Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

2

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy 18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel. The analysis demonstrates that the impacts on the environmental, workers and the general public of implementing any of the alternative management approaches would be small and within applicable Federal and state regulator limits. PUBLIC COMMENT OPPORTUNITIES

3

The future of the Non-Proliferation Treaty and U.S. nuclear weapons policy .  

E-Print Network (OSTI)

??This thesis addresses the viability of the Treaty on the Non-Proliferation of Nuclear Weapons – NPT for short – in light of U.S. nuclear weapons… (more)

Claussen, Bjřrn Ragnar

2008-01-01T23:59:59.000Z

4

The doctrine of the nuclear-weapon states and the future of non-proliferation  

SciTech Connect

Less than a year remains before the critical conference in April 1995 to review and extend the nuclear Non-Proliferation Treaty (NPT), the main international barrier to the proliferation of nuclear weapons. This is a critical moment for the United States. With the end of the Cold War, the likelihood of nuclear war with the states of the former Soviet Union has been radically reduced, but there is greatly increased concern over the potential threats from states or sub-state groups seeking to develop or acquire nuclear weapons and other weapons of mass destruction.

Panofsky, W.K.H.; Bunn, G.

1994-07-01T23:59:59.000Z

5

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

6

Nuclear Nonproliferation  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

7

Nuclear Nonproliferation Programs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nonproliferation Programs SHARE Nuclear Nonproliferation Programs image Oak Ridge National Laboratory covers the entire spectrum of nuclear nonproliferation work, from...

8

Nonproliferation | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

9

Regimes At Work: The Nonproliferation Order And Indian Nuclear Policy .  

E-Print Network (OSTI)

??This thesis claims that by constituting a certain range of possible identities for countries, the nuclear nonproliferation regime facilitated India's forging of non-weaponized nuclear deterrence… (more)

Sasikumar, Karthika

2006-01-01T23:59:59.000Z

10

Nuclear Weapons Journal  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Nuclear Weapons Journal x The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2,...

11

Nuclear Deterrence in the Age of Nonproliferation  

SciTech Connect

The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

Richardson, J

2009-01-21T23:59:59.000Z

12

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Office of Environmental Management (EM)

Presentation: DOE Nuclear Nonproliferation Presentation: DOE Nuclear Nonproliferation A briefing to the Secretary's Energy Advisory Board on DOE nuclear nonproliferation activities...

13

Nuclear nonproliferation strategies for South Asia  

SciTech Connect

Continued expansion of the nuclear weapons capabilities of India and Pakistan, coupled with ongoing conflict between them, raises the probability of nuclear war in South Asia. A nuclear arms race between India and Pakistan could also harm efforts to discourage other nations from acquiring nuclear weapons. United States policy opposes the spread of nuclear weapons because proliferation increases threats to U.S. national security and to world peace and stability. However, there is debate on the dangers of an escalating arms race in South Asia. Steps taken by the United States and other countries to persuade India and Pakistan to end their nuclear weapons programs have had limited success, at most slowing down their pace. A complicating factor is that India maintains a nuclear capability in part to deter China, whereas Pakistan`s nuclear weapons capability is aimed at deterring India`s superior conventional and nuclear capabilities. Analysts and policy officials are divided on how to avoid an arms race in South Asia. The Clinton Administration has renewed efforts to break the deadlock over nonproliferation, but longstanding obstacles have blocked progress. Pakistan favors a regional approach to nonproliferation, while India insists on a global approach that treats the nuclear powers on an equal basis with non nuclear weapon countries. This report analyzes the nuclear capabilities of India and Pakistan and reviews several options for U.S. nonproliferation policy in South Asia.

Davis, Z.S.

1994-05-03T23:59:59.000Z

14

Chapter 27 - Nuclear weapons  

Science Journals Connector (OSTI)

Abstract This chapter faces the realization that the same atoms that can produce life-saving electricity can also be used to construct weapons of mass destruction. Some facilities, such as enrichment and reprocessing, in the nuclear fuel cycle can also serve dual uses when considering proliferation. The original atomic bombs were constructed of highly enriched uranium and high-grade plutonium, but their development led to thermonuclear devices with much larger yields. Thus far, nuclear war has been avoided by policies such as mutual assured destruction and international agreements such as the Non-Proliferation Treaty. The International Atomic Energy Agency (IAEA) is charged with performing worldwide nuclear material safeguards inspections. The legacy of the nuclear weapons arms race has left considerable weapons-grade materials that must be dealt with.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

15

Virtual nuclear weapons  

SciTech Connect

The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

Pilat, J.F.

1997-08-01T23:59:59.000Z

16

Nuclear Nonproliferation Program Offices | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

17

Nuclear Nonproliferation Program Offices | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

18

Proactive Intelligence for Nuclear Nonproliferation  

SciTech Connect

The project described in this paper leverages predictive models for proliferation detection in order to assess the complementary questions of capability and intent as they relate to the potential for nuclear weapon development. The ability to proactively assess the likelihood of a state to engage in nuclear power acquisition and development for non-peaceful purposes is one of the greatest challenges for analysts and policy makers working on proliferation detection and deterrence. Of further difficulty is determining whether a state is at risk to provide indirect support for proliferation via the relationship between industrial input/output and the legal framework of trade. In general, it is possible to gather evidence about precursor activities to the achieved nuclear potential of a state that function as indicators of the state's intent to acquire and develop capabilities to support nuclear weapons. Reasoning with these indicators to predict intent and capability to proliferate is of utmost importance to facilitate nuclear safeguards, e.g. through proactive implementation of countermeasures. Such a predictive reasoning task is difficult to perform without computational aid. While the need for a proactive and multi-perspective approach to proliferation detection is widely recognized, there is a lamentable lack of computational tools applied directly to the task. Applications of predictive modeling to the domain of nuclear nonproliferation are limited to physical/chemical properties of nuclear materials, such as nuclear weapons simulations and stockpile stewardship. The aim of this project is to address this gap by leveraging methods and data from different mission areas in support of proliferation detection and prevention in innovative ways. More specifically, the approach implemented in this project combines methods in information analysis and probabilistic evidentiary reasoning with expert knowledge from discipline areas germane to proliferation detection, and evidence extracted from relevant data sources, to assess alternative hypotheses about specific proliferation detection problems.

Peterson, Danielle J.; Sanfilippo, Antonio P.; Baddeley, Robert L.; Franklin, Lyndsey

2008-05-12T23:59:59.000Z

19

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

20

Reconversion of nuclear weapons  

E-Print Network (OSTI)

The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

Kapitza, Sergei P

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nonproliferation & International Security | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

22

Nonproliferation & International Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

23

Constraining potential nuclear-weapons proliferation from civilian reactors  

SciTech Connect

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

24

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

25

Identification of nuclear weapons  

DOE Patents (OSTI)

A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

Mihalczo, J.T.; King, W.T.

1987-04-10T23:59:59.000Z

26

Summary of the Nuclear Non-Proliferation Treaty  

SciTech Connect

The Non-Proliferation Treaty rests on a basic bargain between the five declared nuclear-weapon states-the United States, Russia, Britain, France and China and 167 states that do not possess nuclear weapons. In addition, to the arms control and disarmaments commitments in Article VI, the parties pledge in the treaty`s pramble their determination to seek a comprehensive test ban (CTB) and express the understanding that in connection with the treaty on general and complete disarmament the parties should seek the cessation of manufacture of nuclear weapons, the liquidation of all their existing stock piles, and the elimination from national arsenals of nuclear weapons and means of their delivery. The author summaries key elements of these agreements.

