National Library of Energy BETA

Sample records for nuclear weapons production

  1. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration starts silicon wafer production for three nuclear weapon programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  2. Linking Legacies: Connecting the Cold War Nuclear Weapons Production...

    Broader source: Energy.gov (indexed) [DOE]

    This report described each step in the cycle of nuclear weapons production and defined for the first time a planned disposition path for all waste streams generated prior to 1992 ...

  3. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  4. Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences

    Broader source: Energy.gov [DOE]

    This report described each step in the cycle of nuclear weapons production and defined for the first time a planned disposition path for all waste streams generated prior to 1992 as a result of weapons production.

  5. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  6. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect (OSTI)

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  7. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  8. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  9. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect (OSTI)

    Wood, Houston G.; Glaser, Alexander; Kemp, R. Scott

    2014-05-09

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  10. Identification of nuclear weapons

    DOE Patents [OSTI]

    Mihalczo, J.T.; King, W.T.

    1987-04-10

    A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

  11. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  12. weapons | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  13. Nuclear Weapons Mission at Sandia

    SciTech Connect (OSTI)

    2015-03-12

    Take a rare “tour” of Sandia National Laboratories’ nuclear weapons work and see the strong, multidisciplinary relationship between all of Sandia’s missions and capabilities.

  14. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Our Mission Maintaining the Stockpile Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are ...

  15. nuclear weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapons | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  16. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  17. Uncrackable code for nuclear weapons

    SciTech Connect (OSTI)

    Hart, Mark

    2014-11-20

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  18. Control of Nuclear Weapon Data

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Supersedes DOE O 5610.2.

  19. Nuclear Weapons Testing Resumes | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 ...

  20. Nuclear Weapons Complex reconfiguration study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  1. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  2. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing ...

  3. Toward a nuclear weapons free world?

    SciTech Connect (OSTI)

    Maaranen, S.A.

    1996-09-01

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  4. Tag: weapons production | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons production Tag: weapons production Displaying 1 - 3 of 3... Category: News Y-12 National Security Complex Completes W69 Dismantlement Dismantlement of W69 canned subassemblies has been completed at the Y-12 National Security Complex. More... Category: Nuclear Deterrence Material Management/Strategic Reserve Y-12 ensures safe, secure and compliant storage of the nation's strategic reserve of nuclear materials at Y-12. More... Category: Nuclear Deterrence Material Recycle and Recovery Y-12

  5. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Nuclear Weapons Stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering ...

  6. National Day of Remembrance HSS Honors Former Nuclear Weapons...

    Energy Savers [EERE]

    National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - ...

  7. Laboratory's role in Cold War nuclear weapons testing program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons ...

  8. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  9. AEC and control of nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of nuclear weapons The Atomic Energy Commission took control of the atomic energy project known originally as the Manhattan Project on January 1, 1947. This shift from the ...

  10. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...

    Broader source: Energy.gov (indexed) [DOE]

    enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and...

  11. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Weapons Components Successfully Dismantled | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  12. Weapons production | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing resources: the benefits of consolidation Stockpile Weapons production Material ManagementStrategic Reserve Material Recycle and Recovery Processing Secure Storage...

  13. Weapons Intern Program participants visit Pantex | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and individual and team projects, weapon interns have honed their skills, broadened their knowledge base, and expanded their network of colleagues in the nuclear weapons community. ...

  14. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-05-14

    This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Supersedes DOE O 452.6.

  15. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  16. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. ...

  17. weapon dismantlement | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    weapon dismantlement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  18. Management of the Department of Energy Nuclear Weapons Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-08

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Supersedes DOE O 5600.1.

  19. The monitoring and verification of nuclear weapons

    SciTech Connect (OSTI)

    Garwin, Richard L.

    2014-05-09

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  20. Weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / Our

  1. U.S. Nuclear Weapons Strategy Delivered to Congress | Department...

    Energy Savers [EERE]

    Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. ...

  2. Picture of the Week: From nuclear weapons testing to stockpile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 From nuclear weapons testing to stockpile stewardship On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Lab at the ...

  3. Seventy Years of Computing in the Nuclear Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seventy Years of Computing in the Nuclear Weapons Program Seventy Years of Computing in the Nuclear Weapons Program WHEN: Jan 13, 2015 7:30 PM - 8:00 PM WHERE: Fuller Lodge Central ...

  4. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and...

  5. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  6. Record-Setting Year for Nuclear Weapon Dismantlement Achieved...

    National Nuclear Security Administration (NNSA)

    Record-Setting Year for Nuclear Weapon Dismantlement Achieved at the Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  7. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...

    National Nuclear Security Administration (NNSA)

    C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  8. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...

    National Nuclear Security Administration (NNSA)

    Gordon Assesses Security Of the Nuclear Weapons Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  9. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    Certain contractor personnel, DOE and National Nuclear Security Administration (NNSA) staff have interpreted this language to exempt all routine and emergency nuclear weapons ...

  10. President Obama Calls for an End to Nuclear Weapons | National...

    National Nuclear Security Administration (NNSA)

    Calls for an End to Nuclear Weapons | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation ...

  11. Clinton Extends Moratorium on Nuclear Weapons Testing | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  12. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  13. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    SciTech Connect (OSTI)

    Immele, John D; Wagner, Richard L

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

  14. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19

    The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

  15. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  16. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A. Canceled by DOE O 452.4C.

  17. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home weapons material protection weapons material protection...

  18. Nuclear energy in a nuclear weapon free world

    SciTech Connect (OSTI)

    Pilat, Joseph

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  19. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected as Atomic Weapons Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation ...

  20. Gordon Assesses Security At Nuclear Weapons Complex News.....

    National Nuclear Security Administration (NNSA)

    Anson Franklin, 202586-7371 September 21, 2001 NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex John Gordon, Administrator of the Department of Energy's ...

  1. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning

    Office of Environmental Management (EM)

    Foreign Research Reactor Spent Nuclear Fuel | Department of Energy 18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the

  2. The Steps of Weapons Production | Department of Energy

    Energy Savers [EERE]

    The Steps of Weapons Production The Steps of Weapons Production This graphic provides an overview of the steps of weapons production beginning in 1943. PDF icon Fat Man and Little Boy: The first two production weapons More Documents & Publications Booklet, DOE Subject Area Indicators and Key Word List for RD and FRD - October 2005 Closing the Circle on the Splitting of the Atom The Manhattan Project: Making the Atomic Bomb

  3. Seventy Years of Computing in the Nuclear Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seventy Years of Computing in the Nuclear Weapons Program Seventy Years of Computing in the Nuclear Weapons Program WHEN: Jan 13, 2015 7:30 PM - 8:00 PM WHERE: Fuller Lodge Central Avenue, Los Alamos, NM, USA SPEAKER: Bill Archer of the Weapons Physics (ADX) Directorate CONTACT: Bill Archer 505 665 7235 CATEGORY: Science INTERNAL: Calendar Login Event Description Rich history of computing in the Laboratory's weapons program. The talk is free and open to the public and is part of the 2014-15 Los

  4. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect (OSTI)

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  5. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Gordon Assesses Security Of the Nuclear Weapons Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  6. Sandia completes major overhaul of key nuclear weapons test facilities |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration completes major overhaul of key nuclear weapons test facilities | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  7. U.S. No Longer Building Any Nuclear Weapons | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May...

  8. NNSA implements nondestructive gas sampling technique for nuclear weapon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components | Y-12 National Security Complex implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration (NNSA) today announced that it has deployed a nondestructive process at its Y-12 facility for assessing nuclear weapon components as part of its Stockpile Stewardship and Management Program, called Nondestructive Laser Gas Sampling (NDLGS). The NDLGS system is capable of

  9. Gordon Assesses Security At Nuclear Weapons Complex News...

    National Nuclear Security Administration (NNSA)

    Anson Franklin, 202/586-7371 September 21, 2001 NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex John Gordon, Administrator of the Department of Energy's National Nuclear Security Administration (NNSA), conducted a two-day tour of NNSA laboratory and plant facilities in five states to assess security preparations and to thank security guard force personnel for their work to protect the nation's nuclear weapons complex. Gordon made the trip to review the current security

  10. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battlefield of the Cold War: The Nevada Test Site, Volume I | Department of Energy Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington,

  11. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-07-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  12. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-12-31

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  13. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-01-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  14. The Effects of Nuclear Weapons (Technical Report) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Effects of Nuclear Weapons Citation Details In-Document Search Title: The Effects of Nuclear Weapons × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from the National

  15. The history of nuclear weapon safety devices (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The history of nuclear weapon safety devices Citation Details In-Document Search Title: The history of nuclear weapon safety devices × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  16. DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's...

  17. Briefing, Classification of Nuclear Weapons-Related Information

    Broader source: Energy.gov [DOE]

    This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

  18. National Day of Remembrance HSS Honors Former Nuclear Weapons Program

    Office of Environmental Management (EM)

    Workers | Department of Energy National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - 3:11pm Addthis Color Guard | National Day of Remembrance - October 25, 2013 Color Guard | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st

  19. The role of nuclear weapons in the year 2000

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

  20. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Weapons Material Protection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our

  1. CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing

    Office of Legacy Management (LM)

    tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S .

  2. Managing nuclear weapons in a changing world: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  3. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  4. Y-12, the Cold War, and nuclear weapons dismantlement „ Or:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Cold War, and nuclear weapons dismantlement - Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger) The Cold War heated up over the years with such ...

  5. Los Alamos turns its nuclear weapons power to war on cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  6. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  7. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  8. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  9. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  10. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  11. Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Securing NNSA's Nuclear Weapons Complex in a Post-911 World | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  12. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  13. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the

  14. Y-12 employees receive awards recognizing excellence in nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Y-12 National Security Complex receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient Penny Cunningham receives congratulations from Jim Haynes (far left), CNS president and CEO, Tim Driscoll, NNSA uranium program manager, and Mark Padilla, NPO's assistant manager for programs and projects. Thirteen Y-12 teams received DP Awards of Excellence for 2013 at a

  15. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect (OSTI)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  16. Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?

    SciTech Connect (OSTI)

    Saunders, Emily C.; Rowberry, Ariana N.; Fearey, Bryan L.

    2012-07-12

    In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

  17. Los Alamos turns its nuclear weapons power to war on cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory is manufacturing a radioactive treatment that targets tumors, without killing the surrounding healthy tissue. December 20, 2015 LANL physicist Eva Birnbaum LANL physicist Eva Birnbaum Los Alamos turns its nuclear weapons power to war on cancer NBC News got exclusive access to Los Alamos National Laboratory where

  18. CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing

    Office of Legacy Management (LM)

    tudies1B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. I, April 1988 This page intentionally left blank CERCLA P R E W A R Y ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE NUCLEAR WEAPONS TESTING AREAS Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada April 1988 vo I CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE NUCLEAR WEAPONS TESTING AREAS DRAFT Prepared for U.S. Department

  19. Quality by design in the nuclear weapons complex

    SciTech Connect (OSTI)

    Ikle, D.N.

