Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Linking Legacies: Connecting the Cold War Nuclear Weapons Production...  

Energy Savers [EERE]

Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons...

2

Linking Legacies: Connecting the Cold War Nuclear Weapons Production...  

Broader source: Energy.gov (indexed) [DOE]

prior to 1992 as a result of weapons production. Linking Legacies - Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences More Documents...

3

Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences  

SciTech Connect (OSTI)

In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

NONE

1997-01-01T23:59:59.000Z

4

Nuclear weapons modernizations  

SciTech Connect (OSTI)

This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

2014-05-09T23:59:59.000Z

5

The gas centrifuge and nuclear weapons proliferation  

SciTech Connect (OSTI)

Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

2014-05-09T23:59:59.000Z

6

Identification of nuclear weapons  

DOE Patents [OSTI]

A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

Mihalczo, J.T.; King, W.T.

1987-04-10T23:59:59.000Z

7

Sandia starts silicon wafer production for three nuclear weapon programs |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScienceProgramsSANDCurrentNational Nuclear Security

8

Nuclear Weapons Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguardsResearchNuclear Weapons

9

Security and Use Control of Nuclear Explosives and Nuclear Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

10

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Broader source: Energy.gov (indexed) [DOE]

Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's...

11

Control of Nuclear Weapon Data  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Cancels DOE O 5610.2.

2011-07-21T23:59:59.000Z

12

Nuclear Weapons Complex reconfiguration study  

SciTech Connect (OSTI)

Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

Not Available

1991-01-01T23:59:59.000Z

13

Sandia's Nuclear Weapons Mission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwindBRUSandia's Nuclear

14

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2014-08-05T23:59:59.000Z

15

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

16

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

17

Toward a nuclear weapons free world?  

SciTech Connect (OSTI)

Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

1996-09-01T23:59:59.000Z

18

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Energy Savers [EERE]

Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

19

Laboratory's role in Cold War nuclear weapons testing program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

20

Passing good judgment, part 1: weapons designers with nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 All Issues submit Passing good judgment, part 1: weapons designers with nuclear testing experience The nuclear weapons designers who developed their skills during...

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

Bergren, C.; Flora, M.; Belencan, H.

2010-11-17T23:59:59.000Z

22

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

Bergren, C

2009-01-16T23:59:59.000Z

23

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

24

DOE's Former Rocky Flats Weapons Production Site to Become National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

25

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

2009-05-14T23:59:59.000Z

26

Security and Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

2001-12-17T23:59:59.000Z

27

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

28

A thousand suns : political motivations for nuclear weapons testing .  

E-Print Network [OSTI]

??Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are… (more)

Raas, Whitney

2006-01-01T23:59:59.000Z

29

Managing nuclear weapons in the United States  

SciTech Connect (OSTI)

This report discusses the management and security of nuclear weapons in the post-cold war United States. The definition of what constitutes security is clearly changing in the US. It is now a much more integrated view that includes defense and the economy. The author tries to bring some semblance of order to these themes in this brief adaptation of a presentation.

Miller, G.

1993-03-16T23:59:59.000Z

30

The monitoring and verification of nuclear weapons  

SciTech Connect (OSTI)

This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

2014-05-09T23:59:59.000Z

31

Nuclear weapons and NATO-Russia relations  

SciTech Connect (OSTI)

Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountability and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.

Cornwell, G.C.

1998-12-01T23:59:59.000Z

32

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

33

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

34

Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...  

National Nuclear Security Administration (NNSA)

Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

35

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons  

E-Print Network [OSTI]

is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

36

The US nuclear weapon infrastructure and a stable global nuclear weapon regime  

SciTech Connect (OSTI)

US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

37

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

2006-10-19T23:59:59.000Z

38

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

2010-01-22T23:59:59.000Z

39

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

2014-11-19T23:59:59.000Z

40

Uranium Weapons Components Successfully Dismantled | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM withSecurity Administration Weapons

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A thousand suns : political motivations for nuclear weapons testing  

E-Print Network [OSTI]

Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are far from easy to bear, however: economic sanctions can be crippling ...

Raas, Whitney

2006-01-01T23:59:59.000Z

42

Gordon Assesses Security At Nuclear Weapons Complex News.....  

National Nuclear Security Administration (NNSA)

Anson Franklin, 202586-7371 September 21, 2001 NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex John Gordon, Administrator of the Department of Energy's...

43

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...  

Office of Environmental Management (EM)

This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01:...

44

atmospheric nuclear weapon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coles, Taylor Marie 2014-04-27 26 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

45

america nuclear weapons: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power plant Laughlin, Robert B. 27 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

46

atmospheric nuclear weapons: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coles, Taylor Marie 2014-04-27 26 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

47

Nuclear energy in a nuclear weapon free world  

SciTech Connect (OSTI)

The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

Pilat, Joseph [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

48

Constraining potential nuclear-weapons proliferation from civilian reactors  

SciTech Connect (OSTI)

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

49

UN Security Council: Iran violating ban on nuclear weapons programs  

E-Print Network [OSTI]

UN Security Council: Iran violating ban on nuclear weapons programs 7 September 2011 Denouncement comes after International Atomic Energy Agency submits a report claiming Iran continues to make advances weaponization of its nuclear program. The United States, Germany, France and Britain joined forces in exposing

50

Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it  

SciTech Connect (OSTI)

In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

NONE

1996-01-01T23:59:59.000Z

51

Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects  

E-Print Network [OSTI]

The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

Gsponer, A

2005-01-01T23:59:59.000Z

52

An assessment of North Korea's nuclear weapons capabilities  

E-Print Network [OSTI]

In February of 2013, North Korea conducted its third nuclear weapons test. Speculations are that this test was conducted to further develop a warhead small enough to fit on an intercontinental ballistic missile. This test ...

Sivels, Ciara (Ciara Brooke)

2013-01-01T23:59:59.000Z

53

Briefing, Classification of Nuclear Weapons-Related Information- June 2014  

Broader source: Energy.gov [DOE]

This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

54

Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets  

E-Print Network [OSTI]

), whereas that used in an FBR blanket fuel is depleted uranium (0.25 atom percent 235U). The energy production in the FBR core is from the seed fuel subassemblies containing mixed oxides (MOX) of PuO2 and UO2. A plot of fast and thermal neutron energy... of the program involves a fleet of fast breeder reactors. The stage two fast breeder reactors, beginning with the PFBR, will be fueled with reactor-grade plutonium and depleted uranium from the reprocessed spent fuel of stage one reactors and will breed more...

Osborn, Jeremy

2014-08-13T23:59:59.000Z

55

The role of nuclear weapons in the year 2000  

SciTech Connect (OSTI)

This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

Not Available

1990-01-01T23:59:59.000Z

56

The Meteorological Monitoring program at a former nuclear weapons plant  

SciTech Connect (OSTI)

The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

Maxwell, D.R.; Bowen, B.M.

1994-02-01T23:59:59.000Z

57

Managing nuclear weapons in a changing world: Proceedings  

SciTech Connect (OSTI)

The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

Not Available

1992-12-31T23:59:59.000Z

58

Nuclear dependence| The Russian Federation's future reliance on nuclear weapons for national security.  

E-Print Network [OSTI]

?? The Russian Federation's reliance on nuclear weapons for national security will steadily increase over time. Based on current evidence and historical data, the Russian… (more)

Lukszo, Adam J.

2011-01-01T23:59:59.000Z

59

An analysis of technical and policy drivers in Current U.S. nuclear weapons force structure  

E-Print Network [OSTI]

U.S. nuclear weapons force structure accounts for the number and types of strategic and nonstrategic weapon systems in various locations that comprise the nuclear arsenal. While exact numbers, locations, and detailed designs ...

Baker, Amanda, S. B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

60

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

2001-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

1997-01-17T23:59:59.000Z

62

Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

2009-04-14T23:59:59.000Z

63

EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri  

Broader source: Energy.gov [DOE]

Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

64

Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities  

SciTech Connect (OSTI)

Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

1999-11-14T23:59:59.000Z

65

Debunking Six Big Myths about Nuclear Weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is

66

Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?  

SciTech Connect (OSTI)

In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

67

Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2  

E-Print Network [OSTI]

is the belief that the possession of nuclear weapons will improve its security. Nothing that the United States1 Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2] The end of the Cold War changed "the balance of nuclear terror" and with it the centrality of nuclear forces in U

Deutch, John

68

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclear Weapons and Global

69

Sandia National Laboratories: National Security Missions: Nuclear Weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms Nuclear Weapons Stockpile Stewardship

70

Sandia National Laboratories: National Security Missions: Nuclear Weapons:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms Nuclear Weapons Stockpile

71

Sandia National Laboratories: National Security Missions: Nuclear Weapons:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms Nuclear Weapons StockpileSafety &

72

National Certification Methodology for the Nuclear Weapons Stockpile  

SciTech Connect (OSTI)

Lawrence Livermore and Los Alamos National Laboratories have developed a common framework and key elements of a national certification methodology called Quantification of Margins and Uncertainties (QMU). A spectrum from senior managers to weapons designers has been engaged in this activity at the two laboratories for on the order of a year to codify this methodology in an overarching and integrated paper. Following is the certification paper that has evolved. In the process of writing this paper, an important outcome has been the realization that a joint Livermore/Los Alamos workshop on QMU, focusing on clearly identifying and quantifying differences between approaches between the two labs plus developing an even stronger technical foundation on methodology, will be valuable. Later in FY03, such a joint laboratory workshop will be held. One of the outcomes of this workshop will be a new version of this certification paper. A comprehensive approach to certification must include specification of problem scope, development of system baseline models, formulation of standards of performance assessment, and effective procedures for peer review and documentation. This document concentrates on the assessment and peer review aspects of the problem. In addressing these points, a central role is played by a 'watch list' for weapons derived from credible failure modes and performance gate analyses. The watch list must reflect our best assessment of factors that are critical to weapons performance. High fidelity experiments and calculations as well as full exploitation of archival test data are essential to this process. Peer review, advisory groups and red teams play an important role in confirming the validity of the watch list. The framework for certification developed by the Laboratories has many basic features in common, but some significant differences in the detailed technical implementation of the overall methodology remain. Joint certification workshops held in June and December of 2001 and continued in 2002 have proven useful in developing the methodology, and future workshops should prove useful in further refining this framework. Each laboratory developed an approach to certification with some differences in detailed implementation. The general methodology introduces specific quantitative indicators for assessing confidence in our nuclear weapon stockpile. The quantitative indicators are based upon performance margins for key operating characteristics and components of the system, and these are compared to uncertainties in these factors. These criteria can be summarized in a quantitative metric (for each such characteristic) expressed as: (i.e., confidence in warhead performance depends upon CR significantly exceeding unity for all these characteristics). These Confidence Ratios are proposed as a basis for guiding technical and programmatic decisions on stockpile actions. This methodology already has been deployed in certifying weapons undergoing current life extension programs or component remanufacture. The overall approach is an adaptation of standard engineering practice and lends itself to rigorous, quantitative, and explicit criteria for judging the robustness of weapon system and component performance at a detailed level. There are, of course, a number of approaches for assessing these Confidence Ratios. The general certification methodology was publicly presented for the first time to a meeting of Strategic Command SAG in January 2002 and met with general approval. At that meeting, the Laboratories committed to further refine and develop the methodology through the implementation process. This paper reflects the refinement and additional development to date. There will be even further refinement at a joint laboratory workshop later in FY03. A common certification methodology enables us to engage in peer reviews and evaluate nuclear weapon systems on the basis of explicit and objective metrics. The clarity provided by such metrics enables each laboratory and our common customers to understand the meaning and logic

Goodwin, B T; Juzaitis, R J

2006-08-07T23:59:59.000Z

73

EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

74

Regime Security Theory: Why Do States With No Clear Strategic Security Concerns Obtain Nuclear Weapons? .  

E-Print Network [OSTI]

??Current realist explanations of why states decide to develop nuclear weapons cannot account for the behavior of states that lack a clear strategic threat. An… (more)

Beasley, Matthew

2009-01-01T23:59:59.000Z

75

The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container  

SciTech Connect (OSTI)

This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ``pipe`` containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ``swords into plowshare`` success story.

Floyd, D.; Edstrom, C. [Manufacturing Sciences Corp. (United States); Biddle, K.; Orlowski, R. [BNFL, Inc. (United States); Geinitz, R. [Safe Sites of Colorado, Golden, CO (United States); Keenan, K. [USDOE-RFFO (United States); Rivera, M. [Science Applications International Corp./LATA (United States)

1997-03-01T23:59:59.000Z

76

Implications of a North Korean Nuclear Weapons Program  

SciTech Connect (OSTI)

The Democratic People`s Republic of Korea (DPRK) is one of the Cold War`s last remaining totalitarian regimes. Rarely has any society been as closed to outside influences and so distant from political, economic, and military developments around the globe. In 1991 and in 1992, however, this dictatorship took a number of political steps which increased Pyongyang`s interaction with the outside world. Although North Korea`s style of engagement with the broader international community involved frequent pauses and numerous steps backward, many observers believed that North Korea was finally moving to end its isolated, outlaw status. As the end of 1992 approached, however, delay and obstruction by Pyongyang became intense as accumulating evidence suggested that the DPRK, in violation of the nuclear Non-Proliferation Treaty (NPT), was seeking to develop nuclear weapons. On March 12, 1993, North Korea announced that it would not accept additional inspections proposed by the International Atomic Energy Agency (IAEA) to resolve concerns about possible violations and instead would withdraw from the Treaty. Pyongyang`s action raised the specter that, instead of a last act of the Cold War, North Korea`s diplomatic maneuvering would unravel the international norms that were to be the basis of stability and peace in the post-Cold War era. Indeed, the discovery that North Korea was approaching the capability to produce nuclear weapons suggested that the nuclear threat, which had been successfully managed throughout the Cold War era, could increase in the post-Cold War era.

Lehman, R.F. II

1993-07-01T23:59:59.000Z

77

Plus c`est la meme chose: The future of nuclear weapons in Europe  

SciTech Connect (OSTI)

Since the end of the Cold War, the United States perhaps more than any other nuclear weapon state has deeply questioned the future role of nuclear weapons, both in a strategic sense and in Europe. It is probably the United States that has raised the most questions about the continuing need for and efficacy of nuclear weapons, and has expressed the greatest concerns about the negative consequences of continuing nuclear weapons deployment. In the US, this period of questioning has now come to a pause, if not a conclusion. In late 1994 the United States decided to continue to pursue reductions in numbers of nuclear weapons as well as other changes designed to reduce the dangers associated with the possession of nuclear weapons. But at the same time the US concluded that some number of nuclear forces would continue to be needed for national security for the foreseeable future. These necessary nuclear forces include a continuing but greatly reduced stockpile of nuclear bombs deployed in Europe under NATO`s New Strategic Concept. If further changes to the US position on nuclear weapons in Europe are to occur, it is likely to be after many years, and only in the context of dramatic additional improvements in the political and geo-political climate in and around Europe. The future role of nuclear weapons in Europe, as discussed in this report, depends in part on past and future decisions by the United States. but it must also be noted that other states that deploy nuclear weapons in Europe--Britain, France, and Russia, as well as the NATO alliance--have shown little inclination to discontinue their deployment of such weapons, whatever the United States might choose to do in the future.

