Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...  

National Nuclear Security Administration (NNSA)

... Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program January 19, 1975 Washington, DC Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program The Energy...

2

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

3

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

4

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

5

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities.This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

6

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act of 1988. The following case examples are provided to help illustrate how PAAA NTS reporting interfaces with nuclear weapon program NCR processes: Example 1: A reservoir...

7

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act of 1988. The following case examples are provided to help illustrate how PAAA NTS reporting interfaces with nuclear weapon program NCR processes: Example 1: A reservoir...

8

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Weapon Intern Program visits KCP | National Nuclear Security Weapon Intern Program visits KCP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia Weapon Intern Program visits KCP Sandia Weapon Intern Program visits KCP Posted By Office of Public Affairs Participants in Sandia's Weapon Intern Program recently visited and

9

National Day of Remembrance HSS Honors Former Nuclear Weapons Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Day of Remembrance HSS Honors Former Nuclear Weapons National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - 3:11pm Addthis Color Guard | National Day of Remembrance - October 25, 2013 Color Guard | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Glenn Podonsky, Chief Health Safety and Security Officer | National Day of Remembrance - October 25, 2013

10

Radiations from nuclear weapons - signal detectors - NASA program information  

SciTech Connect

This letter is for the purpose of supplying the information that you requested at the meeting of the sub-committee on Project Vela. It is divided into three parts: (1) Radiations from nuclear weapons; (2) Backgrounds for Vela Signal Detectors; (3) Discussion of the NASA program.

White, R. S.

1960-02-10T23:59:59.000Z

11

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

12

Nuclear Weapons Journal Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Archive Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue...

13

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY "To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and safety by providing dual-agency judgment and responsibility for the safety, security, and use control (surety) of nuclear weapons. To establish nuclear explosive surety standards and nuclear weapon design surety requirements. To address surety vulnerabilities during all phases of the nuclear weapon life cycle and to upgrade surety during weapon stockpile refurbishments and/or new weapon

14

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

15

Sandia Weapon Intern Program visits KCP | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Participants in Sandia's Weapon Intern Program recently visited and toured NNSA's Kansas City Plant. The program, established in 1998, was created to meet Sandia's changing mission...

16

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Robert C. Seamans, Jr. Appointed to Lead ... Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program January 19, 1975

17

Implications of a North Korean Nuclear Weapons Program  

Science Conference Proceedings (OSTI)

The Democratic People`s Republic of Korea (DPRK) is one of the Cold War`s last remaining totalitarian regimes. Rarely has any society been as closed to outside influences and so distant from political, economic, and military developments around the globe. In 1991 and in 1992, however, this dictatorship took a number of political steps which increased Pyongyang`s interaction with the outside world. Although North Korea`s style of engagement with the broader international community involved frequent pauses and numerous steps backward, many observers believed that North Korea was finally moving to end its isolated, outlaw status. As the end of 1992 approached, however, delay and obstruction by Pyongyang became intense as accumulating evidence suggested that the DPRK, in violation of the nuclear Non-Proliferation Treaty (NPT), was seeking to develop nuclear weapons. On March 12, 1993, North Korea announced that it would not accept additional inspections proposed by the International Atomic Energy Agency (IAEA) to resolve concerns about possible violations and instead would withdraw from the Treaty. Pyongyang`s action raised the specter that, instead of a last act of the Cold War, North Korea`s diplomatic maneuvering would unravel the international norms that were to be the basis of stability and peace in the post-Cold War era. Indeed, the discovery that North Korea was approaching the capability to produce nuclear weapons suggested that the nuclear threat, which had been successfully managed throughout the Cold War era, could increase in the post-Cold War era.

Lehman, R.F. II

1993-07-01T23:59:59.000Z

18

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

19

Reconversion of nuclear weapons  

E-Print Network (OSTI)

The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

Kapitza, Sergei P

1993-01-01T23:59:59.000Z

20

Laboratory's role in Cold War nuclear weapons testing program focus of  

NLE Websites -- All DOE Office Websites (Extended Search)

70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. Contact Steve Sandoval Communications Office (505) 665-9206 Email "Los Alamos National Laboratory's role in conjunction with the Department of Defense in meeting this challenge with new nuclear weapon

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century  

Science Conference Proceedings (OSTI)

In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

Garaizar, X

2010-01-06T23:59:59.000Z

22

Weapons | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons | National Nuclear Security Administration Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Weapons Home > Our Mission > Managing the Stockpile > Weapons Weapons The New START Treaty, which was signed in 2010, between the United States and Russian Federation will cap the strategic deployed nuclear arsenals of each country at 1,550 warheads, a nearly 75% reduction compared with the

23

Peace, Stability, and Nuclear Weapons  

E-Print Network (OSTI)

Much About North Korean Nuclear Weapons,” unpublished paper,the South and use nuclear weapons in doing so. How concernedout how to use nuclear weapons except for deterrence. Is a

Waltz, Kenneth N.

1995-01-01T23:59:59.000Z

24

Identification of nuclear weapons  

DOE Patents (OSTI)

A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

Mihalczo, J.T.; King, W.T.

1987-04-10T23:59:59.000Z

25

Principal Associate Director - Weapons Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Programs As Principal Associate Director for the Weapons Program, Knapp leads the programs to assure the safety, security, and effectiveness of the systems in the nation's...

26

The National Nuclear Security Administration's Weapons Dismantlement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration's Weapons Dismantlement and Disposition Program OAS-L-13-06 January 2013 Department of Energy Washington, DC 20585 January 29, 2013...

27

North Korea's nuclear weapons program:verification priorities and new challenges.  

Science Conference Proceedings (OSTI)

A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

Moon, Duk-ho (Korean Consulate General in New York)

2003-12-01T23:59:59.000Z

28

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

29

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement

30

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test...

31

Nuclear weapons, nuclear effects, nuclear war  

SciTech Connect

This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

Bing, G.F.

1991-08-20T23:59:59.000Z

32

DOE Order Self Study Modules - DOE O 452.1D, Nuclear Explosive and Weapon Surety Program and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTINUING TRAINING SELF- CONTINUING TRAINING SELF- STUDY PROGRAM DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY DOE O 452.1D and DOE O 452.2D Familiar Level June 2011 1 DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the objectives of implementing U.S. Department of Energy (DOE) O 452.1D? 2. Define the following terms as they apply to this Order: Abnormal environment High explosive detonation 3. What are the objectives of implementing DOE O 452.2D? 4. What are the general requirements of DOE O 452.2D?

33

Will our nuclear weapons work?  

NLE Websites -- All DOE Office Websites (Extended Search)

Will our nuclear weapons work? Will our nuclear weapons work? National Security Science magazine Latest Issue:April 2013 All Issues » submit Supercomputers are essential for assessing the health of the U.S. nuclear stockpile Supercomputers provide assurance by simulating nuclear weapons performance March 25, 2013 Graphic of a missile being tested through computer simulation Los Alamos uses supercomputers to make high-resolution 3D simulations that help to assess the health of nuclear weapons like this B-61 bomb. Contact Managing Editor Clay Dillingham Email The nuclear weapons in the U.S. stockpile were designed and built to be replaced with new designs and builds every 10 to 15 years. These weapons have lived beyond their expected lifespans. Supercomputers provide the high-resolution 3D simulations needed for

34

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle | National Nuclear Security Administration Life Cycle | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Weapons Life Cycle Home > Our Mission > Managing the Stockpile > Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the

35

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

36

National Day of Remembrance HSS Honors Former Nuclear Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima...

37

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The danger that fissile isotopes may be diverted from nuclear power production to the construction of nuclear weapons would be aggravated by a switch to the plutonium breeder: but future uranium supplies are uncertain.

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

38

Neutrino Counter Nuclear Weapon  

E-Print Network (OSTI)

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Alfred Tang

2008-05-26T23:59:59.000Z

39

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Records Disposition Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the...

40

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS  

National Nuclear Security Administration (NNSA)

http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. Specifically, this SD supports the Order's requirements to implement deliberate unauthorized use (DUU) preventive measures for nuclear explosive operations (NEO) and associated activities and to perform independent evaluations to determine if NEOs

42

Nuclear Weapons Complex reconfiguration study  

Science Conference Proceedings (OSTI)

Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

Not Available

1991-01-01T23:59:59.000Z

43

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC Clinton Extends Moratorium on Nuclear Weapons Testing President Clinton...

44

DOE O 452.1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. ...

2009-04-14T23:59:59.000Z

45

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

46

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

47

Philippine Bases and U.S. Nuclear Weapons Policy  

E-Print Network (OSTI)

BASES AN-fJ U.S. NUCLEAR WEAPONS POLICY In 1947, when Unitedcould bring as many nuclear weapons as It wanted onto theinclude opposition to U.S. nuclear weapons and bases In the

Schirmer, Daniel Boone

1983-01-01T23:59:59.000Z

48

What do we do with Nuclear Weapons Now?  

E-Print Network (OSTI)

1990 What Do We Do with Nuclear Weapons Now? by Michael M.for the Future of U.S. Nuclear Weapons Policy MICHAEL M. MAYan electoral majority in nuclear weapons states. Unlike

May, Michael M

2005-01-01T23:59:59.000Z

49

Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences October 12-14, 2011, Northwestern University Evanston, Illinois Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle: Understanding and Reducing...

50

U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security  

National Nuclear Security Administration (NNSA)

No Longer Building Any Nuclear Weapons | National Nuclear Security No Longer Building Any Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May 10, 1992 Washington, DC U.S. No Longer Building Any Nuclear Weapons

51

AEC and control of nuclear weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

control of nuclear weapons The Atomic Energy Commission took control of the atomic energy project known originally as the Manhattan Project on January 1, 1947. This shift from the...

52

Managing nuclear weapons in a changing world: Proceedings  

SciTech Connect

The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

Not Available

1992-12-31T23:59:59.000Z

53

President Obama Calls for an End to Nuclear Weapons | National Nuclear  

National Nuclear Security Administration (NNSA)

Calls for an End to Nuclear Weapons | National Nuclear Calls for an End to Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Obama Calls for an End to ... President Obama Calls for an End to Nuclear Weapons April 05, 2009 Prague, Czech Republic President Obama Calls for an End to Nuclear Weapons

54

Peace, Stability, and Nuclear Weapons  

E-Print Network (OSTI)

in South Asia, Pakistan’s nuclear military capability, alongof the nuclear club: India, Pakistan, and North Korea. Ifand then India became nuclear powers, and Pakistan naturally

Waltz, Kenneth N.

1995-01-01T23:59:59.000Z

55

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

56

Swords into Plowshares: Nuclear Weapon Dismantlement, Evaluation, and Maintenance at Pantex  

Science Conference Proceedings (OSTI)

The end of the Cold War changed the missions of facilities in the US nuclear weapons complex. They ceased production of new weapons and focused on dismantling old weapons and maintaining the safety, security, and reliability of those remaining. The Pantex ... Keywords: Government--programs, Production/scheduling--planning

Edwin A. Kjeldgaard; Dean A. Jones; George F. List; Mark A. Turnquist; James W. Angelo; Richard D. Hopson; John Hudson; Terry Holeman

2000-01-01T23:59:59.000Z

57

Effects of nuclear weapons. Third edition  

SciTech Connect

Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)

Glasstone, S.; Dolan, P.J.

1977-01-01T23:59:59.000Z

58

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

59

Y-12, the Cold War, and nuclear weapons dismantlement ? Or:...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Cold War, and nuclear weapons dismantlement - Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger) The Cold War heated up over the years with such...

60

Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex  

SciTech Connect

With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Peace, Stability, and Nuclear Weapons  

E-Print Network (OSTI)

from the nuclear Non-Proliferation Treaty. The North’sNye, "Maintaining a Non-Proliferation Regime," InternationalKenneth Waltz “wars of non-proliferation”—against them. 31

Waltz, Kenneth N.

1995-01-01T23:59:59.000Z

62

Interdicting a Nuclear-Weapons Project  

Science Conference Proceedings (OSTI)

A “proliferator” seeks to complete a first small batch of fission weapons as quickly as possible, whereas an “interdictor” wishes to delay that completion for as long as possible. We develop and solve a max-min model that identifies ... Keywords: CPM, defense, foreign policy, government, integer, linear, military, programming, project management, targeting

Gerald G. Brown; W. Matthew Carlyle; Robert C. Harney; Eric M. Skroch; R. Kevin Wood

2009-07-01T23:59:59.000Z

63

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

64

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...  

National Nuclear Security Administration (NNSA)

Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

65

The US nuclear weapon infrastructure and a stable global nuclear weapon regime  

Science Conference Proceedings (OSTI)

US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

66

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Securing NNSA's Nuclear Weapons Complex in a ... Fact Sheet Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World Jan 2, 2009 The National Nuclear Security Administration (NNSA) has several missions

67

Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences  

Science Conference Proceedings (OSTI)

In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

NONE

1997-01-01T23:59:59.000Z

68

Impact of a reduced nuclear weapons stockpile on strategic stability  

Science Conference Proceedings (OSTI)

This presentation is to discuss the impact of a reduced nuclear weapons stockpile on the strategic stability. Methodologies used to study strategic stability issues include what are basically strategic-force exchange models. These models are used to simulate a massive nuclear exchange in which one side attacks and the other side retaliates. These models have been of interest to the Strategic Defense Initiative (SDI) program. Researchers have been looking at issues concerning the stability of the transition period, during which some defenses have been deployed and during which deterrence and war-fighting capability reply partly on defense and partly on offense. Also, more recently, with interest in the Strategic Arms Reduction Treaty (START) and force reductions beyond START, the same calculation engines have been used to examine the impact of reduced forces on strategic stability. For both the SDI and the START reduction cases, exchange models are able to address only a rather narrow class of strategic stability issues. Other broader stability questions that are unrelated to nuclear weapons or that relate to nuclear weapons but are not addressed by the calculational tools which are not included in this discussion. 6 refs., 1 fig., 1 tab. (BN)

Chrzanowski, P.

1991-03-20T23:59:59.000Z

69

Nuclear weapons issues in South Asia  

Science Conference Proceedings (OSTI)

This report discusses how the US can play a productive mediating role in South Asia by engaging India and Pakistan in an international forum to manage nuclear weapons, as Edward Teller advocated. India and Pakistan have developed their nuclear capabilities because they fear their neighbors, not because they want to threaten fear their neighbors, not because they want to threaten the US. The appropriate response for the US, therefore, is diplomatic engagement and negotiations. In addition to the international approach, encouragement and facilitation of regional and bilateral interactions will also be important. Formal arms control agreements have been reached, but less formal confidence-building measures, and unilateral security pledges may well be combined to form a more secure strategic environment in South Asia than a nuclear armed confrontation across the porous South Asian border.

Joeck, N.

1993-07-02T23:59:59.000Z

70

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

through its clandestine nuclear weapons program. If KEDOand construction of its nuclear weapons program. A regionalabandon its clandestine nuclear weapons program, and to more

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

71

A thousand suns : political motivations for nuclear weapons testing  

E-Print Network (OSTI)

Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are far from easy to bear, however: economic sanctions can be crippling ...

Raas, Whitney

2006-01-01T23:59:59.000Z

72

Defense programs: A Sandia weapon review bulletin  

SciTech Connect

Sandia`s mission to explore technology that enhances US nuclear weapons capabilities has been the primary impetus for the development of a class of inertial measurement units not available commercially. The newest member of the family is the Ring Laser Gyro Assembly. The product of a five-year joint effort by Sandia and Honeywell`s Space and Strategic Systems Operation, the RLGA is a small, one-nautical-mile-per-hour-class inertial measurement unit that consumes only 16 watts - attributes that are important to a guidance and control capability for new or existing weapons. These same attributes led the Central Inertial Guidance Test Facility at Holloman Air Force Base to select the RLGA for their newest test instrumentation pod. The RLGA sensor assembly is composed of three Honeywell ring laser gyroscopes and three Sundstrand Data Control accelerometers that are selected from three types according to the user`s acceleration range and accuracy needs.

Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-11-01T23:59:59.000Z

73

DOE O 452.8, Control of Nuclear Weapon Data  

Directives, Delegations, and Requirements

The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted ...