    1988-04-01

    Modern statistical quality control has evolved beyond the point at which control charts and sampling plans are sufficient to maintain a competitive position. The work of Genichi Taguchi in the early 1970's has inspired a renewed interest in the application of statistical methods of experimental design at the beginning of the manufacturing cycle. While there has been considerable debate over the merits of some of Taguchi's statistical methods, there is increasing agreement that his emphasis on cost and variance reduction is sound. The key point is that manufacturing processes can be optimized in development before they get to production by identifying a region in the process parameter space in which the variance of the process is minimized. Therefore, for performance characteristics having a convex loss function, total product cost is minimized without substantially increasing the cost of production. Numerous examples of the use of this approach in the United States and elsewhere are available in the literature. At the Rocky Flats Plant, where there are severe constraints on the resources available for development, a systematic development strategy has been developed to make efficient use of those resources to statistically characterize critical production processes before they are introduced into production. This strategy includes the sequential application of fractional factorial and response surface designs to model the features of critical processes as functions of both process parameters and production conditions. This strategy forms the basis for a comprehensive quality improvement program that emphasizes prevention of defects throughout the product cycle. It is currently being implemented on weapons programs in development at Rocky Flats and is in the process of being applied at other production facilities in the DOE weapons complex. 63 refs.

  20. Tag: weapons | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons Tag: weapons Displaying 1 - 2 of 2... Category: News Y-12 National Security Complex Completes W69 Dismantlement Dismantlement of W69 canned subassemblies has been completed at the Y-12 National Security Complex. More... Category: News Y-12 hosts visit from directors of weapons labs Weapons lab directors toured production buildings and the Nuclear Detection and Sensor Testing Center at Y-12

  1. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-28

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Supersedes DOE O 452.4B, dated 1-22-10.

  2. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warfare and Terrorism | Princeton Plasma Physics Lab 5, 2014, 4:00pm to 5:30pm Colloquia MGB Auditorium COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton University The United States and eight other countries that possess nuclear weapons run myriad risks every day -- risks of accidental detonations, of unauthorized launches caused by false warning, of provoking escalation between nuclear forces, and of nuclear

  3. DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship

    Energy Savers [EERE]

    Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was

  4. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  5. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect (OSTI)

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  6. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  7. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    SciTech Connect (OSTI)

    Hickman, R.G.; Meier, C.A.

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  8. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014, 4:00pm to 5:30pm Colloquia MGB Auditorium COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton ...

  9. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  10. Cold War Films Yield New Effects-Data for U.S. Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Latest Issue:July 2015 past issues All Issues submit Cold War Films Yield New Effects-Data for U.S. Nuclear Weapons The rush is on to save deteriorating atmospheric ...

  11. Quality at Y-12, part 3 -- Or: Quality goes beyond nuclear weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality at Y-12, part 3 Or: Quality goes beyond nuclear weapons (title as it appeared in The Oak Ridger) As we continue our look at the history of Quality at Y-12, Bud Leete, Y-12 ...

  12. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect (OSTI)

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  13. Laboratory's role in Cold War nuclear weapons testing program focus of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next 70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures

  14. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping

    National Nuclear Security Administration (NNSA)

    Make It Happen | National Nuclear Security Administration Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library

  15. Sandia California works on nuclear weapon W80-4 Life Extension Program |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration works on nuclear weapon W80-4 Life Extension Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  16. Record-Setting Year for Nuclear Weapon Dismantlement Achieved at the Y-12

    National Nuclear Security Administration (NNSA)

    National Security Complex | National Nuclear Security Administration Record-Setting Year for Nuclear Weapon Dismantlement Achieved at the Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget

  17. Notice of Intent to Revise DOE O 452.4B, Security and Control of Nuclear Explosives and Nuclear Weapons, dated 1-11-2010

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-09-18

    Recent events have revealed that there are organizations that are seeking to insert malicious software and/or components into the nuclear weapon supply chain that can alter the functionality of the weapon and possible cause DAU.

  18. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  19. Deputy Secretary Daniel Poneman’s Remarks to the International Forum for a Nuclear Weapons-Free World

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please find below Deputy Secretary Daniel Poneman’s remarks, as prepared for delivery, to the International Forum for a Nuclear Weapons-Free World in Astana, Kazakhstan.

  20. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    SciTech Connect (OSTI)

    Maxwell, D.R.

    1995-12-31

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

  1. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  2. Flight Test of Weapons System Body by Navy Successful | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Flight Test of Weapons System Body by Navy Successful | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  3. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  4. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  5. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  6. Office of Weapons Material Protection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Material Management and Minimization Nonproliferation Proliferation Detection Material ...

  7. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  8. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

  9. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  10. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  11. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant`s (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF`s traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG&G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  12. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant's (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF's traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  13. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

    2010-04-16

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratorys (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

  14. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect (OSTI)

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  15. Literature survey of blast and fire effects of nuclear weapons on urban areas

    SciTech Connect (OSTI)

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

  16. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY

    Broader source: Energy.gov [DOE]

    "To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

  17. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect (OSTI)

    Moon, Duk-ho

    2003-12-01

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  18. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    SciTech Connect (OSTI)

    1996-09-23

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  19. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect (OSTI)

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  20. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect (OSTI)

    Schultz, V. ); Schultz, S.C. ); Robison, W.L. )

    1991-05-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

  1. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  2. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect (OSTI)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  3. American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.

    SciTech Connect (OSTI)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.; Silva, Carol L.

    2011-03-01

    We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

  4. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal associate director for Weapons Programs at Los Alamos National Laboratory. McMillan succeeds Glenn Mara, who recently retired. McMillan has been the Laboratory's associate director for weapons physics. In his new capacity, he will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the

  5. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  6. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  7. Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components

    SciTech Connect (OSTI)

    Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

    1998-05-01

    Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

  8. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect (OSTI)

    Walter, Andrew

    2009-06-01

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  9. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Weapons Components Successfully Dismantled | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing ...

  10. Applying Agile MethodstoWeapon/Weapon-Related Software

    SciTech Connect (OSTI)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  11. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader Gus Sinnis Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on the Time

  12. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  13. SUPPLEMENT ANALYSIS DETERMINATION The Department of Energy (DOE), National Nuclear Security Administration (NNSA) Production Office

    Energy Savers [EERE]

    DETERMINATION The Department of Energy (DOE), National Nuclear Security Administration (NNSA) Production Office Pantex (NPO) has prepared a Supplement Analysis (SA) to determine whether the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components, also known as the Site-Wide Environmental Impact Statement (SWEIS), adequately addresses the environmental impacts of continued Pantex Plant operations, or if additional

  14. Nuclear Deterrence in the Age of Nonproliferation

    SciTech Connect (OSTI)

    Richardson, J

    2009-01-21

    The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

  15. Site Information | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Kansas City National Security Campus (NSC), located in Kansas City, Mo., is the principal nonnuclear production site within the nuclear weapons complex, responsible for ...

  16. Sandia National Laboratories: National Security Missions: Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists ...

  17. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  18. New - DOE O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Cancels DOE O 452.4B, dated 1-22-10.

  19. List of Major Information Systems,National Nuclear Security Administra...

    Broader source: Energy.gov (indexed) [DOE]

    Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. ...

  20. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  1. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA Production Office NNSA Production Office Y-12 National Security Complex Completes W69 Dismantlement NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel

  2. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    DOE Patents [OSTI]

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  3. Niowave Develops Production Route for Medical Radioisotopes with...

    Office of Science (SC) Website

    ... In addition to creating high-tech domestic jobs, this new production technique reduces nuclear proliferation concerns by eliminating the use of weapons grade uranium for producing ...

  4. Overview | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    computers to simulate the complex aging process of the weapons components and the weapons systems as a whole, and determine the impact on the nuclear weapons stockpile. ...

  5. Production Technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Production Technology | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  6. Nuclear Dependence of Charm Production

    SciTech Connect (OSTI)

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  7. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  8. Y-12, Pantex employees selected for prestigious Weapons Internship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pantex employees selected for prestigious Weapons Internship Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the ...

  9. Statement on Budget Priorities for NNSA Weapons Activities before...

    National Nuclear Security Administration (NNSA)

    Budget Priorities for NNSA Weapons Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration ...

  10. NNSA Weapons Chief Participates in ROTC Day at Lawrence Livermore...

    National Nuclear Security Administration (NNSA)

    Weapons Chief Participates in ROTC Day at Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  11. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  12. Introduction to Pits and Weapons Systems (U)

    SciTech Connect (OSTI)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutonium is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.

  13. Weapons Program Associate Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  14. A simple method for rapidly processing HEU from weapons returns

    SciTech Connect (OSTI)

    McLean, W. II; Miller, P.E.

    1994-01-01

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  15. Secretary Bodman Celebrates Clean Up Completion of Three Former Weapons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Production Sites in Ohio | Department of Energy Clean Up Completion of Three Former Weapons Research and Production Sites in Ohio Secretary Bodman Celebrates Clean Up Completion of Three Former Weapons Research and Production Sites in Ohio January 19, 2007 - 9:59am Addthis Over 1,100 Acres in Fernald, Columbus and Ashtabula Restored CROSBY TOWNSHIP, OH - U.S. Secretary of Energy Samuel W. Bodman today certified that environmental cleanup is complete at three former weapons

  16. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and ... NNSA reduces the threat to national security posed by nuclear weapons proliferation and ...

  17. Global Material Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The mission of the Office of Global Material Security (GMS) is to help partner countries secure and account for nuclear weapons, weapons-useable nuclear and radiological materials, ...

  18. Principal Associate Director - Weapons Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Programs As Principal Associate Director for the Weapons Program, Robert Webster leads the programs to assure the safety, security, and effectiveness of the systems in the...

  19. Charles McMillan to lead Los Alamos National Laboratory's Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the ...

  20. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect (OSTI)

    Morris, Tommy J.

    2012-07-05

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  1. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  2. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  3. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect (OSTI)

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  4. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  5. Nonproliferation | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of...

  6. President Truman Orders Development of Thermonuclear Weapon | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  7. NNSA Administrator, Three Lab Directors Tour Key Weapons Facility |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Administrator, Three Lab Directors Tour Key Weapons Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  8. Analysis of Surplus Weapons-Grade Plutonium Disposition Options | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Analysis of Surplus Weapons-Grade Plutonium Disposition Options | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  9. National Nuclear Security Administration Product Aids in Anthrax...

    National Nuclear Security Administration (NNSA)

    Product Aids in Anthrax Clean-up | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  10. Production Technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  11. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  12. Isotope production agreement benefits medical patients | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Isotope production agreement benefits medical patients | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  13. KCP highlights first part production | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration highlights first part production | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  14. Livermore team awarded for hydrogen production research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration team awarded for hydrogen production research | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  15. President Roosevelt Approves Production of Atomic Bomb | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Approves Production of Atomic Bomb | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  16. Daniel Hoag Named NNSA Production Office Deputy Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration NNSA Production Office Deputy Manager | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery

  17. Y-12 weapons work expands in 1950s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons work expands in 1950s During the era immediately following the end of World War II, as early as 1946, evidence of the Cold War was emerging. Russia was working on its own nuclear weapon, the United States was trying to control the spread of nuclear weapons, but at the same time releasing much of the technology trying to promote peaceful uses of atomic energy. During the late 1940s and early 1950s, the Graphite Reactor at Oak Ridge National Laboratory was used to create medical isotopes

  18. Bret Knapp to head combined Weapons Engineering, Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorates at Los Alamos National Laboratory Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

  19. Y-12 hosts visit from directors of weapons labs | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under budget Y-12 employees receive awards recognizing excellence in nuclear weapons program Sea change for foam Where science meets art Uranium at Y-12: Rolling and Forming...