Maaranen, S.A.

1996-07-01T23:59:59.000Z

78

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguardsResearchNuclear

79

A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods  

E-Print Network [OSTI]

A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

Sentell, Dennis Shannon, 1971-

2002-01-01T23:59:59.000Z

80

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycle | National

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,# , onLightThe

82

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps|STEMChernobyl Nuclear

83

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

84

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

SciTech Connect (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

85

Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons  

SciTech Connect (OSTI)

The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

Hickman, R.G.; Meier, C.A. (eds.)

1983-01-01T23:59:59.000Z

86

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network [OSTI]

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

87

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network [OSTI]

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

88

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

89

Detection of uranium-based nuclear weapons using neutron-induced fission  

SciTech Connect (OSTI)

Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. [Los Alamos National Lab., NM (United States); Ewing, R.I.; Marlow, K.W. [Sandia National Labs., Albuquerque, NM (United States)

1991-12-01T23:59:59.000Z

90

Detection of uranium-based nuclear weapons using neutron-induced fission  

SciTech Connect (OSTI)

Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. (Los Alamos National Lab., NM (United States)); Ewing, R.I.; Marlow, K.W. (Sandia National Labs., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

91

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect (OSTI)

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

92

Some thoughts on the nonproliferation of nuclear weapons  

SciTech Connect (OSTI)

This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

Krikorian N.H.; Hawkins, H.T.

1996-05-01T23:59:59.000Z

93

DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities  

SciTech Connect (OSTI)

An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

Otey, G.R.

1989-07-01T23:59:59.000Z

94

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment  

SciTech Connect (OSTI)

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

Janeen Denise Robertson

1999-02-01T23:59:59.000Z

95

The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century  

SciTech Connect (OSTI)

In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

Garaizar, X

2010-01-06T23:59:59.000Z

96

Office of Weapons Material Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

97

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Broader source: Energy.gov (indexed) [DOE]

the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In...

98

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

99

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

100

Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing  

SciTech Connect (OSTI)

This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

Miller, G.H.; Brown, P.S.; Alonso, C.T.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak  

SciTech Connect (OSTI)

Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

2003-05-01T23:59:59.000Z

102

NNSA implements nondestructive gas sampling technique for nuclear weapon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear SecurityAdministration emergencycomponents

103

DOE's Former Rocky Flats Weapons Production Site to Become National  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeaponsDepartment"It is

104

SciTech Connect: The Effects of Nuclear Weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Cawith EXO-200 SearchGalaxyFaster, Better

105

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis a multiprogram laboratory operated by

106

Seventy Years of Computing in the Nuclear Weapons Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluatingconstructionSession Name:SethSeung-HoeSeventy

107

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Broader source: Energy.gov [DOE]

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

108

Literature survey of blast and fire effects of nuclear weapons on urban areas  

SciTech Connect (OSTI)

The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

Reitter, T.A.; McCallen, D.B.; Kang, S.W.

1982-06-01T23:59:59.000Z

109

Neutralization of chemical and biological weapons of mass destruction using nuclear methods  

E-Print Network [OSTI]

of these radioactive particles would be carried into the upper atmosphere and would undergo decay and fall to the earth very slowly. Thus, they would likely not pose an immcd(a(e danger to health, although there (s potential for a long-term hazard (Glasstone... the differences in results. This information could be used to validate the MCNP inodel so thai it can be used in future research in neutralization using nuclear devices. REFERENCFS Glasstone, S. and Dolan, P. J. , ed. The El'fects of Nuclear Weapons. 3rd...

McAffrey, Veronica Lynn

2002-01-01T23:59:59.000Z

110

North Korea's nuclear weapons program:verification priorities and new challenges.  

SciTech Connect (OSTI)

A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

Moon, Duk-ho (Korean Consulate General in New York)

2003-12-01T23:59:59.000Z

111

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear Weapons Strategy Delivered to

112

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear Weapons StrategyU.S.Department

113

Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.  

SciTech Connect (OSTI)

In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

Mishra, Sitakanta; Ahmed, Mansoor

2014-04-01T23:59:59.000Z

114

Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons  

SciTech Connect (OSTI)

A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

2012-02-15T23:59:59.000Z

115

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect (OSTI)

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA)); Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA))

1991-05-01T23:59:59.000Z

116

Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities  

SciTech Connect (OSTI)

A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

2013-07-01T23:59:59.000Z

117

American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.  

SciTech Connect (OSTI)

We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

2011-03-01T23:59:59.000Z

118

ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy  

E-Print Network [OSTI]

This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

2004-01-01T23:59:59.000Z

119

Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant  

E-Print Network [OSTI]

With the end of the Cold War and subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need (Quirck et al., 1993). To compensate for this excess, an estimated 20...

Thompson, David Andrew

1996-01-01T23:59:59.000Z

120

Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime  

SciTech Connect (OSTI)

The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear & Particle Physics, Astrophysics, Cosmology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production, nuclear weapons, and nuclear threat reduction Proton radiography, muon tomography, proton active interrogation, wide-angle, fast-response optical telescopes, and...

122

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

123

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect (OSTI)

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. Primary sources of information in preparing this bibliography were bibliographies on Oceania, citations in published papers, CIS Index and Abstracts, Monthly Catalog of United States Government Publications, Nuclear Science Abstracts, Energy Research Abstracts, numerous bibliographies on radiation ecology, and suggestions by many individuals whom we contacted. One goal in this bibliography is to include complete documentation of the source of congressional reports and other government-related publications. In addition, page numbers for material in this bibliography are provided in parentheses when the subject matter of a book or document is not restricted to nuclear weapons testing in the Marshall Islands.

Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA)); Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA))

1991-04-01T23:59:59.000Z

124

Linking Legacies: Connecting the Cold War Nuclear Weapons Production  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1 -Energy InitiativesProcesses

125

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network [OSTI]

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

126

Broken Arrows: Radiological hazards from nuclear warhead accidents (the Minot USAF base nuclear weapons incident)  

E-Print Network [OSTI]

According to numerous press reports, in 2007 at Minot US Air Force Base six AGM-129 Advanced Cruise Missiles mistakenly armed with W80-1 thermonuclear warheads were loaded on a B-52H heavy bomber in place of six unarmed AGM-129 missiles that were awaiting transport to Barksdale US Air Force Base for disposal. The live nuclear missiles were not reported missing, and stood unsecured and unguarded while mounted to the aircraft for a period of 36 hours. The present work investigates the radiological hazards associated with a worst-case postulated accident that would disperse the nuclear material of the six warheads in large metropolitan cities. Using computer simulations approximate estimates are derived for the ensuing cancer mortality and land contamination after the accident. Health, decontamination and evacuation costs are also estimated in the framework of the linear risk model.

Liolios, Theodore

2009-01-01T23:59:59.000Z

127

ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems  

E-Print Network [OSTI]

This paper contains two parts: (I) A list of “points ” highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

André Gsponer; Jean-pierre Hurni

2004-01-01T23:59:59.000Z

128

The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium  

E-Print Network [OSTI]

This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

Kenna, Timothy C

2002-01-01T23:59:59.000Z

129

President Obama Calls for an End to Nuclear Weapons | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medicalSecurity Administration Calls for an End to

130

A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts  

SciTech Connect (OSTI)

With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

131

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

132

Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits  

SciTech Connect (OSTI)

The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

1998-01-01T23:59:59.000Z

133

Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.  

SciTech Connect (OSTI)

National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

Walter, Andrew

2009-06-01T23:59:59.000Z

134

President Truman Orders Development of Thermonuclear Weapon ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

135

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?  

SciTech Connect (OSTI)

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

136

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium  

SciTech Connect (OSTI)

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

137

Applying Agile MethodstoWeapon/Weapon-Related Software  

SciTech Connect (OSTI)

This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

2007-05-02T23:59:59.000Z

138

Y-12, the Cold War, and nuclear weapons dismantlement „ Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 Continuing the 70 thbegins Asearlythe Cold

139

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeaponsDepartment"ItOversight

140

Toward a more rigorous application of margins and uncertainties within the nuclear weapons life cycle : a Sandia perspective.  

SciTech Connect (OSTI)

This paper presents the conceptual framework that is being used to define quantification of margins and uncertainties (QMU) for application in the nuclear weapons (NW) work conducted at Sandia National Laboratories. The conceptual framework addresses the margins and uncertainties throughout the NW life cycle and includes the definition of terms related to QMU and to figures of merit. Potential applications of QMU consist of analyses based on physical data and on modeling and simulation. Appendix A provides general guidelines for addressing cases in which significant and relevant physical data are available for QMU analysis. Appendix B gives the specific guidance that was used to conduct QMU analyses in cycle 12 of the annual assessment process. Appendix C offers general guidelines for addressing cases in which appropriate models are available for use in QMU analysis. Appendix D contains an example that highlights the consequences of different treatments of uncertainty in model-based QMU analyses.

Klenke, Scott Edward; Novotny, George Charles; Paulsen Robert A., Jr.; Diegert, Kathleen V.; Trucano, Timothy Guy; Pilch, Martin M.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992  

SciTech Connect (OSTI)

This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

Carlisle, R.P.; Zenzen, J.M.

1994-01-01T23:59:59.000Z

142

Nuclear Deterrence in the Age of Nonproliferation  

SciTech Connect (OSTI)

The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

Richardson, J

2009-01-21T23:59:59.000Z

143

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource Program SeptemberRobert B. Laughlin, 1984 TheRobert

144

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDoDepartment ofSecrets

145

Risk in the Weapons Stockpile  

SciTech Connect (OSTI)

When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

146

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons and certify the stockpile without nuclear testing. The National Ignition Facility (NIF) extends HEDP under extreme conditions that approach the high energy density (HED) environments found in a nuclear

147

Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is aID Service First

148

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network [OSTI]

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramírez Muñoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

149

Contracting in the national interest: Establishing the legal framework for the interaction of science, government, and industry at a nuclear weapons laboratory  

SciTech Connect (OSTI)

Sandia National Laboratories, the nation's nuclear ordnance laboratory, is operated on a no-profit, no-fee basis by ATandT Technologies, Inc., as a prime contractor for the Department of Energy. This unique arrangement began in 1949 when President Harry Truman personally requested that ATandT assume management of the nuclear weapons laboratory as a service in the national interest. The story of how this unusual relationship came about makes for an interesting chapter in the annals of US legal and institutional history. This report describes the historical background, political negotiations, and prime contract provisos that established the legal framework for the Labs.

Furman, N.S.

1988-04-01T23:59:59.000Z

150

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect (OSTI)

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

151

Nuclear Weapons Latency  

E-Print Network [OSTI]

......................................................................... 14 Fig. 4. Conceptual flow of Latency tool Petri Net simulation. ........................................ 18 Fig. 5. Overall flow of Latency Tool. .............................................................................. 19 Fig. 6. Latency... density function bound simulations. .............. 43 xi Fig. 14. The expansion of one transition into a series of transitions. A simple Petri net with (a) 1 transition T1, (b) T1 replaced by two transitions in series, T1a and T1b, both half...

Sweeney, David J

2014-07-25T23:59:59.000Z

152

Method of immobilizing weapons plutonium to provide a durable, disposable waste product  

DOE Patents [OSTI]

A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

Ewing, Rodney C. (Albuquerque, NM); Lutze, Werner (Albuquerque, NM); Weber, William J. (Richland, WA)

1996-01-01T23:59:59.000Z

153

Nuclear disarmament verification  

SciTech Connect (OSTI)

Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

DeVolpi, A.

1993-12-31T23:59:59.000Z

154

Weapons Program Associate Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,the Geeks:WeakWeapons

155

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

156

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability models that are used to assess and certify the stockpile without nuclear testing. The National Ignition that approach the high-energy density (HED) environments found in a nuclear explosion. Virtually all

157

Production Risk Evaluation Program (PREP) - summary  

SciTech Connect (OSTI)

Nuclear weapons have been produced in the US since the early 1950s by a network of contractor-operated Department of Energy (DOE) facilities collectively known as the Nuclear Weapon Complex (NWC). Recognizing that the failure of an essential process might stop weapon production for a substantial period of time, the DOE Albuquerque Operations office initiated the Production Risk Evaluation Program (PREP) at Sandia National Laboratories (SNL) to assess quantitatively the potential for serious disruptions in the NWC weapon production process. PREP was conducted from 1984-89. This document is an unclassified summary of the effort.

Kjeldgaard, E.A.; Saloio, J.H.; Vannoni, M.G.

1997-03-01T23:59:59.000Z

158

Feasibility Study of Hydrogen Production at Existing Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity...

159

Annular Core Research Reactor - Critical to Science-Based Weapons...  

National Nuclear Security Administration (NNSA)

Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

160

Joint Venture Established Between Russian Weapons Plant And the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Venture Established Between Russian Weapons Plant And the Largest Dialysis Provider in the U.S. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A historical application of social amplification of risk model: Economic impacts of risk events at nuclear weapons facilities?  

SciTech Connect (OSTI)

Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptions is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.

Metz, W.C.

1996-12-31T23:59:59.000Z

162

Isotope Development & Production | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

163

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

PAJUNEN, A.L.

2000-01-20T23:59:59.000Z

164

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

165

Quality at Y-12, part 3 -- Or: Quality goes beyond nuclear weapons (title as it appeared in The Oak Ridger)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuaryNETL-2010/????QualityQuality at Y-12at Y-12,

166

Introduction to Pits and Weapons Systems (U)  

SciTech Connect (OSTI)

A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutonium is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.

Kautz, D. [Los Alamos National Laboratory

2012-07-02T23:59:59.000Z

167

Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

Snider, J.D.

1996-02-01T23:59:59.000Z

168

A simple method for rapidly processing HEU from weapons returns  

SciTech Connect (OSTI)

A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

McLean, W. II; Miller, P.E.

1994-01-01T23:59:59.000Z

169

E-Print Network 3.0 - atomic weapon tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By dissembling random nuclear weapons in the stockpile and closely inspecting and testing... explosives and nuclear materials at the Nevada Test Site to gather diagnostic...

170

Strategies for denaturing the weapons-grade plutonium stockpile  

SciTech Connect (OSTI)

In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

Buckner, M.R.; Parks, P.B.

1992-10-01T23:59:59.000Z

171

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches, thorium cycle 1. Introduction The main characteristic of nuclear energy production is the large energy

Boyer, Edmond

172

Routine inspection effort required for verification of a nuclear material production cutoff convention  

SciTech Connect (OSTI)

On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.

Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

1996-11-01T23:59:59.000Z

173

Recovery of weapon plutonium as feed material for reactor fuel  

SciTech Connect (OSTI)

This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan [and others

1994-03-16T23:59:59.000Z

174

Weapons | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste toWe Visit| National

175

The nuclear materials control technology briefing book  

SciTech Connect (OSTI)

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

176

High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors  

SciTech Connect (OSTI)

The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

Bowman, C.D.; Venneri, F.

1993-11-01T23:59:59.000Z

177

cvm magazine Newest Weapon  

E-Print Network [OSTI]

21 cvm magazine Newest Weapon in War on Pet Cancer Radiation Oncology Service includes state tightly around the tumor, minimizing effects to healthy tissue. This is done with a multi-leaf collimator

Langerhans, Brian

178

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network [OSTI]

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

179

Systems engineering analysis of kinetic energy weapon concepts  

SciTech Connect (OSTI)

This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

Senglaub, M.

1996-06-01T23:59:59.000Z

180

Chlorine-36 in Water, Snow, and Mid-Latitude Glacial Ice of North America: Meteoric and Weapons-Tests Production in the Vicinity of the Idaho National Engineering and Environmental Laboratory, Idaho  

SciTech Connect (OSTI)

Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is less than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.

L. DeWayne; J. R. Green (USGS); S. Vogt, P. Sharma (Purdue University); S. K. Frape (University of Waterloo); S. N. Davis (University of Arizona); G. L. Cottrell (USGS)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - adamkus signs nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

argue that the proliferation of nuclear weapons across more national borders would... of nuclear testing, or the first use of nuclear weapons, is a good ... Source: Rhoads, James...

182

National Nuclear Security Administration Product Aids in Anthrax...  

National Nuclear Security Administration (NNSA)

Product Aids in Anthrax Clean-up | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

183

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major sub-system. Section 4.0--Specific technical basis description for each product specification. The scope of this product specification does not include data collection requirements to support accountability or environmental compliance activities.

PAJUNEN, A.L.

2000-12-07T23:59:59.000Z

184

Moving Toward Product Line Engineering in a Nuclear Industry Consortium  

E-Print Network [OSTI]

Moving Toward Product Line Engineering in a Nuclear Industry Consortium Sana Ben Nasr, Nicolas line engineering, variability mining 1. INTRODUCTION Nuclear power plants are some of the most.ben-nasr, nicolas.sannier, mathieu.acher, benoitbaudry}@inria.fr ABSTRACT Nuclear power plants are some of the most

Boyer, Edmond

185

Feasibility of very deep borehole disposal of US nuclear defense wastes  

E-Print Network [OSTI]

This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

Dozier, Frances Elizabeth

2011-01-01T23:59:59.000Z

186

Production Technology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

187

E-Print Network 3.0 - automatic weapons Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for an automatic... Qaeda has nuclear weapons. 1 In order to perform this assessment task, DiscipleLTA will ask ... Source: Tecuci, Gheorghe - Department of Computer Science,...

188

E-Print Network 3.0 - atomic weapons research Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and model nuclear weapon performance in three dimensions. LIFE EXTENSION PROGRAMS: By upgrading Source: Rhoads, James - Space Telescope Science Institute Collection: Physics 9...

189

Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium  

SciTech Connect (OSTI)

This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

1998-07-01T23:59:59.000Z

190

Isotope and Nuclear Chemistry Division annual report, FY 1983  

SciTech Connect (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

191

Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve  

SciTech Connect (OSTI)

Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

Forsberg, C.W.

2005-01-20T23:59:59.000Z

192

Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach  

SciTech Connect (OSTI)

Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spread of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

Martz, Joseph C [Los Alamos National Laboratory; Stevens, Patrice A [Los Alamos National Laboratory; Branstetter, Linda [SNL; Hoover, Edward [SNL; O' Brien, Kevin [SNL; Slavin, Adam [SNL; Caswell, David [STANFORD UNIV

2010-01-01T23:59:59.000Z

193

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

SciTech Connect (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

194

nuclear controls  

National Nuclear Security Administration (NNSA)

the Office of Nonproliferation and International Security (NIS) is to prevent the proliferation of nuclear weapons, materials, technology, and expertise. NIS applies technical...

195

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

Organizations, accidents, and nuclear weapons. Princeton,the likelihood of a nuclear accident (Sagan 1993, 1995). “potential for a nuclear accident. Yet it seems implausible

Kroenig, Matthew

2006-01-01T23:59:59.000Z

196

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

197

Nuclear Energy. It is not a solution, it is a problem The Mediterranean Antinuclear Watch (MANW) is a non -  

E-Print Network [OSTI]

Nuclear Energy. It is not a solution, it is a problem #12;The Mediterranean Antinuclear Watch (MANW - called "peaceful use" of nuclear energy as well as the production and proliferation of nuclear weapons pose. #12;Nuclear energy renaissance Twenty two years after the accident in Chernobyl NPP. Energy

198

Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium  

E-Print Network [OSTI]

Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

Koch, William Lawrence

2013-01-01T23:59:59.000Z

199

Bayesian network analysis of nuclear acquisitions  

E-Print Network [OSTI]

Nuclear weapons proliferation produces a vehement global safety and security concern. Perhaps most threatening is the scenario of a rogue nation or a terrorist organization acquiring nuclear weapons where the conventional ideas of nuclear deterrence...

Freeman, Corey Ross

2009-05-15T23:59:59.000Z

200

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear effects on J/? production in proton-nucleus collisions  

E-Print Network [OSTI]

The study of nuclear effects for J/{\\psi} production in proton-nucleus collisions is crucial for a correct interpretation of the J/{\\psi} suppression patterns experimentally observed in heavy-ion collisions. By means of three representative sets of nuclear parton distribution, the energy loss effect in the initial state and the nuclear absorption effect in the final state are taken into account in the uniform framework of the Glauber model. A leading order phenomenological analysis is performed on J/{\\psi} production cross-section ratios RW/Be(xF) for the E866 experimental data. The J/{\\psi} suppression is investigated quantitatively due to the different nuclear effects. It is shown that the energy loss effect with resulting in the suppression on RW/Be(xF) is more important than the nuclear effects on parton distributions in high xF region. The E866 data in the small xF keep out the nuclear gluon distribution with a large anti-shadowing effect. However, the new HERA-B measurement is not in support of the anti-shadowing effect in the nuclear gluon distribution. It is found that the J/{\\psi}-nucleon inelastic cross section {\\sigma} J/{\\psi} abs depends on the kinematical variable xF, and increases as xF in the region xF > 0.2. 1 Introduction

Chun-Gui Duan; Jian-Chao Xu; Li-Hua Song

2011-09-25T23:59:59.000Z

202

Hadron Production at Forward Rapidity in Nuclear Collisions at RHIC  

E-Print Network [OSTI]

. The net-proton yield in the same system is compared with that from AGS and SPS energies to study the high collisions, hadron production, net-proton, nuclear mod- ification factor, Cronin effect, jet-quenching 1 of fluid dynamics in their interpretation. Hydrodynamics properties of the expanding matter created

203

Author's personal copy Canada's program on nuclear hydrogen production  

E-Print Network [OSTI]

for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities al. [1]. Hydrogen is used widely by petrAuthor's personal copy Canada's program on nuclear hydrogen production and the thermochemical Cue

Naterer, Greg F.

204

Arms Control: US and International efforts to ban biological weapons  

SciTech Connect (OSTI)

The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

Not Available

1992-12-01T23:59:59.000Z

205

Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels  

SciTech Connect (OSTI)

The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

Carbajo, J.J.

2005-05-27T23:59:59.000Z

206

Focus Article Nuclear winter  

E-Print Network [OSTI]

the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black in recorded human history. Although the number of nuclear weapons in the world has fallen from 70,000 at its and Russia could still produce nuclear winter. This theory cannot be tested in the real world. However

Robock, Alan

207

ITAR Categories Category I -Firearms, Close Assault Weapons and Combat Shotguns  

E-Print Network [OSTI]

and Associated Equipment Category XVI - Nuclear Weapons, Design and Testing Related Items Category XVII, Incendiary Agents and Their Constituents. Category VI - Vessels of War and Special Naval Equipment. Category Energy Weapons Category XIX - [Reserved] Category XX - Submersible Vessels, Oceanographic and Associated

208

CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

209

Modeling of the performance of weapons MOX fuel in light water reactors  

SciTech Connect (OSTI)

Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States). Nuclear Engineering Dept.; Gellene, G.I. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

1999-05-01T23:59:59.000Z

210

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

211

Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems  

SciTech Connect (OSTI)

This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

2009-07-31T23:59:59.000Z

212

Pion production in relativistic collisions of nuclear drops  

SciTech Connect (OSTI)

In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs.

Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

1988-09-01T23:59:59.000Z

213

The Hybrid Sulfur Cycle for Nuclear Hydrogen Production  

SciTech Connect (OSTI)

Two Sulfur-based cycles--the Sulfur-Iodine (SI) and the Hybrid Sulfur (HyS)--have emerged as the leading thermochemical water-splitting processes for producing hydrogen utilizing the heat from advanced nuclear reactors. Numerous international efforts have been underway for several years to develop the SI Cycle, but development of the HyS Cycle has lagged. The purpose of this paper is to discuss the background, current status, recent development results, and the future potential for this thermochemical process. Savannah River National Laboratory (SRNL) has been supported by the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology since 2004 to evaluate and to conduct research and development for the HyS Cycle. Process design studies and flowsheet optimization have shown that an overall plant efficiency (based on nuclear heat converted to hydrogen product, higher heating value basis) of over 50% is possible with this cycle. Economic studies indicate that a nuclear hydrogen plant based on this process can be economically competitive, assuming that the key component, the sulfur dioxide-depolarized electrolyzer, can be successfully developed. SRNL has recently demonstrated the use of a proton-exchange-membrane electrochemical cell to perform this function, thus holding promise for economical and efficient hydrogen production.

Summers, William A.; Gorensek, Maximilian B.; Buckner, Melvin R.

2005-09-08T23:59:59.000Z

214

National Laboratory's Weapons Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual ReportNational Lab Day -drawsAbout

215

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

216

Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2  

SciTech Connect (OSTI)

The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

Biegalski, S; Buchholz, B

2009-08-26T23:59:59.000Z

217

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

218

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

219

Working toward a world without nuclear weapons  

SciTech Connect (OSTI)

Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

Drell, Sidney D. [SLAC National Accelerator Laboratory and the Hoover Institute, Stanford University, Stanford, California (United States)

2014-05-09T23:59:59.000Z

220

weapons material protection | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter |warhead protection

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

weapons material | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter |warhead protection| National

222

AEC and control of nuclear weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months between

223

Weapons engineering tritium facility overview  

SciTech Connect (OSTI)

Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

Najera, Larry [Los Alamos National Laboratory

2011-01-20T23:59:59.000Z

224

The role of the DOE weapons laboratories in a changing national security environment: CNSS papers No. 8, April 1988  

SciTech Connect (OSTI)

The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security. 9 refs.

Hecker, S.S.

1988-01-01T23:59:59.000Z

225

GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products  

SciTech Connect (OSTI)

This document is intended to codify, to the extent currently possible, the representation of map products produced for and by the Federal Radiological Monitoring and Assessment Center (FRMAC) and the Consequence Management Home Team (CHMT), particularly those that include model products from the National Atmospheric Release Advisory Capability (NARAC). This is to facilitate consistency between GIS products produced by different members of these teams, which should ease the task of interpreting these products by both team members and those outside the team who may need to use these products during a response. The aspects of symbology being considered are primarily isopleths levels (breakpoints) and colors used to plot NARAC modeled dose or deposition fields on mpas, although some comments will be made about the handling of legend and supporting textual information. Other aspects of symbolizing such products (e.g., transparency) are being left to the individual team members to allow them to adapt to particular organizational needs or requirements that develop during a particular a response or exercise. This document has been written in coordination with the creation of training material in Baskett, et al., 2008. It is not intended as an aid to NARAC product interpretation but to facilitate the work of GIS specialists who deal with these products in map design and in the development of supporting scripts and software that partially or completely automate the integration of NARAC model products with other GIS data. This work was completed as part of the NA-42 Technical Integration Project on GIS Automated Data Processing and Map Production in FY 2008. Other efforts that are part of this work include (a) updating the NARAC shapefile product representation to facilitate the automation work proceed at RSL as part of the same TI effort and (b) to ensure that the NARAC shapefile construct includes all of the necessary legend and other textual data to interpret dispersion and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

2008-10-06T23:59:59.000Z

226

Research and Development | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(DNN R&D) reduces the threat to national security posed by nuclear weapons proliferation and illicit nuclear material trafficking by developing technical capabilities that...

227

Development of a Bayesian Network to monitor the probability of nuclear proliferation  

E-Print Network [OSTI]

Nuclear Proliferation is a complex problem that has plagued national security strategists since the advent of the first nuclear weapons. As the cost to produce nuclear weapons has continued to decline and the availability ...

Holcombe, Robert (Robert Joseph)

2008-01-01T23:59:59.000Z

228

Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995  

SciTech Connect (OSTI)

This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

NONE

1996-04-01T23:59:59.000Z

229

The Department of PhysicsPRESENTS Nuclear Physics & Society  

E-Print Network [OSTI]

The Department of PhysicsPRESENTS Nuclear Physics & Society A free, four-day short course on nuclear physics and public policy for anyone who wants to better understand nuclear power nuclear weapons P.M. Applications of Nuclear Physics on Earth: Nuclear power, weapons, and nuclear medicine. Topics

Gilfoyle, Jerry

230

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants  

SciTech Connect (OSTI)

Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

Stephen Schey

2009-07-01T23:59:59.000Z

231

The nuclear marketplace and grand strategy: civilian nuclear cooperation and the bomb.  

E-Print Network [OSTI]

??This dissertation consists of two principal sections. The first portion explores the relationship between nuclear energy and nuclear weapons. Building on the "technological momentum" hypothesis,… (more)

Fuhrmann, Matthew

2008-01-01T23:59:59.000Z

232

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

233

Weapons Program Associate Directors named  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste toWe Visit YouWeapons

234

Weapons production | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste toWe Visit

235

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect (OSTI)

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

1992-11-01T23:59:59.000Z

236

Hegemony and nuclear proliferation  

E-Print Network [OSTI]

Contrary to longstanding of predictions of nuclear tipping points, the number of states interested in nuclear weapons has sharply declined in recent decades. In contrast to existing explanations, this dissertation argues ...

Miller, Nicholas L. (Nicholas LeSuer)

2014-01-01T23:59:59.000Z

237

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

238

Weapons Dismantlement and Disposition NNSS Capabilities  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

239

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which  

E-Print Network [OSTI]

, North Korea, Pakistan, and South Africa. (South Africa abandoned its nuclear weapons in 1991. Libya of setting up its own enrichment or spent-fuel treat- ment facilities is enormous. Countries with a new

Laughlin, Robert B.

240

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network [OSTI]

Organizations, Accidents, and Nuclear Weapons. Princetondominate accident risks in the nuclear fuel cycle (Figureof Accident Risks in U.S. Commercial Nuclear Power Plants.