2011-07-21T23:59:59.000Z

74

DOE's Nuclear Weapons Complex: Challenges to Safety, Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR...

75

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

Concern over the risk of nuclear proliferation has led to extensive reexamination of the technical, economic, and political assumptions underlying both national and international nuclear policies. An attempt is made in the present article to clarify the basic technical and political issues. The connections between various fuel cycles and their possible proliferation risks are discussed. As the resolution of the existing differing views on proliferation risks will be largely a political process, solutions to the problem are not proposed. (JSR)

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

76

DOE battery program for weapon applications  

SciTech Connect

This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

Clark, R.P.; Baldwin, A.R.

1992-11-01T23:59:59.000Z

77

DOE battery program for weapon applications  

SciTech Connect

This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

Clark, R.P.; Baldwin, A.R.

1992-01-01T23:59:59.000Z

78

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy 18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel. The analysis demonstrates that the impacts on the environmental, workers and the general public of implementing any of the alternative management approaches would be small and within applicable Federal and state regulator limits. PUBLIC COMMENT OPPORTUNITIES

79

The University and the Nuclear Predicament  

E-Print Network (OSTI)

34. Living with Nuclear Weapons, Harvard Nuclear Studythe proliferation of nuclear weapons states (from one to atMIT Summer Program on Nuclear Weapons and Arms Control.

Kohn, Walter; Badash, Lawrence

1988-01-01T23:59:59.000Z

80

Nuclear Surety This revisiono Implements DOD Directive 5210.42, Nuclear Weapons Personnel Reliability  

E-Print Network (OSTI)

o Updates the responsibilities to reflect the fact that the Army no longer has custody of nuclear weapons or nuclear weapons delivery systems (para 1-4). o Designates the DCSOPS (DAMO-SS) as approval authority for waivers and exceptions to policy requirements and reclamas to nuclear surety inspections o Deletes the requirement that commanders with nuclear surety missions establish a nuclear surety board, making it an optional requirement as determined by the commander; and retains guidance on the functioning of a surety board to assist commanders who want to establish one (para 1-6). o Deletes guidance on Physical Security and Survivability. AR 190-54 now covers applicable physical security requirements at Army nuclear reactor facilities (chap 2). o Reorganizes the Personnel Reliability Program (PRP), to more closely follow the sequence of events in certifying an individual into and out of the PRP

unknown authors

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. No Longer Building Any Nuclear Weapons | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

No Longer Building Any Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

82

Constraining potential nuclear-weapons proliferation from civilian reactors  

Science Conference Proceedings (OSTI)

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

83

Source options for nuclear weapons identification system  

Science Conference Proceedings (OSTI)

This report briefly presents the advantages and disadvantages of two timed sources of neutrons that can be used with the source-driven noise analysis method: (1) {sup 252}Cf in an ionization chamber and (2) an associated-particle sealed tube neutron generator (APSTNG). These sources can be used with frequency and time analysis methods for nuclear weapons identification, quality assurance in production, special nuclear materials assay, criticality safety, and provision of measured data for verification of neutron and gamma ray transport calculational methods. The advantages of {sup 252}Cf for a nuclear materials identification system are that it is simple, reliable, and small and that all source events are detected. The disadvantages are that it cannot be turned off, leads to small radiation doses in handling, and produces more than one neutron per fission event. The advantages of APSTNG are that it is directional, can be turned off, and has one particle per deuterium-tritium reaction. The disadvantages are that it is large and complicated compared to {sup 252}Cf.

Mihalczo, J.T.; Koehler, P.E.; Valentine, T.E.; Phillips, L.D.

1995-07-01T23:59:59.000Z

84

The future of the Non-Proliferation Treaty and U.S. nuclear weapons policy .  

E-Print Network (OSTI)

??This thesis addresses the viability of the Treaty on the Non-Proliferation of Nuclear Weapons – NPT for short – in light of U.S. nuclear weapons… (more)

Claussen, Bjørn Ragnar

2008-01-01T23:59:59.000Z

85

DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Directives, Delegations, and Requirements

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety ...

2010-01-22T23:59:59.000Z

86

Tiny device can detect hidden nuclear weapons, materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Tiny Tiny device can detect hidden nuclear weapons, materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Tiny device can detect hidden nuclear weapons, materials This tiny wafer can detect hidden nuclear weapons and materials NUCLEAR DETECTOR -- This small wafer could become the key component in

87

Office of Weapons Material Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

located in closed cities. In some cases, these industrial sites are the size of small cities and contain hundreds of metric tons of highly attractive weapons-usable nuclear...

88

An assessment of North Korea's nuclear weapons capabilities  

E-Print Network (OSTI)

In February of 2013, North Korea conducted its third nuclear weapons test. Speculations are that this test was conducted to further develop a warhead small enough to fit on an intercontinental ballistic missile. This test ...

Sivels, Ciara (Ciara Brooke)

2013-01-01T23:59:59.000Z

89

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf)....

90

Briefing, Classification of Nuclear Weapons-Related Information- June 2012  

Energy.gov (U.S. Department of Energy (DOE))

This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

91

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program  

NLE Websites -- All DOE Office Websites (Extended Search)

McMillan to Lead Weapons Program McMillan to Lead Weapons Program Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the Laboratory's core mission. July 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

92

The role of nuclear weapons in the year 2000  

SciTech Connect

This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

Not Available

1990-01-01T23:59:59.000Z

93

Bombs Versus Budgets: Inside the Nuclear Weapons Lobby  

E-Print Network (OSTI)

The battle over deficits and defense has focused attention on the costs of nuclear weapons. Estimates of the full costs of nuclear weapons-related activities are hotly debated, but there is no question that they will reach hundreds of billions of dollars over the next decade. At a time of tight budgets, there is a real possibility that some of the systems and facilities described so far could be reduced, delayed, or cancelled outright. For example, former Vice-Chairman of the Joint Chiefs of Staff General James Cartwright noted in July 2011, “The challenge here is that we have to re-capitalize all three legs [of the nuclear triad], and we don’t have the money to do it. ” That same month, General Robert Kehler, the head of U.S. Strategic Command, asserted, “We’re not going to be able to go forward with weapon systems that cost what weapon systems cost today.” This report provides a profile of the nuclear weapons lobby, noting along the way that in a constrained budgetary environment different parts of the lobby may either collaborate to promote higher nuclear weapons spending or compete for their share of a shrinking pie. An Ohio-Class Ballistic Missile Submarine (SSBN), slated to be replaced by a Next Generation Sub.

D. Hartung; Christine Anderson

2012-01-01T23:59:59.000Z

94

DOE O 452.6A, Nuclear Weapon Surety Interface with the Department of Defense  

Directives, Delegations, and Requirements

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon ...

2009-05-14T23:59:59.000Z

95

Proliferation concerns in the Russian closed nuclear weapons complex cities : a study of regional migration behavior.  

SciTech Connect

The collapse of the Soviet Union in 1991 left the legacy of the USSR weapons complex with an estimated 50 nuclear, chemical, and biological weapons cities containing facilities responsible for research, production, maintenance, and destruction of the weapons stockpile. The Russian Federation acquired ten such previously secret, closed nuclear weapons complex cities. Unfortunately, a lack of government funding to support these facilities resulted in non-payment of salaries to employees and even plant closures, which led to an international fear of weapons material and knowledge proliferation. This dissertation analyzes migration in 33 regions of the Russian Federation, six of which contain the ten closed nuclear weapons complex cities. This study finds that the presence of a closed nuclear city does not significantly influence migration. However, the factors that do influence migration are statistically different in regions containing closed nuclear cities compared to regions without closed nuclear cities. Further, these results show that the net rate of migration has changed across the years since the break up of the Soviet Union, and that the push and pull factors for migration have changed across time. Specifically, personal and residential factors had a significant impact on migration immediately following the collapse of the Soviet Union, but economic infrastructure and societal factors became significant in later years. Two significant policy conclusions are derived from this research. First, higher levels of income are found to increase outmigration from regions, implying that programs designed to prevent migration by increasing incomes for closed city residents may be counter-productive. Second, this study finds that programs designed to increase capital and build infrastructure in the new Russian Federation will be more effective for employing scientists and engineers from the weapons complex, and consequently reduce the potential for emigration of potential proliferants.

Flores, Kristen Lee

2004-07-01T23:59:59.000Z

96

Weapon Detonation Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

97

Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2  

E-Print Network (OSTI)

2 / 28 The world-wide nuclear-weapon non-proliferation regime The Non Proliferation Treaty (NPT) Entry into force: 1970 Three "pillars": - Non Proliferation (of nuclear-weapon capabilities), - Nuclear of the globe. The collapse of the world-wide regime of nuclear- weapon non-proliferation might happen in two

Deutch, John

98

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network (OSTI)

and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-Evidence at the Hanford Nuclear Weapons Facility MASTERAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

Britton, Julie

2010-01-01T23:59:59.000Z

99

An analysis of technical and policy drivers in Current U.S. nuclear weapons force structure  

E-Print Network (OSTI)

U.S. nuclear weapons force structure accounts for the number and types of strategic and nonstrategic weapon systems in various locations that comprise the nuclear arsenal. While exact numbers, locations, and detailed designs ...

Baker, Amanda, S. B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

100

The Domestic Sources of Nuclear Postures: Influencing Fence-Sitters in the Post-Cold War Era  

E-Print Network (OSTI)

Bracken, Paul. 1992. “Nuclear Weapons and state Survival inbut not admitting to—a nuclear weapons capability? Three ofnations veil their nuclear weapons programs and defy widely-

Solingen, Etel

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Los Alamos National Laboratory names new head of weapons programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory names new head of weapons programs Laboratory names new head of weapons programs Los Alamos National Laboratory names new head of weapons programs Bret Knapp has been acting in that position since June 2011. December 1, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Kevin Roark Communications Office (505) 665-9202

102

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

103

The Ghost of the Bomb : the Bravo Medical Program, scientific uncertainty, and the legacy of U.S. Cold War science, 1954-2005  

E-Print Network (OSTI)

Enewetak by continued nuclear weapons tests. Subsequently,some time during the Nuclear Weapons Testing Program. ThisExposure to Fallout from Nuclear Weapons Testing Conducted

Harkewicz, Laura J.

2010-01-01T23:59:59.000Z

104

Use of commercial manipulator to handle a nuclear weapon component  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) has developed a manipulator workcell to load and unload nuclear weapon pit assemblies from a cart. To develop this workcell, PNL procured a commercially available manipulator, equipped it with force-sensing and vision equipment, and developed manipulator control software. Manipulator workcell development demonstrated that commercially available manipulator systems can successfully perform this task if the appropriate manipulator is selected and the manipulator workcell tooling and software are carefully designed.

Baker, C.P.

1994-08-01T23:59:59.000Z

105

Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?  

Science Conference Proceedings (OSTI)

In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

106

A hazard separation system for dismantlement of nuclear weapon components  

SciTech Connect

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

1995-04-01T23:59:59.000Z

107

Civilian Nuclear Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

108

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

1980-06-01T23:59:59.000Z

109

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

Not Available

1980-06-01T23:59:59.000Z

110

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons and Global Security Data Analysis Nuclear Weapons and Global Security Data Analysis Physics Division applies advanced imaging techniques to many applications, from brain imaging to neutron imaging in inertial fusion to threat detection from airborne cameras. A particular strength is the quantitative analysis of penetrating radiography using techniques such as the Bayesian Inference Engine (BIE). An example from the Nuclear Event Analysis Team shows a test object (Figure 1) that is subsequently radiographed using the Dual-Axis Radiography Hydrodynamic Test (DARHT) facility. Figures 2 and 3 show the radiograph and the inferred density of the object using the BIE, which can be compared to the known object to determine accurate error estimation. Test object Figure 1. The test object consists of a 1 cm-radius cavity void surrounded by a 4.5 cm radius surrogate fissile material of tungsten, tantalum, or depleted uranium. This sphere is surrounded by a 6.5 cm-radius copper sphere. At is thickest point, the tantalum test object has an areal density of 180 g/cm2, equivalent to 9" of steel.

111

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

112

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

113

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

114

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

115

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

116

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

117

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

118

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

119

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

120

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Weapons Strategy Delivered to Congress Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

122

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

123

Development of the nuclear weapons complex EP architecture  

Science Conference Proceedings (OSTI)

The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

Murray, C.; Halbleib, L.

1996-07-01T23:59:59.000Z

124

INDUSTRIAL HYGIENE ASPECTS OF UNDERGROUND NUCLEAR WEAPON TEST DEBRIS RECOVERY  

SciTech Connect

The formation of a collapse crater by underground nuclear explosions is described. Safety problems associated with the re-entry of underground nuclear explosion areas include cavity collapse, toxic gases, explosive gases, radioactive gases, radioactive core, and hazards from the movement of heavy equipment on unstable ground. Data irom television, geophones, and telemetered radiation detectors determine when radiation and toxic material surveys of the area can be made and drills can be used to obtain samples of the bubble crust for analysis. Hazards to persornel engaged in obtaining weapon debris samples are reviewed. Data are presented on the radiation dose received by personnel at the Nevada Test Site engaged in this work during 1962. (C.H.)

Wilcox, F.W.

1963-03-27T23:59:59.000Z

125

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

126

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

127

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

128

Life Extension Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Life Extension Programs | National Nuclear Security Administration Life Extension Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Life Extension Programs Home > Our Mission > Managing the Stockpile > Life Extension Programs Life Extension Programs The term "life extension program (LEP)" means a program to repair/replace components of nuclear weapons to ensure the ability to meet

129

Life Extension Programs | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Extension Programs | National Nuclear Security Administration Extension Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Life Extension Programs Home > Our Mission > Managing the Stockpile > Life Extension Programs Life Extension Programs The term "life extension program (LEP)" means a program to repair/replace components of nuclear weapons to ensure the ability to meet

130

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network (OSTI)

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Norman Dombey

2011-12-10T23:59:59.000Z

131

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network (OSTI)

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Dombey, Norman

2011-01-01T23:59:59.000Z

132

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

133

A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods  

E-Print Network (OSTI)

A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

Sentell, Dennis Shannon, 1971-

2002-01-01T23:59:59.000Z

134

Defense Programs | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Defense Programs Home > About Us > Our Programs > Defense Programs Defense Programs One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA,

135

ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy  

E-Print Network (OSTI)

This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

2004-01-01T23:59:59.000Z

136

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

Science Conference Proceedings (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

137

Fourth generation nuclear weapons: Military effectiveness and collateral effects, Report ISRI-05-03  

E-Print Network (OSTI)

The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped-charge jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

Andre Gsponer

2005-01-01T23:59:59.000Z

138

Quality at Y-12, part 3 -- Or: Quality goes beyond nuclear weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

at Y-12, part 3 Or: Quality goes beyond nuclear weapons (title as it appeared in The Oak Ridger) As we continue our look at the history of Quality at Y-12, Bud Leete, Y-12...

139

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network (OSTI)

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

140

Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons  

Science Conference Proceedings (OSTI)

The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

Hickman, R.G.; Meier, C.A. (eds.) [eds.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex  

Science Conference Proceedings (OSTI)

The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

1994-08-01T23:59:59.000Z

142

NUCLEAR AND CHEMICAL AND BIOLOGICAL DEFENSE PROGRAMS  

E-Print Network (OSTI)

and establishes requirements and procedures for the implementation of the PRP to select and maintain only the most reliable people to perform duties associated with nuclear weapons. Nuclear weapons require special consideration because of their policy implications and military importance, their destructive power, and the political consequences of an accident, loss of a weapon, or an unauthorized act. The safety, security, control, and effectiveness of nuclear weapons are of paramount importance to the security of the United States.

unknown authors

2006-01-01T23:59:59.000Z

143

Nuclear Materials Management Program at the NNSS  

Science Conference Proceedings (OSTI)

The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the “gaps” and stand up a functional and compliant NMM Program at the NNSS.

,

2012-06-08T23:59:59.000Z

144

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

145

A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts  

Science Conference Proceedings (OSTI)

With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

146

What do we do with Nuclear Weapons Now?  