NONE

1995-03-01T23:59:59.000Z

27

Nonproliferation and National Security - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and Nonproliferation and National Security CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nonproliferation and National Security Bookmark and Share Nuclear Export Controls Nuclear Exports Controls We provide technical advisory services to DOE in the implementation of U.S. nonproliferation policy. This includes assessments of proliferation risks presented by emerging technologies and

28

US nuclear weapons policy  

SciTech Connect

We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

May, M.

1990-12-05T23:59:59.000Z

29

Nuclear proliferation: The diplomatic role of non-weaponized programs  

SciTech Connect

The end of the Cold War has not seen the end of reliance on nuclear weapons for deterrence or diplomacy purposes. The use of nuclear weapons for such purposes is as evident in the threshold states as in the nuclear powers. The nuclear weapon states used their nuclear weapons for deterrence, bargaining, and blackmail, even during the early years of the Cold War when the US was essentially non-Weaponized. In the nuclear non-Weaponized states in Asia a non-Weaponized deterrent relationship is developing between India and Pakistan and North Korea has used its nuclear program to restore diplomatic relations with the international community. The role of nuclear weapons in the post Cold War world is determined by the role of non-Weaponized programs in proliferating states. This paper describes examples in South Asia and the Korean peninsula and show that while an increased reliance on nuclear weapons programs may be a threat to the current non-proliferation regime, the focus on non-Weaponized programs rather than on weapons themselves actually improves international security by reducing the threat of nuclear war.

Reynolds, R.R.

1996-01-01T23:59:59.000Z

30

Nuclear weapon detection categorization analysis  

SciTech Connect

This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

NONE

1997-12-01T23:59:59.000Z

31

Nuclear Security & Nonproliferation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

32

Will our nuclear weapons work?  

NLE Websites -- All DOE Office Websites (Extended Search)

Will our nuclear weapons work? Will our nuclear weapons work? National Security Science magazine Latest Issue:April 2013 All Issues » submit Supercomputers are essential for assessing the health of the U.S. nuclear stockpile Supercomputers provide assurance by simulating nuclear weapons performance March 25, 2013 Graphic of a missile being tested through computer simulation Los Alamos uses supercomputers to make high-resolution 3D simulations that help to assess the health of nuclear weapons like this B-61 bomb. Contact Managing Editor Clay Dillingham Email The nuclear weapons in the U.S. stockpile were designed and built to be replaced with new designs and builds every 10 to 15 years. These weapons have lived beyond their expected lifespans. Supercomputers provide the high-resolution 3D simulations needed for

33

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The Test Ban Treaty. 5. Why should you care

Gilfoyle, Jerry

34

2011 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Defense Nuclear Nonproliferation (NA-20).

35

Weapons | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons | National Nuclear Security Administration Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Weapons Home > Our Mission > Managing the Stockpile > Weapons Weapons The New START Treaty, which was signed in 2010, between the United States and Russian Federation will cap the strategic deployed nuclear arsenals of each country at 1,550 warheads, a nearly 75% reduction compared with the

36

Nuclear weapon system risk assessment  

SciTech Connect

Probabilistic risk assessment (PRA) is a process for evaluating hazardous operations by considering what can go wrong, the likelihood of these undesired events, and the resultant consequences. Techniques used in PRA originated in the 1960s. Although there were early exploratory applications to nuclear weapons and other technologies, the first major application of these techniques was in the Reactor Safety Study, WASH-1400, {sup 1} in which the risks of nuclear power accidents were thoroughly investigated for the first time. Recently, these techniques have begun to be adapted to nuclear weapon system applications. This report discusses this application to nuclear weapon systems.

Carlson, D.D.

1993-11-01T23:59:59.000Z

37

Debunking Six Big Myths about Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

Debunking Six Big Myths about Nuclear Weapons National Security Science Latest Issue:December 2014 All Issues submit Debunking Six Big Myths about Nuclear Weapons Is it true...

38

Tag: nuclear nonproliferation | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear ... Tag: nuclear nonproliferation Displaying 1 - 1 of 1... Category: News Jamaican Connection Y-12 joins Jamaica and Canada in helping a research reactor on the Caribbean...

39

On the dangers of C.I.S. specialists with nuclear weapons experience relocating to Third World countries: A Russian view. Nonproliferation Newsletter, February 1993: Volume 11, Issue 1  

SciTech Connect

This newsletter presents information on the effectiveness of rules and regulations; on the role of a qualified consultant in the possible design of a nuclear weapon for a Third World country; and on the possible dangers (and their elimination) of relocating nuclear technologists.

Hogsett, V.; Canavan, B. [eds.

1993-03-01T23:59:59.000Z

40

The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship  

SciTech Connect

The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

2014-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

42

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

43

Transparency in nuclear arms: Toward a nuclear weapons register  

SciTech Connect

In his press conference to present a {open_quotes}10-point non-proliferation initiative{close_quotes} last December, German Foreign Minister Klaus Kinkel included a proposal calling for an international register for nuclear weapons, analogous to the UN Conventional Arms Register. When German diplomats explained the initiative to their allies in London, Paris and Washington, they were sharply rebuffed. Apparently the three nuclear-weapon states were strongly opposed to the idea and therefore discouraged Germany from pursuing it further in the Conference on Disarmament (CD) in Geneva, where the ad hoc group on transparency in armaments would be an appropriate forum for further discussion. Faced with these cold responses, German diplomats shelved the idea for the time being and concentrated on initiatives that promised better chances for agreement, such as the comprehensive test ban (CTB) treaty currently under discussion, a fissile material cutoff agreement and an international plutonium management regime.

Mueller, H. [Peace Research Institute, Frankfurt (Germany)

1994-10-01T23:59:59.000Z

44

Nuclear weapon reliability evaluation methodology  

SciTech Connect

This document provides an overview of those activities that are normally performed by Sandia National Laboratories to provide nuclear weapon reliability evaluations for the Department of Energy. These reliability evaluations are first provided as a prediction of the attainable stockpile reliability of a proposed weapon design. Stockpile reliability assessments are provided for each weapon type as the weapon is fielded and are continuously updated throughout the weapon stockpile life. The reliability predictions and assessments depend heavily on data from both laboratory simulation and actual flight tests. An important part of the methodology are the opportunities for review that occur throughout the entire process that assure a consistent approach and appropriate use of the data for reliability evaluation purposes.

Wright, D.L. [Sandia National Labs., Albuquerque, NM (United States)

1993-06-01T23:59:59.000Z

45

The gas centrifuge and nuclear weapons proliferation  

SciTech Connect

Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

2014-05-09T23:59:59.000Z

46

Interim Report of the Task Force on Nuclear Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE))

This interim report of the SEAB Task Force on Nuclear Nonproliferation sets forth its findings and recommendations to date in five timely and important areas

47

The future of nuclear weapons: Proliferation in South Asia  

SciTech Connect

The signing of the Intermediate-Range Nuclear Forces (INF) Treaty in December 1987, followed by the dramatic changes in East-West relations since 1989 and the more recent Soviet-American strategic arms limitation agreement, have greatly eased public concerns about the danger of nuclear war. The context has also changed for the Nonaligned Movement, which had made nuclear disarmament and condemnation of the concept of nuclear deterrence the primary themes of its multilateral disarmament diplomacy. More important would be the interrelationship among the states possessing nuclear weapons (Russia, Ukraine, Belarus, and Kazakhstan). In any case, there is little risk of a revival of nuclear competition. Both France and China have decided to sign the Treaty on the Nonproliferation of Nuclear Weapons (NPT); they are the only two nuclear-weapon states that have stayed outside the regime. Meanwhile, Brazil and Argentina have moved further down the nonproliferation road by engaging in confidence-building measures and moving closer to joining the Latin American nuclear-weapons-free zone established under the Treaty of Tlatelolco in 1967. South Africa has also agreed to embrace the NPT as well as a nuclear-weapons-free zone regime for the entire African continent, while North Korea has agreed to sign a safeguard agreement with the International Atomic Energy Agency (IAEA), thereby allowing in principle international inspection of its nuclear facilities. In the third world regions, the dangers of nuclear proliferation and competitive nuclear buildup are most pronounced in South Asia, a region where a variety of complicating problems exist: acute threat perceptions, historical emity, religious and sectarian animosity, ethnic antagonism, territorial disputes, ambitions for regional dominance, and domestic political instability. This chapter will focus primarily on South Asia, although references will also be made to other regions, where relevant. 17 refs.

