased numbers of nations and possibly terrorist groups trying to become players in the international arena. This study describes the ease of obtaining the scientific knowledge, plans, and materials to enable a terrorist`s construction of a nuclear device. It also analyzes motivation of terrorist groups, concluding that a nuclear weapon, capable of inflicting violence in the extreme, fulfills the terrorist`s goal of violence in support of a political agenda or to inspire radical change. Given the guidance from the national level, this study proposes a series of policy options available to the NCA for application in an aggressive counterproliferation policy. Finally, the US must rapidly reorganize its counterproliferation structure and methods to streamline a more aggressive approach that is recognized and feared by potential nuclear terrorists; augment current political efforts with a clearly defined counterproliferation military mission and associated doctrine.

DeLawter, D.A.

1998-11-01T23:59:59.000Z

247

Nuclear Weapons  

Science Journals Connector (OSTI)

Each of the enduring warheads in Table 1.6...are being refurbished under the individualized life-extension program (LEP). Their goal is not to make ... be successful, with the exception of the B61 bomb, which is ...

David Hafemeister

2014-01-01T23:59:59.000Z

248

Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons  

SciTech Connect (OSTI)

In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

Johnson, M.W. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

1995-08-01T23:59:59.000Z

249

National Nuclear Security Administration Overview  

Broader source: Energy.gov (indexed) [DOE]

1, 2011 - 1, 2011 - Page 1 National Transportation Stakeholders Forum Denver, Colorado May 11, 2011 Ahmad Al-Daouk Manager, National Security Department (NSD) National Nuclear Security Administration (NNSA) Service Center - Albuquerque, NM May 11, 2011 - Page 2 National Transportation Stakeholders Forum (NTSF) * Introduction * NNSA Certifying Official Role * Offsite Source Recovery Project * Waste Shipments * Nuclear Materials Management Planning * Summary May 11, 2011 - Page 3 NNSA Plays a Critical Role: Ensuring our Nation's Security * Maintaining the safety, security and effectiveness of the nuclear weapons stockpile without nuclear testing * Reducing the global danger from the proliferation of nuclear weapons and materials * Provide safe and effective nuclear propulsion for the

250

Aerothermoballistics of pyrophoric metal shrapnel in high speed, high Weber number flows. [From non-nuclear detonation of nuclear weapon  

SciTech Connect (OSTI)

A numerical simulation is presented on the aerothermoballistic behavior of pyrophoric metal shrapnel ejected at supersonic speeds from a non-nuclear detonation of a nuclear weapon. The model predicts the aerodynamic and chemical heat transfer rates and the particle thermal responses including the time and position of melt initiation. Due to the high Weber number environment, the melting particle undergoes liquid layer stripping. The theoretical model, which is incorporated in the PLUTO computer code, predicts the liquid mass loss rate, characteristic liquid droplet diameter, temperature rise across the liquid film, and the coupled particle trajectory.

Connell, L.W.

1984-01-01T23:59:59.000Z

251

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program Enforcement Issues  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement

252

On the dangers of C. I. S. specialists with nuclear weapons experience relocating to Third World countries: A Russian view  

SciTech Connect (OSTI)

This newsletter presents information on the effectiveness of rules and regulations; on the role of a qualified consultant in the possible design of a nuclear weapon for a Third World country; and on the possible dangers (and their elimination) of relocating nuclear technologists.

Hogsett, V.; Canavan, B. (eds.)

1993-01-01T23:59:59.000Z

253

The Army before last military transformation and the impact of nuclear weapons on the US Army during the early Cold War .  

E-Print Network [OSTI]

??This thesis analyzes the impact of nuclear weapon on the doctrine and force structure of the US Army during the Early Cold War (1947-1957). It… (more)

Kinman, Bret C.

2004-01-01T23:59:59.000Z

254

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

SciTech Connect (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

255

Classification of Nuclear Weapons-Related Information (Restricted Data and Formerly Restricted Data)  

Broader source: Energy.gov (indexed) [DOE]

CLASSIFICATION OF CLASSIFICATION OF NUCLEAR WEAPONS-RELATED INFORMATION Restricted Data and Formerly Restricted Data (RD and FRD) June 2012 2 3 Purpose To familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing that information as required by  The Atomic Energy Act and  10 Code of Federal Regulation (CFR) Part 1045, Nuclear Classification and Declassification §1045.35 4 Not the Purpose This briefing does not authorize you to classify or declassify documents containing RD or FRD. Additional training is required to classify documents containing RD or FRD or identify RD or FRD within a document for redaction. Only authorized DOE

256

Bret Knapp to head combined Weapons Engineering, Weapons Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weapons Engineering, Weapons Physics Directorates Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

257

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect (OSTI)

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA)); Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA))

1991-05-01T23:59:59.000Z

258

Nuclear weapons, the end of the cold war, and the future of the international system  

SciTech Connect (OSTI)

The collapse of empires, the overthrow of dynasties, the outbreak of plagues, the onset of revolutions, and even the improvement of the human condition itself - all of these are categories of events, which means that they have happened before and will almost certainly happen again. There are very few occurrences of which it can be said that nothing like them has ever taken place; but surely what took place in the New Mexico desert on July 16, 1945, qualifies as such as occurrence. The first test explosion of an atomic bomb, together with the actual use of that weapon three weeks later against the Japanese cities of Hiroshima and Nagasaki, was as sharp a break from the past as any in all of history. Theory had intersected reality to produce a weapon that was regarded at the time as unlike any other that had ever been invented, and that is still so regarded today, almost half a century later. The result, it now appears, has been a fundamental, and possibly permanent, change in human behavior. `The unleashed power of the atom has changed everything save our modes of thinking,` Albert Einstein wrote in 1946, `and thus we drift toward unparalleled catastrophe.` Einstein would have been as surprised as anyone else who lived through the early Cold War years had he known that Nagasaki would be the last occasion upon which atomic weapons would be used in anger for at least the next four and one-half decades, despite the fact that the great geopolitical rivalry between the United States and the Soviet Union would drag on throughout that length of time. History is full of unexpected developments, but few have been as completely unexpected as that the great powers would produce some 70,000 nuclear weapons between the end of World War II and the present day, without a single one of them having been used. Perfecting the ultimate instrument of war had made the ancient institution of war, for the first time in history, obsolete. Or so it would appear. 23 refs.

Gaddis, J.L. [Ohio Univ., Athens, OH (United States)

1992-12-31T23:59:59.000Z

259

American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.  

SciTech Connect (OSTI)

We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

2011-03-01T23:59:59.000Z

260

Feasibility and options for purchasing nuclear weapons, highly enriched uranium (HEU) and plutonium from the former Soviet Union (FSU)  

SciTech Connect (OSTI)

In response to a recent tasking from the National Security Council, this report seeks to analyze the possible options open to the US for purchasing, from the former Soviet Union (FSU) substantial quantities of plutonium and highly enriched uranium recovered from the accelerated weapons retirements and dismantlements that will soon be taking place. The purpose of this paper is to identify and assess the implications of some of the options that now appear to be open to the United States, it being recognized that several issues might have to be addressed in further detail if the US Government, on its own, or acting with others seeks to negotiate any such purchases on an early basis. As an outgrowth of the dissolution of the Soviet Union three of the C.I.S. republics now possessing nuclear weapons, namely the Ukraine, Belarus, and Kazakhstan, have stated that it is their goal, without undue delay, to become non-nuclear weapon states as defined in the Non-Proliferation Treaty. Of overriding US concern is the proliferation of nuclear weapons in the Third World, and the significant opportunity that the availability of such a large quantity of surplus weapons grade material might present in this regard, especially to a cash-starved FSU Republic. Additionally, the US, in its endeavor to drawdown its own arsenal, needs to assure itself that these materials are not being reconfigured into more modern weapons within the CIS in a manner which would be inconsistent with the stated intentions and publicized activities. The direct purchase of these valuable materials by the US government or by interested US private enterprises could alleviate these security concerns in a straightforward and very expeditious manner, while at the same time pumping vitally needed hard currency into the struggling CIS economy. Such a purchase would seem to be entirely consistent with the Congressional mandate indicated by the Soviet Nuclear Threat Reduction Act of 1991.

NONE

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Physical and Mathematical Description of Nuclear Weapons Identification System (NWIS) Signatures  

SciTech Connect (OSTI)

This report describes all time and frequency analysis parameters measured with the new Nuclear Weapons Identification System (NWIS) processor with three input channels: (1) the 252Cf source ionization chamber (2) a detection channel; and (3) a second detection channel for active measurements. An intuitive and physical description of the various functions is given as well as a brief mathematical description and a brief description of how the data are acquired. If the fill five channel capability is used, the number of functions increases in number but not in type. The parameters provided by this new NWIS processor can be divided into two general classes: time analysis signatures including multiplicities and frequency analysis signatures. Data from measurements with an 18.75 kg highly enriched uranium (93.2 wt 0/0, 235U) metai casting for storage are presented to illustrate the various time and frequency analysis parameters.

Mattingly, J.K.; Mihalczo, J.T.; Mullens, J.A.; Valentine, T.E.

1997-09-26T23:59:59.000Z

262

A Passive Tamper Indicating Enclosure For Use Within A Nuclear Weapons Monitoring Regime  

SciTech Connect (OSTI)

AWE and PNNL are engaged in a technical collaboration investigating techniques to enhance continuity of knowledge over Treaty Accountable Items, with emphasis on a verified nuclear weapons dismantlement process. Tamper Indicating Enclosures (TIE) will likely be deployed as part of a chain of custody regime to indicate an unauthorised attempt to access a Treaty Accountable Item, or secure authenticated monitoring equipment. In 2011, the collaboration presented a paper at the INMM annual conference held in Palm Desert, CA titled “Passive Tamper Indicating Enclosures Incorporating Embedded Optical Fibre”, which discussed the concept of integrating optical fibres into TIEs for use as a passive tamper indicating mechanism. This paper provides an update on the Fibre Optic based TIE and introduces a second passive TIE concept based on the use of Poly(Methyl MethAcrylate) (PMMA). Concepts relating to deployment, tamper indication, and unique identification will be discussed.