E-Print Network (OSTI)

especially as regards nuclear security. Priority efforts inits role in improving nuclear security. It will be essentialin dealing with nuclear security and safety matters. |=j NEW

May, Michael M

2005-01-01T23:59:59.000Z

147

Nuclear Nonproliferation Program Offices | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

148

Nuclear Nonproliferation Program Offices | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

149

Major Programs - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program International Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form...

150

Collaborating Organizations - Nuclear Data Program, Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborating Organizations Collaborating Organizations Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Collaborating Organizations Bookmark and Share National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York. International Nuclear Structure and Decay Data Network, coordinated by IAEA, Vienna, Austria Heavy-Ion Nuclear Physics Group, Physics Division, Argonne National Laboratory, Argonne, Illinois. Nuclear Spectroscopy Group, Department of Nuclear Physics,

151

Civilian Nuclear Programs, SPO-CNP: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca...

152

ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems  

E-Print Network (OSTI)

This paper contains two parts: (I) A list of “points ” highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

André Gsponer; Jean-pierre Hurni

2004-01-01T23:59:59.000Z

153

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

154

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

Science Conference Proceedings (OSTI)

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

155

Some thoughts on the nonproliferation of nuclear weapons  

Science Conference Proceedings (OSTI)

This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

Krikorian N.H.; Hawkins, H.T.

1996-05-01T23:59:59.000Z

156

China's Nuclear Power Program: Options for the US  

Science Conference Proceedings (OSTI)

The issue of American nuclear cooperation with the People's Republic of China is examined with regards to political relations, commercial benefits to the United States, and nonproliferation. China's interest in nuclear power is examined, and its nuclear program is briefly reviewed from the 1950's to present. China's international nuclear relations with other countries are discussed, and implications for the United States examined, particularly with regards to China's intentions toward nuclear proliferation, danger of diversion of material for nuclear weapons, use of pressurized water reactor technology for Chinese naval reactors, and the terms of the nuclear cooperation agreement. (LEW)

Suttmeier, R.P.

1985-01-01T23:59:59.000Z

157

What do we do with Nuclear Weapons Now?  

E-Print Network (OSTI)

The worldwide nuclear non-proliferation regime may becomeand its partners in the non-proliferation effort do not have

May, Michael M

2005-01-01T23:59:59.000Z

158

Publications 2000 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Publications 2011 Publications 2010 Publications 2009...

159

An Assessment of Tritium Supply Alternatives in Support of the U.S. Nuclear Weapons Stockpile  

Science Conference Proceedings (OSTI)

Nuclear weapons require the periodic replacement of tritium, a radioactive gas that decays at approximately 5.5 percent per year. Currently no tritium-supply facility exists in the US, and due to the decay, the tritium inventory will fall below the required ... Keywords: Decision Analysis-Multiple Criteria, Government-Defense

Detlof Von Winterfeldt; Eric Schweitzer

1998-01-01T23:59:59.000Z

160

Use of Lasers to Study the Impact of Fractionation and Condensation on the Toxicity of Nuclear Weapon Fallout  

SciTech Connect

An experimental concept has been developed to collect data to aid in the refinement of simulation programs designed to predict the fallout effects arising from surface and shallowly buried nuclear weapon detonations. These experiments, called the Condensation Debris Experiments (CDE), are intended to study the condensation/fractionation of material that is liberated following an initial deposition of laser energy onto a small, characterized target. The CDE effort also encompasses target development and material studies as well as supporting computational efforts studying radiation hydrodynamics, computational fluid dynamics, and relevant neutron activation processes (not discussed here).

Vidnovic III, T; Bradley, K S; Debonnel, C S; Dipeso, G; Fournier, K; Karpenko, V P; Tobin, M

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

162

USD(AT&L) SUBJECT: DoD Transportation of U.S. Nuclear Weapons  

E-Print Network (OSTI)

accordance with the authority in DoDD 5134.01 (Reference (b)) to establish policy, update responsibilities, and prescribe procedures for DoD transportation of U.S. nuclear weapons, including logistic transportation, operational transport, and emergency logistic movement as defined in the Glossary. b. Incorporates and cancels DoD 4540.5-M (Reference (c)). c. Authorizes the establishment of the Nuclear Transportation Working Group (NTWG).

unknown authors

2011-01-01T23:59:59.000Z

163

Turning a Nuclear Spotlight on Illegal Weapons Material  

Science Conference Proceedings (OSTI)

... research neutron source, which bathes material samples with low-energy neutrons. ... count acts as a unique signature of special nuclear material. ...

2013-09-12T23:59:59.000Z

164

Office of Weapons Material Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

against both internal and external threat scenarios. OWMP is also oversees sustainability efforts at a number of nuclear sites in Ukraine, Kazakhstan, Uzbekistan, and...

165

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

166

USD(AT&L) SUBJECT: DoD Response to U.S. Nuclear Weapon Incidents References: See Enclosure 1  

E-Print Network (OSTI)

(a)), this Instruction: a. Establishes policy and assigns responsibilities for the DoD response to U.S. nuclear weapon incidents in accordance with DoDD 3150.08 (Reference (b)). b. Authorizes DoD support for the Nuclear Weapons Accident Incident Response Subcommittee (NWAIRS) to the Nuclear Command and Control System (NCCS) Committee of Principals (CoP) to address the Federal Government response to U.S. nuclear weapon incidents. 2. APPLICABILITY. This Instruction applies to OSD, the Military Departments, the Office of the Chairman of the Joint Chiefs of Staff (CJCS) and the Joint Staff, the Combatant Commands,

unknown authors

2010-01-01T23:59:59.000Z

167

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

168

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

169

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

170

F. Calogero / Prospects of nuclear proliferation, or of transition to a nuclear-weapon-free world CIC, Cuernavaca / 02.12.2010 / page 1 / 28  

E-Print Network (OSTI)

or military use. ­ It is a major component of the Non-Proliferation Treaty (NPT) which has the goal acquisition of a nuclear weapon by an adversary could have a dev- astating influence on US security and non-proliferation. Enhancing nuclear weapons material security in Russia. 4. The Comprehensive Test Ban Treaty. 5. Other

Mejía-Monasterio, Carlos

171

Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors  

Science Conference Proceedings (OSTI)

A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

2010-04-16T23:59:59.000Z

172

Public distrust and hazard management success at the Rocky Flats nuclear weapons plant  

SciTech Connect

Based on experience gained while serving a public oversight commission appointed by the governor of Colorado, hazard management at the Department of Energy's Rocky Flats nuclear weapons plant is reviewed. Specific reference is made to the plant's history of controversy, its defense-in-depth strategy of hazard control, occupational health issues, public exposure to plutonium, and the assessment of low-probability, high-consequence risks. This leads to the conclusion that Rocky flats is, by any objective standard, a hazard management success. It follows that public distrust of Rocky Flats arises as much from fear and loathing of nuclear weapons themselves as from the manufacturing process by which they are made.

Hohenemser, C.

1987-06-01T23:59:59.000Z

173

The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container  

SciTech Connect

This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ``pipe`` containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ``swords into plowshare`` success story.

Floyd, D.; Edstrom, C. [Manufacturing Sciences Corp. (United States); Biddle, K.; Orlowski, R. [BNFL, Inc. (United States); Geinitz, R. [Safe Sites of Colorado, Golden, CO (United States); Keenan, K. [USDOE-RFFO (United States); Rivera, M. [Science Applications International Corp./LATA (United States)

1997-03-01T23:59:59.000Z

174

Literature survey of blast and fire effects of nuclear weapons on urban areas  

SciTech Connect

The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

Reitter, T.A.; McCallen, D.B.; Kang, S.W.

1982-06-01T23:59:59.000Z

175

Nuclear Technology Programs  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

176

Probabilistic cost-benefit analysis of enhanced safety features for strategic nuclear weapons at a representative location  

Science Conference Proceedings (OSTI)

We carried out a demonstration analysis of the value of developing and implementing enhanced safety features for nuclear weapons in the US stockpile. We modified an approach that the Nuclear Regulatory Commission (NRC) developed in response to a congressional directive that NRC assess the ``value-impact`` of regulatory actions for commercial nuclear power plants. Because improving weapon safety shares some basic objectives with NRC regulations, i.e., protecting public health and safety from the effects of accidents involving radioactive materials, we believe the NRC approach to be appropriate for evaluating weapons-safety cost-benefit issues. Impact analysis includes not only direct costs associated with retrofitting the weapon system, but also the expected costs (or economic risks) that are avoided by the action, i.e., the benefits.

Stephens, D.R.; Hall, C.H.; Holman, G.S.; Graham, K.F.; Harvey, T.F.; Serduke, F.J.D.

1993-10-01T23:59:59.000Z

177

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

178

Small Business Programs  

National Nuclear Security Administration (NNSA)

Business At A Time NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to...

179

CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing  

Office of Legacy Management (LM)

tudies/B ackground tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada under contract DE-AC08-85NV10384 A p r i l 1988 CONTENTS VOLUME I I. INTRODUCTION 1.1 11. NEVADA TEST SITE TESTING AREAS 2.1 Frenchman Flat (Area 5) 2.1.1 2.2 Yucca Flat (Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, and 15)

180

Dual Use? The Iranian Nuclear Program  

E-Print Network (OSTI)

After US President George W. Bush gave warning about Iran’s endeavours to arm itself with nuclear weapons, an assessment by the US National Intelligence Council (NIC) in November 2007 gave the allclear: Iran purported to have ceased its nuclear weapons programme in 2003, and as of 2007 there was no indication of any intention to resume it. Additionally, the enrichment of uranium – to date up to a

Patrick Truffer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Weapons  

E-Print Network (OSTI)

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

Charles C. Mayer; Peter R. Lavoy; James A. Russell; Author(s Charles C. Mayer

2004-01-01T23:59:59.000Z

182

Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Programs Home > Field Offices > Welcome to the Sandia Field Office > Programs Programs The SFO Programs office is responsible for direction, day-to-day oversight and contract administration activities in support of the technical

183

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

184

Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon  

E-Print Network (OSTI)

An algorithm was developed that uses measured isotopic ratios from fission product residue following the detonation of a high-enriched uranium nuclear weapon to compute the original attributes of the material used in the device. The specific attributes assessed are the uranium isotopics (considering 234U, 235U, 236U, and 238U) and the enrichment process used to create the material (e.g., gaseous diffusion, gas centrifuge, etc.). Using the original attributes of the weapon significantly increases the probability of identifying the perpetrator of the attack. In this study, research was conducted to perform sensitivity analysis of the calculated values, analyze alternate enrichment methods, determine the source (uranium mine) from which the feed material was taken and assess potential “spoofing” techniques. The purpose of this research was to verify that the analytical method developed would remain valid for a multitude of variations that could be used to disguise the origin of the nuclear material in the device. It is envisioned that this methodology could serve as a preprocessing step to a more computationally intensive and more accurate system in the event of a nuclear terrorist attack.

LaFleur, Adrienne; Charlton, William

2007-09-17T23:59:59.000Z

185

National Security, Weapons Science  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

186

A study of residual Cesium 137 contamination in southwestern Utah soil following the nuclear weapons tests at the Nevada Test Site in the 1950's and 1960's.  

E-Print Network (OSTI)

??The Nevada Test Site (NTS) was the location for at least 100 above ground Nuclear Weapons tests during the 1950's and early 1960's. Radioactive fallout… (more)

[No author

2008-01-01T23:59:59.000Z

187

Nuclear Nonproliferation Programs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and development to 'boots-on-the-ground' implementation. This work ranges from uranium fuel cycle research to detection technologies and nuclear forensics. The nuclear...

188

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network (OSTI)

component of the National Nuclear Security Administration's (NNSA) responsive infrastructure, supports NNSA an important component of the scientific and technical understanding required to assess the safety, security, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability

189

Classification of Nuclear Weapons-Related Information (Restricted Data and Formerly Restricted Data)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLASSIFICATION OF CLASSIFICATION OF NUCLEAR WEAPONS-RELATED INFORMATION Restricted Data and Formerly Restricted Data (RD and FRD) June 2012 2 3 Purpose To familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing that information as required by  The Atomic Energy Act and  10 Code of Federal Regulation (CFR) Part 1045, Nuclear Classification and Declassification §1045.35 4 Not the Purpose This briefing does not authorize you to classify or declassify documents containing RD or FRD. Additional training is required to classify documents containing RD or FRD or identify RD or FRD within a document for redaction. Only authorized DOE

190

A concept and plan for experiments to improve ground shock predictions for the EPW (Earth Penetrator Weapons) program  

SciTech Connect

This document summarizes a concept and plan for providing new experimental data to be used in validating ground shock calculations. The effort was supported by the Earth Penetrator Weapons (EPW) Program. Our main objective is to collect information on certain ground motion phenomena that may be observed in larger-scaled field experiments, but at the same time, exercise greater control over experimental conditions. It is recommended that this work be carried out in concert with other experimental programs, such as the Defense Nuclear Agency's high explosive (HE) test program, so that results are correlative or scalable according to explosive yield. Although we expect there to be some differences, the experimental technique we propose offers a cost-effective means of providing repeatable, reliable ground shock data for a wider variety of media and source configurations than can be obtained with field experiments. The cost of the program, however, would depend on the specific number and design of experiments, and is not included in this presentation. 9 refs., 23 figs.

Thorpe, R.K.; Larson, D.B.; Stout, R.B.; Swift, R.P.; Glenn, H.D.

1988-10-01T23:59:59.000Z

191

Highly Enriched Uranium Transparency Program | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Enriched Uranium Transparency Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

192

Our Programs | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

193

American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.  

Science Conference Proceedings (OSTI)

We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

2011-03-01T23:59:59.000Z

194

Neutralization of chemical and biological weapons of mass destruction using nuclear methods  

E-Print Network (OSTI)

This thesis addresses the threat of chemical and biological armed ballistic missiles and their neutralization by nuclear methods. The objective of this effort is twofold. The first objective is to develop a justification for using nuclear interceptors in neutralizing chemical and biological weapons (CBW) based on the current CBW threat to the U.S. The second objective is to reproduce a computer model developed at the Lawrence Livermore National Laboratory (LLNL) in 1992 to estimate the effectiveness of low-yield nuclear interceptors to neutralize biological or chemical tactical ballistic missile warheads and to extend the model for high-energy neutrons (20 MeV) to explore the effect of increasing neutron energies. The original model was developed using TARTNP. MCNP4C was the code used to reproduce the model. At least 27 countries now possess - or are in the process of acquiring and developing - ballistic missiles. Furthermore, more than a dozen states are pursuing offensive CBW capabilities, and some have exhibited a willingness to employ them. One particular method of neutralizing biological and chemical ballistic warheads, which has previously been investigated, is by means of nuclear interceptors, i.e., using a low-yield nuclear device to neutralize the weapon by bombarding it with high-energy particles and rendering it ineffective. To investigate the ability of nuclear interceptors to neutralize CBW missiles, a MCNP model was created based on the LLNL data. The results from the new model were compared to the sterilization requirements suggested by LLNL and to the LLNL results. Although there were differences between the two, the MCNP model produced data with the same trend as the LLNL data and all submunitions were given sufficient energy to exceed the sterilization requirements. Finally, a comparison was made of the neutralization capabilities of a fission device, a fusion device, and an advanced neutron source. It was shown that the advanced neutron source, with its 20 MeV neutrons, delivered on average 12 times as much energy per particle to the Sarin as the fission device and 1.6 times as much energy per particle to the Sarin as the fusion device.

McAffrey, Veronica Lynn

2002-01-01T23:59:59.000Z

195

LASL nuclear rocket propulsion program  

SciTech Connect

The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

Schreiber, R.E.

1956-04-01T23:59:59.000Z

196

Environment and Nuclear Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment and Nuclear Programs Environment and Nuclear Programs Environment and Nuclear Programs Cooling Tower Reflection | Credit: DOE Archives Cooling Tower Reflection | Credit: DOE Archives Offices of the Deputy General Counsel for Environment and Nuclear Programs Office of the Assistant General Counsel for Environment (GC-51) Office of the Assistant General Counsel for Civilian Nuclear Programs (GC-52 ) Office of the Assistant General Counsel for International and National Security Programs (GC-53) Office of NEPA Policy and Compliance (GC-54) Office of Standard Contract Management (GC-55) Litigation and Enforcement Environment and Nuclear Programs Environment Civilian Nuclear Programs International and National Security Programs NEPA Policy and Compliance Standard Contract Management Technology Transfer and Procurement

197

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11T23:59:59.000Z

198

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment  

SciTech Connect

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

Janeen Denise Robertson

1999-02-01T23:59:59.000Z

199

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology MagwoodApril1502 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition...