Kamal, N. [Institute of Strategic Studies, Islamabada (Pakistan)

1992-12-31T23:59:59.000Z

48

Neutrino Counter Nuclear Weapon  

E-Print Network (OSTI)

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Tang, Alfred

2008-01-01T23:59:59.000Z

49

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

50

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

National Nuclear Security Administration (NNSA)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

51

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's (DOE) Nuclear Weapons Complex Request...

52

Control of Nuclear Weapon Data  

Directives, Delegations, and Requirements

The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Cancels DOE O 5610.2.

2011-07-21T23:59:59.000Z

53

The politics of verification: Limiting the testing of nuclear weapons  

SciTech Connect

From 1982 to 1990, the United States and the Soviet Union renegotiated verification arrangements for two unratified arms control agreements that had nevertheless been observed since 1977: the Threshold Test Ban Treaty and the Peaceful Nuclear Explosions Treaty. The negotiations yielded new verification procedures, changed attitudes regarding Soviet compliance, and established useful precedents for further restrictions on nuclear testing. The negotiations also demonstrated how technical arguments can be misused to promote a particular political agenda-in this case, the continued testing of nuclear weapons. By misrepresenting the uncertainties in US monitoring procedures, and then falsely characterizing these uncertainties as a fatal flaw of seismic verification techniques, opponents of a nuclear test ban clouded the sensitive issue of verification enough to delay progress towards a complete ban on nuclear weapons testing. The primary obstacle to further restrictions on nuclear testing was not the feasibility of adequate verification, but rather the unwillingness of several US administrations to address the real question of whether the United States and other nuclear weapon states should, in the interest of global nuclear nonproliferation, end the development of new nuclear weapons designs that require confirmation by underground nuclear tests. 51 refs., 6 figs.

Vink, G.E. van der (IRIS Consortion on Seismology, Arlington, VA (United States)); Paine, C.E. (Natural Reources Defense Council, Washington, DC (United States))

1993-01-01T23:59:59.000Z

54

United States Nuclear Energy and Non-Proliferation Policy  

Science Journals Connector (OSTI)

I believe that U.S. nuclear energy and non-proliferation policy is not well understood, and I hope ... I shall speak first about the role of nuclear energy within the context of overall energy policy, then about ...

Daniel P. Serwer

1980-01-01T23:59:59.000Z

55

Nonproliferation and National Security Program - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Nonproliferation and Major Programs > Nonproliferation and National Security Program Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program (NPNS)

56

weapons material protection | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

weapons material protection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

57

Administrator D'Agostino on Nuclear Forces and Nonproliferation | National  

National Nuclear Security Administration (NNSA)

Nuclear Forces and Nonproliferation | National Nuclear Forces and Nonproliferation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator D'Agostino on Nuclear Forces and Nonproliferation Speech Administrator D'Agostino on Nuclear Forces and Nonproliferation Oct 28, 2010 As prepared for delivery at the Woodrow Wilson International Center for

58

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2014-08-05T23:59:59.000Z

59

Nuclear weapons testing  

SciTech Connect

The author examines the history of efforts to ban, or at least constrain, nuclear tests. The issue has been marked by shifts in attitude by the superpowers in recent times. The Reagan Administration sees a comprehensive test ban only as a very long-term goal for the U.S. The Soviets, on the other hand, have been pushing extremely hard lately for a ban on all testing. The author discusses the pros and cons of such a ban by examining the arguments of the U.S. Department of Energy, Nobel Laureate Glenn T. Seaborg, and Associate Director for Defense Systems at Lawrence Livermore National Laboratory George H. Miller. Other issues that are discussed include verification, joint testing, and reliability. He concludes with a discussion of the future of the ban.

Heylin, M.

1988-02-15T23:59:59.000Z

60

Verifying a nuclear weapon`s response to radiation environments  

SciTech Connect

The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

Dean, F.F.; Barrett, W.H.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

NLE Websites -- All DOE Office Websites (Extended Search)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

62

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

63

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

National Nuclear Security Administration (NNSA)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

64

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

65

The National Nuclear Security Administration's Weapons Dismantlement...  

Office of Environmental Management (EM)

National Nuclear Security Administration's Weapons Dismantlement and Disposition Program OAS-L-13-06 January 2013 Department of Energy Washington, DC 20585 January 29, 2013...

66

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

67

Nonproliferation Human Capital Development in Malaysia | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Capital Development in Malaysia | National Nuclear Human Capital Development in Malaysia | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Nonproliferation Human Capital Development in Malaysia Nonproliferation Human Capital Development in Malaysia Posted By NNSA Public Affairs NNSA Blog Photo Credit: National University of Malaysia

68

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

69

Toward a nuclear weapons free world?  

SciTech Connect

Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

1996-09-01T23:59:59.000Z

70

US?Ukraine stalemate over nuclear weapons  

Science Journals Connector (OSTI)

... Washington. Ukraine's opposition to the complete relinquishment of strategic nuclear weapons located on its soil is ... for the Advancement of Science (AAAS), focused on the disposal of nuclear weapons in Ukraine itself, while a United Nations symposium addressed the wider question of disarmament across the ...

Colin Macilwain

1993-10-14T23:59:59.000Z

71

Iraq's secret nuclear weapons program  

SciTech Connect

UN inspectors discovered an electromagnetic isotope separation factory that put Iraq just 18-30 months away from having enough material for a bomb. They also found European centrifuge technology and plans for an implosion device. The inspections of Iraq mandated by the United Nations as a cease-fire condition at the end of the Gulf War in February 1991 have revealed a clandestine nuclear materials production and weapons design program of unexpected size and sophistication. The total value of that program, in terms of equipment and personnel deployed between 1981 and 1991, may be on the order of $5-10 billion. The program employed an estimated 7000 scientist and 20,000 workers. 6 refs., 4 figs.

Davis, J.C. (Lawrence Livermore National Lab., CA (United States)); Kay, D.A. (Uranium Institute, London (United Kingdom))

1992-07-01T23:59:59.000Z

72

What do we do with Nuclear Weapons Now?  

E-Print Network (OSTI)

What Do We Do with Nuclear Weapons Now? by Michael M. Maythe Future of U.S. Nuclear Weapons Policy MICHAEL M. MAY wasmajority in nuclear weapons states. Unlike chemical and

May, Michael M

2005-01-01T23:59:59.000Z

73

DOE Defense Nuclear Nonproliferation DNN | Open Energy Information  

Open Energy Info (EERE)

Defense Nuclear Nonproliferation DNN Defense Nuclear Nonproliferation DNN Jump to: navigation, search Name DOE Defense Nuclear Nonproliferation (DNN) Place Washington, Washington, DC Zip 20585 Product String representation "Washington D.C. ... ear operations." is too long. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Office of Environmental Management (EM)

Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

75

Laboratory's role in Cold War nuclear weapons testing program...  

NLE Websites -- All DOE Office Websites (Extended Search)

70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

76

Passing good judgment, part 1: weapons designers with nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 All Issues submit Passing good judgment, part 1: weapons designers with nuclear testing experience The nuclear weapons designers who developed their skills during...