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compilation of fission product yields Vallecitos Nuclear Center  

SciTech Connect (OSTI)

This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated.

Rider, B.F.

1980-01-01T23:59:59.000Z

242

MN4602 Crouch 2004 REASSESSING WEAPON SYSTEM  

E-Print Network [OSTI]

MN4602 Crouch 2004 REASSESSING WEAPON SYSTEM OPERATIONAL TEST & EVALUATION METHODOLOGIES LTC Thom support assessing a weapon systems true cost and performance characteristics? S1: Can/should cost, operational effectiveness and suitability be assessed independent of one another? S2: Do current test

243

NNSA implements nondestructive gas sampling technique for nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

244

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

245

Reprocessing of nuclear fuels at the Savannah River Plant  

SciTech Connect (OSTI)

For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

Gray, L.W.

1986-10-04T23:59:59.000Z

246

COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,Principles of

247

Reducing the Nuclear Weapons Stockpile | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SRELRecycling

248

Audit Report National Nuclear Security Administration Nuclear Weapons  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List from 12/05/08 Attendance5 AuditNavalManagement of

249

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration|Securityr EEO ComplaintAdministration

250

Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952  

SciTech Connect (OSTI)

The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.

Anne C. Fitzpatrick

1999-07-01T23:59:59.000Z

251

E-Print Network 3.0 - advanced nuclear technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Objectives: Develop and demonstrate technologies for detecting the stages of a foreign nuclear weapons... and Testing Nonproliferation Enabling Technologies ... Source:...

252

E-Print Network 3.0 - advancing nuclear technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Objectives: Develop and demonstrate technologies for detecting the stages of a foreign nuclear weapons... and Testing Nonproliferation Enabling Technologies ... Source:...

253

Copyright 2006 by Rich Janow Page 1 A First-Principles Model for Estimating Atmospheric Nuclear  

E-Print Network [OSTI]

26, 2006 Page 2 REFERENCES 1. Glasstone, S. and P. Dolan, eds., 'The Effects of Nuclear Weapons', 3rd

Janow, Rich

254

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

Kramer, Kevin James

2010-01-01T23:59:59.000Z

255

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect (OSTI)

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

256

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network [OSTI]

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

257

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

reactors are determined from thermal power measure- ments and ?ssion rate calculations.of a reactor’s ther- mal power is given by a calculation ofCALCULATIONS During the power cycle of a nuclear reactor,

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

258

Impacts of a nuclear war in South Asia on rice production in Mainland China  

E-Print Network [OSTI]

Impacts of a nuclear war in South Asia on rice production in Mainland China Lili Xia & Alan Robock troposphere would produce significant climate changes for a decade, including cooling, reduction of solar to simulate regional nuclear war impacts on rice yield in 24 provinces in China. We first evaluated the model

Robock, Alan

259

Impacts of a nuclear war in South Asia on rice production in Mainland China  

E-Print Network [OSTI]

Impacts of a nuclear war in South Asia on rice production in Mainland China Lili Xia & Alan Robock cooling, reduction of solar radiation, and reduction of precipitation, which are all important factors agricultural simulation model to simulate regional nuclear war impacts on rice yield in 24 provinces in China

Robock, Alan

260

Technetium production: a feasibility study for Texas A&M University nuclear science center  

E-Print Network [OSTI]

The affordability and feasibility of the production of the metastable nuclide of technetium (Tc-99m) by neutron capture activation of molybdenum trioxide (with a subsequent solvent extraction) has been explored for the Texas A&M University, Nuclear...

Hearne, David Douglass

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network [OSTI]

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons. #12;Some Bits of History US develops and uses nuclear weapons on Japan at the end of World War II

Gilfoyle, Jerry

262

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network [OSTI]

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons Colloquium - January 20, 2012 ­ p. #12;Some Bits of History US develops and uses nuclear weapons on Japan

Gilfoyle, Jerry

263

Method for forming nuclear fuel containers of a composite construction and the product thereof  

DOE Patents [OSTI]

An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

1984-01-01T23:59:59.000Z

264

DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY  

E-Print Network [OSTI]

, 1980, v, 113, no. 5, p. 60-63. "AF Phillips Lab Looks at Space as Battleground." BMD Monitor, September on Blinding Laser Weapons." Laser Focus World, December 1995, v. 31, p. 62-64. Armstrong, Richard B. "Directed

265

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect (OSTI)

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

Not Available

1980-06-01T23:59:59.000Z

266

Accelerator-based conversion (ABC) of reactor and weapons plutonium  

SciTech Connect (OSTI)

An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

1993-06-01T23:59:59.000Z

267

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03T23:59:59.000Z

268

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, Charles D. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

269

Print this Page Close The nuclear deal  

E-Print Network [OSTI]

'Entity List', which was drawn up outside the non-proliferation laws after our nuclear weapon tests league. B At least in the eyes of the United States, India is now a nuclear weapons state. The gamblePrint this Page Close The nuclear deal July 20, 2005 | 19:05 ISTT P Sreenivasan | y assuming

270

Accident Response Group | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

involving nuclear weapons. The ARG staff includes scientists, engineers, technicians, health physics and safety specialist from NNSA's and the Department of Energy's national...

271

Z Machine | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

use for the nuclear weapons mission as well as increased interest by researchers in high energy density physics, condensed matter physics, planetary science, and laboratory...

272

Celebrating 15 years | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

established NNSA in 2000 as a separately organized agency within the Department of Energy to manage and ensure the security of the Nation's nuclear weapons stockpile, advance...

273

KCP celebrates production milestone at new facility | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How toNuclearSecurity

274

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

2008-08-06T23:59:59.000Z

275

Scenarios for a Worldwide Deployment of Nuclear Energy Production  

E-Print Network [OSTI]

to mitigate global warming and fossil fuel shortages while still satisfying a growing demand for energy. We of sustainable, intensive nuclear power generation. Introduction The worldwide demand for primary energy of the primary energy sources liable to respond significantly to the demand. Yet the conditions

Paris-Sud XI, Université de

276

Annual report on strategic special nuclear material inventory differences, April 1, 1990--March 31, 1991  

SciTech Connect (OSTI)

This report of unclassified Inventory Difference (ID's) covers the twelve months from April 1, 1990 through March 31, 1991 for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear materials. Classified information is not included in this report. This classified information includes data for the Rocky Flats and Y-12 nuclear weapons production facilities or facilities under ID investigation. However, classified ID data from such facilities receive the same scrutiny and analyses as the included data.

Not Available

1992-01-01T23:59:59.000Z

277

NRC - regulator of nuclear safety  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

NONE

1997-05-01T23:59:59.000Z

278

Nuclear Proliferation and the Deterrence of Conventional War: Justin Pollard  

E-Print Network [OSTI]

Nuclear Proliferation and the Deterrence of Conventional War: A Proposal Justin Pollard April 2009) Introduction It seems counterintuitive to think that the spread of nuclear weapons could make the world a safer of ubiquitous nuclear armament is a more dangerous and unstable one. Certainly, a weapon of the nuclear

Sadoulet, Elisabeth

279

Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes  

SciTech Connect (OSTI)

This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

Luke, S J

2011-12-20T23:59:59.000Z

280

Isotope production agreement benefits medical patients | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How to ApplyIND |

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

KCP highlights first part production | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How

282

E-Print Network 3.0 - achieve sustainable nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a complementary avenue to achieving a nuclear-weapons-free world. Reinforce the political... Milan Document on Nuclear Disarmament and Non-Proliferation 29 January 2010 Below...

283

Proliferation Resistant Nuclear Reactor Fuel  

SciTech Connect (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

284

Z Production as a Test of Nuclear Effects at the LHC  

E-Print Network [OSTI]

We predict the Z transverse momentum distribution from proton-proton and nuclear collisions at the LHC. After demonstrating that higher-twist nuclear effects are very small, we propose $Z^0$ production as a precision test for leading-twist pQCD in the TeV energy region. We also point out that shadowing may result in unexpected phenomenology at the LHC.

Xiaofei Zhang; George Fai

2002-05-15T23:59:59.000Z

285

Weapons Quality Assurance Qualification Standard  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water PowerLast Saturday |the5-2008

286

Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products  

DOE Patents [OSTI]

A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

2007-10-02T23:59:59.000Z

287

Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium  

E-Print Network [OSTI]

.The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it claims that the materials will be used ...

McCord, Cameron (Cameron Liam)

2013-01-01T23:59:59.000Z

288

Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium .  

E-Print Network [OSTI]

??.The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it… (more)

McCord, Cameron (Cameron Liam)

2013-01-01T23:59:59.000Z

289

Nuclear Fuel Cycle & Vulnerabilities  

SciTech Connect (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

290

Welcome to the NNSA Production Office | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender NetAdministration NNSA Production

291

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

292

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

293

HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

2005-10-01T23:59:59.000Z

294

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

E-Print Network [OSTI]

testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticalityENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P

Danon, Yaron

295

EIS-0373: Proposed Consolidation of Nuclear Operations Related to the Production of Radioisotope Power Systems  

Broader source: Energy.gov [DOE]

NOTE: EIS-0373 has been cancelled. This EIS evaluates the environmental impacts of consolidating nuclear activities related to production of radioisotope power systems (RPS) for space and national security missions at a single DOE site: the preferred alternative is the Materials and Fuels Complex at Idaho National Laboratory.

296

Impacts of a Nuclear War in South Asia on Rice Production in Mainland China  

E-Print Network [OSTI]

Impacts of a Nuclear War in South Asia on Rice Production in Mainland China Lili Xia and Alan for a decade, including cooling, reduction of solar radiation, and reduction of precipitation, which are all in 24 provinces in China. We first evaluated the model by forcing it with daily weather data

Robock, Alan

297

Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor  

SciTech Connect (OSTI)

This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

M. J. Russell

2006-06-01T23:59:59.000Z

298

Aegis Combat and Weapon Systems Overview 24 hours, $1495  

E-Print Network [OSTI]

SEprocessensuresthatsystemsaredevelopedtomeet affordable, operationally effective, and timely mission objectives. FocusonengineeringtheWeaponAegis Combat and Weapon Systems Overview 24 hours, $1495 Launched from the Advanced Surface Missile that led to the initiation of Aegis. Topics Include: · AegisOverviewandHistory · AegisBMD · AegisWeapon

Fork, Richard

299

Towards Optimal Placement of Bio-Weapon Chris Kiekintveld  

E-Print Network [OSTI]

. Vice versa, our objective is to minimize the potential effect of a bio-weapon attack. CommentTowards Optimal Placement of Bio-Weapon Detectors Chris Kiekintveld Department of Computer Science, USA Email: lolerma@episd.edu Abstract--Biological weapons are difficult and expensive to detect

Ward, Karen

300

Effective-energy budget in multiparticle production in nuclear collisions  

E-Print Network [OSTI]

The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The model in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. The model is based on the earlier proposed approach, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this model, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher energy measurements in heavy-ion collisions at the LHC.

Aditya Nath Mishra; Raghunath Sahoo; Edward K. G. Sarkisyan; Alexander S. Sakharov

2014-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nuclear Physics and National Security in an Age of Terrorism  

E-Print Network [OSTI]

Nuclear Physics and National Security in an Age of Terrorism Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. How do we assess the threat? 1. Nuclear Weapons 101 2. Catching to the threat? ­ prevention ­ mitigation (i.e. cleanup, cures, etc.) ­ retaliation #12;Nuclear Weapons 101 What

Gilfoyle, Jerry

302

Audit Report on "The National Nuclear Security Administration...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a prime component of the B61 nuclear weapon system. Both the original motor produced...

303

Nuclear proliferation and testing: A tale of two treaties  

SciTech Connect (OSTI)

Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

Corden, Pierce S.; Hafemeister, David

2014-04-01T23:59:59.000Z

304

Joint US/Russian Studies of Population Exposures Resulting from Nuclear Production Activities in the Southern Urals  

SciTech Connect (OSTI)

Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to large radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of cohorts unrivaled in the world for their chronic, low-dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of about 21,000 persons born to one or more exposed parents of this group - many of whom also lived along the contaminated river. The EURT Cohort consists of about 18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the US, Russia, and the European Union to address the question “Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?”

Napier, Bruce A.

2014-02-17T23:59:59.000Z

305

Probing nuclear dynamics in jet production with a global event shape  

E-Print Network [OSTI]

We study single jet production in electron-nucleus collisions e^- + N_A -> J + X, using the 1-jettiness (\\tau_1) global event shape. It inclusively quantifies the pattern of radiation in the final state, gives enhanced sensitivity to soft radiation at wide angles from the nuclear beam and final-state jet, and facilitates the resummation of large Sudakov logarithms associated with the veto on additional jets. Through their effect on the observed pattern of radiation, 1-jettiness can be a useful probe of nuclear PDFs and power corrections from dynamical effects in the nuclear medium. This formalism allows for the standard jet shape analysis while simultaneously providing sensitivity to soft radiation at wide angles from the jet. We use a factorization framework for cross-sections differential in $\\tau_1$ and the transverse momentum (P_{J_T}) and rapidity (y) of the jet, in the region \\tau_1theoretical control over resummation, while providing enhanced sensitivity to nuclear medium effects. We give numerical results at leading twist, with resummation at the next-to-next-to-leading logarithmic (NNLL) level of accuracy, for a variety of nuclear targets. Such studies would be ideal for the EIC and the LHeC proposals for a future electron-ion collider, where a range of nuclear targets are planned.

Zhong-Bo Kang; Xiaohui Liu; Sonny Mantry; Jian-Wei Qiu

2014-07-25T23:59:59.000Z

306

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

SciTech Connect (OSTI)

This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

Curtis Smith; Scott Beck; Bill Galyean

2005-09-01T23:59:59.000Z

307

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

308

Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report  

SciTech Connect (OSTI)

This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO{sub 2}; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition.

Pitts, J.H.; Choi, J.S.

1994-11-14T23:59:59.000Z

309

NNSA Weapons Chief Participates in ROTC Day at Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear Security Administration Weapons Chief

310

Nuclear materials stewardship: Our enduring mission  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.

Isaacs, T.H. [Lawrence Livermore National Lab., CA (United States)

1998-12-31T23:59:59.000Z

311

Minijet transverse energy production in the next-to-leading order in hadron and nuclear collisions  

E-Print Network [OSTI]

The transverse energy flow generated by minijets in hadron and nuclear collisions into a given rapidity window in the central region is calculated in the next-to-leading (NLO) order in QCD at RHIC and LHC energies. The NLO transverse energy production in pp collisions cross sections are larger than the LO ones by the factors of K_{RHIC} ~ 1.9 and K_{LHC} ~ 2.1 at RHIC and LHC energies correspondingly. These results were then used to calculate transverse energy spectrum in nuclear collisions in a Glauber geometrical model. We show that accounting for NLO corrections in the elementary pp collisions leads to a substantial broadening of the E_{perp} distribution for the nuclear ones, while its form remains practically unchanged.