200

Our Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Programs Home > About Us > Our Programs Our Programs NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Russia-U.S. joint program on the safe management of nuclear materials  

Science Conference Proceedings (OSTI)

The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (United States); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1998-06-01T23:59:59.000Z

202

International Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration International Programs Home > About Us > Our Programs > Emergency Response > International Programs International Programs NNSA prepares for nuclear and radiological emergencies across the globe.

203

Uranium Weapons Components Successfully Dismantled | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Weapons Components Successfully Dismantled | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

204

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

205

DEPARTMENT OF NUCLEAR ENGINEERING ACADEMIC PROGRAM REVIEW  

E-Print Network (OSTI)

DEPARTMENT OF NUCLEAR ENGINEERING ACADEMIC PROGRAM REVIEW MARCH 26-28, 2007 Department of Nuclear TABLES Table 2.5-1 Department of Nuclear Engineering Faculty 16 Table 2.5-2 Department of Nuclear Programs 21 Table 2.5-4 Faculty Service on Noteworthy Committees 23 Table 2.11-1 TAMU Nuclear Engineering

206

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network (OSTI)

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

207

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

208

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I  

Energy.gov (U.S. Department of Energy (DOE))

Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington, D.C.: Department of...

209

The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium  

E-Print Network (OSTI)

This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

Kenna, Timothy C

2002-01-01T23:59:59.000Z

210

National Nuclear Security Administration (NNSA)  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Summary I. Background: Defense Programs (DP) provides the core of the NNSA National Security Enterprise through its preeminent nuclear weapons scientific, engineering, and...

211

U.S. Nuclear Command and Control System Support Staff, "Assessment Report: Department of Energy Nuclear Weapons-Related Security Oversight Process," March 1998  

E-Print Network (OSTI)

August 5, 1977 DOE, "Plutonium: The First 50 Years. United States Plutonium Production, Acquisition, and Utilization from 1944 Through 1994 GAO/RCED-92-39, "Nuclear Security: Safeguards and Security Weaknesses at DOE's Weapons Facilities," December 13, 1991 GAO/RCED/AIMD-95-5, "Nuclear Nonproliferation: U.S. International Nuclear Materials Tracking Capabilities are Limited," December 27, 1994 GAO/AIMD-95-165, "Department of Energy: Poor Management of Nuclear Materials Tracking Capabilities Are Limited," August 3, 1995 Classified DOE report.

Gao Rced- Major

1999-01-01T23:59:59.000Z

212

Pantex receives eight NNSA DP awards | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Program. The awards are given for significant achievements in quality, productivity, cost savings, safety or creativity in support of the nuclear weapons program. Read about the...

213

Engineering Technical Letter (ETL) 11-28: Mandatory Review and Update of Record Drawings for Nuclear-Capable Weapons and Munitions Storage and Maintenance Facilities  

E-Print Network (OSTI)

1. Purpose. This ETL provides criteria for munitions and nuclear weapons-capable maintenance and storage facilities (munitions storage areas [MSA] and weapons storage areas [WSA]) which are existing, under design, or under contract, and located in the continental United States (CONUS). It addresses requirements for reviewing and updating record drawings and requirements for as-built drawings for projects under design or under contract. Future project requirements will be addressed in a revision of Air Force instruction (AFI) 32-1065, Grounding Systems. 2. Application: Air Force installations with munitions and nuclear weapons-capable maintenance and storage facilities. The requirements in this ETL are mandatory.

Major Comm; Majcom Electrical Engineers

2011-01-01T23:59:59.000Z

214

Radiological Assistance Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

215

Radiological Assistance Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

216

Personnel Security Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Personnel Security Program Home > About Us > Our Programs > Nuclear Security > Personnel Security...

217

Office of Nuclear Facility Safety Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Programs establishes requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements...

218

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-10. Address and Contact Information: Naval Reactors ...

2013-07-26T23:59:59.000Z

219

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

220

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-2. Address and Contact Information: Point Loma, Bldg. ...

2013-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NUCLEAR DATA AND MEASUREMENTS REPORTS 61-80 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

222

NUCLEAR DATA AND MEASUREMENTS REPORTS 81-100 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

223

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

224

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network (OSTI)

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended sediments was assessed by an eight-step sequential extraction procedure to gauge U chemical lability and its propensity for transport. Comparisons were drawn between the easily dispersible, or water dispersible clay fraction (WDC) of the floodplain sediments to the stream suspended sediments transported during storms. Mass flux estimates determined from base flow measurements potentially underestimate the amount of U transported from contaminated terrestrial sources to surface water systems. During the storm events measured, approximately 145 7 to 2 8 3 8 % more U was mobilized to Upper Three Runs Creek (UTRC) relative to base flow calculations. The suspended sediment load transports the bulk of U in labile forms predominantly as acid soluble (specifically adsorbed), MnO2 occluded and organically bound phases. This implies that U may be available to the environment under a range of changing conditions (e.g., Eh and pH). Sequential extractions of the floodplain sediments demonstrated the presence of chemically labile forms, but in different proportions to the suspended sediments. More U was associated with the organically bound phases in the floodplain sediments, while the easily dispersible fraction of floodplain sediments correlated with the suspended sediments. A strong relationship exists between the suspended sediments and the WDC fraction, suggesting that fine particles are eroded from the floodplain and transported in labile forms. This study demonstrates the need to revise current monitoring schemes to include mass transport evaluation during storms. In addition, sequential extraction studies provide knowledge of U chemical lability in contaminated sediments, which may suggest environmentally sound and more cost effective remediation techniques than ones currently in use.

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

225

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

226

GTRI's Convert program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

program | National Nuclear Security Administration program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Convert program Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Convert program GTRI's Convert program One of Global Threat Reduction Initiative's (GTRI) three key pillars is

227

Program Activities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Activities | National Nuclear Security Administration Activities | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Program Activities Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Program Activities

228

Current projects - Nuclear Data Program, Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Projects Current Projects Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Current Projects Bookmark and Share Compilation and evaluation of nuclear structure and decay data for the IAEA coordinated International Nuclear Structure and Decay Data Network. Argonne Nuclear Data Program has the responsibility for evaluations of A=176-179 & 199-209 mass chains. These evaluations are included in the world most completed and comprehensive nuclear structure

229

Publications 2008 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 2008 References Bookmark and Share F.G. Kondev Nuclear Data Sheets for A=206

230

Minority Serving Institutions Internship Program | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions Internship Program | National Nuclear Institutions Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institutions Internship Program Home > Federal Employment > Apply for Our Jobs > How to Apply > Student Jobs > Minority Serving Institutions Internship Program Minority Serving Institutions Internship Program

231

Minority Serving Institutions Internship Program | National Nuclear  

National Nuclear Security Administration (NNSA)

Institutions Internship Program | National Nuclear Institutions Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institutions Internship Program Home > Federal Employment > Apply for Our Jobs > How to Apply > Student Jobs > Minority Serving Institutions Internship Program Minority Serving Institutions Internship Program

232

October 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

or creativity in support of NNSA's nuclear weapons program." Honorees included: - Rick Poland, for leadership of the Federal Working Group on Industrial Digital Radiography - The...

233

Ground motion from earthquakes and underground nuclear weapons tests: a comparison as it relates to siting a nuclear waste storage facility at NTS  

Science Conference Proceedings (OSTI)

Ground motion generated by a magnitude 4.3 earthquake at Massachusetts Mountain on the Nevada Test Site was measured at the control point and compared with ground motion generated at about the same distance by four underground nuclear weapons tests. The depth of the earthquake was between 4 and 4.6 km. The resulting signal at the distance considered was almost entirely body-wave components and had little or no contribution from the surface wave. The motion from the relatively shallower weapons tests had a signal with a pronounced surface-wave component. Comparison of the Pseudo Relative Response Velocity (PSRV) plots shows the earthquake signal richer in high frequencies and the weapons-test signals richer in low frequencies. If relationship between ground motion from the two sources can be confirmed for other earthquakes, weapons test ground motion could be used to estimate earthquake ground motion for magnitudes for which probability of occurrence in a given montoring period would be very small.

Vortman, L.J.

1982-01-01T23:59:59.000Z

234

Nuclear Engineering Academic Programs Survey, 2004  

SciTech Connect

This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 31 U.S. universities in 2004.

Oak Ridge Institute for Science and Education

2005-03-01T23:59:59.000Z

235

Publications 1997 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 1997 References Bookmark and Share Donald L. Smith and Andreas Fessler

236

Publications 2010 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 2010 References Bookmark and Share 1. Refereed Publications in Peer-reviewed Scientific Journals

237

Publications 2006 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 2006 References Bookmark and Share Refereed Publications in Peer-reviewed Scientific Journals

238

Publications 2002 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 2002 References Bookmark and Share M. Danchev, D.J. Hartley, F.G. Kondev, M.P. Carpenter, R.V.F.

239

Publications 2007 - Nuclear Data Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications: 2007 References Bookmark and Share Refereed Publications in Peer-reviewed Scientific Journals

240

Index of Publications by the Nuclear Data Program - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications [Publications 2011] [Publications 2010] [Publications 2009] [Publications 2008] [Publications 2007] [Publications 2006] [Publications 2005] [Publications 2004] [Publications 2003] [Publications 2002] [Publications 2001] [Publications 2000] [Publications 1999] [Publications 1998] [Publications 1997] [Other Publications] Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Publications Bookmark and Share The ND staff has contributed to a number of scientific journals, conference

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Employees Occupational Illness Compensation Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Employees Occupational Illness Compensation Program Home Outreach Event Calendar for DOE Nuclear Weapons Workers Covered Facilities Database Chronic Beryllium Disease Awareness...

242

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

243

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume I. Program summary  

SciTech Connect

This report summarizes the Nonproliferation Alternative Systems Assessment Program (NASAP): its background, its studies, and its results. The introductory chapter traces the growth of the issue of nuclear weapons proliferation and the organization and objectives of NASAP. Chapter 2 summarizes the program's assessments, findings, and recommendations. Each of Volumes II-VII reports on an individual assessment (Volumn II: Proliferation Resistance; Volume III: Resources and Fuel Cycle Facilities; Volume IV: Commercial Potential; Volume V: Economics and Systems Analysis; Volume VI: Safety and Environmental Considerations for Licensing; Volume VII: International Perspectives). Volume VIII (Advanced Concepts) presents a combined assessment of several less fully developed concepts, and Volume IX (Reactor and Fuel Cycle Descriptions) provides detailed descriptions of the reactor and fuel-cycle systems studied by NASAP.

Not Available

1980-06-01T23:59:59.000Z

244

Whistleblower Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Whistleblower Program | National Nuclear Security Administration Whistleblower Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Whistleblower Program Home > About Us > Our Operations > Management and Budget > Whistleblower Program Whistleblower Program The DOE National Nuclear Security Administration Employee (NNSA) Concerns Program (ECP) is responsible for the 10 CFR Part 708 Contractor Employee

245

Program Requirements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Follow this link to skip to the main content Facebook Flickr RSS Twitter YouTube Program Requirements | National Nuclear Security Administration Our Mission Managing the Stockpile...

246

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

247

Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995  

Science Conference Proceedings (OSTI)

This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

NONE

1996-04-01T23:59:59.000Z

248

Nuclear Energy University Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The...

249

Publications 1998 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Data for Explosive Hydrogen Burning on A 30-50 Nuclei Nuclei in the Cosmos V, Volos, Greece, 6-11 July (1998) Summary 1998 Publications totalJournal Phys. Rev. C 1 Nuclear Sci....

250

Continuity Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Continuity Program | National Nuclear Security Administration Continuity Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Continuity Program Home > About Us > Our Programs > Emergency Response > Continuity Program Continuity Program NNSA develops and implements the policy of the United States to maintain a comprehensive and effective continuity capability composed of an

251

Nuclear Energy University Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

252

Applying Agile MethodstoWeapon/Weapon-Related Software  

SciTech Connect

This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

2007-05-02T23:59:59.000Z

253

NNSA honors Y-12 employees | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

are given annually to recognize significant achievements in quality, productivity, cost savings, safety or creativity in support of NNSA's nuclear weapons program. Posted on...

254

NNSA honors SRS employees for excellent support | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

or creativity in support of NNSA's nuclear weapons program." Honorees included: - Rick Poland, for leadership of the Federal Working Group on Industrial Digital Radiography - The...

255

Sequoia ranked third in TOP500 list | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Program, helps ensure the safety, security and effectiveness of the nation's aging nuclear weapons stockpile without the use of underground testing. Sequoia was first...

256

NNSA honors Y-12 employees | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

of Nuclear Weapons Stockpile Director Joseph Oder recently visited the Y-12 National Security Complex to present Defense Programs Awards of Excellence. Fifteen teams consisting...

257

NNSA Graduate Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Graduate Program | National Nuclear Security Administration Graduate Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NNSA Graduate Program Home > Federal Employment > Our Jobs > NNSA Graduate Program NNSA Graduate Program Are you looking for a dynamic career that will make a difference in the safety and security of our nation? Do you have a strong academic record? If

258

National Nuclear Security Administration Contractors' Disability Compensation and Return-to-Work Programs, IG-0867  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report The National Nuclear Security Administration Contractors' Disability Compensation and Return-to-Work Programs DOE/IG-0867 June 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 June 18, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "NNSA Contractors' Disability Compensation and Return-to-Work Programs" INTRODUCTION AND OBJECTIVE The Department of Energy's National Nuclear Security Administration is responsible for the Nation's nuclear weapons programs. NNSA relies on contractors to manage and operate the seven sites that form its nuclear security enterprise, including three national laboratories. Under

259

Russian-U.S. joint program on the safe management of nuclear materials  

SciTech Connect

The Russian-US joint program on the safety of nuclear materials was initiated in response to the 1993 Tomsk-7 accident. The bases for this program are the common technical issues confronting the US and Russia in the safe management of excess weapons grade nuclear materials. The US and Russian weapons dismantlement process is producing hundreds of tons of excess Pu and HEU fissile materials. The US is on a two path approach for disposition of excess Pu: (1) use Pu in existing reactors and/or (2) immobilize Pu in glass or ceramics followed by geologic disposal. Russian plans are to fuel reactors with excess Pu. US and Russia are both converting and blending HEU into LEU for use in existing reactors. Fissile nuclear materials storage, handling, processing, and transportation will be occurring in both countries for tens of years. A table provides a history of the major events comprising the Russian-US joint program on the safety of nuclear materials. A paper delineating program efforts was delivered at the SPECTRUM '96 conference. This paper provides an update on program activities since then.

Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (US); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (US)] [and others

1997-12-01T23:59:59.000Z

260

The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

Science Conference Proceedings (OSTI)

Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time.

Britton, J. [Univ. of California, Berkeley, CA (United States). School of Public Health]|[Lawrence Berkeley National Lab., CA (United States)

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Simulation and Computing Program, ASC: Los Alamos National...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Sandia national laboratories to ensure the safety and reliability of the nation's nuclear weapons stockpile. Read more about the ASC Program Feature Stories Mikhail...

262

The Social and Ethical Aspects of Nuclear Waste  

E-Print Network (OSTI)

people feel toward nuclear weapons seem to have generalizedwaste left over from nuclear weapons and nuclear powerfor nuclear waste facility planners to derail weapons/waste

Marshall, Alan

2005-01-01T23:59:59.000Z

263

DOE O 452.3, Management of the Department of Energy Nuclear Weapons Complex  

Directives, Delegations, and Requirements

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department ...

2005-06-08T23:59:59.000Z

264

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Missions Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists...