77

Reducing the Nuclear Weapons Stockpile | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the Nuclear Weapons Stockpile | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

78

The nuclear-weapon states and article VI of the NPT  

SciTech Connect

The Non-Proliferation Treaty rests on a basic bargain between the five declared nuclear-weapon states - the United States, Russia, Britain, France and China and 167 states that do not possess nuclear weapons. In addition, to the arms control and disarmaments commitments in Article VI, the parties pledge in the treaty`s pramble their determination to seek a comprehensive test ban (CTB) and express the understanding that in connection with the treaty on general and complete disarmament the parties should seek the cessation of manufacture of nuclear weapons, the liquidation of all their existing stock piles, and the elimination from national arsenals of nuclear weapons and means of their delivery. The author discusses the status of these agreements and the extent to which they have been fulfilled.

Mendelsohn, J.; Lockwood, D.

1995-03-01T23:59:59.000Z

79

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

80

Stopping the emergence of nuclear weapon states in the Third World: An examination of the Iraq weapons inspection program. Study project  

SciTech Connect

The end of the Gulf War and the implementation of United Nation (UN) resolutions uncovered an Iraqi multi-billion dollar nuclear weapons program. Iraq's ability to pursue this clandestine program for more than a decade, despite periodic inspections, suggest that the myriad of treaties and agreements designed to curb proliferation may be inadequate. Clearly more must be done to deter and counter the spread of these deadly weapon. The UN weapons inspections in Iraq provide insight into possible solutions to the proliferation of nuclear weapons technology in the developing world. This study examines the policy and operational aspects associated with an intrusive United Nations inspection program. In its final analysis, this paper suggests that an effective challenge inspection program is a necessary element in countering the spread of weapons of mass destruction. Further, it suggests that the UN, as the only internationally accepted enforcement organization, be fully engaged in nonproliferation issues and support the challenge inspection program.

Block, D.A.

1993-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Computational Challenges in Nuclear Weapons Simulation  

SciTech Connect

After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.

McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M

2003-08-29T23:59:59.000Z

82

MCNPX-PoliMi for Nuclear Nonproliferation Applications  

SciTech Connect

In the past few years, efforts to develop new measurement systems to support nuclear nonproliferation and homeland security have increased substantially. Monte Carlo radiation transport is one of the simulation methods of choice for the analysis of data from existing systems and for the design of new measurement systems; it allows for accurate description of geometries, detailed modeling of particle-nucleus interactions, and event-by-event detection analysis. This paper describes the use of the Monte Carlo code MCNPX-PoliMi for nuclear-nonproliferation applications, with particular emphasis on the simulation of spontaneous and neutron-induced nuclear fission. In fact, of all possible neutron-nucleus interactions, neutron-induced fission is the most defining characteristic of special nuclear material (such as U-235 and Pu-239), which is the material of interest in nuclear-nonproliferation applications. The MCNP-PoliMi code was originally released from the Radiation Safety Shielding Center (RSSIC) at Oak Ridge National Laboratory in 2003 [1]; the MCNPX-PoliMi code contains many enhancements and is based on MCNPX ver. 2.7.0. MCNPX-PoliMi ver. 2.0 was released through RSICC in 2012 as a patch to MCNPX ver. 2.7.0 and as an executable [2].

S. A. Pozzi; S. D. Clarke; W. Walsh; E. C. Miller; J. Dolan; M. Flaska; B. M. Wieger; A. Enqvist; E. Padovani; J. K. Mattingly; D. L. Chichester; P. Peerani

2012-12-01T23:59:59.000Z

83

Stopping the spread of nuclear weapons. The Heritage lectures; No. 506  

SciTech Connect

This lecture is on the proliferation of nuclear arms. More precisely, it will be on how best to prevent the proliferation of nuclear arms. For as much as the policy community may disagree about the proper policies for preventing nuclear proliferation, the author thinks all share the goal of preventing proliferation. The best prescription for preventing all sorts of proliferation - biological, chemical, missile, and space technology, as well as nuclear is for the U.S. government to pursue a balanced non-proliferation policy. Such a balanced policy requires bringing four distinct approaches to addressing the proliferation problem together in a coherent fashion. These distinct approaches are: (1) deterring the use of the weapon in question, (2) defending against the use of the weapon in question, (3) destroying preemptively the weapon in question, and (4) controlling the spread of the weapon in question directly through arms control. In the authors view, a balanced and effective nonproliferation policy should not shun or slight any of these approaches. All make a unique contribution toward the whole and serve to reinforce one another in limiting the effects of proliferation and ultimately discouraging proliferation itself. This does not mean, however, that there is no requirement to make trade-offs among the four. Indeed, the real trick is assuring that there is an appropriate division of labor among the four. The author explains this general policy in terms of the specific challenges posed by the proliferation of nuclear arms.

Spring, B.

1994-12-31T23:59:59.000Z

84

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

85

Find and neutralize clandestine nuclear weapons  

SciTech Connect

The objective of finding nuclear material at entry portals is to provide a secure perimeter as large as a weapon damage radius so that operations could be conducted within it relatively unencumbered. The objective of wide area search for nuclear material to provide a safe zone of similar dimensions in an area in which it is not possible to maintain a secure perimeter, to provide assurance for civilians living at an area at risk, or to provide rapid, wide area search of regions that could conceal nuclear threats to forces in the field. This rapid, wide-area, and confident detection of nuclear materials is the essential first step in developing the ability to negate terrorist nuclear assemblies or weapons. The ability to detect and negate nuclear materials are necessary to prevent the forced, massive evacuation of urban populations or the disruption of military operations in response to terrorist threats. This paper describes the limitations to current sensors used for nuclear weapon detection and discusses a novel approach to nuclear weapon detection using a combination of directional information (imaging) and gamma ray energy (color) to produce a gamma ray color camera.

Canavan, G.H.

1997-09-01T23:59:59.000Z

86

Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions  

SciTech Connect

The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the key points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the near-term (1-4) years and longer-term (5-10) years planning horizons. Some final observations include acknowledging the enduring nature of several key objectives on the Obama Administration's arms control and nonproliferation agenda. The CTBT, FMCT, bilateral nuclear arms reductions and strengthening the NPT have been sought by successive U.S. Administrations for nearly thirty years. Efforts towards negotiated arms control, although de-emphasized by the G.W. Bush Administration, have remained a pillar of U.S. national security strategy for decades and are likely to be of enduring if not increasing importance for decades to come. Therefore revitalization and expansion of USG capabilities in this area can be a positive legacy no matter what near-term arms control goals are achieved over the next four years. This is why it is important to reconstruct integrated bureaucratic, legislative, budgetary and diplomatic strategies to sustain the arms control and nonproliferation agenda. In this endeavor some past lessons must be taken to heart to avoid bureaucratic overkill and keep interagency policy-making and implementation structures lean and effective. On the Technical side a serious, sustained multilateral program to develop, down select and performance test nuclear weapons dismantlement verification technologies and procedures should be immediately initiated. In order to make this happen the United States and Russia should join with the UK and other interested states in creating a sustained, full-scale research and development program for verification at their respective nuc1ear weapons and defense establishments. The goals include development of effective technologies and procedures for: (1) Attribute measurement systems to certify nuclear warheads and military fissile materials; (2) Chain-of-custody methods to track items after they are authenticated and enter accountability; (3) Transportation monitoring; (4) Storage monitoring; (5) Fissile materials conversion verification. The remainder of this paper focuses on transparency and verification for nuclear arms a

Doyle, James E [Los Alamos National Laboratory; Meek, Elizabeth [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

87

Nuclear Weapon Surety Interface with the Department of Defense  

Directives, Delegations, and Requirements

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

2009-05-14T23:59:59.000Z

88

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

89

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

90

Nuclear Weapons Life Cycle | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle | National Nuclear Security Administration Life Cycle | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Weapons Life Cycle Home > Our Mission > Managing the Stockpile > Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are developed, produced, and maintained in the stockpile, and then retired and dismantled. This sequence of events is known as the

91

Security and Control of Nuclear Explosives and Nuclear Weapons  

Directives, Delegations, and Requirements

This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

2001-12-17T23:59:59.000Z

92

E-Print Network 3.0 - atmospheric nuclear weapon Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

weapon Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapon...