  20. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  1. AIR FORCE SPECIAL WEAPONS CENTER

    Office of Legacy Management (LM)

    HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command

  2. Dismantlement and Disposition | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    Weapons dismantlement 1 and disposition are major parts of NNSA's stockpile work and significant elements of NNSA's effort to transform the nuclear weapons complex and stockpile. ...

  3. Sandia National Laboratories: National Security Missions: Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The ...

  4. Nuclear testing continues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing continues The actual transfer of the responsibility for atomic energy research and weapons production from the Army to the Atomic Energy Commission did not take place until January, 1947. However, the later part of 1945 and the entire year of 1946 was a time of transition and turmoil amid the continuing demand to produce more nuclear weapons. While in Oak Ridge Y-12 continued to produce uranium 235 in ever increasing purity and quantity assisted by the increased production of K-25, Los

  5. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect (OSTI)

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

  6. H.R. 1511: A Bill to provide for the termination of nuclear weapons activities, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This legislation proposes no funding from fiscal 1996 on for Department of Energy (DOE) falling under the heading `weapons activities` in the `Atomic Energy Defense Activities` in title III of the Energy and Water Development Appropriations Act, 1995, except for orderly termination activities. It proposes cold standby level funding for the Nevada Test Site. It proposes no funding for the advanced neutron source program of the DOE, except for termination. It proposes no funding for the Tokamak Physics Experiment program of the DOE, except for termination. It proposes no funding for the Gas Turbine-Modular Helium Reactor program of the DOE, except for termination. It proposes no funding for fossil and nuclear energy research and development for fiscal years after 1997.

  7. Welcome to the NNSA Production Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration NNSA Production Office | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs

  8. Audit Report National Nuclear Security Administration Nuclear...

    Office of Environmental Management (EM)

    National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOEIG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of ...

  9. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Operations / Management and Budget / Office of Civil Rights / Workforce Statistics / NNSA Production Office NNSA Production Office FY15 Year End Report Semi Annual Report FY14 Semi Annual Report

  10. Large Scale Production Computing and Storage Requirements for Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for Nuclear Physics: Target 2017 NPicon.png This invitation-only review is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced Scientific Computing Research (ASCR) and by NERSC. The goal is to determine production high-performance computing, storage, and services that will be needed for NP to achieve its science goals through 2017. The review brings together DOE Program Managers,

  11. Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach

    SciTech Connect (OSTI)

    Martz, Joseph C; Stevens, Patrice A; Branstetter, Linda; Hoover, Edward; O' Brien, Kevin; Slavin, Adam; Caswell, David

    2010-01-01

    Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spread of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

  12. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  13. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jan 1, 2009 The National Nuclear Security Administration (NNSA) has more than 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and...

  14. NNSA Nuclear/Radiological Incident Response | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Dec 1, 2008 The National Nuclear Security Administration (NNSA) has over 60 years of nuclear weapons experience in responding to nuclear and radiological accidents and incidents....

  15. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  16. Nuclear effects in squark production at the LHC

    SciTech Connect (OSTI)

    Espindola, Danusa B.; Mariotto, C. B.; Rodriguez, M. C.

    2013-03-25

    In this contribution we study the production of squarks. If squarks are found in proton-proton (pp) collisions at the LHC, they might also be produced in collisions involving nuclei (pA and AA collisions). Here we investigate the influence of nuclear effects in the production of squarks in nuclear collisions at the LHC, and estimate the transverse momentum dependence of the nuclear ratios R{sub pA} = (d{sigma}(pA)/d{sub pT})/A(d{sigma}(pp)/d{sub pT}) and R{sub AA} = (d{sigma}(AA)/d{sub pT})/A{sup 2}(d{sigma}(pp)/d{sub pT}). We demonstrate that depending on the magnitude of the nuclear effects, the production of squarks could be enhanced or suppressed, compared to proton-proton collisions at same energies.

  17. Weapons Program Associate Directors named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration we have achieved between the various components of the program," said Bret Knapp, Principal Associate Director for Weapons Programs. "They have both done an...

  18. Joint Venture Established Between Russian Weapons Plant And the Largest

    National Nuclear Security Administration (NNSA)

    Dialysis Provider in the U.S. | National Nuclear Security Administration Venture Established Between Russian Weapons Plant And the Largest Dialysis Provider in the U.S. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget

  19. Nuclear Deterrence and Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prominence of nuclear weapons in U.S. security policy has diminished with the end of the Cold War, nuclear weapons continue to provide an essential component of national security. ...

  20. List of Major Information Systems,National Nuclear Security Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADaPT Networked: | Department of Energy List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear

  1. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  2. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  3. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect (OSTI)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  4. Weapon interns: Where are they now? | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapon interns: Where are ... Weapon interns: Where are they now? The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:14 min. HaliAnne Crawford and Aaron Lee, the Consolidated Nuclear Security, LLC employees participating in the Weapon Intern Program, are now several months into their training. Watch this video where they talk about how the program compares to their expectations and their plans for the future. Read more about the internship program

  5. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect (OSTI)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  6. National Nuclear Security Administration United States Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy and Arms Control Program NPT Treaty on the Non-proliferation of Nuclear Weapons NRAT NuclearRadiological Advisory Team NRC Nuclear Regulatory Commission NSC ...

  7. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    capabilities to detect, identify, and characterize: 1) foreign nuclear weapons programs, 2) illicit diversion of special nuclear materials, and 3) global nuclear detonations. ...

  8. B53 Nuclear Bomb | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA) is consistent with the goal President Obama announced in his April 2009 Prague speech to reduce the number of nuclear weapons. ...

  9. Arms Control: US and International efforts to ban biological weapons

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  10. National Nuclear Security Administration honors Y-12 employees | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex National Nuclear Security ... National Nuclear Security Administration honors Y-12 employees Posted: September 25, 2012 - 12:55pm Joining Oder (center) to present the awards was Mark Padilla, NNSA Production Office assistant manager for programs and projects (right) and Joe Henry, chief operating officer of B&W Y-12. National Nuclear Security Administration Office of Nuclear Weapons Stockpile Director Joseph Oder recently visited the Y-12 National Security

  11. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  12. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  13. National Nuclear Security Administration Babcock & Wilcox Technical

    National Nuclear Security Administration (NNSA)

    PO-1: Manage the Nuclear Weapons Mission (25% of At-risk fee) was rated as EXCELLENT. Overall, B&W Pantex managed the Nuclear Weapons Mission, meeting or exceeding the Program ...

  14. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Most nuclear weapons in the U.S. stockpile were produced anywhere from 30 to 40 years ago, and no new nuclear weapons have been produced since the end of the Cold War. At the time ...

  15. Annular Core Research Reactor - Critical to Science-Based Weapons Design,

    National Nuclear Security Administration (NNSA)

    Certification | National Nuclear Security Administration - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  16. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  17. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyze the overall nuclear weapons development process, including requirements definition, design, analysis, prototyping, and system testing. They ensure the compatibility...

  18. Independent Oversight Activity Report, National Nuclear Security Administration Production Office- March 10-14, 2014

    Broader source: Energy.gov [DOE]

    Contractor Transition Activities for the National Nuclear Security Administration Production Office [IAR-NPO-2014-03-10

  19. Weapons Quality Assurance Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    5-2008 September 2008 DOE STANDARD WEAPON QUALITY ASSURANCE QUALIFICATION STANDARD NNSA Weapon Quality Assurance Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1025-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1025-2008 iv INTENTIONALLY BLANK DOE-STD-1025-2008 v

  20. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  1. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (acting) Email Group Office (505) 667-4665 Find Expertise header Search our employee skills database The evaluations performed by our group are essential for the nuclear weapons...

  2. Working toward a world without nuclear weapons

    SciTech Connect (OSTI)

    Drell, Sidney D.

    2014-05-09

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  3. Commercial Light Water Production of Tritium Update and Path Forward

    Office of Environmental Management (EM)

    Light Water Production of Tritium: Update and Path Forward Dave Senor April 23, 2013 Tritium Focus Group 1 PNNL-SA-94431 Background United States defense maintains a stockpile of nuclear weapons as a "deterrent" to military actions by others Tritium is required for all U.S. nuclear weapons to function as designed: 6 Li + 1 n → 3 T + 4 He With a 12.2 year half-life, tritium must be replaced. Department of Energy (DOE) stopped production of tritium at Savannah River Site (SRS) in 1988.

  4. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  5. Timeline Print | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. ...

  6. Our History | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. ...

  7. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." ...

  8. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  9. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  10. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    package in nuclear weapons. This laboratory possesses unique capabilities in neutron scattering, enhanced surveillance, radiography, and plutonium science and...

  11. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  12. weapons

    National Nuclear Security Administration (NNSA)

    thanks to the vision and determination of its proponents and the significant investment in the necessary tools, facilities, and people. The men and women employed by the...

  13. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war ...

  14. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramón Ramírez, Armando Gómez, Javier Ortiz, Luis C. Longoria. Instituto Nacional de Investigaciones Nucleares México palacios@nuclear.inin.mx, galonso@nuclear.inin.mx . ABSTRACT In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and

  15. Engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future U.S. nuclear weapons stockpile. ...

  16. President Truman Orders Development of Thermonuclear Weapon ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline President Truman Orders Development of Thermonuclear Weapon...

  17. FAQS Reference Guide – Weapon Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the August 2008 edition of DOE-STD-1025-2008, Weapon Quality Assurance Functional Area Qualification Standard.

  18. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  19. National Nuclear Security Administration Product Aids in Anthrax Clean-up |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Product Aids in Anthrax Clean-up | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  20. NNSA Production Office Open for Business | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Open for Business | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our

  1. NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT...

    National Nuclear Security Administration (NNSA)

    Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT) Non-Nuclear Weapon State Representatives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  2. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    SciTech Connect (OSTI)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  3. NNSA implements nondestructive gas sampling technique for nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  4. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "For decades, we have worked in close partnership with Japan on nuclear issues, ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power ...

  5. Nuclear Materials Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to maintaining the safety and reliability of the weapons in the nuclear stockpile. ... Actinide Research Quarterly 2 Nuclear Materials TechnologyLos Alamos National Laboratory ...

  6. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the new and daunting challenges in nuclear waste management is the disposition of plutonium recovered from dismantled nuclear weapons. Under the first and second Strategic ...

  7. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration ...

  8. Maintaining nuclear stability in times of transition focus of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons ...