265

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

coupled and complex systems like nuclear weapons arsenals.The complex technology required to build nuclear weapons is

Kroenig, Matthew

2006-01-01T23:59:59.000Z

266

CRAD, Configuration Management - Los Alamos National Laboratory Weapons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Los Alamos National Laboratory Configuration Management - Los Alamos National Laboratory Weapons Facility CRAD, Configuration Management - Los Alamos National Laboratory Weapons Facility April 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Configuration Management - Los Alamos National Laboratory Weapons Facility More Documents & Publications CRAD, Configuration Management - Los Alamos National Laboratory TA 55 SST

267

SRS - Programs - Nuclear Materials Management  

NLE Websites -- All DOE Office Websites (Extended Search)

built in the mid-1950s, housed various Special Nuclear Materials missions including plutonium storage, shipping and handling; billet production for reactor target fabrication...

268

Deterring the Smuggling of Nuclear Weapons in Container Freight Through Detection and Retaliation  

Science Conference Proceedings (OSTI)

Concerns about terrorists smuggling nuclear bombs into the United States in container freight have led to demands for 100% inspection at either U.S. or foreign ports. However, under some circumstances, it may be possible to deter nuclear smuggling attempts ... Keywords: applications, decision analysis, game theory, military, public policy, risk analysis, terrorism

Naraphorn Haphuriwat; Vicki M. Bier; Henry H. Willis

2011-06-01T23:59:59.000Z

269

Nuclear Engineering Academic Programs Survey, 2003  

SciTech Connect

The survey includes degrees granted between September 1, 2002 and August 31, 2003. Thirty-three academic programs reported having nuclear engineering programs during the survey time period and all responded (100% response rate). Three of the programs included in last year's report were discontinued or out-of-scope in 2003. One new program has been added to the list. This year the survey data include U.S. citizenship, gender, and race/ethnicity by degree level.

Science and Engineering Education, Oak Ridge Institute for Science and Education

2004-03-01T23:59:59.000Z

270

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

271

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Program Objectives Program Objectives Home > Stewardship Science Academic Alliances Program > Program Objectives Program Objectives Stewardship Science Academic Alliances (SSAA) Program Objectives Support the U.S. scientific community by funding research projects at universities that conduct fundamental science and technology research that is of relevance to Stockpile Stewardship, namely; materials under extreme conditions (condensed matter physics and materials science, hydrodynamics, and fluid dynamics); low energy nuclear science, high energy density physics, and radiochemistry. Provide opportunities for intellectual challenge and collaboration by promoting scientific interactions between the academic community and scientists at the DOE/NNSA's laboratories. Develop and maintain a long-term recruiting pipeline to the DOE/NNSA

272

Dose reduction through automation of nuclear weapons dismantlement and storage procedures at the Department of Energy`s Pantex Facility  

SciTech Connect

With the end of the Cold War and the subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need. To compensate for this excess an estimated 20,000 nuclear warheads have been earmarked for dismantlement and storage at the Department of Energy`s Pantex Plant near Amarillo, Texas. It is anticipated that the majority of these warheads will arrive at the Pantex facility by the year 2000. At that time, it is estimated that current dismantlement and inventory procedures will not be adequate to control worker radiation exposure within administrative and federal dose limits. To control these exposures alternate approaches to dismantlement and inventory must be developed. One attractive approach is to automate as many activities as possible, thus reducing worker exposure. To facilitate automation of dismantlement and storage procedures, current procedures were investigated in terms of collective dose to workers, time to completion, ease of completion, and cost of automation for each task. A cost-benefit comparison was then performed in order to determine which procedures would be most cost-effective to automate.

Thompson, D.A.; Poston, J.W. [Texas A& M Univ., College Station, TX (United States)

1996-06-01T23:59:59.000Z

273

Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant  

E-Print Network (OSTI)

With the end of the Cold War and subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need (Quirck et al., 1993). To compensate for this excess, an estimated 20,000 nuclear warheads have been earmarked for dismantlement and storage at the Department of Energy's Pantex Plant near Amarillo, Texas. It is anticipated that the majority of these warheads will arrive at the Pantex facility by the year 2000. At that time, the cur-rent dismantlement and inventory procedures may not be adequate to control worker radiation exposure within administrative and federal dose limits, To control these exposures, alternate approaches to dismantlement and inventory procedures may need to be developed. One attractive approach is to automate as many activities as possible, thus reducing worker exposure. To facilitate automation of dismantlement and storage procedures, current procedures were investigated in terms of collective dose to workers, time to completion, ease of completion, and cost of automation for each task. Then a cost-benefit comparison was performed to determine which procedures would be most cost-effective to automate.

Thompson, David Andrew

1996-01-01T23:59:59.000Z

274

Filip G. Kondev, Program Manager, Nuclear Data Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Filip G. Kondev Filip G. Kondev Program Manager, Argonne Nuclear Data Program Curriculum Vitae Name: Filip G. Kondev Current Address: Nuclear Engineering Division Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439, USA Telephone: +1 (630) 252 4484 (office) Fax: +1 (630) 252 4978 (office) Filip G. Kondev E-mail: Education Ph.D Research School of Physical Science and Engineering, Australian National University, Canberra, Australia Thesis title: "Interplay between intrinsic and Collective Motion in Tantalum Nuclei" Diploma (MSc) Plovdiv University, Plovdiv Bulgaria Thesis title: "Study of (γ,α) Photonuclear Reactions in the Giant Dipole Resonance Region" Employment Feb. 2004 - present Physicist, Nuclear Engineering Division,

275

Nuclear Data and Measurements Series Reports - Nuclear Data Program -  

NLE Websites -- All DOE Office Websites (Extended Search)

REPORTS REPORTS Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Group 1 (ANL/NDM-1 - ANL/NDM-20) Group 2 (ANL/NDM-21 - ANL/NDM-40) Group 3 (ANL/NDM-41 - ANL/NDM-60) Group 4 (ANL/NDM-61 - ANL/NDM-80) Group 5 (ANL/NDM-81 - ANL/NDM-100) Group 6 (ANL/NDM-101 - ANL/NDM-120) Group 7 (ANL/NDM-121 - ANL/NDM-140) Group 8 (ANL/NDM-141 - ANL/NDM-160) Group 9 (ANL/NDM-161 - ANL/NDM-180) Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program NUCLEAR DATA AND MEASUREMENTS REPORTS Bookmark and Share Contents Information on the Nuclear Data and Measurements Series Reports and

276

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

277

Airframe Structural Integrity Programs (ASIP)  

Science Conference Proceedings (OSTI)

Table 2   USAF Aircraft Structural Integrity Program tasks...analysis Vibration analysis Flutter analysis Nuclear weapons effects analysis Non-nuclear weapons effects analysis Design development tests Task III Full-scale testing Static tests Durability tests Damage tolerance tests Flight and ground operations tests Sonic tests Flight vibration tests Flutter...

278

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network (OSTI)

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

279

Weapons assessment efficiencies through use of nondestructive laser gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons assessment efficiencies through use of nondestructive laser Weapons assessment efficiencies through use of nondestructive laser gas sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Nondestructive laser welding process far less expensive, no underground testing. June 8, 2012 Nondestructive Laser Gas Sampling Nondestructive Laser Gas Sampling is expected to save several million dollars per year and requires no underground testing. "We're continually innovating and working to improve the way we do business, and NDLGS is a big step for us," said National Nuclear Security Administration Deputy Administrator for Defense Programs Don Cook. New weapons assessment technology engineered: nondestructive laser welding process far less expensive, no underground testing Valveless Laser Processing

280

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

Bergren, C.; Flora, M.; Belencan, H.

2010-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

Bergren, C

2009-01-16T23:59:59.000Z

282

Living in the Question? The Berlin Nuclear Crisis Critical Oral History, Part II  

E-Print Network (OSTI)

also McGeorge Bundy, “Nuclear Weapons and the Gulf”, ForeignNitze talked about nuclear weapons in public, “Berlinthrough a prism of nuclear weapons, and therefore nuclear

Gould, Benina Berger

2004-01-01T23:59:59.000Z

283

Nuclear Fission: Reaction to the Discovery in 1939  

E-Print Network (OSTI)

consequences of nuclear weapons in 1939, such informationdevelopment of both nuclear weapons and civilian reactorsresponsible for nuclear weapons—or to absolve them. Rather,

Hodes, Elizabeth; Tiddens, Adolph; Badash, Lawrence

1985-01-01T23:59:59.000Z

284

Bret Knapp to head combined Weapons Engineering, Weapons Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Engineering, Weapons Physics Directorates Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

285

EVALUATION OF FCDA FAMILY SHELTER, MARK I, FOR PROTECTION AGAINST NUCLEAR WEAPONS. Preliminary Report  

SciTech Connect

An underground reinforced-concrete family shelter designed for six persons was tested at three anticipated nuclear blast overpressures: 30, 48, and 65 psi. The structures were calculated to sustain a 30-psi long-duration overpressure. Postshot examination of all shelters lndicated there was little or no deflection in the reinforced-concrete members. Although the actual blast load was of short duration, the natural period for the structures was also shortp therefore it is felt that the structures would withstand similar overpressures from long-duration blast loadings. The average attenuation factor for gamma radiation varied from 3000 to 4500. Permanent damage was confined to the exposed portions of the ventilation pipes, which were bent to a nearly horizontal position. The steel-plate door at the 65-psi level was dished inward about 1 1/4 in., but it opened and closed easily. (authl

FitzSimons, N.

1957-08-01T23:59:59.000Z

286

Nuclear Resonance Fluorescence for Materials Assay  

E-Print Network (OSTI)

screening of cargo for nuclear weapons materials [2],[3].peaceful nuclear activities are not diverted to weapons

Quiter, Brian J.

2010-01-01T23:59:59.000Z

287

Risk in the Weapons Stockpile  

Science Conference Proceedings (OSTI)

When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

288

A historical application of social amplification of risk model: Economic impacts of risk events at nuclear weapons facilities?  

Science Conference Proceedings (OSTI)

Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptions is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.

Metz, W.C.

1996-12-31T23:59:59.000Z

289

First Graduates of Nuclear Security Education Program Announced | National  

National Nuclear Security Administration (NNSA)

Graduates of Nuclear Security Education Program Announced | National Graduates of Nuclear Security Education Program Announced | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > First Graduates of Nuclear Security Education Program Announced Press Release First Graduates of Nuclear Security Education Program Announced

290

NNSA employees selected for Nuclear Scholars Initiative program | National  

National Nuclear Security Administration (NNSA)

employees selected for Nuclear Scholars Initiative program | National employees selected for Nuclear Scholars Initiative program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA employees selected for Nuclear Scholars Initiative program NNSA employees selected for Nuclear Scholars Initiative program Posted By Office of Public Affairs

291

Secretary Chu Announces Nuclear Energy University Program Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Secretary Chu Announces Nuclear Energy University Program Awards Nearly 9 Million to Benefit Nuclear Science and Engineering Students and University Research Infrastructure...

292

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

293

Office of the Assistant General Counsel for Civilian Nuclear Programs  

Energy.gov (U.S. Department of Energy (DOE))

The Office of the Assistant General Counsel for Civilian Nuclear Programs (GC-52) provides legal advice and support to the Department on issues involving nuclear materials, including:

294

Seven graduate from Y-12 Apprentice Program | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seven graduate from Y-12 Apprentice Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

295

Military Academy Cadet/Midshipman Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Academy CadetMidshipman Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

296

Small Business Program Goals | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our...

297

Seven graduate from Y-12 Apprentice Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our...

298

THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM  

Science Conference Proceedings (OSTI)

Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

William E. Windes; Timothy D. Burchell; Robert L. Bratton

2008-09-01T23:59:59.000Z

299

The Soviet program for peaceful uses of nuclear explosions  

SciTech Connect

The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

Nordyke, M.D.

1996-07-24T23:59:59.000Z

300

Employee Concerns Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

About Us > Our Operations > Management and Budget > Human Resources About Us > Our Operations > Management and Budget > Human Resources > Employee Concerns Program Employee Concerns Program The National Nuclear Security Administration Service Center (NNSA/SC) Employee Concerns Program (ECP) is a formalized alternative means for DOE/NNSA federal, contractor, and subcontractor employees to report concerns as supported by the DOE Secretary Bodman's Program Statement (pdf, 66kb) and the NNSA Administrator's Statement (doc, 22kb). The concerns may be associated with the: Environment Safety Health Security Fraud Waste Abuse Mismanagement of DOE/NNSA and contractor managed activities or Reprisal for having reported such issues The program encourages employees to use their own organization's established means for reporting issues. If resolution cannot be achieved,

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area  

Science Conference Proceedings (OSTI)

This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

1999-03-01T23:59:59.000Z

302

Nuclear Energy University Program Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

303

Improving weapons of mass destruction intelligence Arnold Kanter  

E-Print Network (OSTI)

weapons developments in Pakistan are primarily, if not exclusively, influenced by nuclear developments of nuclear capability by sub-national states and the security of WMD weapons, materials, and technology so for the foreseeable future. WMD includes nuclear, chemical, and biological weapons, but also

Deutch, John

304

Stewardship Science Academic Alliances Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Program Home > Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program

305

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

306

History of the US weapons-usable plutonium disposition program leading to DOE`s record of decision  

SciTech Connect

This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives.

Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

1997-04-01T23:59:59.000Z

307

United States Nuclear Data Program (USNDP)  

NLE Websites -- All DOE Office Websites (Extended Search)

NNDC Databases: NuDat | NSR | XUNDL | ENSDF | MIRD | ENDF | CSISRS | Sigma NNDC Databases: NuDat | NSR | XUNDL | ENSDF | MIRD | ENDF | CSISRS | Sigma Search the NNDC: Go NNDC Site Index USNDP Meetings 2013 Nov. 18-22 USNDP Proceedings 2012 Annual Meeting Nov. 5-9 2011 Annual Meeting 2010 Annual Meeting 2009 Annual Meeting 2008 Annual Meeting 2007 Annual Meeting 2006 Annual Meeting Distributions CSEWG List USNDP List CSEWG & USNDP List Nuclear Data Needs for Homeland Security USNDP Structure Coordinating Committee Members Member Organizations Archival Webpage 1996 U.S. Nuclear Data Program Sponsored by the Office of Nuclear Physics - Office of Science - U.S. Department of Energy Reports FY 2012 Annual Report FY 2011 Annual Report FY 2010 Annual Report FY 2009 Annual Report FY 2008 Annual Report FY 2007 Annual Report FY 2006 Annual Report

308

Asians Resist Nuclear Threat  

E-Print Network (OSTI)

Midway carries soma 100 nuclear weapons and the missiles onthe removal of U. S. nuclear weapons from Asia. It is ti-aeof U. S. tactical nuclear weapons This set the figure for

Schirmer, Daniel Boone

1981-01-01T23:59:59.000Z

309

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

310

Predictive Science Academic Alliance Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Predictive Science Academic Alliance Program | National Nuclear Security Predictive Science Academic Alliance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

311

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

Against the Spread of Nuclear Weapons: IAEA Safeguards indetonation of the first nuclear weapon in the desert of Newby the pursuit of nuclear weapons by violent extremists and

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

312

Living in the Question? The Berlin Nuclear Crisis Critical Oral History  

E-Print Network (OSTI)

The Military Role of Nuclear Weapons: Perceptions andOrigins of Overkill Nuclear Weapons and American Strategy,thirty five thousand nuclear weapons remain in the world,

Gould, Benina Berger

2003-01-01T23:59:59.000Z

313

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

National Nuclear Security Administration (NNSA)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

314

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

315

Review: Nuclear Power Is Not the Answer by Helen Caldicott  

E-Print Network (OSTI)

and the possibility of nuclear weapons proliferation make itto a discussion of nuclear weapons proliferation. In the

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

316

Sandia Laboratories energy programs  

DOE Green Energy (OSTI)

As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

1977-03-01T23:59:59.000Z

317

Elimination of Weapons-Grade Plutonium Production | National...  