93

E-Print Network 3.0 - atmospheric nuclear weapons Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapons...

94

Office Of NONprOliferatiON  

National Nuclear Security Administration (NNSA)

Of NONprOliferatiON Of NONprOliferatiON aNd iNterNatiONal Security July 2011 www.nnsa.doe.gov National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF Develop and implement DOE/NNSA nonproliferation and arms control policy to reduce the risk of weapons of mass destruction. control the spread of WMD-related material, equipment, technology and expertise. Safeguard and Secure nuclear material to prevent its diversion, theft and sabotage. Negotiate, monitor and verify compliance with international nonproliferation and arms control treaties and agreements. NNSA's Office of Nonproliferation and international Security (NiS) provides leadership in the formulation and implementation of nonproliferation, nuclear security and arms control

95

Management of the Department of Energy Nuclear Weapons Complex  

Directives, Delegations, and Requirements

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

96

2012 Annual Planning Summary for NNSA Defense Nuclear NonProliferation  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the NNSA Defense Nuclear NonProliferation.

97

The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE))

The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation comprises SEAB members and individuals with expertise and experience in the technologies, institutions, and...

98

A thousand suns : political motivations for nuclear weapons testing .  

E-Print Network (OSTI)

??Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are… (more)

Raas, Whitney

2006-01-01T23:59:59.000Z

99

Brazil's Nuclear Program: Carter's Nonproliferation Policy Backfires  

Science Journals Connector (OSTI)

...capable of producing cancer in the future, or...nuclear reactors and a uranium enrichment facil-ity...radiation including skin cancer, would be reduced...that ozone could be depleted by 3 to 23 percent...some long-term cancer risk, people are...to discover enough uranium in excess of its...

ALLEN L. HAMMOND

1977-02-18T23:59:59.000Z

100

Non-proliferation: A nuclear exchange  

Science Journals Connector (OSTI)

... the only visible hint of what once lay inside the building: enough highly enriched uranium reactor fuel to make more than 18 nuclear bombs. A group of visiting journalists and ... the fuel's uranium will be converted into a safer form for use in power reactors. ...

Geoff Brumfiel

2010-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The monitoring and verification of nuclear weapons  

SciTech Connect

This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

2014-05-09T23:59:59.000Z

102

Nuclear Explosive and Weapons Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

been linked to this document. Show All Cancels: DOE O 5610.10, Nuclear Explosive and Weapon Surety Program on Apr 29, 1996 Canceled by: DOE O 452.1A, Nuclear Explosive and Weapon...

103

Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010  

SciTech Connect

A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

Pilat, Joseph F [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

104

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

105

Security and Use Control of Nuclear Explosives and Nuclear Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority,...

106

Sandia completes major overhaul of key nuclear weapons test facilities...  

National Nuclear Security Administration (NNSA)

completes major overhaul of key nuclear weapons test facilities | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering...

107

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

108

The IAEA: Neutralizing Iraq's nuclear weapons potential  

SciTech Connect

With support from UNSCOM and staff members from several countries, the IAEA has succeeded in identifying and destroying most of Iraq's nuclear weapons potential. IAEA activities in Iraq have also established a sound basis for long-term monitoring of Iraq. This will involve several procedures and techniques, including the periodic monitoring of Iraq's main bodies of water and unannounced visits of resident inspectors to plants, factories, and research centers.

Zifferero, M.

1993-04-01T23:59:59.000Z

109

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons  

E-Print Network (OSTI)

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue with a proposal to use weapons-grade uranium and plutonium at the US National Ignition Facility.The facility is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weapons

110

American Economic Association How (Not) to Sell Nuclear Weapons  

E-Print Network (OSTI)

American Economic Association How (Not) to Sell Nuclear Weapons Author(s): Philippe Jehiel, Benny://www.jstor.org #12;How (Not)to Sell NuclearWeapons By PHILIPPEJEHIEL,BENNY MOLDOVANU, AND ENNio STACCHETTI) areinterestedto acquirefis- sionable material, or even complete weapon systems from Ukraine. Russia and the United

Franz, Sven Oliver

111

SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS  

National Nuclear Security Administration (NNSA)

http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of Nuclear Explosives and Nuclear Weapons. Specifically, this SD supports the Order's requirements to implement deliberate unauthorized use (DUU) preventive measures for nuclear explosive operations (NEO) and associated activities and to perform independent evaluations to determine if NEOs

112

The US nuclear weapon infrastructure and a stable global nuclear weapon regime  

SciTech Connect

US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

113

History of US nuclear weapon safety assessment: The early years  

SciTech Connect

From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

Spray, S.D.

1996-06-01T23:59:59.000Z

114

What to do with 50,000 nuclear weapons?  

SciTech Connect

While the world celebrates the peaceful disposal of nuclear weapons, energies now focus on their careful disassembly. Recently, the United States` main focus for dismantling has been the safe dispersal and storage of the various nuclear components and their uses for peaceful purposes rather than weapons of destruction. It should be noted that the treaties currently in effect do not require weapons to be dismantled, only that each country withdraw the weapons from the deployed status and remove the means of delivery. The US current program dismantles weapons into their various components. The disassembly of a nuclear weapon involves numerous components. Many of these components can be disposed of or recycled after changing their shape. The nuclear components create the most safety and proliferation concerns. These nuclear components typically consist of three materials: tritium, highly enriched uranium and plutonium. Some of these nuclear components will be placed in a strategic reserve, while other nuclear components will be declared surplus. Both tritium and uranium can be re-used. The tritium is repurified and used for the active weapons stockpile. The uranium can be blended down and used in commercial nuclear power plants. At this time, plutonium disposal is the most vexing challenge. This paper will briefly describe how a nuclear weapons works, the mission of the Pantex Plant which dismantles the weapons, and the research opportunities for use of dismantled nuclear weapon components.

Klein, D.E. [Univ. of Texas, Austin, TX (United States). Coll. of Engineering

1995-12-31T23:59:59.000Z

115

Nuclear Weapon Surety Interface with the Department of Defense  

Directives, Delegations, and Requirements

The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

2006-10-19T23:59:59.000Z

116

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Directives, Delegations, and Requirements

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

2010-01-22T23:59:59.000Z

117

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Directives, Delegations, and Requirements

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

2014-11-19T23:59:59.000Z

118

Honoring Our Past, Securing Our Future | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

nuclear weapons into LEU fuel for U.S. power plants, generating 10 percent of U.S. electricity. Preventing nuclear smuggling and strengthening the nonproliferation regime -...

119

Arms control and nonproliferation technologies. Fourth quarter 1992  

SciTech Connect

This report includes information concerning: the Department of Energy`s Office of Arms Control and Nonproliferation; the nuclear inspections in Iraq, lessons for verification; detection technologies needed for each step of nuclear weapon development; nuclear proliferation problems; strengthening the nuclear reactor fuel cycle against proliferation; monitoring using unattended remote nondestructive assay; seismic monitoring in a proliferation environment; forensic science center, remote infrared spectrometry for nonproliferation applications; and acoustic instrument for identifying chemical munitions.