  9. Engineering, Weapons Physics Directorates at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory August 18, 2009 Los Alamos, New Mexico, August 18, 2009- Two of the three Los Alamos National Laboratory weapons programs directorates have been combined under the leadership of Bret Knapp as the associate director for the new weapons directorate. The new organization adds the Weapons Physics directorate to the Weapons Engineering directorate already under Knapp's leadership. The third

  10. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  11. Detection and treatment of chemical weapons and/or biological...

    Office of Scientific and Technical Information (OSTI)

    Detection and treatment of chemical weapons andor biological pathogens Citation Details In-Document Search Title: Detection and treatment of chemical weapons andor biological...

  12. NNSA Achieves 50 Percent Production for W76-1 Units | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Achieves 50 Percent Production for W76-1 Units | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  13. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect (OSTI)

    Anne C. Fitzpatrick

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.

  14. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Locations / Sandia National Laboratories Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News NNSA labs and

  15. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    SciTech Connect (OSTI)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  16. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOE Patents [OSTI]

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  17. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  18. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  19. Italy Nuclear Security Summit: Fact Sheet | National Nuclear...

    National Nuclear Security Administration (NNSA)

    In 1979, Italy signed the NPT which reaffirmed its commitment to be nuclear weapons free. In 1987, through a referendum, Italy announced the end of its nuclear energy program, and ...

  20. ORISE: Preparing Nations to Fight Nuclear Smuggling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smuggling remains a global security threat. How ORISE is Making a Difference Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal...

  1. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  2. ALSO: Nuclear Transparency Minirobots Conduct Search & Rescue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALSO: Nuclear Transparency Minirobots Conduct Search & Rescue A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 1 PEACE IN AN EDGY WORLD Nonproliferation: Keeping Weapons of ...

  3. Life Extension Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The term "life extension program (LEP)" means a program to repairreplace components of nuclear weapons to ensure the ability to meet military requirements. By extending the ...

  4. Sandia National Laboratories: National Security Missions: Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linux computer simulation Sandia is responsible for a variety of safety and security features of nuclear weapons. We design safety components and subsystems based on fundamental ...

  5. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    1945) Events > Postscript -- The Nuclear Age, 1945-Present Informing the Public, ... The United States, Stimson noted in explaining his plan, might propose to stop all weapons ...

  6. Pantex Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    located 17 miles northeast of Amarillo, Texas, in Carson County, is charged with maintaining the safety, security and effectiveness of the nation's nuclear weapons stockpile. ...

  7. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    In Performance Objective 1, the Laboratory exceeded expectations in managing the nuclear weapons mission, performed well in Research and Development work, and delivered significant ...

  8. Research and Development | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Ensure the safety, security, and effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous ...

  9. PIA - Weapons Data Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weapons Data Control Systems PIA - Weapons Data Control Systems PIA - Weapons Data Control Systems PIA PDF icon PIA - Weapons Data Control Systems More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009

  10. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect (OSTI)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  11. LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons

    Office of Environmental Management (EM)

    production being shipped to WIPP | Department of Energy LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons production being shipped to WIPP May 31, 2011 - 12:00pm Addthis Media Contact Fred deSousa 505-665-3430 fdesousa@lanl.gov LOS ALAMOS, New Mexico - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from

  12. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202/586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration Is Helping Make It Happen The Russian government has recently determined that it will cease all nuclear weapons activity at the Avangard nuclear weapons plant in the closed city of Sarov, Russia - by the end of 2003. The Avangard plant will transition to civilian commercial uses. This effort is facilitated by the

  13. United States Nuclear Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  14. Hydrogen Production by High Temperature Electrolysis with Nuclear Reactor

    SciTech Connect (OSTI)

    Ogawa, Takashi; Fujiwara, Seiji; Kasai, Shigeo; Yamada, Kazuya

    2007-07-01

    In this paper, we report our design of high temperature electrolysis plant system and the analysis results. The system efficiency increases with the increase of the steam utilization in the solid oxide electrolysis cell (SOEC) or the decrease of the hydrogen recycle (hydrogen recycle flow to product hydrogen flow) ratio,. The system efficiency is nearly independent of the SOEC operating temperature and pressure, and the air to product O{sub 2} ratio. In this study, the maximum system efficiency is 56.3%. (authors)

  15. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    SciTech Connect (OSTI)

    Liodakis, Emmanouel Georgiou

    2011-06-28

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  16. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect (OSTI)

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

  17. Screening of Maritime Containers to Intercept Weapons of Mass Destruction

    SciTech Connect (OSTI)

    Manatt, D R; Sleaford, B; Schaffer, T; Accatino, M R; Slaughter, D; Mauger, J; Newmark, R; Prussin, S; Luke, J; Frank, M; Bernstein, A; Alford, O; Mattesich, G; Stengel, J; Hall, J; Descalle, M A; Wolford, J; Hall, H; Loshak, A; Sale, K; Trombino, D; Dougan, A D; Pohl, B; Dietrich, D; Weirup, D; Walling, R; Rowland, M; Johnson, D; Hagmann, C; Hankins, D

    2004-02-18

    The goal of our research was to address the problem of detection of weapons of mass destruction (WMD) materials within containers in common use on commercial cargo trafficking. LLNL has created an experimental test bed for researching potential solutions using (among other techniques) active interrogation with neutrons. Experiments and computational modeling were used to determine the effectiveness of the technique. Chemical weapons materials and high explosives can be detected using neutron activation and simple geometries with little or no intervening material. However in a loaded container there will be nuisance alarms from conflicting signatures resulting from the presence of material between the target and the detector (and the interrogation source). Identifying some elements may require long counting times because of the increased background. We performed some simple signature measurements and simulations of gamma-ray spectra from several chemical simulants. We identified areas where the nuclear data was inadequate to perform detailed computations. We concentrated on the detection of SNM in cargo containers, which will be emphasized here. The goal of the work reported here is to develop a concept for an active neutron interrogation system that can detect small targets of SNM contraband in cargo containers, roughly 5 kg HEU or 1 kg Pu, even when well shielded by a thick cargo. It is essential that the concept be reliable and have low false-positive and false-negative error rates. It also must be rapid to avoid interruption of commerce, completing the analysis in minutes. A potentially viable concept for cargo interrogation has been developed and its components have been evaluated experimentally. A new radiation signature unique to SNM has been identified that utilizes high-energy, fission-product gamma rays. That signature due to {gamma}-radiation in the range 3-6 MeV is distinct from normal background radioactivity that does not extend above 2.6 MeV. It's short half-life of 20-55 sec makes it distinct from neutron activation due to the interrogation that is typically much longer lived. This work spawned a collaboration with LBNL where experiments verified the abundance and other characteristics of this new signature [24]. Follow-on work funded by DoE/NA22 led to the development of a detailed system concept and evaluation of its impact on operating personnel and cargos [60] and characterization of one important interference that was identified [61]. The follow-on work led to two patent applications at LBNL and LLNL. The signature flux, while small, is 2-5 decades more intense than delayed neutron signals used and facilitates the detection of SNM even when shielded by thick cargo. The actual benefit is highly dependent on the type and thickness of cargo, with modest benefit in the case of metallic cargos of iron, lead, or aluminum, but maximum benefit in the case of hydrogenous cargo. In addition, unwanted collateral effects of the interrogation, such as neutron activation of the cargo, were analyzed [60] and one significant interference due to oxygen activation was characterized. This interference can be eliminated by lowering the energy of interrogating neutrons [60] and no others have yet been identified. The neutron source technology required exists commercially. Follow-on work to produce a laboratory prototype and to engage a commercial partner for development of a prototype to be fielded at a port was initially funded by DOE/NA-22 is currently supported by DHS. That support is expected to continue through FY06.

  18. NRC - regulator of nuclear safety

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  19. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  1. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D.

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  5. Pantex Takes a Green Approach to Cleaning Weapons Parts | National...

    National Nuclear Security Administration (NNSA)

    Takes a Green Approach to Cleaning Weapons Parts At NNSA's Pantex Plant in Amarillo, Texas, a new green approach to cleaning weapons parts was brought online recently at the...

  6. Two CNS employees selected for prestigious Weapons Internship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Internship Program Posted: November 2, 2015 - 5:54pm Print version Aaron Lee is the Y-12 participant in the Weapons Internship Program. Y-12 and Pantex will both be...

  7. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect (OSTI)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  8. EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems

    Broader source: Energy.gov [DOE]

    NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

  9. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  10. The National Nuclear Security Administration's B61 Spin Rocket Motor

    Energy Savers [EERE]

    Project, IG-0740 | Department of Energy cf Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a 1:rime component of the B61 nuclear weapon system. Both the originai motor produced i2 i906 and the version last produced in 1991 are the subjects of the refurbishment. Rvth motors, which are essentially identical, produce thrust to arm thz weapon. In Deceinber 2001, the National Nuclear Security Administration (NNSA) received Nuclear Weapons Council Standing and Safety

  11. The National Nuclear Security Administration's B61 Spin Rocket Motor

    Energy Savers [EERE]

    Project, IG-0740 | Department of Energy of Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a prime component of the B61 nuclear weapon system. Both the originai motor produced in i966 and the version last produced in 1991 are the subjects of the refurbishment. Both motors, which are essentially identical, produce thrust to arm the weapon. In December 2001, the National Nuclear Security Administration (NNSA) received Nuclear Weapons Council Standing and Safety

  12. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  13. Highly Enriched Uranium Transparency Program | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). ...

  14. Pakistan’s nuclear Taj Mahal

    SciTech Connect (OSTI)

    Leslie, Stuart W.

    2015-02-15

    Inspired by the promise of Atoms for Peace, the Pakistan Institute of Nuclear Science and Technology eventually succumbed to the demands of the country’s nuclear weapons program.

  15. Los Alamos National Laboratory to work on nuclear design, plutonium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. ...

  16. Y-12 employees receive awards recognizing excellence in nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient ...

  17. Honoring Our Past, Securing Our Future | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Library Fact Sheets Honoring Our Past, Securing Our Future Honoring Our Past, Securing Our Future Transforming a Cold War Nuclear Weapons Complex into a 21st Century ...

  18. National Nuclear Security Administration ENERGY U.S. DEPARTMENT...

    National Nuclear Security Administration (NNSA)

    background information on how and why International Atomic Energy Agency (IAEA) safeguards play a central role in international efforts to prevent the spread of nuclear weapons. ...

  19. Neutron Detectors for Detection of Nuclear Materials at LANL...

    Office of Science (SC) Website

    The applications are in (a) detection of smuggled neutron-emitting special nuclear materials (SNM), such as weapons grade plutonium and certain uranium compounds, (b) terrorist ...

  20. Nuclear proliferation and testing: A tale of two treaties

    SciTech Connect (OSTI)

    Corden, Pierce S.; Hafemeister, David

    2014-04-01

    Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

  1. Hans Bethe, Powering the Stars, and Nuclear Physics

    Office of Scientific and Technical Information (OSTI)

    During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their ...

  2. γ production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei

    2011-02-01

    γ production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state γ(1s) are controlled by the initial state Cronin effect, the excited bb⁻ states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  3. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  4. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  5. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasized and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.