National Nuclear Security Administration (NNSA)

Elimination of Weapons-Grade Plutonium Production | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

318

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

319

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

320

Secretary Chu Announces Nuclear Energy University Program Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Minority Serving Institution Internship Program | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Institution Internship Program | National Nuclear Security Institution Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institution Internship Program Home > Federal Employment > Our Jobs > Opportunities for Students > Minority Serving Institution Internship Program Minority Serving Institution Internship Program

322

Minority Serving Institution Internship Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Institution Internship Program | National Nuclear Security Institution Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institution Internship Program Home > Federal Employment > Our Jobs > Opportunities for Students > Minority Serving Institution Internship Program Minority Serving Institution Internship Program

323

WEAPONS EFFECTS FOR PROTECTIVE DESIGN  

SciTech Connect

A lecture intended to provide a general background in weapons effects is presented. Specific areas of nuclear explosion phenomena pertinent to the design of hardened systems discussed include nuclear radiation and shielding, fireball growth and effects, thermal radiation, air blast, cratering and throwout, ground shock effects, fallout, and afterwinds. (J.R.D.)

Brode, H.L.

1960-03-31T23:59:59.000Z

324

Plutonium Disposition Program | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The...

325

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

326

Supplement Analysis for the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A SUPPLEMENT ANALYSIS FOR THE FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE PANTEX PLANT AND ASSOCIATED STORAGE OF NUCLEAR WEAPON COMPONENTS DOE/EIS-0225/SA-03 United States Department of Energy National Nuclear Security Administration Pantex Site Operations P.O. Box 30030 Amarillo, Texas 79120-0030 February 2003 i Summary The U.S. Department of Energy's (DOE's) National Environmental Policy Act (NEPA) Implementing Procedures at 10 CFR 1021.330(d) require evaluation of its site-wide environmental impact statements (EISs) at least every 5 years by preparation of a supplement analysis (SA), as provided in 10 CFR 1021.314. Based on the SA, a determination is made as to whether the existing EIS remains

327

An investigation of the feasibility of building a harbor on the West coast of South America using explosive power of nuclear weapons, a preliminary report  

SciTech Connect

There is an interest in discovering the various peace time uses of nuclear explosives. One of the proposals is the building of harbors. There are several ports along the west coast of South America where lighterage is necessary. This implies a need for expanded harbor facilities. The problem is to find a good location for creating a harbor, and the feasibility of accomplishing this with the use of nuclear force. Feasibility includes blast effects, radiation hazards, the number of weapons needed, and economic considerations. Economic considerations include the cost of treating a harbor of sufficient depth and area, the building of harbor facilities, and the estimated savings and advantages of the new harbor. Several meetings were held with naval personnel of the Military Liaison group at UCRL to discuss the general problems of harbors. Thirty-three different ports were given a preliminary investigation.

Zodtner, H. H.

1971-12-31T23:59:59.000Z

328

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

Science Conference Proceedings (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

329

Global Nuclear Futures Program Manager, Sandia National Laboratories |  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Nuclear Futures Program Manager, Sandia National Laboratories | Global Nuclear Futures Program Manager, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Tom Sanders Global Nuclear Futures Program Manager, Sandia National Laboratories Tom Sanders Tom Sanders Role: Global Nuclear Futures Program Manager, Sandia National Laboratories

330

Whistleblower Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

331

Personnel Security Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

332

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

333

Exercise Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

334

Program Activities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

335

ASC Program Elements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

336

Program Structure | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

337

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

338

Highly Enriched Uranium Transparency Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

339

Hispanic Student Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

340

Program Requirements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Requirements | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mentoring Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

342

Plutonium Disposition Program | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

343

Core Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

344

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

ambitions: The spread of nuclear weapons 1989-1990. Boulder:Determinants of nuclear weapons proliferation. UnpublishedWhy nations forgo nuclear weapons. Montreal: McGill-Queen’s

Kroenig, Matthew

2006-01-01T23:59:59.000Z

345

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

346

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

> Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research & Development > University...

347

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

348

Defense Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Defense Programs Home > About Us > Our Programs > Defense Programs Defense Programs One of the primary...

349

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs >...

350

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

351

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

352

Los Alamos Site Office Nuclear Maintenance Management Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Activity Report for the Los Alamos Site Office Nuclear Maintenance Management Program Oversight Self-Assessment Dates of Activity : 11142011 - 11182011 Report...

353

Military Academy Cadet/Midshipman Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Academy Cadet/Midshipman Program | National Nuclear Security Academy Cadet/Midshipman Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Military Academy Cadet/Midshipman Program Home > About Us > Our Programs > Defense Programs > Military Academic Collaborations > Military Academy Cadet/Midshipman Program Military Academy Cadet/Midshipman Program

354

The Future of University Nuclear Engineering Programs and University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of University Nuclear Engineering Programs and The Future of University Nuclear Engineering Programs and University Research and Training Reactors The Future of University Nuclear Engineering Programs and University Research and Training Reactors Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950's and 1960's from interdisciplinary efforts in many of the top research universities, providing the manpower for this technical discipline. In the same time period, for many of these programs, university nuclear reactors were constructed and began their operation, providing some of the facilities needed for research and training of students engaged in this profession. However, over the last decade, the U.S. nuclear science and engineering educational structure has not only stagnated but has reached a state of

355

The Future of University Nuclear Engineering Programs and University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of University Nuclear Engineering Programs and The Future of University Nuclear Engineering Programs and University Research and Training Reactors The Future of University Nuclear Engineering Programs and University Research and Training Reactors Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950's and 1960's from interdisciplinary efforts in many of the top research universities, providing the manpower for this technical discipline. In the same time period, for many of these programs, university nuclear reactors were constructed and began their operation, providing some of the facilities needed for research and training of students engaged in this profession. However, over the last decade, the U.S. nuclear science and engineering educational structure has not only stagnated but has reached a state of

356

How to deter and coerce Iran into giving up its nuclear weapons program .  

E-Print Network (OSTI)

??The feud between the U.S. and Iran has smoldered for over thirty years. Recently, Iran has witnessed popular support for reformists decline while government support… (more)

Davis, Heyward H.

2011-01-01T23:59:59.000Z

357

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

358

Second Line of Defense Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

359

National Laser User Facilities Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

User Facilities Program | National Nuclear Security User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

360

National Laser Users' Facility Grant Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Users' Facility Grant Program | National Nuclear Security Users' Facility Grant Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NLUF National Laser Users' Facility Grant Program Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > National Laser Users' Facility Grant Program

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Second Line of Defense Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

362

2013 NNSA Defense Programs Science Council | National Nuclear Security  

National Nuclear Security Administration (NNSA)

3 NNSA Defense Programs Science Council | National Nuclear Security 3 NNSA Defense Programs Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 2013 NNSA Defense Programs Science Council 2013 NNSA Defense Programs Science Council Posted By Office of Public Affairs 2013 NNSA Defense Programs Science Council Members of the 2013 NNSA Defense Programs Science Council include, from

363

National Laser User Facilities Program | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser User Facilities Program | National Nuclear Security Laser User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

364

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring America's Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA.

365

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

366

Program Documents | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Documents Home > About Us > Our Operations > Management and Budget > Human Resources > Employee Concerns Program > Program Documents Program Documents Reference Guide Process...

367

Employee Concerns Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

at NNSA Blog Employee Concerns Program Home > About Us > Our Operations > Management and Budget > Human Resources > Employee Concerns Program Employee Concerns Program The...

368

Student Temporary Employment Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Employment Program Student Temporary Employment Program The Student Temporary Employment Program (STEP) is the perfect work-study combination for high school through graduate...

369

Nuclear Waste Programs semiannual progress report, April--September 1992  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period April--September 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Bates, J.K.; Bradley, C.R.; Buck, E.C. [and others

1994-05-01T23:59:59.000Z

370

Nuclear waste programs; Semiannual progress report, October 1991--March 1992  

SciTech Connect

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C. [and others

1993-11-01T23:59:59.000Z

371

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program: Combined Construction and Operating Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

372

Atomic Energy and Nuclear Materials Program (Tennessee) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Program (Tennessee) Nuclear Materials Program (Tennessee) Atomic Energy and Nuclear Materials Program (Tennessee) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. In addition to the Tennessee Code the Department of Environment and Conservation has a rule pertaining to the licensing and registration of sources of radiation. The Department's rules state that any contractor or subcontractor of the U.S.

373

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Fellowship Program Stewardship Science Graduate Fellowship Program The Computational Science Graduate Fellowship (CSGF) The Department of Energy Computational Science Graduate...

374

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances >...

375

Graduate Fellowship Programs | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > Graduate...

376

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > High...

377

Stewardship Science Academic Programs Annual | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances >...

378

LDRD program update set for June 12 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

program update set for June 12 | National Nuclear Security program update set for June 12 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LDRD program update set for June 12 LDRD program update set for June 12 Posted By Office of Public Affairs LDRD program update set for June 12 The NNSA will host an Laboratory Directed Research and Development (LDRD)

379

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

380

Nuclear data needs for application in nuclear criticality safety programs  

SciTech Connect

In nuclear criticality safety applications, a number of important uncertainties have to be addressed to establish the required criticality safety margin of a nuclear system. One source of these uncertainties is the basic nuclear data used to calculate the effective multiplication factor of the system. Before criticality safety calculations are performed, the bias and uncertainties of the codes and cross sections that are used must be determined. Cross-section data are measured, evaluated, and tested prior to their inclusion in nuclear data libraries. Traditionally, nuclear data evaluations are performed to support the analysis and design of thermal and fast reactors. The neutron spectra characteristic of the thermal and fast systems used for data testing are predominantly in the low- and high-energy ranges, with a relatively minor influence from the intermediate-energy range. In the area of nuclear criticality safety, nuclear systems involving spent fuel elements from reactors can lead to situations very different from those most commonly found in reactor analysis and design. These systems are not limited to thermal or fast neutron spectra and may have their most significant influence from the intermediate energy range. This requires extending the range of applicability of the nuclear data evaluation beyond thermal and fast systems. The aim here is to focus on the evaluated nuclear data pertaining to applications in nuclear criticality safety.

Leal, L.C.; Westfall, R.M.; Jordan, W.C.; Wright, R.Q. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Characterization of U/Pu Particles Originating From the Nuclear Weapon Accidents at Palomares, Spain, 1966 And Thule, Greenland, 1968  

Science Conference Proceedings (OSTI)

Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-ray analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.

Lind, O.C.; Salbu, B.; Janssens, K.; Proost, K.; Garcia-Leon, M.; Garcia-Tenorio, R.

2007-07-10T23:59:59.000Z

382

A cumulative belief-degree approach for nuclear safeguards evaluation  

Science Conference Proceedings (OSTI)

Nuclear safeguards are a set of activities to verify that a State is living up to its international undertakings not to use nuclear programs for nuclear weapons purposes. International Atomic Energy Agency (IAEA) uses a hierarchical assessment system ... Keywords: cumulative belif degree, decision making, fuzzy linguistic terms, nuclear safeguards

Özgür Kabak; Da Ruan

2009-10-01T23:59:59.000Z

383

Facility Representative Program: Nuclear Safety Basis Fundamentals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available...

384

Weapons Quality Assurance Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-2008 5-2008 September 2008 DOE STANDARD WEAPON QUALITY ASSURANCE QUALIFICATION STANDARD NNSA Weapon Quality Assurance Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1025-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1025-2008 iv INTENTIONALLY BLANK DOE-STD-1025-2008 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE....................................................................................................................................

385

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power 2010 Program: Combined Construction and Operating Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

386

The Department of Energy nuclear criticality safety program.  

SciTech Connect

This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

Felty, J. R. (James R.)

2004-01-01T23:59:59.000Z

387

Student Career Experience Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

This program gives you the opportunity to combine your academic studies with on-the-job training and experience directly related to your academic program. You will have the...

388

Collaborative development of Estonian nuclear master's program  

Science Conference Proceedings (OSTI)

In 2009 Estonia approved the National Development Plan for the Energy Sector, including the nuclear energy option. This can be realized by construction of a nuclear power plant (NPP) in Estonia or by participation in neighboring nuclear projects (e.g., Lithuania and/or Finland). Either option requires the availability of competent personnel. It is necessary to prepare specialists with expertise in all aspects related to nuclear infrastructure and to meet workforce needs (e.g. energy enterprises, public agencies, municipalities). Estonia's leading institutions of higher education and research with the support of the European Social Fund have announced in this context a new nuclear master's curriculum to be developed. The language of instruction will be English. (authors)

Tkaczyk, A. H.; Kikas, A.; Realo, E.; Kirm, M.; Kiisk, M.; Isakar, K.; Suursoo, S.; Koch, R.; Feldbach, E.; Lushchik, A.; Reivelt, K. [Inst. of Physics, Univ. of Tartu, Riia 142, Tartu 51014 (Estonia)

2012-07-01T23:59:59.000Z

389

Nuclear effects group program for Fiscal Year 1963  

SciTech Connect

This report provides a summary of the Nuclear Effects Group Program for fiscal year 1963. Efforts in space physics and instrumentation are detailed for the space exploration effort. Pinex type experiments are proposed, as are Phonex, Nuclear Emulsion Research and Low Energy X-Rays Measurements projects.

Gilbert, F. C.

1962-03-01T23:59:59.000Z

390

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration B53 Nuclear Bomb Dismantlement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement B53 Nuclear Bomb Dismantlement The elimination of the B53 by Department of Energy's National Nuclear Security Administration (NNSA) is consistent with the goal President Obama announced in his April 2009 Prague speech to reduce the number of nuclear weapons. The President said, "We will reduce the role of nuclear weapons in our national security strategy, and urge others to do the same." The dismantlement of the last remaining B53 ensures that the system will never again be part of the U.S. nuclear weapons stockpile. As a key part of its national security mission, NNSA is actively responsible for safely dismantling weapons that are no longer needed, and disposing of the excess material and components.

391

Nonproliferation and National Security Program - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Nonproliferation and Major Programs > Nonproliferation and National Security Program Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program (NPNS)

392

Radiological Assistance Program (RAP)- Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Radiological Major Programs > Radiological Assistance Program Radiological Assistance Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Radiological Assistance Program Bookmark and Share Survey equipment is used to detect and measure radiation Survey equipment is used to detect and measure radiation. Click on image to view larger image. The Radiological Assistance Program (RAP) team at Argonne can provide assistance in the event of a radiological accident or incident. Support ranges from giving technical information or advice over the telephone, to sending highly trained team members and state-of-the-art equipment to the accident site to help identify and minimize any radiological hazards. The

393

NUCLEAR DATA AND MEASUREMENTS REPORTS 21-40 - Nuclear Data Program (Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

21 - 40 21 - 40 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Group 1 (ANL/NDM-1 - ANL/NDM-20) Group 2 (ANL/NDM-21 - ANL/NDM-40) Group 3 (ANL/NDM-41 - ANL/NDM-60) Group 4 (ANL/NDM-61 - ANL/NDM-80) Group 5 (ANL/NDM-81 - ANL/NDM-100) Group 6 (ANL/NDM-101 - ANL/NDM-120) Group 7 (ANL/NDM-121 - ANL/NDM-140) Group 8 (ANL/NDM-141 - ANL/NDM-160) Group 9 (ANL/NDM-161 - ANL/NDM-180) Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program NUCLEAR DATA AND MEASUREMENTS REPORTS Bookmark and Share Reports 21-40

394

NUCLEAR DATA AND MEASUREMENTS REPORTS 101-120 - Nuclear Data Program  

NLE Websites -- All DOE Office Websites (Extended Search)

01 - 120 01 - 120 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Group 1 (ANL/NDM-1 - ANL/NDM-20) Group 2 (ANL/NDM-21 - ANL/NDM-40) Group 3 (ANL/NDM-41 - ANL/NDM-60) Group 4 (ANL/NDM-61 - ANL/NDM-80) Group 5 (ANL/NDM-81 - ANL/NDM-100) Group 6 (ANL/NDM-101 - ANL/NDM-120) Group 7 (ANL/NDM-121 - ANL/NDM-140) Group 8 (ANL/NDM-141 - ANL/NDM-160) Group 9 (ANL/NDM-161 - ANL/NDM-180) Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program NUCLEAR DATA AND MEASUREMENTS REPORTS Bookmark and Share Reports 101-120

395

NUCLEAR DATA AND MEASUREMENTS REPORTS 121-140 - Nuclear Data Program  

NLE Websites -- All DOE Office Websites (Extended Search)

21 - 140 21 - 140 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Group 1 (ANL/NDM-1 - ANL/NDM-20) Group 2 (ANL/NDM-21 - ANL/NDM-40) Group 3 (ANL/NDM-41 - ANL/NDM-60) Group 4 (ANL/NDM-61 - ANL/NDM-80) Group 5 (ANL/NDM-81 - ANL/NDM-100) Group 6 (ANL/NDM-101 - ANL/NDM-120) Group 7 (ANL/NDM-121 - ANL/NDM-140) Group 8 (ANL/NDM-141 - ANL/NDM-160) Group 9 (ANL/NDM-161 - ANL/NDM-180) Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program NUCLEAR DATA AND MEASUREMENTS REPORTS Bookmark and Share Reports 121-140

396

NUCLEAR DATA AND MEASUREMENTS REPORTS 141-160 - Nuclear Data Program  

NLE Websites -- All DOE Office Websites (Extended Search)

41 - 160 41 - 160 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Group 1 (ANL/NDM-1 - ANL/NDM-20) Group 2 (ANL/NDM-21 - ANL/NDM-40) Group 3 (ANL/NDM-41 - ANL/NDM-60) Group 4 (ANL/NDM-61 - ANL/NDM-80) Group 5 (ANL/NDM-81 - ANL/NDM-100) Group 6 (ANL/NDM-101 - ANL/NDM-120) Group 7 (ANL/NDM-121 - ANL/NDM-140) Group 8 (ANL/NDM-141 - ANL/NDM-160) Group 9 (ANL/NDM-161 - ANL/NDM-180) Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program NUCLEAR DATA AND MEASUREMENTS REPORTS Bookmark and Share Reports 141-160

397

Plutonium Pits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken apart, examined, and tests run on their components....