White, Helen; Tanner, Jennifer E.; Allen, Keir; Benz, Jacob M.; McOmish, Sarah; Simmons, Kevin L.

2012-10-01T23:59:59.000Z

263

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect (OSTI)

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11T23:59:59.000Z

264

The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility  

SciTech Connect (OSTI)

The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

Maxwell, D.R. [DynCorp of Colorado, Inc., Golden, CO (United States). Rocky Flats Environmental Technology Site

1995-12-31T23:59:59.000Z

265

A guide to archival collections relating to radioactive fallout from nuclear weapon testing  

SciTech Connect (OSTI)

This ninth edition of A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing constitutes History Associates Incorporated's (HAI) final report of its document collection, processing, and declassification efforts for the Nevada Field Office of the Department of Energy. The most significant feature of this edition is the updated HAI collection effort information. We confirmed the accuracy of this information using our screening, processing, and transmittal records. Unlike previous editions, funding limitations prevented us from systematically revising the collection descriptions and point-of-contact information for this final edition. This guide has been prepared by professional historians who have a working knowledge of many of the record collections included in the following pages. In describing materials, they have tried to include enough information so that persons unfamiliar with the complexities of large record systems will be able to determine that nature of the information in, and the quality of, each record collection.

Martin, B.W. (ed.)

1992-09-01T23:59:59.000Z

266

A guide to archival collections relating to radioactive fallout from nuclear weapon testing. Ninth edition  

SciTech Connect (OSTI)

This ninth edition of A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing constitutes History Associates Incorporated`s (HAI) final report of its document collection, processing, and declassification efforts for the Nevada Field Office of the Department of Energy. The most significant feature of this edition is the updated HAI collection effort information. We confirmed the accuracy of this information using our screening, processing, and transmittal records. Unlike previous editions, funding limitations prevented us from systematically revising the collection descriptions and point-of-contact information for this final edition. This guide has been prepared by professional historians who have a working knowledge of many of the record collections included in the following pages. In describing materials, they have tried to include enough information so that persons unfamiliar with the complexities of large record systems will be able to determine that nature of the information in, and the quality of, each record collection.

Martin, B.W. [ed.

1992-09-01T23:59:59.000Z

267

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment  

SciTech Connect (OSTI)

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

Janeen Denise Robertson

1999-02-01T23:59:59.000Z

268

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement The elimination of the B53 by Department of Energy's National Nuclear Security Administration (NNSA) is consistent with the goal President Obama announced in his April 2009 Prague speech to reduce the number of nuclear weapons. The President said, "We will reduce the role of nuclear weapons in our national security strategy, and urge others to do the same." The dismantlement of the last remaining B53 ensures that the system will never again be part of the U.S. nuclear weapons stockpile. As a key part of its national security mission, NNSA is actively responsible for safely dismantling weapons that are no longer needed, and disposing of the excess material and components.

269

DOE Order Self Study Modules - DOE O 452.1D, Nuclear Explosive and Weapon Surety Program and  

Broader source: Energy.gov (indexed) [DOE]

CONTINUING TRAINING SELF- CONTINUING TRAINING SELF- STUDY PROGRAM DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY DOE O 452.1D and DOE O 452.2D Familiar Level June 2011 1 DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the objectives of implementing U.S. Department of Energy (DOE) O 452.1D? 2. Define the following terms as they apply to this Order: Abnormal environment High explosive detonation 3. What are the objectives of implementing DOE O 452.2D? 4. What are the general requirements of DOE O 452.2D?

270

Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime  

SciTech Connect (OSTI)

The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

2012-08-01T23:59:59.000Z

271

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

272

Is there a future role for tactical nuclear weapon systems in the national military strategy. Study project  

SciTech Connect (OSTI)

This paper reviews the purpose and role that tactical nuclear weapon systems can provide in supporting the National Military Strategy (NMS), and recommends requirements be determined using a strategy based upon political, economic and military national interests versus the current target-based strategy. To draw implications for the NMS, the analysis reviews current strategic policy guidance, summarizes the current definition of deterrence theory, and provides rationales for maintaining tactical nuclear weapon systems for deterrence and warfighting in regional contingency operations against nuclear-capable forces. Based upon this analysis, recommendations are provided for joint planning, doctrine, and training initiatives needed to enhance the efficacy of the armed services in achieving national security policy objectives.

Stobbs, E.E.

1992-04-03T23:59:59.000Z

273

Derivation of models for nuclear weapon terrorist arming and detonation risk analysis  

SciTech Connect (OSTI)

This report investigates "use control" for the on-site arming and detonation, by terrorists, of stored weapon systems. We investigate both components of weapon "use control", which we define as: (1) weapon "use denial" * that we model as a probability, Pj (denial), that represents the chances that terrorists attempting to arm a type j weapon will commit a non-recoverable error, and (2) weapon "use delay" that we model as a random variable, Tj , that represents the arming delay imposed by the use control features of a type j weapon, before detonation can occur. Using information pertaining to the physical security system at a storage site, the postulated terrorist attack force size, and simulated combat engagement outcomes, we formulate the frequency, fj , and probability, P(dj ), of on-site detonation, for generic weapon types j. We derive a model that disjoins the performance of site physical security, from that for weapon use control, if the use control random variable Tj has a Uniform or histogram distribution. This is an especially significant result where most complex distributions can be adequately approximated with a histogram. Hence, we can conduct combat simulations to obtain the physical security performance of a specific storage site independent of the use control features associated with specific weapon types that are stored, or might be stored, at the site. In turn, we can obtain the use control performance for various weapon types, independent of where they are stored and the physical security systems surrounding them. Our models can then mathematically combine physical security performance and weapon use control performance for any combination of storage facility and weapon type.

Parziale, A A

1998-03-01T23:59:59.000Z

274

Hydrodynamic experiment provides key data for Stockpile Stewardship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

predictively model and assess weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for...

275

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

276

The spread of nuclear-weapon-free zones: Building a new nuclear bargain  

SciTech Connect (OSTI)

The United States (US), France and Britain took a small step in the direction of nuclear disarmament when they announced they would ratify the protocols of the Treaty of Rarotonga, also called the South Pacific nuclear-free-zone treaty. The author examines the protocols of this treaty and the implications for its adoption.

Davis, Z.S.

1996-02-01T23:59:59.000Z

277

List of Major Information Systems,National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

List of Major Information Systems,National Nuclear Security List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear Security Administration ADaPT Network Infrastructure: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. .major_information_systems.pdf List of Major Information Systems,National Nuclear Security Administration ADaPT Networked:

278

Notice of Intent to Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 (DOE/EIS-0236-S4)(October 19, 2006)  

Broader source: Energy.gov (indexed) [DOE]

31 Federal Register 31 Federal Register / Vol. 71, No. 202 / Thursday, October 19, 2006 / Notices 1 A pit is the central core of a nuclear weapon typically containing plutonium-239 that undergoes fission when compressed by high explosives. DEPARTMENT OF ENERGY Notice of Intent To Prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 AGENCY: National Nuclear Security Administration, Department of Energy. ACTION: Notice of intent. SUMMARY: The National Nuclear Security Administration (NNSA), an agency within the U.S. Department of Energy (DOE or Department), announces its intent to prepare a Supplement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement-Complex 2030 (Complex

279

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect (OSTI)

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. Primary sources of information in preparing this bibliography were bibliographies on Oceania, citations in published papers, CIS Index and Abstracts, Monthly Catalog of United States Government Publications, Nuclear Science Abstracts, Energy Research Abstracts, numerous bibliographies on radiation ecology, and suggestions by many individuals whom we contacted. One goal in this bibliography is to include complete documentation of the source of congressional reports and other government-related publications. In addition, page numbers for material in this bibliography are provided in parentheses when the subject matter of a book or document is not restricted to nuclear weapons testing in the Marshall Islands.

Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA)); Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA))

1991-04-01T23:59:59.000Z

280

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chernobyl Nuclear Accident | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chernobyl Nuclear Accident | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

282

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism and Trafficking | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

283

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network [OSTI]

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

284

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I  

Broader source: Energy.gov [DOE]

Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington, D.C.: Department of...

285

Honoring Nuclear Security Workers on the National Day of Remembrance |  

Broader source: Energy.gov (indexed) [DOE]

Honoring Nuclear Security Workers on the National Day of Honoring Nuclear Security Workers on the National Day of Remembrance Honoring Nuclear Security Workers on the National Day of Remembrance October 31, 2011 - 11:54am Addthis Workers dismantle a remaining B53, ensuring that the system will never again be part of the U.S. nuclear weapons stockpile. | Credit: NNSA photo Workers dismantle a remaining B53, ensuring that the system will never again be part of the U.S. nuclear weapons stockpile. | Credit: NNSA photo Secretary Chu Secretary Chu Former Secretary of Energy On October 30th, our nation honored the men and women who have served and sacrificed to support America's nuclear security mission. From World War II, through the dark days of the Cold War, to the present day, these patriots have worked to keep our country safe and secure.