  6. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect (OSTI)

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  7. MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of

  8. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy TechnologySummary

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  9. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Programs / Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of Defense Nuclear Nonproliferation (DNN), works closely with a wide range of international partners, key U.S. federal agencies, the U.S. national laboratories, and the private sector to secure, safeguard,

  10. Assessment of fission product yields data needs in nuclear reactor applications

    SciTech Connect (OSTI)

    Kern, K.; Becker, M.; Broeders, C.

    2012-07-01

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  11. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  12. Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout

    SciTech Connect (OSTI)

    R.J. Goldston, A. Glaser, A.F. Ross

    2009-08-13

    Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards.

  13. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect (OSTI)

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  14. Los Alamos National Laboratory names new leadership for Weapons and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Directorates New leadership for Weapons and Operations Directorates Los Alamos National Laboratory names new leadership for Weapons and Operations Directorates Robert (Bob) Webster has been selected to be the Lab's next Principal Associate Director for Weapons Programs, and Craig Leasure has been selected as the new Principal Associate Director for Operations. June 19, 2015 Bob Webster and Craig Leasure Bob Webster and Craig Leasure Contact Los Alamos National Laboratory Kevin

  15. DOE's Nuclear Weapons Complex: Challenges to Safety, Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These include discoveries involving medical diagnostics and treatments, supercomputing, and combating terrorism. The national laboratories have a recognized track record of ...

  16. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer and Return of Low-Enriched Uranium Fuel Elements from Idaho National Laboratory to the Research Reactor in Vienna, Austria (DOEEIS-0218F-SA-05 and DOEEIS-0203-SA-05) ...

  17. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Broader source: Energy.gov (indexed) [DOE]

    Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). ... NTSHistory.indd origins.indd Fehner and Gosling, Origins of the Nevada Test Site

  18. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  19. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    SciTech Connect (OSTI)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  20. Joint Venture Established Between Russian Weapons Plant And the...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Library Press Releases Joint Venture Established Between Russian Weapons Plant ... Joint Venture Established...

  1. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    SciTech Connect (OSTI)

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilities is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.

  2. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  3. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Locations / Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The NNSA Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It supports surveillance, assessment, and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets.

  4. Emergence of the nuclear industry and associated crime. Master's thesis

    SciTech Connect (OSTI)

    Vaught, J.W.

    1991-08-01

    Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

  5. Nuclear World Order and Nonproliferation

    SciTech Connect (OSTI)

    Joeck, N

    2007-02-05

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  6. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  7. Statement of Neile L. Miller Acting Undersecretary for Nuclear...

    National Nuclear Security Administration (NNSA)

    In April 2009 in Prague, President Obama shared his vision for a world without nuclear weapons, free from the threat of nuclear terrorism, and united in our approach toward shared ...

  8. U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research reactors to Russia by 2010. To complement the physical security upgrades at ... its nuclear weapons inventory management system and continues to work jointly to enhance ...

  9. Bonus-- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer

    Broader source: Energy.gov [DOE]

    Technologies that are improving our ability to prevent the spread of nuclear weapons and material are also saving lives on a daily basis.

  10. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  11. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    SciTech Connect (OSTI)

    Graham, Thomas Jr.

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  12. India and Pakistan`s nuclear arms race: Out of the closet but not in the street

    SciTech Connect (OSTI)

    Albright, D.

    1993-06-01

    CIA Director James Woolsey testified before the Senate on February 24, 1993, {open_quotes}The arms race between India and Pakistan poses perhaps the most probable prospect for future use of weapons of mass destruction, including nuclear weapons.{close_quotes} Currently, both countries are dependent on relatively crude nuclear bombs that do not appear to have been deployed. According to US officials, because of fears of accidental nuclear detonation, both sides would only assemble their nuclear weapons when absolutely necessary. Nevertheless, according to Woolsey, both nations {open_quotes}could, on short notice, assemble nuclear weapons.{close_quotes} Each has combat aircraft that could deliver these bombs in a crisis. India and Pakistan continue to improve their nuclear weapons. Unless their programs are stopped, they might succeed in moving from large, cumbersome bombs to miniaturized, easily armed and fuzed weapons able to be permanently deployed on attack aircraft or ballistic missiles, which are being developed or sought by both countries.

  13. Sandia National Laboratories: About Sandia: Leadership: Vice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gary Sanders Vice President, Weapons Engineering and Product Realization, Chief Engineer for Nuclear Weapons Gary A. Sanders Gary A. Sanders is Vice President of Weapons ...

  14. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln⁡Χ=-α (ΔG_rxn^° (T_C ))/(RT_C )+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG_rxn^° (T_C ). These models allowed an estimate of the upper bound for the reactor temperatures of T_C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  15. The Nuclear Posture Review (NPR) : are we safer?

    SciTech Connect (OSTI)

    Brune, Nancy E.

    2010-07-01

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world less safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.

  16. International safeguards: Accounting for nuclear materials

    SciTech Connect (OSTI)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  17. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOE Patents [OSTI]

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    needs primarily by down-blending, or converting, it into low enriched uranium (LEU). Once down-blended, the material can no longer be used for nuclear weapons. To the extent...

  1. July 2014 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    B53 case on display in Texas "The Last of the Big Dogs" has a new home after Pantex workers recently delivered one of the few remaining B53 nuclear weapons cases to the Freedom...

  2. Defense Programs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA, through its Office of Defense ...

  3. July 2014 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    "The Last of the Big Dogs" has a new home after Pantex workers recently delivered one of the few remaining B53 nuclear weapons cases to the Freedom Museum USA in Pampa, Texas. The ...

  4. National Nuclear Security Administration Appropriation and Program...

    National Nuclear Security Administration (NNSA)

    (FYNSP) % % National Nuclear Security Administration Office of the Administrator 420,754 448,267 420,754 450,060 29,306 7.0% 1,793 0.4% Weapons Activities 6,386,371 ...

  5. About NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA contributes to the overall U.S. national security across four core mission areas: * Maintaining the safety, security and effectiveness of the U.S. nuclear weapons stockpile ...

  6. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  7. DOE's Former Rocky Flats Weapons Production Site to Become National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. ... "With the transfer of nearly 4,000 acres from the Department of Energy, the U.S. Fish and ...

  8. Two CNS employees selected for prestigious Weapons Internship Program |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Two CNS employees selected ... Two CNS employees selected for prestigious Weapons Internship Program Posted: November 2, 2015 - 5:54pm Print version Aaron Lee is the Y-12 participant in the Weapons Internship Program. Y-12 and Pantex will both be represented during the 2016 Weapons Internship Class. HaliAnne Crawford, a process engineer at Pantex, and Aaron Lee, a shift technical advisor at Y-12, were selected to participate in the highly sought-after

  9. Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance

    SciTech Connect (OSTI)

    Poling, J.

    2012-05-15

    The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

  10. U.S. Nuclear Deterrent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance key to stockpile stewardship November 3, 2014 Assuring the safety, security, and effectiveness of the U.S. Nuclear Deterrent LOS ALAMOS, N.M., Nov. 3, 2014-As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. "As we move forward with our stockpile and as it's aging and as we're replacing components,

  11. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  12. The de-escalation of nuclear crises

    SciTech Connect (OSTI)

    Nation, J.E. )

    1992-01-01

    Whether and by what means nations can successfully de-escalate nuclear crises - and avoid the disastrous effects of nuclear war - will remain two of the most critical challenges facing humankind. Whatever the future of superpower relations, the United States, the Soviet Union, and other nations will undoubtedly continue to possess and to threaten the use of nuclear weapons. Moreover, the number of nations with nuclear weapons seems likely to increase. This examines how nations in crises might successfully move back from the brink of nuclear war - and how confidence-building measures might help and hinder the de-escalatory process.

  13. Little Boy weaponeer William "Deak" Parsons, wartime Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the beginning of World War II, came to the Lab to oversee the engineering of Fat Man and Little Boy to be combat weapons. Parsons also served as one of the first two...

  14. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  15. Materiel availability modeling and analysis for a complex army weapon

    Office of Scientific and Technical Information (OSTI)

    system. (Conference) | SciTech Connect Materiel availability modeling and analysis for a complex army weapon system. Citation Details In-Document Search Title: Materiel availability modeling and analysis for a complex army weapon system. Materiel availability (A{sub m}) is a new US Department of Defense Key Performance Parameter (KPP) implemented through a mandatory Sustainment Metric consisting of an Availability KPP and two supporting Key System Attributes (KSAs), materiel reliability and

  16. Weapons assessment efficiencies through use of nondestructive laser gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Nondestructive laser welding process far less expensive, no underground testing. June 8, 2012 Nondestructive Laser Gas Sampling Nondestructive Laser Gas Sampling is expected to save several million dollars per year and requires no underground testing. "We're continually innovating and working to improve the way we do

  17. Los Alamos National Laboratory names new head of weapons programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory names new head of weapons programs Los Alamos National Laboratory names new head of weapons programs Bret Knapp has been acting in that position since June 2011. December 1, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a

  18. Improved Reliability of Ballistic Weapons and Combustion Engines - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Advanced Materials Advanced Materials Find More Like This Return to Search Improved Reliability of Ballistic Weapons and Combustion Engines Methods of Forming Boron Nitride DOE Grant Recipients Idaho National Laboratory Contact GRANT About This Technology Publications: PDF Document Publication 8968827.pdf (626 KB) Technology Marketing Summary A novel method for coating the barrel of a ballistic weapon or its bullets with a unique

  19. FAQS Qualification Card - Weapon Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    Weapon Quality Assurance FAQS Qualification Card - Weapon Quality Assurance A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS

  20. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  1. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  2. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  3. Program of technical assistance to the organization for the prohibition of chemical weapons, informal report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Currently, U.S. organizations provide technical support to the U.S. Delegation for its work as part of the Preparatory Commission (PrepCom) of the Organization for the Prohibition of Chemical Weapons (OPCW) in The Hague. The current efforts of the PrepCom are focussed on preparations for the Entry-Into-Force (EIF) of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons (often referred to as the {open_quotes}Chemical Weapons Convention{close_quotes} (CWC)). EIF of the CWC is expected in 1995, and shortly thereafter the PrepCom will cease to exist, with the OPCW taking over responsibilities under the CWC. A U.S. program of technical assistance to the OPCW for its verification responsibilities may be created as part of U.S. policy objectives after EIF of the CWC. In the summary below, comments by participants are presented in Square Brackets Some of the same points arose several times during the discussions; they are grouped together under the most pertinent heading.

  4. Gas production and behavior in the coolant of the SP-100 Space Nuclear Power System

    SciTech Connect (OSTI)

    McGhee, J.M.

    1989-08-01

    The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S{sub 4}/P{sub 1} approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy. 104 refs., 78 figs., 28 tabs.

  5. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Savannah River Site 1 NNSA Budget ($ Millions) By Program Office FY 2015 Enacted FY 2016 Enacted FY 2017 President Request Delta FY Request Weapon Activities 241 242 252 10 Mixed Oxide Fuel Fabrication Facility (MOX) 340 332 270 (62) Defense Nuclear Nonproliferation (DNN) 77 58 91 33 Federal Expenses 4.7 5.2 5.4 .2 Total Budget for NNSA at SRS 662.7 637.2 618.4 (18.8)

  6. Cooperative Studies in the Utilization and Storage of Excess Weapons-Grade Plutonium

    SciTech Connect (OSTI)

    Bolyatko, V. V.