398

FAQS Qualification Card - Weapon Quality Assurance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weapon Quality Assurance Weapon Quality Assurance FAQS Qualification Card - Weapon Quality Assurance A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-WeaponQualityAssurance.docx Description Weapon Quality Assurance Qualification Card More Documents & Publications DOE-STD-1025-2008

399

Role of nuclear power in the Philippine power development program  

SciTech Connect

The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

Aleta, C.R. [Philippine Nuclear Research Institite, Quezon City (Philippines)

1994-12-31T23:59:59.000Z

400

Stewardship Science Academic Alliances Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts Two Emergency Response Training Courses in Armenia Aug 29, 2013...

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Program Documents | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Y-12 Earn 11 R&D 100 Awards Jul 2, 2013 US, International Partners Remove Last Remaining HEU from Vietnam, Set Nuclear Security Milestone View All > Timeline Curious about NNSA...

402

Nonproliferation Graduate Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the United States Senate Committee on Armed Services Sep 17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts...

403

Matching grant program for university nuclear engineering education  

SciTech Connect

The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs).

Bajorek, Stephen M.

2002-10-16T23:59:59.000Z

404

Employee Concerns Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Los Alamos Field Office > Employee Los Alamos Field Office > Employee Concerns Program Employee Concerns Program Employee Concerns Program The Employee Concerns Program provides an informal avenue for federal, contractor, or sub-contractor employees to report concerns, without fear of retaliation. Concerns can be reported anonymously or otherwise, and can cover anything from fraud waste and abuse, to safety issues, to unresolved interpersonal conflicts in the workplace. The goal of the Employee Concerns Program is to address and resolve a concern at the lowest possible level, before it escalates into a formal complaint. The LASO Point of Contact for the Employee Concerns Program is Cynthia Casalina. If you have a concern, you may contact Cynthia at 665-6369, or the ECP 24-hour Hotline number at 1-800-688-5713. You may also contact Eva

405

Nuclear Engineering Academic Programs Survey, 2002 Data  

SciTech Connect

The survey includes degrees granted between July 1, 2001 and June 30, 2002. Enrollment information refers to the fall term 2002. Thirty-five academic programs were in the survey universe and all responded (100% response rate). One of the 35 programs reported that it was discontinued after the 2001-2002 academic year. Also, two programs were discontinued after the previous academic year (2000-2001) and were not included in 2002 survey.

Oak Ridge Institute for Science and Education

2003-10-01T23:59:59.000Z

406

Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio  

Science Conference Proceedings (OSTI)

CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the Miamisburg Mound Community Improvement Corporation for industrial reuse In the first two and a half years the project has successfully completed more demolition work, more environmental remediation work and more waste shipping than any other period in site history while improving the safety statistics of the site significantly. CH2M HILL Mound established a safety culture to promote line management safety responsibility and continues to place a high emphasis on safety performance even in an accelerated closure environment. The Occupational Safety and Health Administration (OSHA), Time Restricted Case (TRC) and Days Away and Restricted Time (DART) rates improved 76% and 90%, respectively, since contract start from 2002 to 2005. These rates are the lowest the site has ever seen. The site has also gone over 1 million hours without a Lost Workday Case accident. Covered below are the key strategies for safety improvement and project delivery that have been successful at the Miamisburg Closure Project are presented. (authors)

Lehew, J.G.; Bradford, J.D.; Cabbil, C.C. [CH2M Hill / CH2M Hill Mound, Inc., 1075 Mound Road, Miamisburg, OH 45343 (United States)

2006-07-01T23:59:59.000Z

407

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

Science Conference Proceedings (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

408

Contact Nonproliferation Program Offices | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press...

409

Graduate Fellowship Programs | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

to students pursuing doctoral degrees in fields of study that use high performance computing to solve complex science and engineering problems. The program fosters a...

410

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

to students pursuing doctoral degrees in fields of study that use high performance computing to solve complex science and engineering problems. The program fosters a...

411

FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)  

E-Print Network (OSTI)

­ FNSF STEERING GROUP WHITE PAPER 2010­ The critical R&D challenges that the FES program must address be that choice with the most well established physics basis. IN EITHER CASE, ADDING TO THE BASIC FNSP MISSION

412

Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952  

DOE Green Energy (OSTI)

The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.

Anne C. Fitzpatrick

1999-07-01T23:59:59.000Z

413

Student Career Experience Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Our Jobs > Opportunities for Students > Student Our Jobs > Opportunities for Students > Student Career Experience Program Student Career Experience Program The Student Career Experience Program (SCEP) is a great way to start your NNSA career while pursuing your studies in college or graduate school. This program gives you the opportunity to combine your academic studies with on-the-job training and experience directly related to your academic program. You will have the opportunity to work on exciting NNSA projects, earn money while serving your nation and take advantage of an excellent benefits package, all while maintaining your student status and completing your education. SCEP allows our managers to evaluate your performance in real work situations and discover first-hand your abilities as a potential

414

Student Career Experience Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs > How to Apply > Student Apply for Our Jobs > How to Apply > Student Jobs > Student Career Experience Program Student Career Experience Program We have a limited number of Student Career Experience Program (SCEP) positions that are located in the greater Washington, D.C. area and in Albuquerque, N.M. Other locations may include Kansas City, Mo.; Livermore, Calif.; Los Alamos, N.M.; Las Vegas, Nev.; Amarillo, Texas; Aiken, S.C.; and Oak Ridge, Tenn. We work with local universities to recruit students for this program. Please contact your university's career center to see if NNSA is a partner with your school. SCEP positions must be directly related to your academic program. For SCEP eligibility you must be: a United States citizen; enrolled as a diploma or degree-seeking undergraduate or graduate

415

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

416

Program Change Management During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant is a complex project, which involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As plants meet certain project Milestones, the evolution of such plant programs and regulations can help optimize project execution and cost. This report provides information about these Milestones and the plant departments and programs that change throughout a decommissioning project.

2009-12-11T23:59:59.000Z

417

Criteria for Evaluation of Nuclear Facility Training Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1070-94 STD-1070-94 Reaffirmed June 2013 DOE STANDARD CRITERIA FOR EVALUATION OF NUCLEAR FACILITY TRAINING PROGRAMS (Formerly Titled: Guidelines for Evaluation of Nuclear Facility Training Programs) U.S. Department of Energy FSC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE HDBK-1070-94 Errata June 2013 Table of Changes Page/Section Change Cover Criteria for Evaluation of Nuclear Facility Training Programs Page ii This document is available on the Department of Energy Technical Standards Program Web page at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Page iii Table of Contents Page iv This DOE Technical Standard is invoked as a requirement by DOE Order 426.2, Personnel Selection, Training, Qualifications and

418

Space Nuclear Safety Program. Progress report  

DOE Green Energy (OSTI)

This technical monthly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues.

Bronisz, S.E. (comp.)

1984-01-01T23:59:59.000Z

419

National Nuclear Security Administration Appropriation and Program...  

National Nuclear Security Administration (NNSA)

142,270 146,865 150,561 (dollars in thousands) Page 16 of 34 Secure Transportation Asset Program Direction Funding Profile by Subprogram Outyear Funding Profile by Subprogram...

420

The nuclear materials control technology briefing book  

SciTech Connect

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Employee Concerns Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Livermore Field Office > Employee Livermore Field Office > Employee Concerns Program Employee Concerns Program STATEMENT OF POLICY The Livermore Field Office (LFO) Employee Concerns Program (ECP) is established as part of the Department of Energy's whistleblower reform initiatives. These initiatives aim to streamline and improve the effectiveness of existing processes for resolving employee concerns, and make the Department's "zero tolerance for reprisal" a reality. It is the policy of the Department that: Employees in the Department of Energy, its contractors and subcontractors must be free to raise concerns, without fear of reprisal, about policies and practices that adversely affect the Department's ability to accomplish its mission in a safe and efficient manner; Management at all levels appreciate the value of employee concerns,

422

Strategies for denaturing the weapons-grade plutonium stockpile  

SciTech Connect

In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

Buckner, M.R.; Parks, P.B.

1992-10-01T23:59:59.000Z

423

Sister Lab Program Prospective Partner Nuclear Profile: Malaysia  

SciTech Connect

The Malaysian Deputy Prime Minister Tun Dr Ismail Abdul Rahman suggested in the early 1970s that Malaysia should have a role in the development of nuclear science and technology for peaceful purposes. Accordingly, the Center for the Application of Nuclear Energy (CRANE) was established, with a focus on the development of a scientific and technical pool critical to a national nuclear power program. The Malaysian Cabinet next established the Tun Ismail Atomic Research Center (TIARC) under the Ministry of Science, Technology and the Environment on 19 September 1972, at a site in Bangi, about 35 km south of Kuala Lampur. On 28 June 1982, the PUSPATI reactor, a 1-MW TRIGA MK-II research reactor, first reached criticality. On 10 August 1994, TIARC was officially renamed as the Malaysian Institute for Nuclear Technology Research (MINT). In addition to radioisotope production and neutron radiography conducted at the PUSPATI research reactor, MINT also supports numerous programs employing nuclear technology for medicine, agriculture and industry, and has been involved in both bilateral and multilateral technical cooperation to extend its capabilities. As an energy exporting country, Malaysia has felt little incentive to develop a nuclear energy program, and high level opposition within the government discouraged it further. A recent statement by Malaysia's Science, Technology and Innovation Minister supported this view, indicating that only a near-catastrophic jump in world oil prices might change the government's view. However, the rate at which Malaysia is using its natural gas and oil reserves is expected to force it to reassess the role of nuclear energy in the near future. In addition, the government does intend to construct a radioactive waste repository to dispose of naturally occurring radioactive materials (extracted during tin mining, in particular). Also, Malaysia's growing economy could encourage expansion in Malaysia's existing nuclear-applications programs supporting the medical, agricultural, industrial and environmental fields.

Bissani, M; Tyson, S

2006-12-14T23:59:59.000Z

424

MEND: A Nurturing Voice in the Nuclear Arms Debate  

E-Print Network (OSTI)

for the Meaning of Nuclear Weapons These papers arethe meaning of nuclear weapons in U.S. -USSR relations.the argument about nuclear weapons (Cicourel et al. , 1987),

Wills, John; Mehan, Hugh

1987-01-01T23:59:59.000Z

425

HANFORD NUCLEAR CRITICALITY SAFETY PROGRAM DATABASE  

Science Conference Proceedings (OSTI)

The Hanford Database is a useful information retrieval tool for a criticality safety practitioner. The database contains nuclear criticality literature screened for parameter studies. The entries, characterized with a value index, are segregated into 16 major and six minor categories. A majority of the screened entries have abstracts and a limited number are connected to the Office of Scientific and Technology Information (OSTI) database of full-size documents. Simple and complex searches of the data can be accomplished very rapidly and the end-product of the searches could be a full-size document. The paper contains a description of the database, user instructions, and a number of examples.

TOFFER, H.

2005-05-02T23:59:59.000Z

426

Solving nuclear safeguards evaluation problem with fuzzy multiple attribute decision making methods  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) conducts nuclear safeguards evaluation (NSE) to verify that a State is living up to its international undertakings not to use nuclear programs for nuclear weapons purposes. In NSE, IAEA experts linguistically ... Keywords: fuzzy multiple attribute decision making, linguistic evaluation, nuclear safeguards

Özgür Kabak; Da Ruan

2009-12-01T23:59:59.000Z

427

SRS - Programs - H Area Nuclear Materials Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

H Area Nuclear Materials Disposition H Area Nuclear Materials Disposition The primary mission of the H-Canyon Complex is to dissolve, purify and blend-down surplus highly enriched uranium (HEU) and aluminum-clad foreign and domestic research reactor fuel to produce a low enriched uranium (LEU) solution suitable for conversion to commercial reactor fuel. A secondary mission for H-Canyon is to dissolve excess plutonium (Pu) not suitable for MOX and transfer it for vitrification in the Defense Waste Processing Facility at SRS. H Canyon was constructed in the early 1950s and began operations in 1955. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains the process vessels. It is approximately 1,000 feet long with several levels to accommodate the various stages of material stabilization, including control rooms to monitor overall equipment and operating processes, equipment and piping gallery for solution transport, storage, and disposition, and unique overhead bridge cranes to support overall process operations. All work is remotely controlled, and employees are further protected from radiation by thick concrete walls.

428

Nuclear Maintenance Applications Center: Adapting Corrective Action Programs for Maintenance  

Science Conference Proceedings (OSTI)

All nuclear power plants have a corrective action program (CAP) that is required by regulation. This program establishes the threshold for problem initiation, screening criteria for determining the significance of problems, and requirements for the development of corrective actions. Problems entered into the CAP are prioritized to receive appropriate attention, and completion dates are assigned based on the significance of the problem. Problems are also categorized based on their nature and are assigned ...

2009-12-21T23:59:59.000Z

429

JPRS report: Nuclear developments, [June 28, 1989  

Science Conference Proceedings (OSTI)

Partial contents include: Nuclear Power; Qinshan Plant; Nuclear Weapons; Nuclear Power Plants; Nuclear Waste; Nuclear Policy; Decontamination Devices; and Environmental Protection.

NONE

1989-06-28T23:59:59.000Z

430

Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program  

Science Conference Proceedings (OSTI)

The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

Rogers,E.; deBoer,G.; Crawford, C.; De Castro, K.; Landers, J.

2009-10-19T23:59:59.000Z

431

Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program  

SciTech Connect

The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the “human factor.” Gen. Eugene Habiger, a former “Assistant Secretary for Safeguards and Security” at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that “good security is 20% equipment and 80% people.”1 Although eliminating the “human factor” is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

Crawford, Cary E.; de Boer, Gloria; De Castro, Kara; Landers, John; Rogers, Erin

2010-10-01T23:59:59.000Z

432

The National Nuclear Security Administration's B61 Spin Rocket...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

essentially identical, produce thrust to arm thz weapon. In Deceinber 2001, the National Nuclear Security Administration (NNSA) received Nuclear Weapons Council Standing and...

433

U.S. Nuclear Policy and the NPT  

National Nuclear Security Administration (NNSA)

Disarmament October 18, 2011 Thomas P. D'Agostino, Administrator National Nuclear Security Administration 2 Outline - Reducing nuclear weapons - Ceasing production of weapons...

434

Nuclear criticality safety program for environmental restoration projects  

SciTech Connect

The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site`s mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed.

Marble, R.C.; Brown, T.D.