A. V. Leonidov; D. M. Ostrovsky

1998-11-23T23:59:59.000Z

312

Minijet transverse energy production in the next-to-leading order in hadron and nuclear collisions  

E-Print Network [OSTI]

The transverse energy flow generated by minijets in hadron and nuclear collisions into a given rapidity window in the central region is calculated in the next-to-leading (NLO) order in QCD at RHIC and LHC energies. The NLO transverse energy production in pp collisions cross sections are larger than the LO ones by the factors of $K_{RHIC} \\sim 1.9$ and $K_{LHC} \\sim 2.1$ at RHIC and LHC energies correspondingly. These results were then used to calculate transverse energy spectrum in nuclear collisions in a Glauber geometrical model. We show that accounting for NLO corrections in the elementary pp collisions leads to a substantial broadening of the $E_{\\perp}$ distribution for the nuclear ones, while its form remains practically unchanged.

Leonidov, A V

1998-01-01T23:59:59.000Z

313

Nuclear bargaining : using carrots and sticks in nuclear counter-proliferation  

E-Print Network [OSTI]

This dissertation explores how states can use positive inducements and negative sanctions to successfully bargain with nuclear proliferators and prevent the spread of nuclear weapons. It seeks to answer the following ...

Reardon, Robert J

2010-01-01T23:59:59.000Z

314

Probing nuclear symmetry energy with the sub-threshold pion production  

E-Print Network [OSTI]

Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we investigated the effects of symmetry energy on the sub-threshold pion using the isospin MDI interaction with the stiff and soft symmetry energies in the central collision of $^{48}$Ca + $^{48}$Ca at the incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively. We find that the ratio of $\\pi^{-}/\\pi^{+}$ of sub-threshold charged pion production is greatly sensitive to the symmetry energy, particularly around 100 MeV/nucleon energies. Large sensitivity of sub-threshold charged pion production to nuclear symmetry energy may reduce uncertainties of probing nuclear symmetry energy via heavy-ion collision.

Fang Zhang; Yang Liu; Gao-Chan Yong; Wei Zuo

2012-04-05T23:59:59.000Z

315

Nuclear Futures Analysis and Scenario Building  

SciTech Connect (OSTI)

This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

1999-07-09T23:59:59.000Z

316

Proliferation Risks of Fusion Energy: Clandestine Production, Covert Production, and Breakout  

SciTech Connect (OSTI)

Nuclear proliferation risks from fusion associated with access to weapon-usable material can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risk from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if commercial fusion systems are designed to accommodate appropriate safeguards.

R.J. Goldston, A. Glaser, A.F. Ross

2009-08-13T23:59:59.000Z

317

Plan offered to revive nukes. [US DOE would fabricate fuel from weapons for WNP-1 and 3  

SciTech Connect (OSTI)

This article discusses a new plan that would allow work to resume on two uncompleted nuclear power units in Washington state at a cost of $3.3 billion under an agreement with the federal government. If approved, the Department of Energy would fabricate plutonium from US and former Soviet Union weapons into fuel.

Not Available

1993-09-20T23:59:59.000Z

318

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures.  

E-Print Network [OSTI]

??The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within… (more)

O'Kelly, David Sean

2012-01-01T23:59:59.000Z

319

Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions  

SciTech Connect (OSTI)

Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5×109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kephart, Rosara F.; Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Friese, Judah I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saey, Paul R. [Vienna University of Technology, Atomic Institute of the Austrian Universities, Vienna (Austria)

2013-01-01T23:59:59.000Z

320

High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary  

SciTech Connect (OSTI)

The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States  

E-Print Network [OSTI]

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States conditions from war-related smoke. We combined observed climate conditions for the states of Iowa, Illinois phases also had an important effect. 1 Introduction In the event of nuclear war, targets in cities

Robock, Alan

322

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States  

E-Print Network [OSTI]

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States and soybeans to cooler, drier, and darker conditions from war-related smoke. We combined observed climate had an important effect. 1 Introduction In the event of nuclear war, targets in cities and industrial

Robock, Alan

323

Energy loss of charm quarks from $J/?$ production in cold nuclear matter  

E-Print Network [OSTI]

$J/\\psi$ suppression in p-A collisions is studied by considering the nuclear effects on parton distribution, energy loss of beam proton and the finial state energy loss of color octet $c\\overline{c}$. The leading-order computations for $J/\\psi$ production cross-section ratios $R_{W/Be}(x_{F})$ are presented and compared with the selected E866 experimental data with the $c\\overline{c}$ remaining colored on its entire path in the medium. It is shown that the combination of the different nuclear effects accounts quite well for the observed $J/\\psi$ suppression in the experimental data. It is found that the $J/\\psi$ suppression on $R_{W/Be}(x_{F})$ from the initial state nuclear effects is more important than that induced by the energy loss of color octet $c\\overline{c}$ in the large $x_F$ region. Whether the $c\\overline{c}$ pair energy loss is linear or quadratic with the path length is not determined. The obtained $c\\overline{c}$ pair energy loss per unit path length $\\alpha=2.78\\pm0.81$ GeV/fm, which indicates that the heavy quark in cold nuclear matter can lose more energy compared to the outgoing light quark.

Li-Hua Song; Wen-Dan Miao; Chun-Gui Duan

2013-12-15T23:59:59.000Z

324

Emergence of the nuclear industry and associated crime. Master's thesis  

SciTech Connect (OSTI)

Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

Vaught, J.W.

1991-08-01T23:59:59.000Z

325

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

326

NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Administrator Gordon Assesses Security...

327

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Robert C. Seamans, Jr. Appointed to Lead ... Robert C. Seamans,...

328

Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

2014-11-21T23:59:59.000Z

329

DOE's Nuclear Weapons Complex: Challenges to Safety, Security...  

Energy Savers [EERE]

thereby, adversely impacting the effectiveness and efficiency of their operations. The heart of these assertions is that oversight of contractors has been excessive, overly...

330

National Day of Remembrance HSS Honors Former Nuclear Weapons...  

Energy Savers [EERE]

veterans were intrigued by a brief account of the history of Oak Ridge presented by Ray Smith, the Y-12 Oak Ridge National Laboratory Historian. Those in attendance also enjoyed...

331

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |DepartmentEnergy.gov ArticleIssues |

332

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District |DepartmentEnergy.gov ArticleIssues

333

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5FederalFeds feed Families Feds

334

NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey ActionsThe NextAwards »294|

335

Office of Weapons Material Protection | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS

336

Weapons Intern Program participants visit Pantex | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtectiveWaste toWe Visit You

337

Y-12 employees receive awards recognizing excellence in nuclear weapons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL mainEmployees &andComplex

338

National Day of Remembrance HSS Honors Former Nuclear Weapons Program  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department of EnergyNationalWorkers |

339

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department ofofGNA

340

Briefing, Classification of Nuclear Weapons-Related Information |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy andNews and updatesStudy ||Brett Humble -Energy 14

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gordon Assesses Security At Nuclear Weapons Complex News...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGet AssistanceCatalytic Sites . |DOE L ong TAtl

342

Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplants willowsLos AlamosSecurity

343

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergy DrivingD EERE Program ManagementEERE4of

344

Sandia completes major overhaul of key nuclear weapons test facilities |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwindBRU

345

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...  

Office of Environmental Management (EM)

thus would be subject to the rule. OE is also aware that the NNSA has placed certain quality assurance (QA) requirements in its contracts, including DOE Order 414.1A and the QC-1...

346

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Office of Environmental Management (EM)

thus would be subject to the rule. OE is also aware that the NNSA has placed certain quality assurance (QA) requirements in its contracts, including DOE Order 414.1A and the QC-1...

347

Monitoring under the Plutonium Management and Disposition Agreement : the prospects of antineutrino detection as an IAEA verification metric for the disposition of weapons-grade plutonium in the United States  

E-Print Network [OSTI]

After the end of World War II, the world entered an even more turbulent period as it faced the beginnings of the Cold War, during which the prospect of mutually assured destruction between the world's largest nuclear weapon ...

Copeland, Christopher Michael, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

348

Forward Lambda Production and Nuclear Stopping Power in d+Au Collisions at RHIC  

E-Print Network [OSTI]

Using the forward time projection chambers of STAR we measure the centrality dependent Lambda and Anti-Lambda yields in d+Au collisions at \\sqrt{s_{NN} = 200 GeV at forward and backward rapidities. The contributions of different processes to particle production and baryon transport are probed exploiting the inherent asymmetry of the d+Au system. While the d side appears to be dominated by multiple independent nucleon-nucleon collisions, nuclear effects contribute significantly on the Au side. Using the constraint of baryon number conservation, the rapidity loss of baryons in the incoming deuteron can be estimated as a function of centrality. This is compared to a model and to similar measurements in Au+Au, which gives insights into the nuclear stopping power at relativistic energies.

Frank Simon; for the STAR collaboration

2006-02-09T23:59:59.000Z

349

Production of an English/Russian glossary of terminology for nuclear materials control and accounting  

SciTech Connect (OSTI)

The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

Schachowskoj, S.; Smith, H.A. Jr.

1995-05-01T23:59:59.000Z

350

The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction  

SciTech Connect (OSTI)

The Born-Oppenheimer approximation is a basic approximation in molecular science. In this approximation, the total molecular wavefunction is written as a product of an electronic and a nuclear wavefunction. Hunter [Int. J. Quantum Chem. 9, 237 (1975)] has argued that the exact total wavefunction can also be factorized as such a product. In the present work, a variational principle is introduced which shows explicitly that the total wavefunction can be exactly written as such a product. To this end, a different electronic Hamiltonian has to be defined. The Schroedinger equation for the electronic wavefunction follows from the variational ansatz and is presented. As in the Born-Oppenheimer approximation, the nuclear motion is shown to proceed in a potential which is the electronic energy. In contrast to the Born-Oppenheimer approximation, the separation of the center of mass can be carried out exactly. The electronic Hamiltonian and the equation of motion of the nuclei resulting after the exact separation of the center of mass motion are explicitly given. A simple exactly solvable model is used to illustrate some aspects of the theory.

Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2013-06-14T23:59:59.000Z

351

Just war and nuclear weapons : just war theory and its application to the Korean nuclear weapons issue in Korean Christianity   

E-Print Network [OSTI]

of Just War has developed over the last two thousand years, adapting as first Christianity became the state religion of the Roman Empire, through the break down of any enforceable norms in Europe‘s 'Dark Ages‘, to the emergence of the concept of the modern...

Son, Changwan

2009-01-01T23:59:59.000Z

352

Nuclear World Order and Nonproliferation  

SciTech Connect (OSTI)

The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

Joeck, N

2007-02-05T23:59:59.000Z

353

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network [OSTI]

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

354

News Release Closure of Russian Nuclear Plant.PDF  

National Nuclear Security Administration (NNSA)

RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration Is Helping Make It...

355

E-Print Network 3.0 - analyses defense nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. What do you do when you get there? 3. Enhancing nuclear weapons material security in Russia. 4. Other Source: Gilfoyle, Jerry - Department of Physics, University of Richmond...

356

E-Print Network 3.0 - active nuclear wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

disposal site for transuranic (TRU) radio- active waste created during... , americium, curium, and neptunium are created during the produc- tion of nuclear weapons. Transuranic...

357

ASC eNews Quarterly Newsletter June 2012 | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

absence of nuclear weapons testing, we are taking even greater advantage of high-performance computing (HPC) and simulation science to ensure the safety and reliability of the...

358

Bonus-- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer  

Broader source: Energy.gov [DOE]

Technologies that are improving our ability to prevent the spread of nuclear weapons and material are also saving lives on a daily basis.

359

Deep sub-threshold $?$ and $?$ production in nuclear collisions with the UrQMD transport model  

E-Print Network [OSTI]

We present results on deep sub threshold hyperon production in nuclear collisions, with the UrQMD transport model. Introducing anti-kaon+baryon and hyperon+hyperon strangeness exchange reactions we obtain a good description of experimental data on single strange hadron production in Ar+KCl reactions at $E_{lab}=1.76$ A GeV. We find that the hyperon strangeness exchange is the dominant process contributing to the $\\Xi^-$ yield, however remains short of explaining the $\\Xi^-/\\Lambda$ ratio measured with the HADES experiment. We also discuss possible reasons for the discrepancy with previous studies and the experimental results, finding that many details of the transport simulation may have significant effects on the final $\\Xi^-$ yield.

G. Graef; J. Steinheimer; Feng Li; Marcus Bleicher

2014-09-28T23:59:59.000Z

360

Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.  

SciTech Connect (OSTI)

Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.

Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

1999-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

362

Nuclear conflict and ozone depletion Quick summary  

E-Print Network [OSTI]

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

363

India and Pakistan`s nuclear arms race: Out of the closet but not in the street  

SciTech Connect (OSTI)

CIA Director James Woolsey testified before the Senate on February 24, 1993, {open_quotes}The arms race between India and Pakistan poses perhaps the most probable prospect for future use of weapons of mass destruction, including nuclear weapons.{close_quotes} Currently, both countries are dependent on relatively crude nuclear bombs that do not appear to have been deployed. According to US officials, because of fears of accidental nuclear detonation, both sides would only assemble their nuclear weapons when absolutely necessary. Nevertheless, according to Woolsey, both nations {open_quotes}could, on short notice, assemble nuclear weapons.{close_quotes} Each has combat aircraft that could deliver these bombs in a crisis. India and Pakistan continue to improve their nuclear weapons. Unless their programs are stopped, they might succeed in moving from large, cumbersome bombs to miniaturized, easily armed and fuzed weapons able to be permanently deployed on attack aircraft or ballistic missiles, which are being developed or sought by both countries.

Albright, D.

1993-06-01T23:59:59.000Z

364

E-Print Network 3.0 - alamos thermonuclear weapon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermonuclear weapon Search Powered by Explorit Topic List Advanced Search Sample search results for: alamos thermonuclear weapon Page: << < 1 2 3 4 5 > >> 1 Dr. Lodwick's research...

365

E-Print Network 3.0 - assembled chemical weapons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: assembled chemical weapons Page: << < 1 2 3 4 5 > >> 1 Locations and Status of...

366

The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship  

SciTech Connect (OSTI)

The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

2014-05-09T23:59:59.000Z

367

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

368

Cold nuclear matter effects on the color singlet J/psi production in d-Au collisions at RHIC  

E-Print Network [OSTI]

We use a Modified DKLMT model (called M-DKLMT model) to study the cold nuclear matter (CNM) effects on the color singlet J/psi production in dAu collisions at RHIC. The cold nuclear effect of dipole-nucleus interactions has been investigated by introducing a nuclear geometric effect function f({\\xi}) to study the nuclear geometry distribution effect in relativistic heavy-ion collisions. The dependencies of nuclear modification factors (RdA) on rapidity and centrality are studied and compared to experimental data. It is found that the M-DKLMT model can well describe the experimental results at both forward- and mid-rapidity regions in dAu collisions at RHIC.