286

Phase 6.X Process | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Phase 6.X Process | National Nuclear Security Administration Phase 6.X Process | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Phase 6.X Process Home > Our Mission > Managing the Stockpile > Nuclear Weapons Life Cycle > Phase 6.X Process Phase 6.X Process The Phase 6.x Process is based on the original Joint Nuclear Weapons Life Cycle Process, which includes Phases 1 through 7 and covers all phases of a

287

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Broader source: Energy.gov (indexed) [DOE]

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

288

The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship  

SciTech Connect (OSTI)

The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

2014-05-09T23:59:59.000Z

289

Defense and nuclear technologies  

SciTech Connect (OSTI)

Fulfilling our national security and stockpile stewardship responsibilities requires tremendous scientific and technical breadth: from esoteric theoretical physics and computational modeling to materials science and precision engineering. Because there exists no broad industrial or university base from which to draw expertise in nuclear weapon science and technology, we rely heavily on formal peer reviews and informal exchanges with our sister laboratory at Los Alamos. LLNL has an important, long-term role in the nation`s nuclear weapons program. We are responsible for four of the ten weapon systems in the enduring US stockpile (three of nine after 2002), including the only systems that incorporate all modern safety features. For years to come, we will be responsible for these weapons and for the problems that will inevitably arise. Our nuclear expertise will also play a crucial role as the US attempts to deal effectively with the threat of nuclear proliferation. This past year brought the culmination of our response to profound changes in the nation`s defense needs as we restructured and refocused our activities to address the Administration`s goal of reducing global nuclear danger. We made major contributions to important national security issues in spite of severe fiscal constraints.

NONE

1995-01-01T23:59:59.000Z

290

Modeling fabrication of nuclear components: An integrative approach  

SciTech Connect (OSTI)

Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

Hench, K.W.

1996-08-01T23:59:59.000Z

291

Use of Lasers to Study the Impact of Fractionation and Condensation on the Toxicity of Nuclear Weapon Fallout  

SciTech Connect (OSTI)

An experimental concept has been developed to collect data to aid in the refinement of simulation programs designed to predict the fallout effects arising from surface and shallowly buried nuclear weapon detonations. These experiments, called the Condensation Debris Experiments (CDE), are intended to study the condensation/fractionation of material that is liberated following an initial deposition of laser energy onto a small, characterized target. The CDE effort also encompasses target development and material studies as well as supporting computational efforts studying radiation hydrodynamics, computational fluid dynamics, and relevant neutron activation processes (not discussed here).

Vidnovic III, T; Bradley, K S; Debonnel, C S; Dipeso, G; Fournier, K; Karpenko, V P; Tobin, M

2005-04-01T23:59:59.000Z

292

A Random Variable Approach to Nuclear Targeting and Survivability  

SciTech Connect (OSTI)

We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate the case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.

Undem, Halvor A.

2000-11-14T23:59:59.000Z

293

nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

294

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Incident Team | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

295

nuclear navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

navy | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

296

nuclear threat science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

threat science | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

297

Nuclear Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

298

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?  

SciTech Connect (OSTI)

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

299

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium  

SciTech Connect (OSTI)

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

300

NNSA's Stockpile Stewardship Program Quarterly Experiments summary...  

National Nuclear Security Administration (NNSA)

science-based stockpile stewardship program is now available here. The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities...

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NNSA's Stockpile Stewardship Program Quarterly Experiments summary...  

National Nuclear Security Administration (NNSA)

Science-Based Stockpile Stewardship Program is now available here. The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities...

302

Our Leadership | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Leadership Home > About Us > Our Leadership Our Leadership The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from

303

Our Leadership | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Leadership Home > About Us > Our Leadership Our Leadership The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from

304

The Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National  

National Nuclear Security Administration (NNSA)

Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National Final B61 Refurbished Warhead Returns to the U.S. Stockpile | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > The Final B61 Refurbished Warhead Returns to ... The Final B61 Refurbished Warhead Returns to the U.S. Stockpile January 09, 2009

305

Geochemistry of Chemical Weapon Breakdown Products on the Seafloor: 1,4-Thioxane in Seawater  

Science Journals Connector (OSTI)

Geochemistry of Chemical Weapon Breakdown Products on the Seafloor: 1,4-Thioxane in Seawater ... The Chemical Weapons Convention mandates the active destruction of chemical weapon (CW) stockpiles held by nations on land, but does not address the far larger quantities of “abandoned” CW that await passive environmental decomposition following disposal on the sea floor. ... The comingling of disposed weapons material with anoxic hydrate bearing sediments is not theoretical. ...

Xin Zhang; Keith C. Hester; Oscar Mancillas; Edward T. Peltzer; Peter M. Walz; Peter G. Brewer

2009-01-02T23:59:59.000Z

306

Toward a more rigorous application of margins and uncertainties within the nuclear weapons life cycle : a Sandia perspective.  

SciTech Connect (OSTI)

This paper presents the conceptual framework that is being used to define quantification of margins and uncertainties (QMU) for application in the nuclear weapons (NW) work conducted at Sandia National Laboratories. The conceptual framework addresses the margins and uncertainties throughout the NW life cycle and includes the definition of terms related to QMU and to figures of merit. Potential applications of QMU consist of analyses based on physical data and on modeling and simulation. Appendix A provides general guidelines for addressing cases in which significant and relevant physical data are available for QMU analysis. Appendix B gives the specific guidance that was used to conduct QMU analyses in cycle 12 of the annual assessment process. Appendix C offers general guidelines for addressing cases in which appropriate models are available for use in QMU analysis. Appendix D contains an example that highlights the consequences of different treatments of uncertainty in model-based QMU analyses.

Klenke, Scott Edward; Novotny, George Charles; Paulsen Robert A., Jr.; Diegert, Kathleen V.; Trucano, Timothy Guy; Pilch, Martin M.

2007-12-01T23:59:59.000Z

307

Life Extension Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Life Extension Programs | National Nuclear Security Administration Life Extension Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Life Extension Programs Home > Our Mission > Managing the Stockpile > Life Extension Programs Life Extension Programs The term "life extension program (LEP)" means a program to repair/replace components of nuclear weapons to ensure the ability to meet

308

Life Extension Programs | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extension Programs | National Nuclear Security Administration Extension Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Life Extension Programs Home > Our Mission > Managing the Stockpile > Life Extension Programs Life Extension Programs The term "life extension program (LEP)" means a program to repair/replace components of nuclear weapons to ensure the ability to meet

309

Defense Programs | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Defense Programs Home > About Us > Our Programs > Defense Programs Defense Programs One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA,

310

Neutralization of chemical and biological weapons of mass destruction using nuclear methods  

E-Print Network [OSTI]

Nuclear Science Center Reactor. M. S. Thesis. Texas A&M University. August 2001. Kruger, H. and Mcndelsohn, E. Neutralization of Chemical/Biological Ballistic Warheads by Low- Yield Nuclear Interceptors. Lawrence Livermorc National Laboratory; (UCRL...-ID-111403); August 1992. Mendelsohn, E. Neutron Shielding of Chemical/Biological Warheads to Minimize the Effects from Low-yield Nuclear Interceptors. Lawrence Livermore National Laboratory; (UCRL-ID-112014); October 1992. Mendelsohn, E. Effectiveness...

McAffrey, Veronica Lynn

2012-06-07T23:59:59.000Z

311

NNSA: Working to Prevent Nuclear Proliferation | National Nuclear...  

National Nuclear Security Administration (NNSA)

to Prevent Nuclear Proliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

312

Counterterrorism and Counterproliferation | National Nuclear...  

National Nuclear Security Administration (NNSA)

and Counterproliferation | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

313

Nonproliferation | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

314

WEAPONS ON CAMPUS REGULATION WEAPONS ON CAMPUS  

E-Print Network [OSTI]

WEAPONS ON CAMPUS REGULATION CHAPTER 20 WEAPONS ON CAMPUS 8VAC115-20-10. Definitions, including the Virginia Institute of Marine Science. "Weapon" means any firearm or any other weapon listed115-20-20. Possession of weapons prohibited. Possession or carrying of any weapon by any person

Lewis, Robert Michael

315

Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components  

SciTech Connect (OSTI)

Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

1998-05-01T23:59:59.000Z

316

Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States  

SciTech Connect (OSTI)

The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

317

Dealing With the Issues of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

318

International Nuclear Security | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

319

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

320

Since leading America's successful effort to develop nuclear  

Office of Environmental Management (EM)

understanding of weapons-related science, coupled with improvements in high-performance computing and simulation, the National Labs' Stockpile Stewardship program has enabled...

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits  

SciTech Connect (OSTI)

The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

1998-01-01T23:59:59.000Z

322

Secondary wastes and high explosive residues generated during production of main high explosive charges for nuclear weapons  

SciTech Connect (OSTI)

This study identifies the sources of high-explosive (HE) residues and hazardous and nonhazardous wastes generated during the production of the main HE charges for nuclear weapons, and estimates their quantities and characteristics. The results can be used as a basis for design of future handling and treatment systems for solid and liquid HE residues and wastes at any proposed new HE production facilities. This paper outlines a general methodology for documenting and estimating the volumes and characteristics of the solid and liquid HE residues and hazardous and nonhazardous wastes. We prepared volume estimates by applying this method to actual past Pantex plant HE production operations. To facilitate the estimating, we separated the HE main-charge production process into ten discrete unit operations and four support operations, and identified the corresponding solid and liquid HE residues and waste quantities. Four different annual HE main-charge production rates of 100, 500, 1000, and 2000 HE units/yr were assumed to develop the volume estimates and to establish the sensitivity of the estimates to HE production rates. The total solids (HE residues and hazardous and nonhazardous wastes) estimated range from 800 to 2800 ft{sup 3}/yr and vary uniformly with the assumed HE production rate. The total liquids estimated range from 73,000 to 1,448,000 gal/yr and also vary uniformly with the assumed production rate.