1994-05-01T23:59:59.000Z

435

High School Students Engage EM Program, Teach Classmates about Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Students Engage EM Program, Teach Classmates about High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup High School Students Engage EM Program, Teach Classmates about Nuclear Cleanup May 22, 2012 - 12:00pm Addthis NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. McMaster, left, and Sakalla were presented plaques by Dave Adler, DOE-EM liason to ORSSAB, in recognition for their service to ORSSAB. NSSAB student liaisons Gumabon, left, and Leavitt discuss their project involving a student survey and educational tool to members of the NSSAB.

436

Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report  

SciTech Connect

This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

NONE

1998-01-01T23:59:59.000Z

437

Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program  

SciTech Connect

The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.

Jack S. Brenizer, Jr.

2003-01-17T23:59:59.000Z

438

U.S. Department of Energy Strategic Plan 13 In 2000, the National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA. Over the next six years, the Department will apply

439

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

440

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

442

Report to DOE and Exelon Corporation: Matching Grant Program for the Nuclear Engineering Program at University of Wisconsin, Madison  

SciTech Connect

The DOE Industry Matching Grant Program, which began in 1992, is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Over the past two decades nuclear engineering programs in the United States have witnessed a serious decline in student enrollments, number of faculty members and support from their host universities. Despite this decline, the discipline of nuclear engineering remains important to the advancement of the mission goals of the U.S. Department of Energy. These academic programs are also critically important in maintaining a viable workforce for the nation's nuclear industry. As conceived by Commonwealth Edison, this program has focused on creating a partnership between DOE and private sector businesses, which employ nuclear engineers. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the United States.

Corradini, Michael L.

2002-02-18T23:59:59.000Z

443

Report to DOE and Exelon Corporation: Matching Grant Program for the Nuclear Engineering Program at University of Wisconsin, Madison  

SciTech Connect

The DOE Industry Matching Grant Program, which began in 1992, is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Over the past two decades nuclear engineering programs in the United States have witnessed a serious decline in student enrollments, number of faculty members and support from their host universities. Despite this decline, the discipline of nuclear engineering remains important to the advancement of the mission goals of the U.S. Department of Energy. These academic programs are also critically important in maintaining a viable workforce for the nation's nuclear industry. As conceived by Commonwealth Edison, this program has focused on creating a partnership between DOE and private sector businesses, which employ nuclear engineers. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the United States.

Corradini, Michael L.

2002-02-18T23:59:59.000Z

444

Training and qualification program for nuclear criticality safety technical staff  

SciTech Connect

A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training.

Taylor, R.G.; Worley, C.A.

1996-10-22T23:59:59.000Z

445

Contacts for the Deputy General Counsel for Environment & Nuclear Programs (GC-50)  

Energy.gov (U.S. Department of Energy (DOE))

Priya Aiyar, Deputy General Counsel for Environment & Nuclear Programs 202-586-5072priya.aiyar@hq.doe.gov

446

The Plowshare Program: Peaceful Applications for Nuclear Detonations  

Science Conference Proceedings (OSTI)

The U.S. Atomic Energy Commission's Plowshare Program focused on developing the capability to use nuclear detonations for civil works projects and industrial applications. The participants envisioned canals and harbors constructed quickly and cheaply and the augmentation of natural gas, oil, and geothermal power production. The Plowshare Program began in the 1950s and ended in the 1970s. The archaeological effort to relocate and record places associated with this project has identified a unique and varied historical legacy on the landscape in the western United States and discovered that the range and types of projects considered and planned are more diverse than formerly recognized.

C. Beck; S. Edwards; M. King

2008-05-30T23:59:59.000Z

447

Nonproliferation | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

448

Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 1995 1, 1995 IG-1 INFORMATION: Report on "Audit of the Department of Energy's Transportation Accident Resistant Container Program" The Secretary BACKGROUND: The U.S. Department of Energy (Department) has ultimate responsibility for the safety of all nuclear explosives and weapons operations conducted by the Department and its contractors. The Department also has joint responsibility for the safety of nuclear weapons in the custody of the Armed Services. Since the 1970s, the Department has designed, developed, and produced accident resistant containers to promote safety when transporting certain types of nuclear weapons by air. DISCUSSION: After successfully developing and modifying accident resistant containers for

449

Utilization of Surplus Weapons Plutonium As Mixed Oxide Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) endorses the rapid application of mixed uraniumplutonium oxide (MOX) fuel technology to accomplish the timely disposition of surplus weapons-grade plutonium. The end of the Cold War has led to universal recognition that both the United States and Russia possess stockpiles of weapons-grade plutonium that far exceed their defense requirements. In 1994 the National Academy of Sciences (NAS) stated the following: “The existence of this material [surplus weapons-usable plutonium and highly enriched uranium] constitutes a clear and present danger to national and international security. 1 ” Russia and the United States have held extensive discussions on plutonium disposition, culminating in a September 2000 agreement 2 to dispose of 34 metric tons of surplus weaponsgrade plutonium in each country. The U.S. Department of Energy has completed two major Environmental Impact Statements on surplus plutonium disposition. 3,4 Implementation of the associated Records of Decision 5,6 has resulted in an ongoing program to dispose of surplus U.S. weapons-grade plutonium by fabricating the material into MOX fuel and using the fuel in commercial nuclear reactors. As with the blend-down of highly enriched uranium, a

unknown authors

2009-01-01T23:59:59.000Z

450

Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program  

SciTech Connect

Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

1994-02-01T23:59:59.000Z

451

Review of the ISTC innovative nuclear programs (information review)  

Science Conference Proceedings (OSTI)

The information will be included in the review, with special attention on details of corresponding experimental programs: Novel reactor concepts, fit with GIF and INPRO: Supercritical Pressure Water aspects, Heavy metals (Lead, Lead-Bismuth) technology, HTGR critical modeling, engineering. Molten salts. Reactor data benchmarking, Accelerator Driven Systems (experimental modelling), Nuclear data measurements, Severe accident study (corium modelling, QUENCH, Chernobyl), Experimental Analysis of Hydraulically Induced Vibrations in Compact Curling Tube Steam Generators. (authors)

Tocheny, L. V. [ISTC - International Science and Technology Center, Moscow (Russian Federation)

2006-07-01T23:59:59.000Z

452

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

453

Radiation Protection Program Resource Optimization Project; Brunswick Nuclear Plant  

Science Conference Proceedings (OSTI)

Radiation protection (RP) managers face challenges in providing a necessary service that complies with stringent regulations, while simultaneously reducing operations and maintenance (O&M) costs. The results of this pilot project, hosted by Brunswick Nuclear Plant (BNP), will assist utilities in targeting resource commitments and cost effectiveness while optimizing overall performance. This report identifies specific program cost reduction and process performance enhancements for the host plant, and esta...

2002-11-18T23:59:59.000Z

454

Materials Reliability Program: San Onofre Nuclear Generating Station Reactor Vessel Internals Management Engineering Program (MRP-303)  

Science Conference Proceedings (OSTI)

All operating pressurized water reactors must have a reactor vessel internals aging management document in place by December 2011 according to the mandatory requirement under Nuclear Energy Institute (NEI) 03-08. This program should be developed to meet the guidance provided by Materials Reliability Program (MRP) -227, Rev. 0, Pressurized Water Reactor Internals Inspection and Evaluation Guidelines. For non-license renewal plants, the requirements are valid within the current license period, and the Elec...

2011-02-28T23:59:59.000Z

455

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The...

456

DHS National Technical Nuclear Forensics Program FY 10 Summary Report: Graduate Mentoring Assistance Program (GMAP)  

SciTech Connect

This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical training to these students, it brings attention to a very attractive field of work where young professionals are urgently required in order for the future. The effectiveness of retaining such talent remains to be seen and may be primarily controlled by the availability of DOE laboratory research funding in this field in the years to come.

Martha R. Finck Ph.D.

2011-10-01T23:59:59.000Z

457

Defense and nuclear technologies  

SciTech Connect

Fulfilling our national security and stockpile stewardship responsibilities requires tremendous scientific and technical breadth: from esoteric theoretical physics and computational modeling to materials science and precision engineering. Because there exists no broad industrial or university base from which to draw expertise in nuclear weapon science and technology, we rely heavily on formal peer reviews and informal exchanges with our sister laboratory at Los Alamos. LLNL has an important, long-term role in the nation`s nuclear weapons program. We are responsible for four of the ten weapon systems in the enduring US stockpile (three of nine after 2002), including the only systems that incorporate all modern safety features. For years to come, we will be responsible for these weapons and for the problems that will inevitably arise. Our nuclear expertise will also play a crucial role as the US attempts to deal effectively with the threat of nuclear proliferation. This past year brought the culmination of our response to profound changes in the nation`s defense needs as we restructured and refocused our activities to address the Administration`s goal of reducing global nuclear danger. We made major contributions to important national security issues in spite of severe fiscal constraints.

NONE

1995-01-01T23:59:59.000Z

458

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

and Demand for Nuclear Weapons . . . 4.3 ProliferationZero: Is Pursuing a Nuclear-Weapon-Free World Too Difficult?Accidents, and Nuclear Weapons. Princeton University Press,

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

459

Quality assurance program for isotopic power systems  

DOE Green Energy (OSTI)

This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

Hannigan, R.L.; Harnar, R.R.

1982-12-01T23:59:59.000Z

460

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

External > Programs > National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Security The National Security mission in Oak Ridge is carried out at the National Nuclear Security Administration's (NNSA) Y-12 National Security Complex, formerly known as the Oak Ridge Y-12 Plant. Programs at Y-12 include manufacturing and reworking nuclear weapon components, dismantling nuclear weapon components returned from the national arsenal, serving as the nation's safe, secure storehouse of special nuclear materials, reducing the global threat from terrorism and weapons of mass destruction, and providing the U.S. Navy with safe, militarily effective nuclear propulsion systems. Y-12 is operated by B&W Y-12 LLC. ORO provides a variety of services to the NNSA's Y-12 Site Office as part of a service agreement between the two organizations.

462

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

463

PIA - Weapons Data Control Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weapons Data Control Systems PIA - Weapons Data Control Systems PIA - Weapons Data Control Systems PIA PIA - Weapons Data Control Systems...

464

International Nuclear Security  

SciTech Connect

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

465

The ENSDF_toolbox program package: tool for the evaluator of nuclear data  

E-Print Network (OSTI)

The program package for the work with the Evaluated Nuclear Structure Data File is discussed. The program shell designed for the unification of the process of the evaluation of the nuclear data is proposed. This program shell may be used in the regular work of the nuclear data evaluator and for common use by scientists and engineers who need the actual data about nuclear states and transitions from the ENSDF database.

Shulyak, G I

2010-01-01T23:59:59.000Z

466

The ENSDF_toolbox program package: tool for the evaluator of nuclear data  

E-Print Network (OSTI)

The program package for the work with the Evaluated Nuclear Structure Data File is discussed. The program shell designed for the unification of the process of the evaluation of the nuclear data is proposed. This program shell may be used in the regular work of the nuclear data evaluator and for common use by scientists and engineers who need the actual data about nuclear states and transitions from the ENSDF database.

G. I. Shulyak; A. A. Rodionov

2010-04-20T23:59:59.000Z

467

Nuclear technology programs; Semiannual progress report, October 1989--March 1990  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-01-01T23:59:59.000Z

468

Nuclear technology programs semiannual progress report, April--September 1989  

SciTech Connect

This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs.

Harmon, J.E. (ed.)

1991-08-01T23:59:59.000Z

469

Nuclear technology programs. Semiannual progress report, April--September 1991  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Not Available

1993-07-01T23:59:59.000Z

470

Nuclear Technology Programs semiannual progress report, April-- September 1990  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1992-06-01T23:59:59.000Z

471

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-06-01T23:59:59.000Z

472

Nuclear Technology Programs semiannual progress report, October 1988--March 1989  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

Harmon, J.E. [ed.

1990-12-01T23:59:59.000Z

473

Nuclear Technology Programs semiannual progress report, October 1990--March 1991  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

1992-12-01T23:59:59.000Z

474

Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

site for the assembly, disassembly, and maintenance of the United States' nuclear weapons stockpile. Under the Obama Administration, federal agencies have reduced greenhouse...

475

Quality at Y-12, part 2Or: Looking at Y-12 weapons quality ...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizational structure. After seeing how all the other contractor sites in the Nuclear Weapons Complex were organized, DOE-AL felt Y-12 should have a specific organization...

476

Office of Nuclear Energy Knowledge Management Program Situational Analysis Report  

SciTech Connect

Knowledge management (KM) has been a high priority for the Department of Energy (DOE) Office of Nuclear Energy (NE) for the past several years. NE Programs are moving toward well-established knowledge management practices and a formal knowledge management program has been established. Knowledge management is being practiced to some level within each of the NE programs. Although it continues to evolve as NE programs evolve, a formal strategic plan that guides the implementation of KM has been developed. Despite the acceptance of KM within DOE NE, more work is necessary before the NE KM program can be considered fully successful. Per Dr. David J. Skyrme[1], an organization typically moves through the following evolutionary phases: (1) Ad-hoc - KM is being practiced to some level in some parts of the organization; (2) Formal - KM is established as a formal project or program; (3) Expanding - the use of KM as a discipline grows in practice across different parts of the organization; (4) Cohesive - there is a degree of coordination of KM; (5) Integrated - there are formal standards and approaches that give every individual access to most organizational knowledge through common interfaces; and (6) Embedded - KM is part-and-parcel of everyday tasks; it blends seamlessly into the background. According to the evolutionary phases, the NE KM program is operating at the two lower levels, Ad-hoc and Formal. Although KM is being practiced to some level, it is not being practiced in a consistent manner across the NE programs. To be fully successful, more emphasis must be placed on establishing KM standards and processes for collecting, organizing, sharing and accessing NE knowledge. Existing knowledge needs to be prioritized and gathered on a routine basis, its existence formally recorded in a knowledge inventory. Governance to ensure the quality of the knowledge being used must also be considered. For easy retrieval, knowledge must be organized according to a taxonomy that mimics nuclear energy programs. Technologies need to be established to make accessing the knowledge easier for the user. Finally, knowledge needs to be used as part of a well defined work process.

Kimberlyn C. Mousseau

2011-12-01T23:59:59.000Z

477

Integrated demonstrations, integrated programs, and special programs within DOE`s Office of Technology Development  

SciTech Connect

This poster session presents information on integrated demonstrations, integrated programs, and special programs within the EM Office of Technology Development that will accelerate cleanup of sites within the Nuclear Weapons Complex. Presented topics include: Volatile organic compounds in soils and ground water, uranium in soils, underground storage tanks, mixed waste landfills, decontamination and decommissioning, in situ remediation, and separations technology.

Peterson, M.E.; Frank, C.; Stein, S.; Steele, J.

1994-08-01T23:59:59.000Z

478

Nuclear Sites Map  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal. Each...

479

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The material presented in this article attempts to clarify the basic technical and political issues that are being debated in the contest between breeder reactors to insure abundant energy with possible resulting proliferation and the questionable continuation of uranium-fueled reactors with possible future availability of uranium. The connection between various fuel cycles and their possibility for proliferation are discussed. (BLM)

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

480

Transmutation facility for weapons-grade plutonium disposition based on a tokamak fusion neutron source  

Science Conference Proceedings (OSTI)

It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade plutonium in the form of PuO{sub 2} pebbles in a lithium slurry is investigated. A design concept/operation scenario is developed for a facility that would be able to transmute the world`s estimated surplus inventory of weapons-grade plutonium to 11% {sup 240}Pu concentration in nearly 25 yr. The fusion neutron source would be based on plasma physics and plasma support technology being qualified in ongoing research and development (R&D) programs, and the plutonium fuel would be based on existing technology. A new R&D program would be required to qualify a refractory metal alloy structural material that would be needed to handle the high heat fluxes; otherwise, extensions of existing technologies and acceleration of existing R&D programs would seem to be adequate to qualify all required technologies. Such a facility might feasibly be deployed in 20 to 30 yr, or sooner with a crash program. 49 refs., 5 figs., 13 tabs.

Stacey, W.M.; Pilger, B.L.; Mowrey, J.A. [Georgia Inst. of Technology, Atlanta, GA (United States)] [and others

1995-05-01T23:59:59.000Z