Staehle, G.; Talaber, C.; Stull, S.

1992-12-31T23:59:59.000Z

120

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities.This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

122

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

123

UN Security Council: Iran violating ban on nuclear weapons programs  

E-Print Network (OSTI)

UN Security Council: Iran violating ban on nuclear weapons programs 7 September 2011 Denouncement weaponization of its nuclear program. The United States, Germany, France and Britain joined forces in exposing of its nuclear activities.' Rice said the installation of a uranium enrichment facility and heavy

124

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS)...

125

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01:...

126

States That End Nuclear Weapons Programs: Implications For Iran.  

E-Print Network (OSTI)

??This thesis seeks to identify factors that cause countries to discontinue their nuclear weapons program using the qualitative case study method. Regime change, regional threats… (more)

Freeman, Shauna Marie

2007-01-01T23:59:59.000Z

127

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

128

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...  

Office of Environmental Management (EM)

OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

129

Status of nuclear weapons material disposition in Russia  

SciTech Connect

The security of nuclear weapons and fissile material in Russia, the disposition of weapons-usable fissile material in Russia, the Clinton administration`s policies and programs for assisting Russia in improving its security over nuclear weapons and fissile material, and the disposal of Russian weapons-usable fissile materials are discussed in this paper. There are {approximately}30,000 nuclear warheads in the former Soviet Union, {approximately}1000 t of weapon-usable high-enriched uranium (HEU), {approximately} 160 t of separated plutonium in weapons or available for weapons, and {approximately}30 t of separated civil plutonium stored in Russia. Most, if not all, of these inventories are stored under inadequate conditions of physical security and of material control and accounting.

Cochran, T.B.

1994-12-31T23:59:59.000Z

130

Nuclear energy in a nuclear weapon free world  

SciTech Connect

The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

Pilat, Joseph [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

131

A Role for Industry in Promoting Nuclear Security and Nonproliferation  

SciTech Connect

Industry has a unique opportunity and critical role to play in strengthening governmental efforts to prevent the spread of nuclear, radiological, and dual-use materials and technologies that could be used in a nuclear or radiological weapon. Governmental regulations and policies are in effect at both the national and international levels to inhibit access to such materials and technologies by illegitimate end-users. However, the discovery of an illegal nuclear network, spearheaded by Pakistani scientist A Q Khan, increased international concern about what more could be done to prevent proliferation. Industry is well-poised and has a strong incentive to take a more proactive role to complement existing governmental efforts. Companies can be a tremendous help in ensuring that illicit diversions do not occur by increasing their oversight over the supply chain.

Hund, Gretchen; Seward, Amy M.; Elkhamri, Oksana O.

2009-11-01T23:59:59.000Z

132

Evolution and resilience of the nuclear nonproliferation regime  

SciTech Connect

This paper introduces the concept of systems resilience as a new framework for thinking about the future of the nonproliferation regime. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. First, I make the case that the nonproliferation regime can be viewed as a complex system. Next, I discuss key themes from the literature on systems resilience and apply them to the nonproliferation system: the difference between resilience and stability; the need for evolution to maintain function; the importance of functional diversity; and the concept of the adaptive cycle. I show that most existing nonproliferation strategies are aimed at stability rather than resilience and that the current nonproliferation system may be over-constrained by the cumulative evolution of strategies. According to the literature on systems resilience, this increases its vulnerability to collapse. I argue that the resilience of the nonproliferation system can be enhanced by increasing international participation in setting the nonproliferation agenda, developing general international response capabilities, focusing on non-coercive approaches to decreasing demand, and applying systems thinking more rigorously to nonproliferation.

Pregenzer, Arian L. [Senior Scientist, Retired, Sandia National Laboratories, 13013 Arroyo de Vista NE, Albuquerque, NM 87111 (United States)

2014-05-09T23:59:59.000Z

133

Nuclear Safeguards and Nonproliferation Support | U.S. DOE Office of  

Office of Science (SC) Website

Nuclear Safeguards and Nonproliferation Support Nuclear Safeguards and Nonproliferation Support New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials Program Measurement Evaluation Nuclear Safeguards and Nonproliferation Support Measurement Services Measurement Development Training Certified Reference Materials (CRMs) Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Programs Nuclear Safeguards and Nonproliferation Support Print Text Size: A A A RSS Feeds FeedbackShare Page New Brunswick Laboratory (NBL) is owned and operated by the U.S. Department of Energy (DOE). NBL is the U.S. Government's Certifying Authority for

134

E-Print Network 3.0 - achieve sustainable nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

as a complementary avenue to achieving a nuclear-weapons-free world. Reinforce the political... Milan Document on Nuclear Disarmament and Non-Proliferation 29 January 2010 Below...

135

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and State Corporation for Nuclear Energy (Rosatom) Director General Sergey Kirienko today held talks in Washington, D.C., about the future of U.S.-Russia collaborative work in the nuclear energy field, including nuclear research and development, commercial aspects of cooperation, nuclear safety, and nonproliferation. The meeting coincided with the arrival of the final shipment of low

136

Y-12, the Cold War, and nuclear weapons dismantlement ? Or:...  

NLE Websites -- All DOE Office Websites (Extended Search)

a huge mission for Y-12 bringing about substantial growth and continued to do so until nuclear testing ended in 1992. The United States tested nuclear weapons from July 16, 1945...

137

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Weapon Intern Program visits KCP | National Nuclear Security Weapon Intern Program visits KCP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia Weapon Intern Program visits KCP Sandia Weapon Intern Program visits KCP Posted By Office of Public Affairs Participants in Sandia's Weapon Intern Program recently visited and

138

Nuclear-weapon-free zones: Coming of age  

SciTech Connect

Nuclear-weapon-free-zone agreements present a potentially effective option to supplement international efforts to prevent the proliferation of nuclear weapons and roll back proliferation where it has already occurred. NWFZs can also be used to create mutually binding obligations that go beyond the current obligations under the NPT, without risking the potentially disastrous consequences of an amendment debate at the 1995 NPT Review and Extension Conference. The negotiations leading toward regional agreements could also contribute significantly toward reducing tensions and building confidence. In pursuing its national goal of preventing nuclear proliferation, the US should give greater priority and support to nuclear-weapon-free-zones.

Wolfsthal, J.B.

1993-03-01T23:59:59.000Z

139

NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation  

ScienceCinema (OSTI)

On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

140

NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation  

SciTech Connect

On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

Thomas D'Agostino

2010-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stability of nuclear forces versus weapons of mass destruction  

SciTech Connect

The model derived for nuclear missile exchanges is used to describe the interaction between two forces, of which one has nuclear weapons and the other has weapons of mass destruction (WMD). The model equations are solved analytically for exchanges, costs, and stability indices by analytically minimizing the cost of first strikes. The analysis is restricted to theater operations, as WMD are inferior to nuclear weapons in strategic counter force operations, but quite adequate for theater operations against exposed forces. The analysis treats only in-theater forces as companion papers show that ex-theater forces, which enter as survivable forces, cancel out of the theater balances treated here. Optimal nuclear weapon and WMD allocations are proportional to the opponent`s carriers and inversely proportional to one`s own weapons. Thus, as WMD increase, WMD allocations to nuclear forces fall, reflecting a shift from damage limiting to inflicting damage with surviving forces. Nuclear weapon kill probabilities degrade rapidly against dispersed forces. As they fall, their allocation to WMD falls sharply as they become ineffective and are reallocated to value. Thus, damage limiting is primarily effective for undispersed forces, which produces an incentive for the nuclear side to use his weapons while they are still effective.

Canavan, G.H.