Jardine, L.J.; McGee, J.T.

1994-02-01T23:59:59.000Z

323

Stockpile Stewardship Quarterly Newsletter | National Nuclear...  

National Nuclear Security Administration (NNSA)

Development, Test and Evaluation, debuted in February 2011. Formerly, the Defense Science Quarterly newsletter, which covered the activities of the Science Campaign, the...

324

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

Bergren, C

2009-01-16T23:59:59.000Z

325

cost savings | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost savings | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

326

Infrastructure & Sustainability | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

& Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

327

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

328

Appendix E References | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

E References | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

329

test and evaluation | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test and evaluation | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

330

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Future Science & Technology Programs | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

331

September 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

332

Safeguards & Security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

333

About SFO | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

334

Social Media | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

335

Facilities & Projects | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

336

IRAQ'S WEAPONS  

Science Journals Connector (OSTI)

AFTER TWO MONTHS OF snap inspections at hundreds of sites, United Nations inspectors cannot say that Iraq has weapons of mass destruction or that it is disarming. Because Iraq has not been forth-coming, questions remain about its chemical, biological, and ...

LOIS EMBER

2003-02-03T23:59:59.000Z

337

Statement on B61 Life Extension Program and Future Stockpile Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B61 Life Extension Program and Future Stockpile Strategy B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on B61 Life Extension Program and ... Congressional Testimony

338

Statement on B61 Life Extension Program and Future Stockpile Strategy  

National Nuclear Security Administration (NNSA)

B61 Life Extension Program and Future Stockpile Strategy B61 Life Extension Program and Future Stockpile Strategy before the House Armed Services Subcommittee on Strategic Forces | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on B61 Life Extension Program and ... Congressional Testimony

339

Secondary wastes and high explosive residues generated during production of main high explosive charges for nuclear weapons. Revision 1  

SciTech Connect (OSTI)

This study identifies the sources of high-explosive (HE) residues and hazardous and nonhazardous wastes generated during the production of the main HE charges for nuclear weapons, and estimates their quantities and characteristics. The results can be used as a basis for design of future handling and treatment systems for solid and liquid HE residues and wastes at any proposed new HE production facilities. This paper outlines a general methodology for documenting and estimating the volumes and characteristics of the solid and liquid HE residues and hazardous and nonhazardous wastes. To facilitate the estimating, we separated the HE main-charge production process into ten discrete unit operations and four support operations, and identified the corresponding solid and liquid HE residues and waste quantities. Four different annual HE main-charge production rates of 100, 500, 1000, and 2000 HE units/yr were assumed to develop the volume estimates and to establish the sensitivity of the estimates to HE production rates. The total solids (HE residues and hazardous and nonhazardous wastes) estimated range from 800 to 2800 ft{sup 3}/yr and vary uniformly with the assumed HE production rate. The total liquids estimated range from 73,000 to 1,448.000 gal/yr and also vary uniformly with the assumed production rate. Of the estimated solids, the hazardous wastes (e.g., electrical vehicle batteries and light tubes) were about 2% of the total volumes. The generation of solid HE residues varied uniformly with the HE production rates and ranged from about 20% of the total solids volume for the 100 HE units/yr case to about 60% for the 2000 units/yr case. The HE machining operations generated 60 to 80% of the total solid HE residues, depending on the assumed production rate, and were also the sources of the most concentrated HE residues.

Jardine, L.J.; McGee, J.T.

1995-01-01T23:59:59.000Z

340

A comparative study of 239,240Pu in soil near the former Rocky Flats Nuclear Weapons Facility, Golden, CO  

Science Journals Connector (OSTI)

The Rocky Flats Nuclear Weapons Plant near Golden, CO released plutonium into the environment during almost 40 years of operation. Continuing concern over possible health impacts of these releases has been heightened by lack of public disclosure of the US Department of Energy (DOE) activities. A dose reconstruction study for the Rocky Flats facilities, begun in 1990, provided a unique opportunity for concerned citizens to design and implement field studies without participation of the DOE, its contractors, or other government agencies. The Citizens Environmental Sampling Committee was formed in late 1992 and conducted a field sampling program in 1994. Over 60 soil samples, including both surface and core samples, were collected from 28 locations where past human activities would have minimal influence on contaminant distributions in soil. Cesium-137 activity was used as a means to assess whether samples were collected in undisturbed locations. The distribution of plutonium (as 239,240Pu) in soil was consistent with past sampling conducted by DOE, the Colorado Department of Public Health and Environment, and others. Elevated levels of 239,240Pu were found immediately east of the Rocky Flats Plant, with concentrations falling rapidly with distance from the plant to levels consistent with background from fallout. Samples collected in areas south, west, and north of the plant were generally consistent with background from fallout. No biases in past sampling due to choice of sampling locations or sampling methodology were evident. The study shows that local citizens, when provided sufficient resources, can design and implement technical studies that directly address community concerns where trust in the regulated community and/or regulators is low.

Todd D. Margulies; Niels D. Schonbeck; Normie C. Morin-Voillequé; Katherine A. James; James M. LaVelle

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Stockpile Stewardship Quarterly Volume 1, Number 4  

National Nuclear Security Administration (NNSA)

1, Number 4 * February 2012 1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication Highlights 9 2011 NNSA Stewardship Science Graduate Fellowship Class S tockpile Stewardship Science is not for wimps, and

342

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect (OSTI)

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

343

Office of Nuclear Warhead Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

344

Nuclear Weapons Latency  

E-Print Network [OSTI]

......................................................................... 14 Fig. 4. Conceptual flow of Latency tool Petri Net simulation. ........................................ 18 Fig. 5. Overall flow of Latency Tool. .............................................................................. 19 Fig. 6. Latency... density function bound simulations. .............. 43 xi Fig. 14. The expansion of one transition into a series of transitions. A simple Petri net with (a) 1 transition T1, (b) T1 replaced by two transitions in series, T1a and T1b, both half...

Sweeney, David J

2014-07-25T23:59:59.000Z

345

eota | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

346

accountability | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

347

performance | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

348

Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

349

berkley | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

350

Engineering | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

351

Office of Test and Evaluation | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Test and Evaluation | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

352

Los Alamos Neutron Science Center | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Neutron Science Center | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

353

Bret Knapp to head combined Weapons Engineering, Weapons Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership...

354

Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach  

SciTech Connect (OSTI)

Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spread of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

Martz, Joseph C [Los Alamos National Laboratory; Stevens, Patrice A [Los Alamos National Laboratory; Branstetter, Linda [SNL; Hoover, Edward [SNL; O' Brien, Kevin [SNL; Slavin, Adam [SNL; Caswell, David [STANFORD UNIV

2010-01-01T23:59:59.000Z

355

Belgium Nuclear Security Summit: Fact Sheet | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

356

Italy Nuclear Security Summit: Fact Sheet | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

357

Science Based Stockpile Stewardship, Uncertainty Quantification, and Surrogate Reactions  

SciTech Connect (OSTI)

Stewardship of this nation's nuclear weapons is predicated on developing a fundamental scientific understanding of the physics and chemistry required to describe weapon performance without the need to resort to underground nuclear testing and to predict expected future performance as a result of intended or unintended modifications. In order to construct more reliable models, underground nuclear test data is being reanalyzed in novel ways. To improve the interpretation of these experiments with quantified uncertainties, improved nuclear data is required. As an example, the thermonuclear yield of a device was often inferred through the use of radiochemical detectors. Conversion of the detector activations observed to thermonuclear yield was accomplished through explosion code calculations (models) and a good set of nuclear reaction cross-sections. Because of the unique high-fluence environment of an exploding nuclear weapon, many reactions occurred on radioactive nuclides, for which only theoretically calculated cross-sections are available. Surrogate nuclear reactions at STARS/LIBERACE offer the opportunity to measure cross-sections on unstable nuclei and thus improve the quality of the nuclear reaction cross-section sets. One radiochemical detector that was loaded in devices was mono-isotopic yttrium ({sup 89}Y). Nuclear reactions produced {sup 87}Y and {sup 88}Y which could be quantified post-shot as a ratio of {sup 87}Y/{sup 88}Y. The yttrium cross-section set from 1988 is shown in Figure 1(a) and contains approximately 62 cross-sections interconnecting the yttrium nuclides. The 6 experimentally measured cross-sections are shown in Figure 1(b). Any measurement of cross-sections on {sup 87}Y or {sup 88}Y would improve the quality of the cross-section set. A recent re-evaluation of the yttrium cross-section set was performed with many more calculated reaction cross-sections included.

Stoyer, M A; McNabb, D P; Burke, J T; Bernstein, L A

2009-08-06T23:59:59.000Z

358

PHIL 20628/ Ethics of Emerging STV 20228 Weapons Technologies  

E-Print Network [OSTI]

PHIL 20628/ Ethics of Emerging STV 20228 Weapons Technologies Spring 2011 Prof. Don Howard theirpeople, especially the poor. " Benedict joined every Pope since Pius XII in condemning nuclear weapons as inherently immoral because the nature of the technology is such that nuclear weapons inherently violates

Howard, Don

359

On the dangers of C.I.S. specialists with nuclear weapons experience relocating to Third World countries: A Russian view. Nonproliferation Newsletter, February 1993: Volume 11, Issue 1  

SciTech Connect (OSTI)

This newsletter presents information on the effectiveness of rules and regulations; on the role of a qualified consultant in the possible design of a nuclear weapon for a Third World country; and on the possible dangers (and their elimination) of relocating nuclear technologists.