    1998-01-29

    This technical report is a tangible and verifiable deliverable associated with the Nuclear Group subproject Cooperative Studies in the Utilization and Storage of Excess Weapons-grade Plutonium. This report is an assessment ofthe work performed by the Russian party from 1 October 1995 through 30 September 1996 regarding milestones defined in the contract between the Moscow Engineering Physics Institute (MEPhI) and the Texas Engineering Experiment Station (TEES). In these interactions, TEES serves as agent of the Amarillo National Resource Center for Plutonium (ANRCP) in the capacity oflead institution for the Nuclear Group of the ANRCP. The official Statement ofWork dated 8 April 1996 enumerates specific milestones and deliverables. In its present form, this report is an edited version ofthe translation submitted to TEES by MEPhI on 7 October 1996. The principal investigators for this subproject are Dr. Paul Nelson of TEES and Dr. Victor Bolyatko of the Moscow Engineering Physics Institute.

  7. Materials and Sensor R&D to Transform the Nuclear Stockpile:...

    Office of Scientific and Technical Information (OSTI)

    Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on ...

  8. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  9. DOE - NNSA/NFO -- Nuclear Testing Archive Fee Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Testing Archive > Fee Schedule NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nuclear Testing Archive (NTA) Fee Schedule The U.S. Department of Energy National Nuclear Security Administration Nuclear Testing Archive (NTA) is a centralized repository of publicly releasable documents on the subject of the U.S. Nuclear Weapons Testing Program. The Nuclear Testing Archive is operated for the NNSA by NSTec. Normal services provided to the public by the Nuclear Testing

  10. Nuclear matter effects on J/? production in asymmetric Cu+Au collisions at ?SNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2014-12-18

    We report on J/? production from asymmetric Cu+Au heavy-ion collisions at ?sNN =200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/? yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/? production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in themorelarger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.less

  11. Changes in Russia's Military and Nuclear Doctrine

    SciTech Connect (OSTI)

    Wolkov, Benjamin M.; Balatsky, Galya I.

    2012-07-26

    In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993 doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of what doctrine meant in 2000 and an outline of the 2000 doctrine. An overview of the 2000 doctrine is: (1) The 2000 doctrine was a return to a more defensive posture; the threat of nuclear retaliation, rather than that of preemptive force, would be its deterrence; (2) In order to strengthen its nuclear deterrence, Russia extended and redefined the cases in which nuclear weapons could be used to include a wider range of conflict types and a larger spectrum of attackers; and (3) Russia's threats changed to reflect its latest fear of engaging in a limited conflict with no prospect of the use of nuclear deterrence. In 2006, the defense minister and deputy prime minister Sergei Ivanov announced that the government was starting on a draft of a future doctrine. Four years later, in 2010, the Military Doctrine of the Russian Federation was put into effect with the intent of determining Russian doctrine until 2020. The 2010 doctrine, like all previous doctrines, was a product of the times in which it was written. Gone were many of the fears that had followed Russia for the past two decades. Below are an examination of the 2010 definition of doctrine as well as a brief analysis of the 2010 doctrine and its deviations from past doctrines. An overview of the 2010 doctrine is: (1) The new doctrine emphasizes the political centralization of command both in military policy and the use of nuclear weapons; (2) Nuclear doctrine remains the same in many aspects including the retention of first-use; (3) At the same time, doctrine was narrowed to using nuclear weapons only when the Russian state's existence is in danger; to continue strong deterrence, Russia also opted to follow the United States by introducing precision conventional weapons; (4) NATO is defined as Russia's primary external threat because of its increased global presence and its attempt to recruit states that are part of the Russian 'bloc'; and (5) The 2000 doctrine's defensive stance was left out of the doctrine; rumored options for use of nuclear weapons in local wars and in preemptive strikes were also left out.

  12. The Governance of Nuclear Technology

    SciTech Connect (OSTI)

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to be successful. Regaining that consensus on the other hand means alleviating some fundamental insecurity on the part of states, and weakening the hold that terrorist groups have on some state governments. This in turn requires that some fundamental issues be addressed, with recognition that these are part of a suite of complex and dynamic interactions. Among these issues are: How will states provide for their own security and other central interests while preventing further proliferation, protecting against the use of nuclear weapons, and yet allowing for the possible expansion of nuclear power?; How best can states with limited resources to fight terrorist activities and safeguard nuclear materials be assisted in securing their materials and technologies?; What is the future role of international inspections? Does the IAEA remain the right organization to carry out these tasks? If not, what are the desired characteristics of a successor agency and can there be agreement on one?; How confident can we be of nonproliferation as latent nuclear weapon capabilities spread? The policies to address these and other issues must explicitly deal with NPT members who do not observe their obligations; NPT non-members; illicit trade in SNM and weapon technologies and the possibility of a regional nuclear war.

  13. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  14. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  15. Union Carbide's 20 years in nuclear energy, part 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear weapon components." The text of the document continues to highlight Y-12"s history and missions through 1962. I have reproduced the Y-12 portion of publication here...

  16. Y-12 National Security Complex | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Y-12 National Security Complex (Y-12) serves as the nation's only source of enriched uranium nuclear weapons components and provides enriched uranium for the U.S. Navy. Y-12 is a...

  17. United States Nuclear Tests July 1945 through September 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  18. Honoring Nuclear Security Workers on the National Day of Remembrance...

    Broader source: Energy.gov (indexed) [DOE]

    Workers dismantle a remaining B53, ensuring that the system will never again be part of the U.S. nuclear weapons stockpile. | Credit: NNSA photo Workers dismantle a remaining B53, ...

  19. Proceedings of the Tungsten Workshop for Hard Target Weapons Program

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

    1995-06-01

    The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

  20. Audit Report: IG-0484 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IG-0484 Audit Report: IG-0484 September 22, 2000 Management of the Nuclear Weapons Production Infrastructure Since the cessation of underground testing of nuclear weapons in the...

  1. Rocky Flats Overview Aurora History Museum October 16, 2013

    Office of Environmental Management (EM)

    5 Nuclear Weapons Complex Nuclear Weapons Production Processes Step Process Major Sites 1 Uranium Mining, Milling, and Refining Uranium Mill Tailing Remedial Action Project sites,...

  2. Audit Report: IG-0484 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Audit Report: IG-0484 September 22, 2000 Management of the Nuclear Weapons Production Infrastructure Since the cessation of underground testing of nuclear weapons in the early ...

  3. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2010-06-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  4. ORISE: Preparing Nations to Fight Nuclear Smuggling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preventing Nuclear Smuggling Program ORISE helps other nations to fight theft of nuclear materials With the knowledge needed to incorporate radiological materials in an explosive device now widely available and unsecured stockpiles still a reality, nuclear smuggling remains a global security threat. How ORISE is Making a Difference Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal circulation and could be used to kill tens or hundreds of thousands of

  5. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    SciTech Connect (OSTI)

    Dana R. Swalla

    2008-12-31

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation.

  6. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  7. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect (OSTI)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [1].

  8. Security and Use Control of Nuclear Explosives and Nuclear Weapons (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-24

    This draft has been scheduled for final review before the Directives Review Board on 3-5-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 3-3-15.

  9. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on measurements of some of the nuclear reaction probabilities that are important to nuclear astrophysics, the field that relates energy production and nucleosynthesis from nuclear reactions in stars and in the Big Bang to the environments in which those nuclear reactions occur. NIF, unlike previous nuclear-physics facilities, will enable measurements of nuclear reactions at the temperatures, densities, and ionization states similar to those that occur in stars.

  10. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.

  11. Microsoft PowerPoint - 1-Mike Grauwelman's presentation - 5.20...

    Office of Legacy Management (LM)

    ... DEVELOPMENT Mound Employee Startup Markets Fuel Cells Nuclear Energy Weapons Production Mound Technical Solutions ......Hydrogen ...

  12. Reevaluating nuclear safety and security in a post 9/11 era.

    SciTech Connect (OSTI)

    Booker, Paul M.; Brown, Lisa M.

    2005-07-01

    This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    FOR IMMEDIATE RELEASE March 14, 2001 NNSA Organizational Redress Strengthens Path Forward John A. Gordon, Administrator for the National Nuclear Security Administration (NNSA) announced today his plan for organizing the NNSA within the U.S. Department of Energy. The planned actions will improve performance of the core mission to strengthen national security and reduce the global threat from weapons of mass destruction through applications of science and technology. The Administration celebrated

  14. Simultaneous separation of cesium and strontium from spent nuclear fuel using the fission-product extraction process

    SciTech Connect (OSTI)

    Law, J.D.; Peterman, D.R.; Riddle, C.L.; Meikrantz, D.A.; Todd, T.A.

    2008-07-01

    The Fission-Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Global Nuclear Energy Partnership (GNEP) for the simultaneous separation of cesium and strontium from spent LWR fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository and, when combined with the separation of Am and Cm, could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly-specific extractants: 4,4',(5')-di-(t-butyl-dicyclohexano)- 18-crown-6 (DtBuCH18C6) and calix[4]arene-bis-(t-octyl-benzo-crown-6 ) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium, and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with simulated and actual spent-nuclear-fuel feed solution in centrifugal contactors are detailed. Removal efficiencies, co-extraction of metals, and process hydrodynamic performance ar e discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel. Recent advances in the evaluation of alternative calixarenes with increased solubility and stability are also detailed. (authors)

  15. Physical protection technologies for the reconfigured weapons complex

    SciTech Connect (OSTI)

    Jaeger, C.D.

    1994-08-01

    Sandia National Laboratories was a memtier of the Weapons Complex Reconfiguration (WCR) Safeguards and Security (S&S) team providing assistance to the Department of Energy`s (DOE) Office of Weapons Complex Reconfigaration. New and improved S&S concepts, approaches and technologies were needed to support both new and upgraded facilities. Physical protection technologies used in these facilities were to use proven state-of-the-art systems in such areas as image processing, alarm communications and display, entry control, contraband detection, intrusion detection and video assessment, access delay, automation and robotics, and various insider protection systems. Factors considered in the selection of these technologies were protection against the design basis threat, reducing S&S life-cycle costs, automation of S&S functions to minimize operational costs, access to critical assets and exposure of people to hazardous environments, increasing the amount of delay to an outsider adversary and having reliable and maintainable systems. This paper will discuss the S&S issues, requirements, technology opportunities and needs. Physical protection technologies and systems considered in the design effort of the Weapons Complex Reconfiguration facilities will be reviewed.

  16. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia

    2014-05-09

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  17. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Energy Savers [EERE]

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  18. Microsoft Word - N01716_4_5Acre Dec - May 2012 FINAL DRAFT.doc

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  19. Pinellas 4.5 Acre Site Semiannual Progress Report for December...

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  20. Microsoft Word - N01797_4_5Acre Semiannual.doc

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  1. Microsoft Word - N01844_4_5Acre Semiannual june_nov13.docx

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  2. Microsoft Word - N01550_4_5Acre_Jun-Nov 2010 final draft

    Office of Legacy Management (LM)

    ... The facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related components ceased ...