Zefang Jiang; Shengqin Feng; Zhongbao Yin; Yafei Shi; Xianbao Yuan

2014-11-13T23:59:59.000Z

369

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

370

Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

Poling, J.

2012-05-15T23:59:59.000Z

371

Nuclear Reaction Cross-Section Measurements via Characterization of Soft Radiation Emitting Products  

SciTech Connect (OSTI)

Nuclear reaction cross-section measurements via the activation technique are generally made using high-resolution {gamma}-ray spectrometry. However, in cases where the radioactive product decays exclusively by EC (without emitting a {gamma}-ray) resort has to be made to the rather subtle technique of x-ray spectrometry. Similarly for characterisation of pure {beta}- emitters, gas-flow proportional or liquid-scintillation counting is applied. In both cases the use of radiochemical methods is most essential. We studied the natTi(p,xn)49V and 85Rb(p,4n)82Sr reactions via x-ray spectrometry. In each case a clean radiochemical separation was performed and a thin source was prepared. The radioactivity of 49V was determined using the soft 4.5-keV k{alpha} x-rays and that of 82Sr via the 13.4-keV k{alpha} x-rays. In another study, the reactions natTi(p,x)45Ca, 89Y(n,p)89Sr, and natPb(p,x)204Tl were investigated. All the products are pure {beta}- emitters and therefore clean radiochemical separations were mandatory. The radioactivity of each of the three products was determined via low-level anticoincidence {beta}- counting. Furthermore, in the case of 45Ca, liquid-scintillation counting was also used. The results obtained using different techniques are compared.

Kettern, K.; Spahn, I.; Spellerberg, S.; Qaim, S.M.; Coenen, H.H. [Institut fuer Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

2005-05-24T23:59:59.000Z

372

Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products  

DOE Patents [OSTI]

A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

2009-01-27T23:59:59.000Z

373

Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products  

DOE Patents [OSTI]

A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

Norman, Eric B. (Oakland, CA); Prussin, Stanley G. (Kensington, CA)

2009-01-06T23:59:59.000Z

374

Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products  

DOE Patents [OSTI]

A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

2009-05-05T23:59:59.000Z

375

Annual report on strategic special nuclear material inventory differences, April 1, 1990--March 31, 1991  

SciTech Connect (OSTI)

This report of unclassified Inventory Difference (ID`s) covers the twelve months from April 1, 1990 through March 31, 1991 for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear materials. Classified information is not included in this report. This classified information includes data for the Rocky Flats and Y-12 nuclear weapons production facilities or facilities under ID investigation. However, classified ID data from such facilities receive the same scrutiny and analyses as the included data.

Not Available

1992-01-01T23:59:59.000Z

376

High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting  

SciTech Connect (OSTI)

The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

2004-11-30T23:59:59.000Z

377

The Steps of Weapons Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2DepartmentManagement AlertThe

378

Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear  

E-Print Network [OSTI]

and reliability of aged and remanufactured weapons in the absence of nuclear testing. This technology base must with the cessation of underground nuclear testing. · Inertial Confinement Fusion Ignition and High Yield (ICF degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge

379

Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials  

SciTech Connect (OSTI)

The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and allow for their straightforward use in Monte Carlo codes will be presented.

Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

2005-02-14T23:59:59.000Z

380

The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon  

E-Print Network [OSTI]

REVIEW The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor the effect of the global rising of temperatures on the genetic composition of populations. Indeed, the long

Huey, Raymond B.

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Bioforensics: Characterization of biological weapons agents by NanoSIMS  

SciTech Connect (OSTI)

The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

2007-02-26T23:59:59.000Z

382

Weapons Activities/ Advanced Simulation and Computing Campaign FY 2011 Congressional Budget  

E-Print Network [OSTI]

of the entire weapons lifecycle, from design to safe processes for dismantlement. The ASC simulations play

383

Panel report: nuclear physics  

SciTech Connect (OSTI)

Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the project Building a Universal Nuclear Energy Density Fuctional whose goals are to provide the unified approach to calculating the properties of nuclei. The successful outcome of this, and similar projects is a first steps toward a predictive nuclear theory based on fundamental interactions between constituent nucleons. The application of this theory to the domain of nuclei important for national security missions will require computational resources at the extreme scale, beyond what will be available in the near term future.

Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

2010-01-01T23:59:59.000Z

384

Weapons of Mass Destruction Technology Evaluation and Training Range  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

Kevin Larry Young

2009-05-01T23:59:59.000Z

385

Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars  

SciTech Connect (OSTI)

With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

Muscatello, A.C.; Houts, M.G.

1996-12-31T23:59:59.000Z

386

Int. J. Nuclear Hydrogen Production and Application, Vol. 1, No. 1, 2006 57 Copyright 2006 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Nuclear Hydrogen Production and Application, Vol. 1, No. 1, 2006 57 Copyright © 2006 Inderscience Enterprises Ltd. Global environmental impacts of the hydrogen economy Richard Derwent* Centre, UK E-mail: dstevens@met.ed.ac.uk Abstract: Hydrogen-based energy systems appear to be an attractive

387

International Nuclear Security  

SciTech Connect (OSTI)

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

388

Nuclear Physics and National Security in an Age of Jerry Gilfoyle  

E-Print Network [OSTI]

Bombs How does it hurt me? Massive release of energy (blast, light) that can cause hundreds of thousands;Nuclear Weapons 101 What Is Radiation? Emission or release of energy from atomic nuclei in the form of sub with unmatched speed. food processing. waste stream treatment. F&M - June 6, 2009 ­ p. 3/2 #12;Nuclear Weapons

Gilfoyle, Jerry

389

Development of a special nuclear materials monitoring sensor pack for Project Straight-Line  

SciTech Connect (OSTI)

With the end of the Cold War and the accelerated dismantlement of nuclear weapons, the nuclear material inventory of the United States is growing. In addition, the United States has offered these excess weapons-grade nuclear material assets for international inspections with the intent of encouraging reciprocal action by other nations. In support of this policy, Sandia National Laboratories has initiated a pilot effort (Project Straight-Line) to develop a flexible, site-independent system to continuously and remotely monitor stored nuclear material and integrate the collection, processing, and dissemination of information regarding this material to ensure that declared nuclear materials placed in storage remain in place, unaltered, and stable. As part of this effort, a +3.6V battery powered, modular sensor pack has been developed to monitor total radiation dose, radiation dose rate, and the temperature of each nuclear material container and to provide this information using a standardized sensor interface. This paper will discuss the development of the sensors, the engineering and production of the sensor pack units, and their installation and operation at sites in New Mexico, California, and the Pantex plant in Amarillo.

Daily, M.R.; Moreno, D.J.; Tolk, K.M.; Wilcoxen, J.L. [Sandia National Labs., Albuquerque, NM (United States); Oetken, R.E.; Collins, J.E.; Miller, R.; Olsen, R.W. [Sandia National Labs., Livermore, CA (United States); Sheets, L. [Allied-Signal, Kansas City, MO (United States). Kansas City Division

1995-12-31T23:59:59.000Z

390

Nuclear-Driven Copper-Based Hybrid Thermo/Electro Chemical Cycle for Hydrogen Production  

SciTech Connect (OSTI)

With a worldwide need for reduction of greenhouse gas emissions, hydrogen gas has become a primary focus of energy researchers as a promising substitute of nonrenewable energy sources. For instance, use of hydrogen gas in fuel cells has received special technological interest particularly from the transportation sector, which is presently dominated by fuel oil. It is not only gaseous hydrogen that is in demand, but the need for liquid hydrogen is growing as well. For example, the aerospace industry uses liquid hydrogen as fuel for space shuttles. The use of liquid hydrogen during a single space shuttle launch requires about 15,000 gallons per minute, which is equivalent to about forty-five hydrogen trailers, each with 13,000 gallons capacity. The hydrogen required to support a single Mars mission would be at least ten times that required for one space shuttle launch. In this work, we provide mass and energy balances, major equipment sizing, and costing of a hybrid CuO-CuSO{sub 4} plant with 1000 MW (30,240 kg/hr) H{sub 2} production capacity. With a 90% annual availability factor, the estimated hydrogen production rate is about 238,412 tons annually, the predicted plant efficiency is about 36%, and the estimated hydrogen production cost is about $4.0/kg (not including storage and transportation costs). In addition to hydrogen production, the proposed plant generates oxygen gas as a byproduct with an estimated flowrate of about 241,920 kg/hr (equivalent to 1,907,297 tons annually). We also propose a novel technology for separating SO{sub 2} and SO{sub 3} from O{sub 2} using a battery of redundant fixed-bed reactors containing CuO impregnated in porous alumina (Al{sub 2}O{sub 3}). This technology accommodates online regeneration of the CuO. Other practical approaches for gaseous separation are also examined including use of ceramic membranes, liquefaction, and regenerable wet scrubbing with slurried magnesium oxide or solutions of sodium salts such as sodium sulfite and sodium hydroxide. Finally, we discuss the applicability of high-temperature nuclear reactors as an ideal fit to providing thermal energy and electricity required for operating the hybrid thermochemical plant with high overall system efficiency. (authors)

Khalil, Yehia F.; Rostkowski, Katherine H. [Yale University, New Haven, CT 06511 (United States)

2006-07-01T23:59:59.000Z

391

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect (OSTI)

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31T23:59:59.000Z

392

Technical advantages and political necessity of public involvement in environmental remediation: The case of the U.S. and Russian weapons complexes  

SciTech Connect (OSTI)

Environmental remediation is an enormous challenge for the governments of the US, Russia, and other states in eastern and central Europe. Historically, governments have withheld issues related to nuclear weapons from public policy debate. As a result of revelations about human health impacts and environmental contamination, serious credibility problems exist for managers of weapons facilities. However, public involvement can contribute to better definition of problems, to identification of a range of potential solutions, and to increased public acceptance of outcomes. Decision makers can maximize the benefits of public involvement by integrating specific processes into their environmental remediation project planning and management.

Shideler, J.C. [JK Research Associates, Inc., Arlington, VA (United States)

1993-12-31T23:59:59.000Z

393

Activation cross sections of $?$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator  

E-Print Network [OSTI]

In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

F. Tárk'anyi; S. Tak'acs; F. Ditrói; A. Hermanne; A. V. Ignatyuk; M. S. Uddin

2014-12-01T23:59:59.000Z

394

The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel  

SciTech Connect (OSTI)

In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

1997-09-01T23:59:59.000Z

395

Safeguards Issues at Nuclear Reactors and Enrichment Plants  

SciTech Connect (OSTI)

The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

Boyer, Brian D [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

396

RS-Weapons X-Rays  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans |QuerylNuclear Power PlantFrequencyand

397

DOE weapons laboratories' contributions to the nation's defense technology base  

SciTech Connect (OSTI)

The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

Hecker, S.S.

1988-04-01T23:59:59.000Z

398

The future of nonnuclear strategic weapons. Final summary report  

SciTech Connect (OSTI)

In this brief study, Pan Heuristics (PAN) has (1) evaluated the future importance of nonnuclear strategic weapons (NNSW), (2) considered their impact on forces and operations, and (3) investigated the technical requirements to support NNSW. In drawing conclusions, PAN has emphasized aspects that might be important to Los Alamos National Laboratory over the long run. It presents them here in a format similar to that used in a briefing at the laboratory. This paper reflects independent PAN research as well as conclusions drawn from discussions with other offices and individuals involved in nonnuclear strategic weapons development.

Brody, R.; Digby, J. [Pan Heuristics, Marina del Rey, CA (United States)

1989-01-31T23:59:59.000Z

399

Changes in Russia's Military and Nuclear Doctrine  

SciTech Connect (OSTI)

In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993 doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of what doctrine meant in 2000 and an outline of the 2000 doctrine. An overview of the 2000 doctrine is: (1) The 2000 doctrine was a return to a more defensive posture; the threat of nuclear retaliation, rather than that of preemptive force, would be its deterrence; (2) In order to strengthen its nuclear deterrence, Russia extended and redefined the cases in which nuclear weapons could be used to include a wider range of conflict types and a larger spectrum of attackers; and (3) Russia's threats changed to reflect its latest fear of engaging in a limited conflict with no prospect of the use of nuclear deterrence. In 2006, the defense minister and deputy prime minister Sergei Ivanov announced that the government was starting on a draft of a future doctrine. Four years later, in 2010, the Military Doctrine of the Russian Federation was put into effect with the intent of determining Russian doctrine until 2020. The 2010 doctrine, like all previous doctrines, was a product of the times in which it was written. Gone were many of the fears that had followed Russia for the past two decades. Below are an examination of the 2010 definition of doctrine as well as a brief analysis of the 2010 doctrine and its deviations from past doctrines. An overview of the 2010 doctrine is: (1) The new doctrine emphasizes the political centralization of command both in military policy and the use of nuclear weapons; (2) Nuclear doctrine remains the same in many aspects including the retention of first-use; (3) At the same time, doctrine was narrowed to using nuclear weapons only when the Russian state's existence is in danger; to continue strong deterrence, Russia also opted to follow the United States by introducing precision conventional weapons; (4) NATO is defined as Russia's primary external threat because of its increased global presence and its attempt to recruit states that are part of the Russian 'bloc'; and (5) The 2000 doctrine's defensive stance was left out of the doctrine; rumored options for use of nuclear weapons in local wars and in preemptive strikes were also left out.

Wolkov, Benjamin M. [Los Alamos National Laboratory; Balatsky, Galya I. [Los Alamos National Laboratory

2012-07-26T23:59:59.000Z

400

Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1  

SciTech Connect (OSTI)

Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

Shaber, E.L.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Occupational employment in nuclear-related activities, 1981  

SciTech Connect (OSTI)

1981 employment in nuclear-related activities is described, and compared to previous years. Employment characteristics examined include detailed occupations of scientists, engineers, and technicians; worker involvement in research and development activities; employment by industrial segment (e.g., reactor operation and maintenance, weapons production, and commercial laboratory services); employment by establishment type (government-owned, contractor-operated (GOCO), private, and nonprofit); regional employment; and employment by establishment size. Total 1981 nuclear-related employment is estimated to be 249,500 - a growth of 22,600 workers over the 1977 total. GOCO workers make up 36.9% of this total. Among all the nuclear-related workers, scientists comprise 5.1%, engineers, 15.3%; and technicians, 17.5%; the remaining 62.1% is composed of managers, skilled craft and clerical workers, and other support services. Research and development involvement has declined from the 1977 survey results, with 60.4% of scientists and 27.0% of engineers currently involved in R and D. The largest single industrial segment activity is weapons development (16.9% of total employment), followed closely by reactor operation and maintenance employment (16.7%). There has been considerable change in the distribution of employment by industrial segment from 1977 to 1981; the reactor and reactor component design and manufacturing segment fell by over 9700 workers while reactor operation and maintenance employment grew by over 24,000 workers.