Hogsett, V.; Canavan, B. [eds.

1993-03-01T23:59:59.000Z

360

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Responsible stewardship of nuclear materials  

SciTech Connect (OSTI)

The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

Hannum, W.H.

1994-10-01T23:59:59.000Z

362

ITAR Categories Category I -Firearms, Close Assault Weapons and Combat Shotguns  

E-Print Network [OSTI]

ITAR Categories Category I - Firearms, Close Assault Weapons and Combat Shotguns Category II - Guns and Associated Equipment Category XVI - Nuclear Weapons, Design and Testing Related Items Category XVII Energy Weapons Category XIX - [Reserved] Category XX - Submersible Vessels, Oceanographic and Associated

363

Weapons of mass distraction: Magicianship, misdirection, and the dark side of legitimation  

E-Print Network [OSTI]

Los Angeles Times 27: A1. Weapons of Mass Distraction Weber,G. Dawson, (Orig. pub. 1634). Weapons of Mass DistractionCentury Encounter with Nuclear Weapons. Columbus: Ohio State

Freudenburg, William R.; Alario, Margarita

2007-01-01T23:59:59.000Z

364

Charles McMillan to lead Los Alamos National Laboratory's Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McMillan to Lead Weapons Program Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program...

365

Ban On Foreign Scientists' Visits To Weapon Labs Lifted  

Science Journals Connector (OSTI)

Ban On Foreign Scientists' Visits To Weapon Labs Lifted ... Once again, foreign scientists from "sensitive" countries may be able to work with U.S. scientists at Department of Energy nuclear weapons laboratories. ...

JEFF JOHNSON

2000-09-04T23:59:59.000Z

366

Supplement Analysis for the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Broader source: Energy.gov (indexed) [DOE]

D D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A SUPPLEMENT ANALYSIS FOR THE FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE PANTEX PLANT AND ASSOCIATED STORAGE OF NUCLEAR WEAPON COMPONENTS DOE/EIS-0225/SA-03 United States Department of Energy National Nuclear Security Administration Pantex Site Operations P.O. Box 30030 Amarillo, Texas 79120-0030 February 2003 i Summary The U.S. Department of Energy's (DOE's) National Environmental Policy Act (NEPA) Implementing Procedures at 10 CFR 1021.330(d) require evaluation of its site-wide environmental impact statements (EISs) at least every 5 years by preparation of a supplement analysis (SA), as provided in 10 CFR 1021.314. Based on the SA, a determination is made as to whether the existing EIS remains

367

Science based stockpile stewardship, uncertainty quantification, and fission fragment beams  

SciTech Connect (OSTI)

Stewardship of this nation's nuclear weapons is predicated on developing a fundamental scientific understanding of the physics and chemistry required to describe weapon performance without the need to resort to underground nuclear testing and to predict expected future performance as a result of intended or unintended modifications. In order to construct more reliable models, underground nuclear test data is being reanalyzed in novel ways. The extent to which underground experimental data can be matched with simulations is one measure of the credibility of our capability to predict weapon performance. To improve the interpretation of these experiments with quantified uncertainties, improved nuclear data is required. As an example, the fission yield of a device was often determined by measuring fission products. Conversion of the measured fission products to yield was accomplished through explosion code calculations (models) and a good set of nuclear reaction cross-sections. Because of the unique high-fluence environment of an exploding nuclear weapon, many reactions occurred on radioactive nuclides, for which only theoretically calculated cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity to measure cross-sections on unstable neutron-rich fission fragments and thus improve the quality of the nuclear reaction cross-section sets. One of the fission products measured was {sup 95}Zr, the accumulation of all mass 95 fission products of Y, Sr, Rb and Kr (see Fig. 1). Subsequent neutron-induced reactions on these short lived fission products were assumed to cancel out - in other words, the destruction of mass 95 nuclides was more or less equal to the production of mass 95 nuclides. If a {sup 95}Sr was destroyed by an (n,2n) reaction it was also produced by (n,2n) reactions on {sup 96}Sr, for example. However, since these nuclides all have fairly short half-lives (seconds to minutes or even less), no experimental nuclear reaction cross-sections exist, and only theoretically modeled cross-sections are available. Inverse kinematics reactions at CARIBU offer the opportunity, should the beam intensity be sufficient, to measure cross-sections on a few important nuclides in order to benchmark the theoretical calculations and significantly improve the nuclear data. The nuclides in Fig. 1 are prioritized by importance factor and displayed in stoplight colors, green the highest and red the lowest priority.

Stoyer, M A; McNabb, D; Burke, J; Bernstein, L A; Wu, C Y

2009-09-14T23:59:59.000Z

368

ORISE: Preparing Nations to Fight Nuclear Smuggling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prepares Nations to Fight Nuclear Smuggling Prepares Nations to Fight Nuclear Smuggling With the knowledge needed to incorporate radiological materials in an explosive device now widely available and unsecured stockpiles still a reality, nuclear smuggling remains a global security threat. Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal circulation and could be used to kill tens or hundreds of thousands of people. ORISE has extended its national security expertise to assist government leaders and law enforcement in many countries as they unite in efforts to apprehend and prosecute nuclear materials smugglers. ORISE is working with the U.S. Department of State's Preventing Nuclear Smuggling Program (PNSP) to prevent nuclear smuggling abroad and in conjunction with the U.S. Department of Homeland Security and other

369

Design Basis Threat | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Design Basis Threat | National Nuclear Security Administration Design Basis Threat | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Design Basis Threat Home > About Us > Our Programs > Nuclear Security > Design Basis Threat Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or SNM)

370

institutional research | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

institutional research | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

371

international security policy | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

372

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Predictive Science Academic Alliance Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

373

Production Technology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

374

About ASC | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

375

Consequence Management | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

376

ASC Newsletters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

377

Integrated Codes | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

378

EEO Complaints Process | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

379

acquisition management | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

380

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

First Thermonuclear Device Successfully Tested | National Nuclear...  

National Nuclear Security Administration (NNSA)

Thermonuclear Device Successfully Tested | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

382

EEO Counselors | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

383

LANS Contract | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

384

EEO Policies & Guidance | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

385

Life Insurance | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

386

Recruitment Schedule | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

387

Executive Positions | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

388

Career Paths | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

389

Sandia National Laboratory | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

390

civil rights | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

391

Mentoring Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

392

December 2014 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

393

Pay Chart | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

394

Our Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

395

Retirement Plan | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

396

Pay-banding | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

397

NDA Explained | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

398

Exascale Challenge (2011) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

399

Exascale Insights (2011) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

400

Compilation of demographic data for the chemical stockpile emergency preparedness program  

SciTech Connect (OSTI)

There are eight installations in the continental US where lethal unitary chemical agents and munitions have been stored since the late 1950`s. In December, 1985, Congress directed the Department of Defense (DOD) to destroy these stockpiles of aging chemical warfare weapons. The destruction was to take place in such a manner as to provide: (1) maximum protection of the environment, the general public, and the personnel involved in the destruction, (2) adequate and safe facilities designed solely for the destruction of the stockpile, and (3) clean-up dismantling, and disposal of the facilities when the disposal program was complete. To help communities develop emergency response capabilities, the Army established the Chemical Stockpile Emergency Preparedness Program or CSEPP based on principals established in the Emergency Response Concept Plan (ERCP). The Army and the Federal Emergency Management Agency (FEMA) jointly oversee the CSEPP. An important part of the ERCP guidance was establishing cooperative interaction between local, state, and federal agencies and the development of emergency planning zones (EPZs) to support the emergency response concept. The purpose of this document is to describe how the population figures were derived for the population estimates for both the Chemical Stockpile Disposal Program and the CSEPP analyses. Most of the data is derived from the US Census 1990 population figures. However, the Census only counts residential populations and does not attempt to document daytime populations within commercial or residential facilities. One conclusion from this review is that there is a need for better and more consistent population data in the Emergency Planning Guides.

Vogt, B.; Sorensen, J.; Coomer, C. [Oak Ridge National Lab., TN (United States); Shumpert, B.; Hardee, H. [Univ. of Tennessee, Knoxville, TN (United States)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NNSA Timeline | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Timeline | National Nuclear Security Administration Timeline | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NNSA Timeline Home > About Us > Our History > NNSA Timeline NNSA Timeline The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

402

Our History | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

History | National Nuclear Security Administration History | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our History Home > About Us > Our History Our History The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

403

Improving weapons of mass destruction intelligence Arnold Kanter  

E-Print Network [OSTI]

1 Improving weapons of mass destruction intelligence Arnold Kanter The Scowcroft Group 900;2 Combating the spread of weapons of mass destruction (WMD) is one of the most important foreign policy of nuclear capability by sub-national states and the security of WMD weapons, materials, and technology

Deutch, John

404

Savannah River Nuclear Solutions Celebrates Nuclear Science Week...  

National Nuclear Security Administration (NNSA)

Celebrates Nuclear Science Week With Students | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

405

Electric Power Produced from Nuclear Reactor | National Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

406

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Waste Policy Act Signed | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

407

Nuclear disarmament with a personal touch | National Nuclear...  