1997-12-01T23:59:59.000Z

142

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. (Westinghouse Hanford Co., Richland, WA (United States)); Walter, C.E. (Lawrence Livermore National Lab., CA (United States))

1993-02-05T23:59:59.000Z

143

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ``Fission Options`` provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. [Westinghouse Hanford Co., Richland, WA (United States); Walter, C.E. [Lawrence Livermore National Lab., CA (United States)

1993-02-05T23:59:59.000Z

144

SRS - Programs - Nonproliferation Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

3/2012 3/2012 SEARCH GO spacer SRS Home Nonproliferation Programs In the crucial field of nuclear nonproliferation, SRS employee contributions helped to advance all three of the planned plutonium disposition facilities at the Savannah River Site: the Pit Disassembly and Conversion Facility (PDCF); Waste Solidification Building (WSB); and the Mixed Oxide (MOX) Fuel Fabrication Facility. A $345 million project, the WSB will process liquid waste from the MOX facility. After material is processed at the WSB, transuranic waste will be packaged and sent to the Waste Isolation Pilot Plant in New Mexico, and low-level waste will be packaged and sent to onsite or commercial off-site low-level waste disposal facilities. The mixed oxide fuel fabrication facility will be a major component in the United States' program to dispose of excess weapons grade plutonium.

145

Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects  

E-Print Network (OSTI)

The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

Gsponer, A

2005-01-01T23:59:59.000Z

146

A nuclear-weapon-free world: Desirable? Feasible?  

SciTech Connect

The authors seeks answers to two key questions: Is an nuclear-weapons-free-world (NWFW) desirable, and is it feasible? Organized into six parts, the book begins with a historical review of attempts to abolish nuclear weapons. Five subsequent parts address the desirability of an NWFW, its feasibility, alternative routes to this goal, and intermediate steps to this end. The authors deals with many obstacles and difficulties facing those who wish to progress from today`s world of 50,000 or more nuclear weapons to one where none exist and strong international verification assures that no rogue state will resurrect these dread devices.

Rotblat, J.; Steinberger, J.; Udgaonkar, B. [eds.

1993-12-31T23:59:59.000Z

147

Tiny device can detect hidden nuclear weapons, materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Tiny Tiny device can detect hidden nuclear weapons, materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Tiny device can detect hidden nuclear weapons, materials This tiny wafer can detect hidden nuclear weapons and materials NUCLEAR DETECTOR -- This small wafer could become the key component in

148

Briefing, Classification of Nuclear Weapons-Related Information- June 2014  

Energy.gov (U.S. Department of Energy (DOE))

This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

149

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

NONE

1994-03-25T23:59:59.000Z

150

The role of nuclear weapons in the year 2000  

SciTech Connect

This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

Not Available

1990-01-01T23:59:59.000Z

151

How to optimally interdict a belligerent project to develop a nuclear weapon .  

E-Print Network (OSTI)

??Despite decades of energetic international control efforts, nuclear weapons technology continues to spread worldwide. To understand how these complex weapons programs can be developed, we… (more)

Skroch, Eric M.

2004-01-01T23:59:59.000Z

152

Solid Phase Microextraction for the Analysis of Nuclear Weapons  

SciTech Connect

This document is a compendium of answers to commonly asked questions about solid phase microextraction as it relates to the analysis of nuclear weapons. We have also included a glossary of terms associated with this analytical method as well as pertinent weapons engineering terminology. Microextraction is a new collection technique being developed to nonintrusively sample chemicals from weapon headspace gases for subsequent analysis. The chemicals that are being targeted outgas from the high explosives and other organic materials used in the weapon assembly. This technique is therefore a valuable tool to: (1) remotely detect and assess the aging of Lawrence Livermore National Laboratory (LLNL) and, in some cases, Sandia National Laboratory (SNL) organic materials; and (2) identify potential compatibility issues (i.e., materials interactions) that should be more carefully monitored during surveillance tear-downs. Microextraction is particularly attractive because of the practical constraints inherent to the weapon surveillance procedure. To remain transparent to other core surveillance activities and fall within nuclear safety guidelines, headspace analysis of the weapons requires a procedure that: (1) maintains ambient temperature conditions; (2) allows practical collection times of less than 20 min; (3) maintains the integrity of the weapon gas volume; (4) provides reproducible and quantitative results; and (5) can identify all possible targets.

Chambers, D M

2001-06-01T23:59:59.000Z

153

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY "To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and safety by providing dual-agency judgment and responsibility for the safety, security, and use control (surety) of nuclear weapons. To establish nuclear explosive surety standards and nuclear weapon design surety requirements. To address surety vulnerabilities during all phases of the nuclear weapon life cycle and to upgrade surety during weapon stockpile refurbishments and/or new weapon

154

Of carrots and sticks or air power as a nonproliferation tool  

SciTech Connect

The proliferation of nuclear weapons has become one of the principal threats to international peace and security. Postwar revelations from Iraq demonstrate how close a determined nation can come to covertly developing nuclear weapons without detection. In the past two years the issue of nonproliferation has increased in importance and the regime is becoming more intrusive. On the other hand, a number of nations hostile to the international order are attempting to develop or otherwise obtain nuclear weapons These states include North Korea, Iran, and Iraq. This paper argues that the use or threat of force must be incorporated into the nonproliferation regime. When properly integrated into nonproliferation strategy, force offers positive effects in terms of deterrence, compellence, and defense. Thus, the paper calls for the institutionalization of force options into the nonproliferation tool kit, ideally as part of chapter 7 enforcement actions under the authority of the UN Security Council.

Wolf, F.R.

1994-07-01T23:59:59.000Z

155

Change in the U.S. Nuclear Nonproliferation Policy toward India (1998-2005):Accommodating the Anomaly.  

E-Print Network (OSTI)

??For more than three decades, the U.S. prohibited the transfer of advanced nuclear technologies to India—a nonsignatory of the Nuclear Nonproliferation Treaty (NPT). In 1998,… (more)

Bhatia, Vandana

2012-01-01T23:59:59.000Z

156

The unique signal concept for detonation safety in nuclear weapons  

SciTech Connect

The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

Spray, S.D.; Cooper, J.A.

1993-06-01T23:59:59.000Z

157

U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security  

National Nuclear Security Administration (NNSA)

No Longer Building Any Nuclear Weapons | National Nuclear Security No Longer Building Any Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May 10, 1992 Washington, DC U.S. No Longer Building Any Nuclear Weapons

158

Fixed denial system for access control of nuclear weapons  

SciTech Connect

The Fixed Denial System (FDS) is a simple, low cost, vertical, underground silo used to store individual nuclear weapons within secured areas of present storage sites. The normal storage position of each weapon is at or near the top of the shaft, allowing rapid operational weapon access and removal. In response to a threat, the weapon within a storage canister can be dropped to the bottom of the shaft where it is automatically locked in place. Once the alert condition is resolved and control of the site reestablished, the weapon canister is unlocked with a coded signal and retrieved. This system offers a high degree of hardening and access denial that is characteristic of Vertical Underground Storage (VUGS) systems. An aboveground test apparatus was constructed to demonstrate the feasibility of using a pneumatic air cushion, which is generated by the free-fall of the weapon container, to control impact velocity and descent time. Stockpile weapons that might be stored in the FDS include the W33, W48, W79, and the W54 ADM.

Willan, V.O.; Gustafson, E.C.