Baker, J.G.; Olsen, K.

1982-04-01T23:59:59.000Z

402

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect (OSTI)

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

403

The National Nuclear Security Administration's B61 Spin Rocket...  

Broader source: Energy.gov (indexed) [DOE]

cf Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a 1:rime component of the B61 nuclear weapon system. Both the originai motor produced i2 i906 and...

404

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

405

Disposition of weapons-grade plutonium in Westinghouse reactors  

E-Print Network [OSTI]

We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four...

Alsaed, Abdelhalim Ali

2012-06-07T23:59:59.000Z

406

Proceedings of the Tungsten Workshop for Hard Target Weapons Program  

SciTech Connect (OSTI)

The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

1995-06-01T23:59:59.000Z

407

E-Print Network 3.0 - aircraft missiles weapons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naval Research Summary: Program managers 467 Program managers Aircraft carriers Combat boots Combat ships Submarines Weapons... Axisymmetric Missile Configuration Hypersonic...

408

Light clusters production as a probe to nuclear symmetry energy RID A-2398-2009  

E-Print Network [OSTI]

the yields and the energy spectra of these light clusters are affected significantly by the density dependence of nuclear symmetry energy, with a stiffer symmetry energy giving a larger yield....

Chen, LW; Ko, Che Ming; Li, Ba.

2003-01-01T23:59:59.000Z

409

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

410

Title: Weapons on Campus Effective Date: October 1, 2011 Responsible Office: William & Mary Police  

E-Print Network [OSTI]

Title: Weapons on Campus Effective Date: October 1, 2011 Responsible Office: William & Mary Police the prohibition on weapons, firearms, combustibles, and explosives. II. PURPOSE The purpose of this policy by restricting weapons possession on university property. III.DEFINITIONS "law enforcement officials" means

Shaw, Leah B.

411

Research Literature: Effects of Conducted Energy Weapons (CEWs) | p. 1/82 Biomedical research literature  

E-Print Network [OSTI]

Research Literature: Effects of Conducted Energy Weapons (CEWs) | p. 1/82 Biomedical research literature with respect to the effects of Conducted Energy Weapons Andy Adler, David P Dawson, Maimaitjian: Institutions involved in research on CEWs 82 #12;Research Literature: Effects of Conducted Energy Weapons (CEWs

Adler, Andy

412

Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

Biegalski, S R; Whitney, S M; Buchholz, B

2005-08-24T23:59:59.000Z

413

Breeding nuclear fuels with accelerators: replacement for breeder reactors  

SciTech Connect (OSTI)

One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

Grand, P.; Takahashi, H.

1984-01-01T23:59:59.000Z

414

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

415

Responsible stewardship of nuclear materials  

SciTech Connect (OSTI)

The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

Hannum, W.H.

1994-10-01T23:59:59.000Z

416

Forward Lambda Production and Nuclear Stopping Power in d + Au Collisions at sqrt(s_NN) = 200 GeV  

E-Print Network [OSTI]

We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The multichain model can provide a good description of the net baryon density in d + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider, and the derived parameters of the model agree with those from nuclear collisions at lower energies.

STAR Collaboration; B. I. Abelev

2007-12-21T23:59:59.000Z

417

Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel  

SciTech Connect (OSTI)

Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

2004-12-27T23:59:59.000Z

418

Security and Use Control of Nuclear Explosives and Nuclear Weapons (Informational Purposes Only)  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This draft has been scheduled for final review before the Directives Review Board on 3-5-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 3-3-15.

2015-02-24T23:59:59.000Z

419

U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration go on moon walk at U.S.TimelineTruman

420

Magnetic Field Effect on Charmonium Production in High Energy Nuclear Collisions  

E-Print Network [OSTI]

It is important to understand the strong external magnetic field generated at the very beginning of high energy nuclear collisions. We study the effect of the magnetic field on the charmonium yield and anisotropic distribution in Pb+Pb collisions at the LHC energy. The time dependent Schr\\"odinger equation is employed to describe the motion of $c\\bar{c}$ pairs. We compare our model prediction of non- collective anisotropic parameter $v_2$ of $J/\\psi$s with CMS data at high transverse momentum. This is the first attempt to measure the magnetic field in high energy nuclear collisions.

Guo, Xingyu; Xu, Nu; Xu, Zhe; Zhuang, Pengfei

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reevaluating nuclear safety and security in a post 9/11 era.  

SciTech Connect (OSTI)

This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

Booker, Paul M.; Brown, Lisa M.

2005-07-01T23:59:59.000Z

422

A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation  

E-Print Network [OSTI]

#12;A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation Paul I. Bernstein, biological, radiological, nuclear, and high explosives) by providing capabilities to reduce, eliminate affirmed "America's intention to seek the peace and security of a world without nuclear weapons" and stated

423

SNL/NM weapon hardware characterization process development report  

SciTech Connect (OSTI)

This report describes the process used by Sandia National Laboratories, New Mexico to characterize weapon hardware for disposition. The report describes the following basic steps: (1) the drawing search process and primary hazard identification; (2) the development of Disassembly Procedures (DPs), including demilitarization and sanitization requirements; (3) the generation of a ``disposal tree``; (4) generating RCRA waste disposal information; and (5) documenting the information. Additional data gathered during the characterization process supporting hardware grouping and recycle efforts is also discussed.

Graff, E.W.; Chambers, W.B.

1995-01-01T23:59:59.000Z

424

Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis  

SciTech Connect (OSTI)

The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation.

Dana R. Swalla

2008-12-31T23:59:59.000Z

425

On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat  

E-Print Network [OSTI]

We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of 7Li4 and a proton, followed by the breakdown of 8Be4 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the 7Li4 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

Norman D. Cook; Andrea Rossi

2015-04-06T23:59:59.000Z

426

On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat  

E-Print Network [OSTI]

We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of 7Li4 and a proton, followed by the breakdown of 8Be4 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the 7Li4 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

Cook, Norman D

2015-01-01T23:59:59.000Z

427

Nuclear programs in India and Pakistan  

SciTech Connect (OSTI)

India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

2014-05-09T23:59:59.000Z

428

Experimental results and phenomenology of quarkonium production in relativistic nuclear collisions  

E-Print Network [OSTI]

An overview of recent measurements of quarkonium production in nucleus-nucleus collisions and their understanding in theoretical models is given.

A. Andronic

2014-10-15T23:59:59.000Z

429

Beyond apocalypse: Recent representations of nuclear war and its aftermath in U. S. narrative film  

SciTech Connect (OSTI)

The development of nuclear weapons and their destructive potential influences human consciousness and cultural production including US commercial narrative films that deal with the idea of nuclear war. Such films can be read to reflect and mediate cultural attitudes about nuclear war and the increasingly technological future. These issues are investigated through a close examination of several recent US narrative films. An historical outlines of the important events of the nuclear age and a survey of critical approaches to the study of nuclear war texts provide the context for this work. The ways in which popular cinema has constructed the idea of nuclear war are enumerated. A discussion of the formal and thematic concerns of the science fiction film genre follows since SF is the narrative category into which nuclear war films are frequently placed. Nuclear war is represented in quite a number of entertainment films recently which suggests our societal preoccupation with the possibility. At the same time, the representations of nuclear war have been limited to a fairly restricted range of scenographic and narrative options which often serve to trivialize or distanciate the subject.

Perrine, T.A.

1991-01-01T23:59:59.000Z

430

U.S. and Russian Collaboration in the Area of Nuclear Forensics  

SciTech Connect (OSTI)

Nuclear forensics has become increasingly important in the fight against illicit trafficking in nuclear and other radioactive materials. The illicit trafficking of nuclear materials is, of course, an international problem; nuclear materials may be mined and milled in one country, manufactured in a second country, diverted at a third location, and detected at a fourth. There have been a number of articles in public policy journals in the past year that call for greater interaction between the U. S. and the rest of the world on the topic of nuclear forensics. Some believe that such international cooperation would help provide a more certain capability to identify the source of the nuclear material used in a terrorist event. An improved international nuclear forensics capability would also be important as part of the IAEA verification toolkit, particularly linked to increased access provided by the additional protocol. A recent study has found that, although international progress has been made in securing weapons-usable HEU and Pu, the effort is still insufficient. They found that nuclear material, located in 40 countries, could be obtained by terrorists and criminals and used for a crude nuclear weapon. Through 2006, the IAEA Illicit Trafficking Database had recorded a total of 607 confirmed events involving illegal possession, theft, or loss of nuclear and other radioactive materials. Although it is difficult to predict the future course of such illicit trafficking, increasingly such activities are viewed as significant threats that merit the development of special capabilities. As early as April, 1996, nuclear forensics was recognized at the G-8 Summit in Moscow as an important element of an illicit nuclear trafficking program. Given international events over the past several years, the value and need for nuclear forensics seems greater than ever. Determining how and where legitimate control of nuclear material was lost and tracing the route of the material from diversion through interdiction are important goals for nuclear forensics and attribution. It is equally important to determine whether additional devices or materials that pose a threat to public safety are also available. Finding the answer to these questions depends on determining the source of the material and its method of production. Nuclear forensics analysis and interpretation provide essential insights into methods of production and sources of illicit radioactive materials. However, they are most powerful when combined with other sources of information, including intelligence and traditional detective work. The certainty of detection and punishment for those who remove nuclear materials from legitimate control provides the ultimate deterrent for such diversion and, ultimately, for the intended goal of such diversion, including nuclear terrorism or proliferation. Consequently, nuclear forensics is an integral part of 'nuclear deterrence' in the 21st century. Nuclear forensics will always be limited by the diagnostic information inherent in the interdicted material. Important markers for traditional forensics (fingerprints, stray material, etc.) can be eliminated or obscured, but many nuclear materials have inherent isotopic or chemical characteristics that serve as unequivocal markers of specific sources, production processes, or transit routes. The information needed for nuclear forensics goes beyond that collected for most commercial and international verification activities. Fortunately, the international nuclear engineering enterprise has a restricted number of conspicuous process steps that makes the interpretation process easier. Ultimately, though, it will always be difficult to distinguish between materials that reflect similar source or production histories, but are derived from disparate sites. Due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. There are a limited number of

Kristo, M J

2007-10-22T23:59:59.000Z

431

$J/?$ production in Au+Au collisions at RHIC and the nuclear absorption  

E-Print Network [OSTI]

It is shown that a QCD based nuclear absorption model, with few parameters fixed to reproduce experimental $J/\\psi$ yield in 200 GeV pp/pA and 450 GeV pA collisions can explain the preliminary PHENIX data on the centrality dependence of $J/\\psi$ suppression in Cu+Cu collisions at RHIC energy, $\\sqrt{s_{NN}}$=200 GeV. However, the model does not give satisfactory description to the preliminary PHENIX data on the centrality dependence of $J/\\psi$ suppression in Au+Au collisions. The analysis suggest that in Au+Au collisions, $J/\\psi$ are suppressed in a medium unlike the medium produced in SPS energy nuclear collisions or in RHIC energy Cu+Cu collisions.

A. K. Chaudhuri

2006-11-09T23:59:59.000Z

432

Production of e+e- Pairs Accompanied by Nuclear Dissociation in Ultra-peripheral Heavy Ion Collisions  

SciTech Connect (OSTI)

We present the first data on e{sup +}e{sup -} pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. The pair transverse momentum, p{sub T}, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The e{sup +} and e{sup -} p{sub T} spectra are similar, with no evidence for interference effects due to higher-order diagrams.

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Caines, H.; Calderon de la Barca Sanchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Corral, M.M.; Cramer, J.G.; Crawford, H.J.; Deng, W.S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Draper, J.E.; Dunin, V.B.; Dunlop, J.C.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grachov, O.; Grigoriev, V.; Guedon, M.; Guertin, S.M.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Ishihara, A.; Ivanshin, Yu.I.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Kollegger, T.; Konstantinov, A.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.K.; Kuznetsov, A.A.; Lamont, M.A.C.; Landgraf, J.M.; Lange, S.; Lansdell, C.P.; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, V.M.; LeVine, M.J.; Li, Q.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, L.; Liu, Z.; et al.

2004-04-07T23:59:59.000Z

433

The proliferation of surface-to-surface missiles and weapons of mass destruction and the emerging role of tactical missile defenses in Israel, Syria and Iran  

SciTech Connect (OSTI)

The proliferation of surface-to-surface missiles (SSMs) and weapons of mass destruction has become one of the more serious security threats to post-Cold War peace. This dissertation examines the history of proliferation within the Middle East by focusing primarily on three trend-setting countries: Israel, Syria and Iran. Building on the theoretical framework established by Lewis A. Dunn and Herman Kahn, this dissertation examines why and how Israel, Syria and Iran have procured SSMs and weapons of mass destruction. The author also includes an analysis of tactical missile defenses and their impact on proliferation trends. The final section investigates the numerous arms control treaties and supplier cartels designed to halt or slow the pace of unconventional weapons proliferation. In many instances, Iraq serves as the primary example of how well-intentioned nonproliferation efforts have fallen short. This dissertation reveals some of the major flaws in these regimes while proposing necessary improvements if nonproliferation efforts are to succeed. In conclusion, this dissertation returns to the expanded Dunn-Kahn nuclear proliferation model. By categorizing the various reasons as to why countries choose to procure unconventional weapons, a more successful nonproliferation policy can be constructed. However, this dissertation warns that without political solutions to long-term disputes in the region, western-imposed nonproliferation regimes will fail. Thus, nonproliferation policies must be accompanied or preceded by a vigorous diplomatic and political effort to solve seemingly intractable differences.

Clark, T.H.

1993-01-01T23:59:59.000Z

434

The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to diver

Farmer, J C; Diaz de la Rubia, T; Moses, E

2008-12-23T23:59:59.000Z

435

Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

This report presents results from the development and optimization of a reference commercialscale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540° C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 × 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

2007-11-01T23:59:59.000Z

436

Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion  

SciTech Connect (OSTI)

Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

1997-07-01T23:59:59.000Z

437

ReseaRch at the University of Maryland Nuclear Safety Research at the University of Maryland  

E-Print Network [OSTI]

Research on nuclear energy started at the University of Maryland just after World War II, when and nuclear weapons was followed by controversial accidents and regulation. Today, nuclear power is considered that analyze the risks involved in the use of nuclear energy. Understanding and Using Radiation The ionizing

Hill, Wendell T.

438

Defining nuclear security in the 21st century  

SciTech Connect (OSTI)

A conference devoted to Reducing the Risks from Radioactive and Nuclear Materials presupposes that such risks exist. Few would disagree, but what are they? While debate on the nature and severity of risks associated with nuclear energy will always remain, it is easy to define a set of risks that are almost universally acknowledged. These include: (1) Nuclear warfare between states; (2) Continued proliferation of nuclear weapons and weapons-grade nuclear materials to states and non-state actors; (3) Terrorists or non-state actor acquisition or use nuclear weapons or nuclear materials; (4) Terrorists or non-state actors attack on a nuclear facility; and (5) Loss or diversion of nuclear weapons or materials by a state to unauthorized uses. These are listed in no particular order of likelihood or potential consequence. They are also very broadly stated, each one could be broken down into a more detailed set of discrete risks or threats. The fact that there is a strong consensus on the existence of these risks is evidence that we remain in an era of nuclear insecurity. This becomes even clearer when we note that most major trends influencing the probability of these risks continue to run in a negative direction.