National Nuclear Security Administration (NNSA)

disarmament with a personal touch | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

408

Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it  

SciTech Connect (OSTI)

In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

NONE

1996-01-01T23:59:59.000Z

409

Jordan | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jordan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

410

russia | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

russia | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

411

National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), ''Natural Resources Defense Council [NRDC] et al. v. Richardson et al.'' The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably foreseeable significant adverse environmental impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California, with respect to any potential or confirmed contamination in the area by hazardous, toxic, and/or radioactive materials. On September 25, 1998, DOE announced in the ''Federal Register'' the agency's intent to prepare this SEIS for the NIF portion (Volume III, Appendix I) of the SSM PEIS. DOE's need for preparation of this SEIS, consistent with the previously established need for NIF (DOE 1996a, Appendix I), is to determine how the results of characterization studies completed pursuant to the Joint Stipulation and Order should affect the manner in which DOE proceeds with the construction and operation of NIF. On August 5, 1999, DOE issued an amended Notice of Intent to prepare this SEIS, which incorporated changes in schedule resulting from new relevant information. The SSM PEIS addressed alternative plans for DOE's defense program activities related to nuclear weapons stockpile issues at several DOE laboratories, including LLNL. The environmental consequences of construction and operation of NIF were addressed in detail in SSM PEIS Volume III, Appendix I, entitled ''National Ignition Facility Project Specific Analysis'' (NIF PSA). The Record of Decision (ROD) for the SSM PEIS was published in the ''Federal Register'' on December 26, 1996 (61 FR 68014). In the ROD, DOE announced its decision to construct and operate NIF at LLNL. The NIF is an experimental facility that would use laser light to initiate a fusion reaction in very small quantities of hydrogen by a process known as inertial confinement fusion. The start of physical construction of NIF was authorized on March 7, 1997, and groundbreaking for the NIF occurred on May 29, 1997. Construction of the NIF is ongoing; the conventional facilities are over 94% complete and are expected to be completed in late 2001.

N /A

2001-02-23T23:59:59.000Z

412

Public perspectives on nuclear security. US national security surveys, 1993--1997  

SciTech Connect (OSTI)

This is the third report in a series of studies to examine how US attitudes about nuclear security are evolving in the post-Cold War era and to identify trends in public perceptions and preferences relevant to the evolution of US nuclear security policy. It presents findings from three surveys: a nationwide telephone survey of randomly selected members of the US general public; a written survey of randomly selected members of American Men and Women of Science; and a written survey of randomly selected state legislators from all fifty US states. Key areas of investigation included nuclear security, cooperation between US and Russian scientists about nuclear issues, vulnerabilities of critical US infrastructures and responsibilities for their protection, and broad areas of US national science policy. While international and US national security were seen to be slowly improving, the primary nuclear threat to the US was perceived to have shifted from Russia to China. Support was found for nuclear arms control measures, including mutual reductions in stockpiles. However, respondents were pessimistic about eliminating nuclear armaments, and nuclear deterrence continued to be highly values. Participants favored decreasing funding f/or developing and testing new nuclear weapons, but supported increased investments in nuclear weapons infrastructure. Strong concerns were expressed about nuclear proliferation and the potential for nuclear terrorism. Support was evident for US scientific cooperation with Russia to strengthen security of Russian nuclear assets. Elite and general public perceptions of external and domestic nuclear weapons risks and external and domestic nuclear weapons benefits were statistically significantly related to nuclear weapons policy options and investment preferences. Demographic variables and individual belief systems were systematically related both to risk and benefit perceptions and to policy and spending preferences.

Herron, K.G.; Jenkins-Smith, H.C. [Univ. of New Mexico, Albuquerque, NM (United States). UNM Inst. for Public Policy

1998-08-01T23:59:59.000Z

413

Annular Core Research Reactor - Critical to Science-Based Weapons...  

National Nuclear Security Administration (NNSA)

Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

414

Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets  

E-Print Network [OSTI]

A nuclear terrorist attack is one of the most serious threats to the national security of the United States, and in the wake of an attack, attribution of responsibility will be of the utmost importance. Plutonium, a by-product in spent nuclear...

Osborn, Jeremy

2014-08-13T23:59:59.000Z

415

Thorium Nitrate Stockpile--From Here to Eternity  

SciTech Connect (OSTI)

The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

2003-02-26T23:59:59.000Z

416

Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software  

SciTech Connect (OSTI)

As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

Lee, J.R.

1998-11-01T23:59:59.000Z

417

NPT Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Signed | National Nuclear Security Administration Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NPT Signed NPT Signed March 05, 1970 New York, United States NPT Signed The United States, Great Britain, the Soviet Union, and forty-five other nations sign the Treaty for the Nonproliferation of Nuclear Weapons

418

Anne Harrington at Sandia National Labs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

419

Nuclear Materials Safeguards and Security Upgrade Project Completed...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safeguards and Security Upgrade Project Completed Under Budget | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering...

420

BUILDING A CHEMICAL LASER WEAPON  

Science Journals Connector (OSTI)

BUILDING A CHEMICAL LASER WEAPON ... Under fire, Airborne Laser program director confronts challenges of revolutionary weapons system ...

WILLIAM G. SCHULZ

2004-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization of U/Pu Particles Originating From the Nuclear Weapon Accidents at Palomares, Spain, 1966 And Thule, Greenland, 1968  

SciTech Connect (OSTI)

Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-ray analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.

Lind, O.C.; Salbu, B.; Janssens, K.; Proost, K.; Garcia-Leon, M.; Garcia-Tenorio, R.

2007-07-10T23:59:59.000Z

422

Stockpile | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

maintain the safety and reliability of the nation's nuclear deterrent without underground nuclear testing. In order to do that, DOE has established a program of science-based...

423

Reducing emissions to improve nuclear test detection | National...  

National Nuclear Security Administration (NNSA)

Reducing emissions to improve nuclear test detection | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

424

Maintaining nuclear stability in times of transition focus of talk at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January » January » Bradbury Science Museum talk Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons stockpile plays in maintaining the nation's defense - and that of our allies. January 9, 2014 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206 Email "President Obama has reaffirmed that as long as nuclear weapons exist the U.S. will maintain a safe, secure and effective arsenal that guarantees the defense of our country, our allies and partners," said Hawkins. First in series of evening lectures open to public LOS ALAMOS, N.M., Jan. 9, 2014-Los Alamos National Laboratory Senior

425

emergency policy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

policy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

426

Administrator's Update - October 2014 | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

October 2014 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

427

Administrator's Update - August 2014 | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

August 2014 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

428

Preventing Proliferation of Nuclear Materials and Technology...  

National Nuclear Security Administration (NNSA)

Preventing Proliferation of Nuclear Materials and Technology | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

429

material protection | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

protection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

430

MPC&A | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

MPC&A | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

431

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

432

Los Alamos names new head of stockpile manufacturing and support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New head of stockpile manufacturing and support New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

433

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

434

Generalized weapon effectiveness modeling .  

E-Print Network [OSTI]

??In this thesis, we compare weapon effectiveness methods to determine if current effectiveness models provide accurate results. The United States Military currently adheres to a… (more)

Anderson, Colin M.

2004-01-01T23:59:59.000Z

435

February 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to maintain its aging stockpile. Passing good judgment, part 1: weapons designers with nuclear testing experience Do new nuclear weapons designers receive the training needed to...

436

D'Agostino Sworn-In as the Energy Department's Under Secretary...  

Office of Environmental Management (EM)

security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from weapons of mass destruction; provides...

437

U.S. Energy Secretary Addresses International Atomic Energy Agency...  

Energy Savers [EERE]

security, reliability, and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons of mass destruction; provides the...

438

U.S. Department of Energy and IBM to Collaborate in Advancing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from weapons of mass destruction; provides...

439

Iraq's nuclear hide-and-seek  

SciTech Connect (OSTI)

The revelation that Iraq had spent as much as $8 billion on its calutron program implies that Iraq sought to develop a large and renewable weapons material stockpile. While the calutron revelations are alarming, a nuclear weapons program requires more than equipment to produce fissile materials. Iraq lacked the hands-on experience required to nudge its fledgling gas centrifuge program out of the laboratory and into the large-scale production phase. No information to date suggests that Iraq would have escaped serious difficulties as it moved from a calutron pilot stage to large-scale production of highly enriched uranium. The revelations have raised hard questions about the quality of reconnaissance information on Iraq's nuclear effort. But the heat fingerprints left by a large calutron production plant would become visible only after the facility was producing enriched uranium. Tracking down and eliminating Iraq's nuclear weapons capabilities under the terms of Resolution 687, and a continued embargo to halt imports of relevant technologies and equipment, will be the most effective way to prevent Iraq's nuclear program from resurfacing.

Albright, D. (Friends of the Earth, Washington, DC (United States)); Hibbs, M.

1991-09-01T23:59:59.000Z

440

Office of Secure Transportation History | National Nuclear Security  

National Nuclear Security Administration (NNSA)

History | National Nuclear Security History | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of Secure Transportation History Home > About Us > Our Programs > Defense Programs > Office of Secure Transportation > Office of Secure Transportation History Office of Secure Transportation History Since 1947, NNSA and its predecessor agencies have moved nuclear weapons,

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The consequences of alternative environmental management goals: A non-linear programming analysis of nuclear weapons legacy clean-up at Oak Ridge National Laboratory  

Science Journals Connector (OSTI)

Prioritization of projects within the U.S. Department of Energy's (DOE) Weapons Complex Clean-up Program, exemplified with data from the Oak Ridge National Laboratory, is quite sensitive to overall goals. Non-...