  3. Microsoft Word - N01687_4_5Acre June - Nov 2011

    Office of Legacy Management (LM)

    ... The facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related components ceased ...

  4. Microsoft Word - N01514_4 5Acre Dec09-May10.doc

    Office of Legacy Management (LM)

    ... The facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related components ceased ...

  5. Microsoft Word - N01629_4_5Acre_Dec-May 2011

    Office of Legacy Management (LM)

    ... The facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related components ceased ...

  6. Microsoft Word - N01765_4_5 Acre semiannual june-nov 2012.doc

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  7. Microsoft Word - N01994_4_5AcreSemiannual_Dec14-May15.docx

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  8. Semiannual Progress Report for the 4.5 Acre Site June Through...

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  9. Microsoft Word - N01963_4_5Acre Semiannual June-Nov14_final draft...

    Office of Legacy Management (LM)

    ... The Pinellas Plant facility was constructed in the mid-1950s as part of a nationwide nuclear weapons research, development, and production complex. Production of weapons-related ...

  10. Innovation in Nuclear Technology for the Least Product Price and Cost

    SciTech Connect (OSTI)

    Duffey, Romney

    2003-09-01

    In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

  11. U.S. and Russian Collaboration in the Area of Nuclear Forensics

    SciTech Connect (OSTI)

    Kristo, M J

    2007-10-22

    Nuclear forensics has become increasingly important in the fight against illicit trafficking in nuclear and other radioactive materials. The illicit trafficking of nuclear materials is, of course, an international problem; nuclear materials may be mined and milled in one country, manufactured in a second country, diverted at a third location, and detected at a fourth. There have been a number of articles in public policy journals in the past year that call for greater interaction between the U. S. and the rest of the world on the topic of nuclear forensics. Some believe that such international cooperation would help provide a more certain capability to identify the source of the nuclear material used in a terrorist event. An improved international nuclear forensics capability would also be important as part of the IAEA verification toolkit, particularly linked to increased access provided by the additional protocol. A recent study has found that, although international progress has been made in securing weapons-usable HEU and Pu, the effort is still insufficient. They found that nuclear material, located in 40 countries, could be obtained by terrorists and criminals and used for a crude nuclear weapon. Through 2006, the IAEA Illicit Trafficking Database had recorded a total of 607 confirmed events involving illegal possession, theft, or loss of nuclear and other radioactive materials. Although it is difficult to predict the future course of such illicit trafficking, increasingly such activities are viewed as significant threats that merit the development of special capabilities. As early as April, 1996, nuclear forensics was recognized at the G-8 Summit in Moscow as an important element of an illicit nuclear trafficking program. Given international events over the past several years, the value and need for nuclear forensics seems greater than ever. Determining how and where legitimate control of nuclear material was lost and tracing the route of the material from diversion through interdiction are important goals for nuclear forensics and attribution. It is equally important to determine whether additional devices or materials that pose a threat to public safety are also available. Finding the answer to these questions depends on determining the source of the material and its method of production. Nuclear forensics analysis and interpretation provide essential insights into methods of production and sources of illicit radioactive materials. However, they are most powerful when combined with other sources of information, including intelligence and traditional detective work. The certainty of detection and punishment for those who remove nuclear materials from legitimate control provides the ultimate deterrent for such diversion and, ultimately, for the intended goal of such diversion, including nuclear terrorism or proliferation. Consequently, nuclear forensics is an integral part of 'nuclear deterrence' in the 21st century. Nuclear forensics will always be limited by the diagnostic information inherent in the interdicted material. Important markers for traditional forensics (fingerprints, stray material, etc.) can be eliminated or obscured, but many nuclear materials have inherent isotopic or chemical characteristics that serve as unequivocal markers of specific sources, production processes, or transit routes. The information needed for nuclear forensics goes beyond that collected for most commercial and international verification activities. Fortunately, the international nuclear engineering enterprise has a restricted number of conspicuous process steps that makes the interpretation process easier. Ultimately, though, it will always be difficult to distinguish between materials that reflect similar source or production histories, but are derived from disparate sites. Due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. There are a limited number of

  12. Unclassified Controlled Nuclear Information (UCNI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Controlled Nuclear Information (UCNI) Unclassified Controlled Nuclear Information (UCNI) Welcome to the Unclassified Controlled Nuclear Information (UCNI) webpage. This page is designed to provide information, answer questions, and provide a point of contact for UCNI inquiries. UCNI is certain unclassified information about nuclear facilities and nuclear weapons that must be controlled because its unauthorized release could have a significant adverse effect on the national security

  13. 2006 Department of Energy Strategic Plan - Ensuring America's nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    security | Department of Energy 06 Department of Energy Strategic Plan - Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence

  14. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    SciTech Connect (OSTI)

    Collins, Robert T; Collins, Jack Lee; Hunt, Rodney Dale; Ladd-Lively, Jennifer L; Patton, Kaara K; Hickman, Robert

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  15. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect (OSTI)

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  16. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect (OSTI)

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10m x 10m) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  17. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  18. From Glimmer to Fireball: Photographing Nuclear Detonations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Glimmer to Fireball National Security Science Latest Issue:July 2015 past issues All Issues » submit From Glimmer to Fireball: Photographing Nuclear Detonations How do you photograph a nuclear explosion? From a distance (!) photographers used remote-controlled high-speed cameras to capture the first milliseconds of detonation, which provided key data on the weapon's yield. July 1, 2015 From Glimmer to Fireball: Photographing Nuclear Detonations While EG&G was responsible for scientific

  19. Nuclear Deterrence | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deterrence Nuclear Deterrence Y-12's core mission is to ensure a safe, secure, and reliable U.S. nuclear deterrent, which is essential to national security. Every weapon in the U.S. nuclear stockpile has components manufactured, maintained or ultimately dismantled by Y-12, the nation's Uranium Center of Excellence. We employ only the most advanced and failsafe technologies to protect the stockpile

  20. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Maintaining the Stockpile Maintaining the Stockpile NNSA Hosts NPT Parties at Los Alamos and Sandia National Laboratories WASHINGTON D.C. - On March 25-27, 2015, the National Nuclear Security Administration (NNSA) hosted representatives from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Flight Test of Weapons System Body by Navy Successful Third Flight Demonstrated Dynamics and Functional Performance in Flight EnvironmentWASHINGTON, D.C. - The National Nuclear Security

  1. Defining nuclear security in the 21st century

    SciTech Connect (OSTI)

    Doyle, James E

    2009-01-01

    A conference devoted to Reducing the Risks from Radioactive and Nuclear Materials presupposes that such risks exist. Few would disagree, but what are they? While debate on the nature and severity of risks associated with nuclear energy will always remain, it is easy to define a set of risks that are almost universally acknowledged. These include: (1) Nuclear warfare between states; (2) Continued proliferation of nuclear weapons and weapons-grade nuclear materials to states and non-state actors; (3) Terrorists or non-state actor acquisition or use nuclear weapons or nuclear materials; (4) Terrorists or non-state actors attack on a nuclear facility; and (5) Loss or diversion of nuclear weapons or materials by a state to unauthorized uses. These are listed in no particular order of likelihood or potential consequence. They are also very broadly stated, each one could be broken down into a more detailed set of discrete risks or threats. The fact that there is a strong consensus on the existence of these risks is evidence that we remain in an era of nuclear insecurity. This becomes even clearer when we note that most major trends influencing the probability of these risks continue to run in a negative direction.

  2. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E.; Meisel, D.

    1992-07-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  3. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. ); Meisel, D. )

    1992-01-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  4. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  5. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

  6. Nuclear deterrence in South Asia

    SciTech Connect (OSTI)

    Hagerty, D.T.

    1995-12-31

    Did India and Pakistan nearly fight a nuclear war in 1990? In a provocative 1993 article, Seymour M. Hersh claims that they did. During a crisis with India over the rapidly escalating insurgency in Kashmir, Pakistan openly deployed its main armored tank units along the Indian border and, in secret, placed its nuclear-weapons arsenal on alert. As a result, the Bush Administration became convinced that the world was on the edge of a nuclear exchange between Pakistan and India. Universe of cases is admittedly small, but my argument is supported by recent research indicating that preemptive attacks of any kind have been historically rarer than conventionally believed. The nuclear era has seen two instances of preventive attacks against nuclear facilities-the 1981 Israeli bombing of Iraq`s Osirak nuclear facility and the allied coalition`s 1991 air war against Iraq-but both of these actions were taken without fear of nuclear reprisal. In situations where nuclear retaliation has been a possibility, no leader of nuclear weapon state has chosen to launch a preemptive first strike. 97 refs.

  7. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  8. Navy's Superlaser Is More Than a Weapon (Wired.com) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wired.com/dangerroom/2010/11/navys-super-laser-wont-just-be-a-weapon/ Submitted: Wednesday, November 10, 2010

  9. Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... This would encompass explosives of the chemical type and materials that would be used in manufacturing nuclear weapons as well. It can sense heavy metals as well as light elements ...

  10. Seaborne Delivery Interdiction of Weapons of Mass Destruction (WMD)

    SciTech Connect (OSTI)

    Glauser, H

    2011-03-03

    Over the next 10-20 years, the probability of a terrorist attack using a weapon of mass destruction (WMD) on the United States is projected to increase. At some point over the next few decades, it may be inevitable that a terrorist group will have access to a WMD. The economic and social impact of an attack using a WMD anywhere in the world would be catastrophic. For weapons developed overseas, the routes of entry are air and sea with the maritime vector as the most porous. Providing a system to track, perform a risk assessment and inspect all inbound marine traffic before it reaches US coastal cities thereby mitigating the threat has long been a goal for our government. The challenge is to do so effectively without crippling the US economy. The Portunus Project addresses only the maritime threat and builds on a robust maritime domain awareness capability. It is a process to develop the technologies, policies and practices that will enable the US to establish a waypoint for the inspection of international marine traffic, screen 100% of containerized and bulk cargo prior to entry into the US if deemed necessary, provide a palatable economic model for transshipping, grow the US economy, and improve US environmental quality. The implementation strategy is based on security risk, and the political and economic constraints of implementation. This article is meant to provide a basic understanding of how and why this may be accomplished.

  11. Multiple hadron production by 14. 5 GeV electron and positron scattering from nuclear targets

    SciTech Connect (OSTI)

    Degtyarenko, P.V.; Button-Shafer, J.; Elouadrhiri, L.; Miskimen, R.A.; Peterson, G.A.; Wang, K. ); Gavrilov, V.B.; Kossov, M.V.; Leksin, G.A.; Shuvalov, S.M. ); Dietrich, F.S.; Melnikoff, S.O.; Molitoris, J.D.; Bibber, K.V. )

    1994-08-01

    Multiple proton and pion electroproduction from nuclei are studied. Final states including at least two protons produced by the interaction of 14.5 GeV electrons and positrons with light nuclei (mainly [sup 12]C and [sup 16]O) have been measured, and compared with analogous data from [sup 40]Ar. Scattered electrons and positrons were detected in the energy transfer range from 0.2 to 12.5 GeV, and four-momentum transfer squared range from 0.1 to 5.0 GeV[sup 2]/[ital c][sup 2]. Phenomenological characteristics of the secondary hadron production cross sections such as temperature and velocity of the effective source of hadrons were found to be dependent on energy transfer to the nucleus and independent on the four-momentum transfer squared at energy transfers greater than 2 GeV.