Doyle, James E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

439

Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE  

SciTech Connect (OSTI)

The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensics has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.

Jurisson, Silvia, S.

2011-04-11T23:59:59.000Z

440

Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production  

SciTech Connect (OSTI)

This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process  

SciTech Connect (OSTI)

The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

2014-01-01T23:59:59.000Z

442

Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel  

SciTech Connect (OSTI)

Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

2014-09-01T23:59:59.000Z

443

E-Print Network 3.0 - army weapon systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Defense (Do... D) is in the process of destroying the entire U.S. stockpile of aging and obsolete chemical weapons. ... Source: National Center for Environmental Health-...

444

Seaborne Delivery Interdiction of Weapons of Mass Destruction (WMD)  

SciTech Connect (OSTI)

Over the next 10-20 years, the probability of a terrorist attack using a weapon of mass destruction (WMD) on the United States is projected to increase. At some point over the next few decades, it may be inevitable that a terrorist group will have access to a WMD. The economic and social impact of an attack using a WMD anywhere in the world would be catastrophic. For weapons developed overseas, the routes of entry are air and sea with the maritime vector as the most porous. Providing a system to track, perform a risk assessment and inspect all inbound marine traffic before it reaches US coastal cities thereby mitigating the threat has long been a goal for our government. The challenge is to do so effectively without crippling the US economy. The Portunus Project addresses only the maritime threat and builds on a robust maritime domain awareness capability. It is a process to develop the technologies, policies and practices that will enable the US to establish a waypoint for the inspection of international marine traffic, screen 100% of containerized and bulk cargo prior to entry into the US if deemed necessary, provide a palatable economic model for transshipping, grow the US economy, and improve US environmental quality. The implementation strategy is based on security risk, and the political and economic constraints of implementation. This article is meant to provide a basic understanding of how and why this may be accomplished.

Glauser, H

2011-03-03T23:59:59.000Z

445

Near-field millimeter-wave imaging for weapon detection  

SciTech Connect (OSTI)

Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

1992-11-01T23:59:59.000Z

446

Near-field millimeter-wave imaging for weapon detection  

SciTech Connect (OSTI)

Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

1992-11-01T23:59:59.000Z

447

The Iran Nuclear Crisis: An Update  

SciTech Connect (OSTI)

Will Iran develop nuclear weapons capabilities and what effects would such capabilities have on international peace and security? Despite two recent U.N. Security Council resolutions sanctioning Iran for its nuclear activities, the government in Tehran continues to press ahead with efforts to expand its uranium enrichment program to industrial scale. But both the Tehran regime and the Iranian people remain divided on the nuclear question, creating opportunities for a negotiated settlement. It is essential for US security that the Iranian program be contained, for nuclear weapons in Iran would increase risks of regional instability, terrorist use, and further proliferation. The U.S. and its negotiating partners have already missed a number of potential opportunities for a diplomatic breakthrough, but the right mix of incentives designed to address the reasons driving Iran’s nuclear program could still succeed in producing an acceptable outcome.

Scott Sagan

2007-05-07T23:59:59.000Z

448

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

449

Long range rapidity correlations and jet production in high energy nuclear collisions  

SciTech Connect (OSTI)

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation {Delta}{phi}, in d+Au and central Au+Au collisions at {radical}s{sub NN} = 200 GeV. Significant correlated yield for pairs with large longitudinal separation {Delta}{eta} is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in {Delta}{eta} x {delta}{phi} can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in {Delta}{phi} and depends only weakly on {Delta}{eta}, the 'ridge'. Using two systematically independent analyses, finite ridge yield is found to persist for trigger p{sub t} > 6 GeV/c, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p{sub t} < 4 GeV/c).

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

450

Introduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste that is usually the by-product of  

E-Print Network [OSTI]

-Difficulty storing radioactive material -Waste disposal (heavy water, space jettison, underground) -Boat Transport -Impact water supply, nuclear fallout -6% world energy from nuclear energy, 14% world that is run through a turbine to produce energy. -Water or liquid metal are used to cool reactors. What

Auerbach, Scott M.

451

Analysis of Surplus Weapons-Grade Plutonium Disposition Options...  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

452

Nuclear threats from small states  

SciTech Connect (OSTI)

What are the policy implications regarding proliferation and counter proliferation of nuclear weapons among Third World states. How does deterrence operate outside the parameters of superpower confrontation as defined by the cold war elaborate system of constraints enforced by concepts like mutual assured destruction, and counter-value and counter-force targeting. How can US policymakers devise contingencies for dealing with nuclear threats posed by countries like North Korea, Libya, Iraq, Iran, and Syria. These are some of the unsettling but nevertheless important questions addressed by the author in this monograph. In his analysis, Mr. Jerome Kahan examines the likelihood that one or more of these countries will use nuclear weapons before the year 2000. He also offers a framework that policymakers and planners might use in assessing US interests in preempting the use of nuclear weapons or in retaliating for their use. Ironically, with the end of the cold war, it is imperative that defense strategists, policymakers, and military professionals think about the `unthinkable`. In the interest of fostering debate on this important subject, the Strategic Studies Institute commends this insightful monograph.

Kahan, J.H.

1994-06-13T23:59:59.000Z

453

Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons  

SciTech Connect (OSTI)

Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

Bunakov, V. E., E-mail: bunakov@vb13190.spbu.edu; Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Kadmensky, S. S. [Voronezh State University (Russian Federation)

2008-11-15T23:59:59.000Z

454

Cooperation between the Russian Federation and the United States to enhance the existing nuclear-material protection, control, and accounting systems at Mayak Production Association  

SciTech Connect (OSTI)

The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC&A) systems in both countries. Mayak Production Association (MPA) is a major Russian nuclear enterprise within the nuclear complex that is operated by MINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC&A systems at MPA. Current cooperative efforts are focused on enhancements to the existing MPC&A systems at four plants that are operated by MPA and that produce, process, handle and/or store proliferation-sensitive nuclear materials.

Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M.; James, L.T. [and others

1997-11-01T23:59:59.000Z

455

Nuclear Dependence of the Production of \\Upsilon Resonances at 800 GeV D. M. Alde, H. W. Baer, T. A. Carey, G. T. Garvey, A. Klein,  

E-Print Network [OSTI]

, Y. B. Hsiung Fermilab, Batavia, Illinois 60510 M. R. Adams University of Illinois at Chicago, Chicago, Illinois 60680 R. Guo, D. M. Kaplan Northern Illinois University, DeKalb, Illinois 60115 R. L. Mc, particularly in connection with J=/ production in high­energy heavy ion collisions. 1\\Gamma6 Nuclear dependence

456

Preserving Nuclear Grade Knowledge  

SciTech Connect (OSTI)

When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

Lange, Bob

2008-02-05T23:59:59.000Z

457

Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon  

E-Print Network [OSTI]

Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon Fuse To support the development and evaluation of the Stand-off Assault Breaching Weapon Fuse Improvement (SOABWFI for developing an effective system for use against IEDs and mines. The Joint Direct Attack Munition (JDAM

Chu, Peter C.

458

Nonlethal weapons as force options for the Army  

SciTech Connect (OSTI)

This paper suggests that future challenges to US national security will be very different from those previously experienced. In a number of foreseeable circumstances, conventional military force will be inappropriate. The National Command Authority, and other appropriate levels of command, need expanded options available to meet threats for which the application of massive lethal force is counterproductive or inadvisable. It is proposed that nonlethal concepts be developed that provide additional options for military leaders and politicians. Included in this initiative should be exploration of policy, strategy, doctrine, and training issues as well as the development of selected technologies and weapons. In addition, civilian law enforcement agencies have similar requirements for less-than-lethal systems. This may be an excellent example for a joint technology development venture.

Alexander, J.B.

1994-04-01T23:59:59.000Z

459

Safeguards and security requirements for weapons plutonium disposition in light water reactors  

SciTech Connect (OSTI)

This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

1994-10-01T23:59:59.000Z

460

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect (OSTI)

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Top UN officials call on hold-out States to ratify treaty banning nuclear tests  

E-Print Network [OSTI]

Top UN officials call on hold-out States to ratify treaty banning nuclear tests 29 August 2011 War, hundreds of nuclear weapon tests left behind a devastating legacy for local citizens and their natural environment," he said in a message marking the International Day against Nuclear Tests. "Current

462

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada  

E-Print Network [OSTI]

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

Snieder, Roel

463

Nuclear Effects on Hadron Production in d+Au and p+p Collisions at sqrt(s_NN)=200 GeV  

E-Print Network [OSTI]

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

PHENIX Collaboration; S. S. Adler

2006-03-08T23:59:59.000Z

464

Subject:Persons With Weapons at UW Madison Date:Wed, 19 Oct 2011 14:27:43 -0400 (EDT)  

E-Print Network [OSTI]

law goes into effect on November 1, 2011 all weapons will remain prohibited in UW Madison buildingsSubject:Persons With Weapons at UW Madison Date:Wed, 19 Oct 2011 14:27:43 -0400 (EDT) From. If you see a person who is not a police officer in uniform carrying a weapon in a UW Madison building

Balser, Teri C.

465

vol. 166, no. 3 the american naturalist september 2005 Weapon Performance, Not Size, Determines Mating Success and Potential  

E-Print Network [OSTI]

with bite force. These results indicate that weapon performance has far stronger effects on fitness thanvol. 166, no. 3 the american naturalist september 2005 Weapon Performance, Not Size, Determines the head (i.e., jaws and associated musculature) as a weapon when territorial interactions escalate

Husak, Jerry F.

466

Public perspectives on nuclear security. US national security surveys, 1993--1997  

SciTech Connect (OSTI)

This is the third report in a series of studies to examine how US attitudes about nuclear security are evolving in the post-Cold War era and to identify trends in public perceptions and preferences relevant to the evolution of US nuclear security policy. It presents findings from three surveys: a nationwide telephone survey of randomly selected members of the US general public; a written survey of randomly selected members of American Men and Women of Science; and a written survey of randomly selected state legislators from all fifty US states. Key areas of investigation included nuclear security, cooperation between US and Russian scientists about nuclear issues, vulnerabilities of critical US infrastructures and responsibilities for their protection, and broad areas of US national science policy. While international and US national security were seen to be slowly improving, the primary nuclear threat to the US was perceived to have shifted from Russia to China. Support was found for nuclear arms control measures, including mutual reductions in stockpiles. However, respondents were pessimistic about eliminating nuclear armaments, and nuclear deterrence continued to be highly values. Participants favored decreasing funding f/or developing and testing new nuclear weapons, but supported increased investments in nuclear weapons infrastructure. Strong concerns were expressed about nuclear proliferation and the potential for nuclear terrorism. Support was evident for US scientific cooperation with Russia to strengthen security of Russian nuclear assets. Elite and general public perceptions of external and domestic nuclear weapons risks and external and domestic nuclear weapons benefits were statistically significantly related to nuclear weapons policy options and investment preferences. Demographic variables and individual belief systems were systematically related both to risk and benefit perceptions and to policy and spending preferences.

Herron, K.G.; Jenkins-Smith, H.C. [Univ. of New Mexico, Albuquerque, NM (United States). UNM Inst. for Public Policy

1998-08-01T23:59:59.000Z

467

Weapons assessment efficiencies through use of nondestructive laser gas  

E-Print Network [OSTI]

, no underground testing 6:26 Valveless laser processing One of the most difficult and costly processes in nuclear, and effectiveness of the nuclear deterrent without underground testing." Combined Technologies The system combines and engineers at LANL. The new automated testing technology is called Nondestructive Laser Gas Sampling (NDLGS

468

Assessing the risk from the depleted uranium weapons used in Operation Allied Force  

E-Print Network [OSTI]

The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances . The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment.

Liolios, T E

1999-01-01T23:59:59.000Z

469

Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal  

E-Print Network [OSTI]

1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

470

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

471

Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor  

SciTech Connect (OSTI)

The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

2005-06-01T23:59:59.000Z

472

Activation cross-sections of long lived products of deuteron induced nuclear reactions on dysprosium up to 50 MeV  

E-Print Network [OSTI]

Activation cross-sections for production of 162m,161,155Ho,165,159,157,155Dy and 161,160,156,155Tb radionuclides in deuteron induced nuclear reactions on elemental dysprosium were measured up to 50 MeV for practical application and the test of the predictive power of nuclear reaction model codes. A stacked-foil irradiation technique and off-line gamma-ray spectrometry were used to determine the activities. No earlier cross-section data were found in the literature. The experimental data are compared with the predictions of the ALICE-D, EMPIRE-D and TALYS codes. Integral production yields were calculated from the fitted experimental data.

F. Tárkányi; F. Ditrói; S. Takács; J. Csikai; A. Hermanne; A. V. Ignatyuk

2014-02-05T23:59:59.000Z

473

Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel  

SciTech Connect (OSTI)

Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

2011-12-05T23:59:59.000Z

474

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0AdministrationNext100 Federal09

475

Trouble in the Family: New Zealand's Anti-Nuclear Policy  

E-Print Network [OSTI]

or deny that a given vessel is carrying nuclear weapons, the port ban effectively barred most U.S. naval craft from docking in New Zealand's ports. Although New Zealand is small, remote, and not strategically located, the significance of this diplomatic.... The matter came to a head in February 1985 when New Zealand refused to accept a visit by the conventionally powered U.S. destroyer Buchanan, on the grounds that the ship might have been carrying nuclear weapons. This was the first test of New Zealand...

Hanson, F. Allen

1987-01-01T23:59:59.000Z

476

President Truman Orders Development of Thermonuclear Weapon | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medicalSecurity AdministrationSecurityNuclearNuclear

477

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

SciTech Connect (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

478

Charmonium and open charm production in nuclear collisions at SPS/FAIR energies and the possible influence of a hot hadronic medium  

E-Print Network [OSTI]

We provide predictions for charmonium and open charm production in nuclear collisions at SPS/FAIR energies within the framework of the statistical hadronization model. The increasing importance at lower energies of Lambda_c production is demonstrated and provides a challenge for future experiments. We also demonstrate that, because of the large charm quark mass and the different timescales for charm quark and charmed hadron production, possible modifications of charmed hadrons in the hot hadronic medium do not lead to measurable changes in cross sections for D-meson production. A possible influence of medium effects can be seen, however, in yields of charmonium. These effects are visible at all energies and results are presented for the energy range between charm threshold and RHIC energy.

A. Andronic; P. Braun-Munzinger; K. Redlich; J. Stachel

2007-10-26T23:59:59.000Z

479