Donald W. Jones; Kenneth S. Redus…

442

Proactive Intelligence for Nuclear Nonproliferation  

SciTech Connect (OSTI)

The project described in this paper leverages predictive models for proliferation detection in order to assess the complementary questions of capability and intent as they relate to the potential for nuclear weapon development. The ability to proactively assess the likelihood of a state to engage in nuclear power acquisition and development for non-peaceful purposes is one of the greatest challenges for analysts and policy makers working on proliferation detection and deterrence. Of further difficulty is determining whether a state is at risk to provide indirect support for proliferation via the relationship between industrial input/output and the legal framework of trade. In general, it is possible to gather evidence about precursor activities to the achieved nuclear potential of a state that function as indicators of the state's intent to acquire and develop capabilities to support nuclear weapons. Reasoning with these indicators to predict intent and capability to proliferate is of utmost importance to facilitate nuclear safeguards, e.g. through proactive implementation of countermeasures. Such a predictive reasoning task is difficult to perform without computational aid. While the need for a proactive and multi-perspective approach to proliferation detection is widely recognized, there is a lamentable lack of computational tools applied directly to the task. Applications of predictive modeling to the domain of nuclear nonproliferation are limited to physical/chemical properties of nuclear materials, such as nuclear weapons simulations and stockpile stewardship. The aim of this project is to address this gap by leveraging methods and data from different mission areas in support of proliferation detection and prevention in innovative ways. More specifically, the approach implemented in this project combines methods in information analysis and probabilistic evidentiary reasoning with expert knowledge from discipline areas germane to proliferation detection, and evidence extracted from relevant data sources, to assess alternative hypotheses about specific proliferation detection problems.

Peterson, Danielle J.; Sanfilippo, Antonio P.; Baddeley, Robert L.; Franklin, Lyndsey

2008-05-12T23:59:59.000Z

443

Some facts about “weapon focus”  

Science Journals Connector (OSTI)

Weapon focus” refers to the concentration of acrime witness's attention on a weapon, and the resultant reduction in ability to ... that subjects made more eye fixations on the weapon than on the check, and fixat...

Elizabeth F. Loftus; Geoffrey R. Loftus; Jane Messo

1987-03-01T23:59:59.000Z

444

Chemical Stockpile Disposal Program rapid accident assessment  

SciTech Connect (OSTI)

This report develops a scheme for the rapid assessment of a release of toxic chemicals resulting from an accident in one of the most chemical weapon demilitarization plants or storage areas. The system uses such inputs as chemical and pressure sensors monitoring the plant and reports of accidents radioed to the Emergency Operations Center by work parties or monitoring personnel. A size of release can be estimated from previous calculations done in the risk analysis, from back calculation from an open-air chemical sensor measurement, or from an estimated percentage of the inventory of agent at the location of the release. Potential consequences of the estimated release are calculated from real-time meteorological data, surrounding population data, and properties of the agent. In addition to the estimated casualties, area coverage and no-death contours vs time would be calculated. Accidents are assigned to one of four categories: community emergencies, which are involve a threat to off-site personnel; on-post emergencies, which involve a threat only to on-site personnel; advisory, which involves a potential for threat to on-site personnel; and chemical occurrence, which can produce an abnormal operating condition for the plant but no immediate threat to on-site personnel. 9 refs., 20 tabs.

Chester, C.V.

1990-08-01T23:59:59.000Z

445

Plutonium Pits | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To ensure the reliability, safety, and security of nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken...

446

Recovery of weapon plutonium as feed material for reactor fuel  

SciTech Connect (OSTI)

This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan [and others

1994-03-16T23:59:59.000Z

447

Weapons Program Associate Directors named  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Associate Directors named Bob Webster has been named Associate Director for Weapon Physics and John Benner has been named Associate Director for Weapon Engineering and...

448

ORISE: Chemical Stockpile Emergency Preparedness Program Exercise Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Stockpile Emergency Preparedness Program Exercise Training and Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006, the Oak Ridge Institute for Science and Education (ORISE) customized the structure of the U.S. Department of Energy's (DOE) Office of Emergency Response Asset Readiness Management System (ARMS) databases to create a framework for Chemical Stockpile Emergency Preparedness Program (CSEPP) sites to track compliance with the National Incident Management System (NIMS) and resolution of corrective actions. ORISE enhanced the functionality and navigation to provide CSEPP with an Exercise and Training Analysis Tool (CETAT). The CETAT database enables CSEPP sites to identify and track functional issues and assess NIMS

449

Los Alamos National Laboratory | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory | National Nuclear Security Administration National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Los Alamos National Laboratory Los Alamos National Laboratory http://www.lanl.gov/ Field Office: Los Alamos Field Office (NA-00-LA) manages the resources of the NNSA Los Alamos National Weapons Design Laboratory. NA-00-LA aims to

450

Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

N /A

2004-02-27T23:59:59.000Z

451

FY 2009 Savannah River Nuclear Solutions, LLC, PER Summary |...  

National Nuclear Security Administration (NNSA)

Savannah River Nuclear Solutions, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

452

Limited Test Ban Treaty Signed | National Nuclear Security Administrat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Limited Test Ban Treaty Signed | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

453

Senate Rejects Test Ban Treaty | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Senate Rejects Test Ban Treaty | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

454

Preparing the Nuclear Security Science Minds of Tomorrow | National...  

National Nuclear Security Administration (NNSA)

Preparing the Nuclear Security Science Minds of Tomorrow | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the...

455

National Laboratory's Weapons Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal...

456

Systems engineering analysis of kinetic energy weapon concepts  

SciTech Connect (OSTI)

This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

Senglaub, M.

1996-06-01T23:59:59.000Z

457

Anton Tran receives award from the Air War College | National Nuclear  

National Nuclear Security Administration (NNSA)

Anton Tran receives award from the Air War College | National Nuclear Anton Tran receives award from the Air War College | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Anton Tran receives award from the Air ... Anton Tran receives award from the Air War College Posted By Office of Public Affairs Anton Tran Anton Tran, from NNSA's Office of Nuclear Weapon Surety and Quality, has

458

Audit Letter Report: OAS-L-09-16 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

testing necessary to satisfy stockpile surveillance requirements are defined by the three nuclear weapons laboratories, while testing is carried out at seven sites in the weapons...

459

DOE's Former Rocky Flats Weapons Production Site to Become National...  

Energy Savers [EERE]

Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

460

hemical and biological weapons are rightly re-garded with a special sense of horror. Their  

E-Print Network [OSTI]

C hemical and biological weapons are rightly re- garded with a special sense of horror spread through a population. Moreover, chemical and biological weapons are especially attractive alter- natives for groups that lack the ability to construct nuclear weapons. The 1995 release of sarin gas

Spirtes, Peter

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

design basis threat | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

design basis threat | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

462

Australia HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Australia HEU Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

463

Argentina HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Argentina HEU Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

464

Nuclear presence and crisis escalation stability: prospects for peace?.  

E-Print Network [OSTI]

??This thesis examines the relationship between crisis escalation and the presence of nuclear actors. Nuclear weapons are typically viewed as the ultimate weapons of mass… (more)

Sanchez, Victoria Justine

2010-01-01T23:59:59.000Z

465

E-Print Network 3.0 - atomic weapons research Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and model nuclear weapon performance in three dimensions. LIFE EXTENSION PROGRAMS: By upgrading Source: Rhoads, James - Space Telescope Science Institute Collection: Physics 9...

466

ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Training Chemical Stockpile Emergency Preparedness Program Training: Advisor 6.0 The Oak Ridge Institute for Science and Education (ORISE) designed a unique computer-based, reference product-Advisor 6.0-to assist those who work in Chemical Stockpile Emergency Preparedness Program's (CSEPP) Emergency Public Information office. Advisor 6.0 includes: Personal digital assistant (PDA) applications that can be used to enhance emergency response communications/coordination.

467

ASSESSING IRAQ'S WEAPONS  

Science Journals Connector (OSTI)

IN THE MONTHS LEADING UP TO THE March 2003 invasion of Iraq, President George W. Bush and his top officials issued a litany of serious allegations about Iraq's weapons of mass destruction (WMD) and the threat they posed to the U.S. But their prime ...

LOIS R. EMBER

2004-10-25T23:59:59.000Z

468

Multiple smart weapons employment mechanism  

SciTech Connect (OSTI)

A digital communications armament network adaptor is described for carrying multiple smart weapons on a single wing pylon station of an aircraft, comprising: an aircraft having a weapons controller configured in compliance with MIL-STD 1553; multiple wing-mounted pylons on said aircraft, each providing a weapons station with communications and ejection and release mechanisms electrically connected to said controller for the airborne launch of smart weapons; a multiple ejector rack affixed to at least one pylon, said rack holding a plurality of smart weapons; and an electronic digital network connected between the controller and said rack-mounted smart weapons, said network located in said rack and including circuitry which receives coded digital communications from said controller and selectively rebroadcasts said communications to one of said smart weapons on said rack designated by said coded communications, thereby controlling all required functions of said designated smart weapon.

McGlynn, M.P.; Meiklejohn, W.D.

1993-07-20T23:59:59.000Z

469

IRAQ'S WEAPONS OF MASS DESTRUCTION  

Science Journals Connector (OSTI)

DESPITE SEVEN YEARS OF INtrusive United Nations inspections and decimation of Iraq's weapons of mass destruction, Iraq was able to sequester sizable stocks of chemical and biological weapons, some missiles to deliver them, and the scientific and technical ...

LOIS EMBER

2002-09-16T23:59:59.000Z

470

IRAQ HAD NO ILLICIT WEAPONS  

Science Journals Connector (OSTI)

TESTIFYING BEFORE THE SENate Armed Services Committee, chief U.S. weapons inspector Charles A. Duelfer outlined key findings of a report on Iraq's prewar weapons holdings that sharply undercut the Bush Administration's primary reason for invading Iraq....

LOIS EMBER

2004-10-11T23:59:59.000Z

471

Antineutrino Detection for Nuclear Monitoring  

E-Print Network [OSTI]

covertly acquire these special nuclear materials from: Assembled weapons Raw uranium ore Enriched uranium antineutrino monitoring infrastructure will help avert the spread of covert nuclear reactors and weaponsAntineutrino Detection for Nuclear Monitoring Draft #12;Graphic courtesy Lawrence Livermore

Mcdonough, William F.