  12. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect (OSTI)

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  13. British nuclear policymaking

    SciTech Connect (OSTI)

    Bowie, C.J.; Platt, A.

    1984-01-01

    This study analyzes the domestic political, economic, and bureaucratic factors that affect the nuclear policymaking process in Great Britain. Its major conclusion is that, although there have been changes in that process in recent years (notably the current involvement of a segment of the British public in the debate about the deployment of intermediate-range nuclear forces), future British nuclear policymaking will remain much what it has been in the past. Three ideas are central to understanding British thinking on the subject: (1) Britain's long-standing resolve to have her own national nuclear force is largely traceable to her desire to maintain first-rank standing among the nations of the world in spite of loss of empire. (2) Financial considerations have always been important--so much so that they have usually dominated issues of nuclear policy. (3) The executive branch of government dominates the nuclear policymaking process but does not always present a united front. The United States heavily influences British nuclear policy through having supplied Britain since the late 1950s with nuclear data and components of nuclear weapon systems such as Polaris and Trident. The relationship works both ways since the U.S. depends on Britain as a base for deployment of both conventional and nuclear systems.

  14. Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the

    Office of Scientific and Technical Information (OSTI)

    BIE) (Conference) | SciTech Connect Conference: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Citation Details In-Document Search Title: Nuclear stockpile stewardship and Bayesian image analysis (DARHT and the BIE) Since the end of nuclear testing, the reliability of our nation's nuclear weapon stockpile has been performed using sub-critical hydrodynamic testing. These tests involve some pretty 'extreme' radiography. We will be discussing the challenges and

  15. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  16. Moving Toward a Peaceful Nuclear Future | Department of Energy

    Office of Environmental Management (EM)

    Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear

  17. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most dont really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  18. National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF

    National Nuclear Security Administration (NNSA)

    To develop and evaluate methodologies and technologies to verify potential nuclear weapon treaties, in support of shared U.S.-U.K. commitment to Article VI of the Nuclear Non-Proliferation Treaty. iii Table of Contents Overview ............................................................................................. 1 Lessons Learned ................................................................................... 2 Applicability to International Community

  19. Nuclear Workforce Initiative - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear Nuclear Workforce Initiative The SRSCRO region of Georgia and South Carolina has the most unique nuclear industry capabilities in the nation. This region is at the forefront of new nuclear power production, environmental stewardship, innovative technology and national security. Long-term nuclear workforce demand is growing in the region as new nuclear reactors are under construction at the V.C Summer Nuclear Station in Fairfield County, SC and at Plant Vogtle in Waynesboro, GA. New

  20. Detection and treatment of chemical weapons and/or biological pathogens

    DOE Patents [OSTI]

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a ...

  2. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    SciTech Connect (OSTI)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  3. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    SciTech Connect (OSTI)

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  4. United States, International Partners Remove Last Remaining Weapons...

    Broader source: Energy.gov (indexed) [DOE]

    on a broad range of nuclear security and nonproliferation activities. These include border security and export control cooperation, safeguards information management, and...

  5. Independent Oversight Review, National Nuclear Security Administration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Oversight Review, National Nuclear Security Administration Production Office - February 2014 February 2014 Review of the National Nuclear Security Administration ...

  6. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2011-12-05

    Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

  7. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

  8. VT Nuclear Services ltd | Open Energy Information

    Open Energy Info (EERE)

    VT Nuclear Services ltd Jump to: navigation, search Name: VT Nuclear Services ltd Place: Warrington, United Kingdom Zip: WA4 4BP Sector: Services Product: VT Nuclear Services...

  9. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  10. Nuclear matter effects on J/? production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    SciTech Connect (OSTI)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csand, M.; Csrg?, T.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E. -J.; Kim, H. -J.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slune?ka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vrtesi, R.; Virius, M.; Vrba, V.

    2014-12-18

    We report on J/? production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/? yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/? production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

  11. Life Extension Programs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Life Extension Programs Life Extension Programs NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Sandia California works on nuclear weapon W80-4 Life Extension Program The W80-4 mechanical team at Sandia National Laboratories reviews the

  12. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel at the time of venting but not as yet observed and reported within environmental samples are suggested as potential analytes of concern for future environmental surveys around the site.

  13. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect (OSTI)

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  14. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  15. Quality at Y-12, part 2Or: Looking at Y-12 weapons quality ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality at Y-12, part 2 Or: Looking at Y-12 weapons quality (title as it appeared in The Oak Ridger) Thanks to Ken Bernander and Bud Leete we continue with the history of Quality...

  16. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    SciTech Connect (OSTI)

    Pruet, J; Lange, D

    2007-01-03

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons.

  17. NSO Explores Closure Options for Historic Nuclear Testing Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSO Explores Closure Options for Historic Nuclear Testing Locations Recent environmental restoration work at the Nevada National Security Site (NNSS) focuses on a number of locations that played a part in nuclear weapons testing programs of the 1950s and 60s. Cleanup experts are challenged with studying the nature and extent of the contamination in these areas and implementing the most suitable closure strategies. In the past two years, the U.S Department of Energy, National Nuclear Security

  18. H. R. 3532: This act may be cited as the Nuclear Regulatory Commission Authorization Act for Fiscal Year 1999. Introduced in the House of Representatives, One Hundred Fifth Congress, Second Session, March 24, 1998

    SciTech Connect (OSTI)

    Not Available

    1998-03-24

    This bill authorizes appropriations for the Nuclear Regulatory Commission for fiscal year 1999. It is divided into the following sections: Section 1. Short title; Section 102. Allocation of amounts authorized; Section 103. Retention of funds; Section 104. Transfer of certain funds; Section 105. Limitation; Section 106. License fee exemption; Section 107. NRC user fees and actual charges. Section 201. Office location; Section 202. Period of a combined license; Section 203. Gift acceptance authority; Section 204. Carrying of firearms by licensee employees; Section 205. Sabotage of production, utilization or waste storage facilities under construction; Section 206. Unauthorized introduction of dangerous weapons; and Section 207. Continuation of Commissioner service.

  19. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect (OSTI)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  20. Enforcement Guidance Supplement 01-01, Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

  1. Enforcement Guidance Supplement 01-01, Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

  2. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Defense (DoD), to protect the public health and safety by providing dual-agency judgment and responsibility for the safety, security, and use control (surety)...

  3. AIM-98-3464 RECEIVED THE HISTORY OF NUCLEAR WEAPON SAFETY DEVICES

    Office of Scientific and Technical Information (OSTI)

    ... and employs a wide material base of metals and plastics. ... International Mechanical Engineering Congress and Exposition, Proc. of the ASME Aerospace Division, November 17-22, ...

  4. Detecting terrorist nuclear weapons at sea: The 10th door problem

    SciTech Connect (OSTI)

    Slaughter, D R

    2008-09-15

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platforms that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.

  5. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying...

  6. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris

    SciTech Connect (OSTI)

    Faye, S A; Shaughnessy, D A

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced.

  7. Los Alamos National Laboratory names new leadership for Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As Operations leader, Leasure will work to enable mission delivery through driving productivity and innovation in all aspects of operations, business systems, and...

  8. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material

  9. The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nonproliferation | Department of Energy Nuclear Nonproliferation The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation comprises SEAB members and individuals with expertise and experience in the technologies, institutions, and policy issues associated with curbing the proliferation of nuclear weapons and the materials, technologies, and expertise associated with them. The Task

  10. Soviet short-range nuclear forces: flexible response or flexible aggression. Student essay

    SciTech Connect (OSTI)

    Smith, T.R.

    1987-03-23

    This essay takes a critical look at Soviet short-range nuclear forces in an effort to identify Soviet capabilities to fight a limited nuclear war with NATO. From an analysis of Soviet military art, weapon-system capabilities and tactics, the author concludes that the Soviets have developed a viable limited-nuclear-attack option. Unless NATO reacts to this option, the limited nuclear attack may become favored Soviet option and result in the rapid defeat of NATO.

  11. When Sukamo sought the bomb: Indonesian nuclear aspirations in the mid-1960s

    SciTech Connect (OSTI)

    Cornejo, R.M.

    1999-03-01

    Proponents of nuclear nonproliferation, such as the United States, seek to develop policies that address the root causes of nuclear proliferation. The discipline of international relations aids in this effort by providing theories that attempt to explain why states choose to build nuclear weapons. Most theories simplify the process of proliferation by using only one of three generally accepted explanations: security, domestic politics, or norms. The case of Indonesia, however, illustrates that proliferation is best explained by investigating all three dimensions as well as the role of technology. This thesis evaluates competing theories of nuclear proliferation using a historical case study of Indonesia's aspirations to acquire nuclear weapons during 1964--1965, and supports the view that multiple variables are necessary to explain the spread of nuclear weapons. As evidence, this thesis examines Indonesian President Sukamo's little-known nuclear aspirations in the mid-1960s. Although Sukamo was ultimately unsuccessful in his effort to acquire atomic weapons, his decision to seek them was influenced by a variety of factors that included Indonesia's security needs, domestic political considerations, norms, and available nuclear energy technology.

  12. CIA sheds new light on nuclear control in CIS

    SciTech Connect (OSTI)

    Lockwood, D.

    1993-03-01

    In a wide-ranging presentation to the Senate Governmental Affairs Committee February 24, 1993, newly installed CIA director James Woolsey and one of his senior aides provided a great deal of new information on nuclear weapons issues and how they are controlled in the former USSR. The main topics covered in the briefing are briefly discussed.

  13. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  14. Sandia National Laboratories: News: Publications: Labs Accomplishments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities; governance, management, and leadership; materials; military programs; microelectronics and microsystems; nuclear weapons engineering; product realization; partnerships...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    radiation chemistry, radiochemistry, and nuclear chemistry (6) silicones (6) molecular ... Compounds Related to Chemical Weapons Agents and their Degradation Products ...

  16. Laboratory Directed Research and Development (LDRD) | U.S. DOE...

    Office of Science (SC) Website

    its energy, environmental, and nuclear challenges through transformative science ... accounting report of LDRD expenditures by laboratory and weapons production plant. ...

  17. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  18. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Programs / Research, Development, Test, and Evaluation / Research and Development Research and Development Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Mission Ensure the safety, security, and effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous international collaborations. The Office of Research and Development is responsible for managing the

  19. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Locations / Savannah River Site Savannah River Site NNSA operates facilities at the Savannah River Site (SRS) to supply and process tritium, a radioactive form of hydrogen that is a vital component of nuclear weapons. SRS loads tritium and non-tritium reservoirs; including reclamation of previously used tritium reservoirs, receipt, packing and shipping of reservoirs; recycling, extraction, and enrichment of tritium gas and laboratory operations. SRS also plays a critical role in NNSA's

  20. Status of Iran's nuclear program and negotiations

    SciTech Connect (OSTI)

    Albright, David

    2014-05-09

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a far more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program.