472

US and Russia agree to collaborate on nuclear energy and security...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Russia agree to collaborate on nuclear energy and security R&D | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

473

'Civil' nuclear programme – serving the dual objectives of retaining the state's hegemony on citizens' basic energy needs and assuring supply of weapon grade ingredients: a case study on India  

Science Journals Connector (OSTI)

Political leaders of ambitious emerging economies of India and China, where the state has not yet reached the maturity stage, prefer nuclear power to other alternative energy sources, as it serves the dual purpose of retaining the state's hegemony on citizens' basic energy needs and assures supply of weapon grade ingredients. In contrast to North America and most of Western Europe, where growth of nuclear power has levelled out for many years, the 'greatest growth in nuclear generation' in the near future is expected in China, Japan, South Korea and India. It would be naive to believe that the political establishments are not aware of the negative consequences of nuclear power. The question may then arise as to why have the emerging economies of India, China, Brazil, etc., aligned themselves with the nuclear establishment without fully exploiting other alternative energy sources? Taking India as a case, this paper analyses secondary data and findings of various previous studies to explore an answer to this question.

Dipankar Dey

2010-01-01T23:59:59.000Z

474

Test Procedure Conducted Energy Weapons  

E-Print Network [OSTI]

Test Procedure for Conducted Energy Weapons Version 1.1 2010/07/31 #12;Contents Page 0.0 Disclaimer A TASER M26 13 Appendix B TASER X26 23 #12;1 Test Procedure for Conducted Energy Weapons 0.0 Disclaimer Energy Weapons ("CEWs") in a controlled and repeatable manner across jurisdictions. The consistent

Adler, Andy

475

Audit Report National Nuclear Security Administration Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOEIG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of...

476

Nuclear Ukraine  

Science Journals Connector (OSTI)

... SIR - Your article (Nature 365, 599; 1993) on the US-Ukraine stalemate over nuclear weapons prompts the following remarks. The United States made a mistake ... nuclear weapons prompts the following remarks. The United States made a mistake in not recognizing Ukraine as a legitimate successor state to the Soviet nuclear arsenal and is still insisting that ...

Arno Arrak

1994-01-13T23:59:59.000Z

477

Nuclear Explosives Safety Evaluation Process (DOE-STD-3015-2004)  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE DOE-STD-3015-2004 November 2004 Superseding DOE-STD-3015-2001 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY EVALUATION PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/. DOE-STD-3015-2004 iii FOREWORD This Department of Energy (DOE) Technical Standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations, National Nuclear Security Administration (NNSA), and is available for use with DOE O 452.1, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, and DOE O 452.2, SAFETY OF

478

Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site  

SciTech Connect (OSTI)

The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose{hor_ellipsis}prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives.

Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

1995-11-01T23:59:59.000Z

479

Proposal for broader United States-Russian transparency of nuclear arms reductions  

SciTech Connect (OSTI)

During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ``transparency and irreversibility`` of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities.

Percival, C.M. [Sandia National Labs., Albuquerque, NM (United States); Ingle, T.H.; Bieniawski, A.J. [USDOE, Washington, DC (United States)

1995-07-01T23:59:59.000Z

480

Report by a special panel of the American Nuclear Society: Protection and management of plutonium  

SciTech Connect (OSTI)

The American Nuclear Society (ANS) established an independent and prestigious panel several months ago to take the matter up where the US National Academy of Science (NAS) left off. The challenge was to look at the broader issue of what to do with civil plutonium, as well as excess weapons material. In terms of approach, the report focused on several short- and long-term issues. The short-term focus was on the disposition of excess weapons plutonium, while the longer-range issue concerned the disposition of the plutonium being produced in the civil nuclear fuel cycle. For the short term, the ANS panel strongly endorsed the concept that all plutonium scheduled for release from the US and Russian weapons stocks should be converted to a form that is intensively radioactive in order to protect the plutonium from theft of seizure (the spent fuel standard). However, since the conversion will at best take several years to complete, the panel has concluded that immediate emphasis should be placed on the assurance that all unconverted materials are protected as securely as when they were part of the active weapon stockpiles. More importantly, the panel also recommended prompt implementation of the so-called reactor option for disposing of surplus US and Russian weapons plutonium. The longer-term issues covered by the panel were those posed by the growing stocks of both separated plutonium and spent fuel generated in the world`s civil nuclear power programs. These issues included what fuel cycle policies should be prudently pursued in light of proliferation risks and likely future energy needs, what steps should be taken in regard to the increase in the demand for nuclear power in the future, and how civil plutonium in its various forms should be protected and managed to minimize proliferation. Overall, the panel concluded that plutonium is an energy resource that should be used and not a waste material to be disposed of.

Bengelsdorf, H. [Bengelsdorf (Harold), Bethesda, MD (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons stockpile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LANL names new Fellows for 2014 | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

names new Fellows for 2014 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

482

USS Nautilus 60th Anniversary | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

USS Nautilus 60th Anniversary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

483

second line of defense | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

second line of defense | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

484

DOE celebrates Earth Day | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

celebrates Earth Day | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

485

APM hosts contracting officers in Albuquerque | National Nuclear...  

National Nuclear Security Administration (NNSA)

APM hosts contracting officers in Albuquerque | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

486

Bettis and Knolls Atomic Power Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

Bettis and Knolls Atomic Power Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

487

Jeffrey Johnson Named Chief of Security at NNSA | National Nuclear...  

National Nuclear Security Administration (NNSA)

Jeffrey Johnson Named Chief of Security at NNSA | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

488

Frederico Pena Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Frederico Pena Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

489

Charles Duncan Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Duncan Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

490

James Edwards Sworn in as Secretary of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Edwards Sworn in as Secretary of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

491

President Carter Calls for Department of Energy | National Nuclear...  

National Nuclear Security Administration (NNSA)

Carter Calls for Department of Energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

492

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

Organizations, accidents, and nuclear weapons. Princeton,the likelihood of a nuclear accident (Sagan 1993, 1995). “potential for a nuclear accident. Yet it seems implausible

Kroenig, Matthew

2006-01-01T23:59:59.000Z

493

COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war between India and Pakistan, with...

494

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

495

Safeguards for nuclear material transparency monitoring  

SciTech Connect (OSTI)

The US and the Russian Federation are currently engaged in negotiating or implementing several nuclear arms and nuclear material control agreements. These involve placing nuclear material in specially designed containers within controlled facilities. Some of the agreements require the removal of nuclear components from stockpile weapons. These components are placed in steel containers that are then sealed and tagged. Current strategies for monitoring the agreements involve taking neutron and gamma radiation measurements of components in their containers to monitor the presence, mass, and composition of plutonium or highly enriched uranium, as well as other attributes that indicate the use of the material in a weapon. If accurate enough to be useful, these measurements will yield data containing information about the design of the weapon being monitored. In each case, the design data are considered sensitive by one or both parties to the agreement. To prevent the disclosure of this information in a bilateral or trilateral inspection scenario, so-called information barriers have evolved. These barriers combine hardware, software, and procedural safeguards to contain the sensitive data within a protected volume, presenting to the inspector only the processed results needed for verification. Interlocks and volatile memory guard against disclosure in case of failure. Implementing these safeguards requires innovation in radiation measurement instruments and data security. Demonstrating their reliability requires independent testing to uncover any flaws in design. This study discusses the general problem and gives a proposed solution for a high resolution gamma ray detection system. It uses historical examples to illustrate the evolution of other successful systems.

MacArthur, D A; Wolford, J K

1999-06-02T23:59:59.000Z

496

Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium  

E-Print Network [OSTI]

Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

Koch, William Lawrence

2013-01-01T23:59:59.000Z

497

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which  

E-Print Network [OSTI]

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle of proliferation: The more places in which this work is done, the harder it is to monitor. Weapons have been, North Korea, Pakistan, and South Africa. (South Africa abandoned its nuclear weapons in 1991. Libya

Laughlin, Robert B.

498

Nuclear materials stewardship: Our enduring mission  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.

Isaacs, T.H. [Lawrence Livermore National Lab., CA (United States)

1998-12-31T23:59:59.000Z

499

FAQS Job Task Analyses - Weapons Quality Assurance Community  

Broader source: Energy.gov (indexed) [DOE]

NA-121.3 Weapons Quality Assurance Community NA-121.3 Weapons Quality Assurance Community Consolidated JOB/TASK Analysis 12/2011 Job Analysis Worksheet for Tasks WQA Specialist Task Source Import. Freq. #1 Monitors, inspects, analyzes and investigates complex electrical, electronic, mechanical, electro-mechanical, and nuclear components, subassemblies, and assemblies associated with the manufacture of nuclear weapons and other non-nuclear components as applicable QC-1, WQAPM, DesgnDefn 4 3 #2 Conducts Quality Assurance Surveys (including Product Acceptance) and oversight activities of contractor operations QC-1, WQAPM 5 2 #3 Performs verification inspection (including Contractor Acceptance Verification) of product manufactured by NNSA Contractors, QAIP development, QADRs, nonconformance activities/requirements

500

DOE's Former Rocky Flats Weapons Production Site to Become National  

Broader source: Energy.gov (indexed) [DOE]

Former Rocky Flats Weapons Production Site to Become National Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a decade of environmental cleanup work, the transfer creates the Rocky Flats National Wildlife Refuge, 16 miles northwest of Denver, Colorado, and marks completion of the regulatory milestones to transform a formerly contaminated site into an environmental asset. "The Department of Energy's environmental cleanup of the Rocky Flats