1981-12-01T23:59:59.000Z

159

Managing nuclear weapons in a changing world: Proceedings  

SciTech Connect

The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

Not Available

1992-12-31T23:59:59.000Z

160

National Day of Remembrance HSS Honors Former Nuclear Weapons Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Day of Remembrance HSS Honors Former Nuclear Weapons National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 - 3:11pm Addthis Color Guard | National Day of Remembrance - October 25, 2013 Color Guard | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 US Representative Dina Titus (1st Congressional District of Nevada) | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Al Tseu | National Day of Remembrance - October 25, 2013 Mr. Glenn Podonsky, Chief Health Safety and Security Officer | National Day of Remembrance - October 25, 2013

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium .  

E-Print Network (OSTI)

??.The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it… (more)

McCord, Cameron (Cameron Liam)

2013-01-01T23:59:59.000Z

162

Nuclear dependence| The Russian Federation's future reliance on nuclear weapons for national security.  

E-Print Network (OSTI)

?? The Russian Federation's reliance on nuclear weapons for national security will steadily increase over time. Based on current evidence and historical data, the Russian… (more)

Lukszo, Adam J.

2011-01-01T23:59:59.000Z

163

Feasibility and options for purchasing nuclear weapons, highly enriched uranium (HEU) and plutonium from the former Soviet Union (FSU)  

SciTech Connect

In response to a recent tasking from the National Security Council, this report seeks to analyze the possible options open to the US for purchasing, from the former Soviet Union (FSU) substantial quantities of plutonium and highly enriched uranium recovered from the accelerated weapons retirements and dismantlements that will soon be taking place. The purpose of this paper is to identify and assess the implications of some of the options that now appear to be open to the United States, it being recognized that several issues might have to be addressed in further detail if the US Government, on its own, or acting with others seeks to negotiate any such purchases on an early basis. As an outgrowth of the dissolution of the Soviet Union three of the C.I.S. republics now possessing nuclear weapons, namely the Ukraine, Belarus, and Kazakhstan, have stated that it is their goal, without undue delay, to become non-nuclear weapon states as defined in the Non-Proliferation Treaty. Of overriding US concern is the proliferation of nuclear weapons in the Third World, and the significant opportunity that the availability of such a large quantity of surplus weapons grade material might present in this regard, especially to a cash-starved FSU Republic. Additionally, the US, in its endeavor to drawdown its own arsenal, needs to assure itself that these materials are not being reconfigured into more modern weapons within the CIS in a manner which would be inconsistent with the stated intentions and publicized activities. The direct purchase of these valuable materials by the US government or by interested US private enterprises could alleviate these security concerns in a straightforward and very expeditious manner, while at the same time pumping vitally needed hard currency into the struggling CIS economy. Such a purchase would seem to be entirely consistent with the Congressional mandate indicated by the Soviet Nuclear Threat Reduction Act of 1991.

NONE

1994-12-31T23:59:59.000Z

164

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

NONE

1997-01-01T23:59:59.000Z

165

Joint DOE-PNC research on the use of transparency in support of nuclear nonproliferation  

SciTech Connect

PNC and LANL collaborated in research on the concept of transparency in nuclear nonproliferation. The research was based on the Action Sheet No. 21, which was signed in February 1996, ``The Joint Research on Transparency in Nuclear Nonproliferation`` under the ``Agreement between the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) and the US Department of Energy (DOE) for Cooperation in Research and Development Concerning Nuclear Material Control and Accounting Measures for Safeguards and Nonproliferation``. The purpose of Action Sheet 21 is to provide a fundamental study on Transparency to clarify the means to improve worldwide acceptability for the nuclear energy from the nuclear nonproliferation point of view. This project consists of independent research and then joint discussion at workshops that address a series of topics and issues in transparency. The activities covered in Action Sheet 21 took place over a period of 18 months. Three workshops were held; the first and the third hosted by PNC in Tokyo, Japan and the second hosted by LANL in Los Alamos, New Mexico, US. The following is a summary of the three workshops. The first workshop addressed the policy environment of transparency. Each side presented its perspective on the following issues: (1) a definition of transparency, (2) reasons for transparency, (3) detailed goals of transparency and (4) obstacles to transparency. The topic of the second workshop was ``Development of Transparency Options.`` The activities accomplished were (1) identify type of facilities where transparency might be applied, (2) define criteria for applying transparency, and (3) delineate applicable transparency options. The goal of the third workshop, ``Technical Options for Transparency,`` was to (1) identify conceptual options for transparency system design; (2) identify instrumentation, measurement, data collection and data processing options; (3) identify data display options; and (4) identify technical options for reprocessing, enrichment, and MOX fuel fabrication facilities.

Mochiji, Toshiro; Keeney, R.; Tazaki, Makiko [Power Reactor and Nuclear Fuel Development Corp. (Japan). Office of Nuclear Nonproliferation; Nakhleh, C.; Puckett, J.; Stanbro, W. [Los Alamos National Lab., NM (United States). Safeguards System Group

1999-01-01T23:59:59.000Z

166

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network (OSTI)

and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-at the Hanford Nuclear Weapons Facility MASTER DISTRIBUTIONAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

Britton, Julie

2010-01-01T23:59:59.000Z

167

E-Print Network 3.0 - america nuclear weapons Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: america nuclear weapons Page: << < 1 2 3 4 5 > >> 1 First strike Sixty years ago,...

168

Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components  

SciTech Connect

This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

Coleman, J.T.; Bickford, D.F.

1991-01-01T23:59:59.000Z

169

Nuclear Nonproliferation and Arms Control Primer Prepared for the Blue Ribbon Commission on America’s Nuclear Future  

SciTech Connect

To provide a brief overview of key arms control and nonproliferation arrangements for the layperson that may be relevant to the Commission's comprehensive review of policies for managing the back end of the nuclear fuel cycle. Primer would be published by the Commission and made publicly available, probably as an appendix to a larger Commission report.

Williams, Laura S.

2011-05-25T23:59:59.000Z

170

The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos  

E-Print Network (OSTI)

This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

2015-01-01T23:59:59.000Z

171

Operation TEAPOT, 1955 continental nuclear weapons test series. Technical report  

SciTech Connect

This report describes the activities of an estimated 11,000 DOD personnel, both military and civilian, in Operation TEAPOT, the fifth atmospheric nuclear weapons testing series conducted in Nevada from 18 February to 15 May 1955. Activities engaging DOD personnel included Exercise Desert Rock VI observer programs, troop tests, and technical service programs; AEC scientific and diagnostic experiments to evaluate the effects of the nuclear device; DOD operational programs; and air support.

Ponton, J.; Maag, C.; Wilkinson, M.; Shepanek, R.F.

1981-11-23T23:59:59.000Z

172

President Obama Calls for an End to Nuclear Weapons | National Nuclear  

National Nuclear Security Administration (NNSA)

Calls for an End to Nuclear Weapons | National Nuclear Calls for an End to Nuclear Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Obama Calls for an End to ... President Obama Calls for an End to Nuclear Weapons April 05, 2009 Prague, Czech Republic President Obama Calls for an End to Nuclear Weapons

173

Nonproliferation through delegation  

E-Print Network (OSTI)

Nuclear Weapons In a nuclear power plant, a nuclear reactionused for fuel in a nuclear power plant (Barnaby 1993). Theon converting nuclear power plants to fighting malaria with

Brown, Robert Louis

2008-01-01T23:59:59.000Z

174

Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2  

E-Print Network (OSTI)

1 Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2] The end of the Cold policy objectives and risks compromising the value that nuclear weapons continue to make through. A declaratory U.S. policy of moving to eliminate nuclear weapons in a distant future will have no direct effect

Deutch, John

175

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

1997-01-17T23:59:59.000Z

176

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

2001-08-06T23:59:59.000Z

177

The Los Alamos nuclear safeguards and nonproliferation technology development program  

SciTech Connect

For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

1994-04-01T23:59:59.000Z

178

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

2009-04-14T23:59:59.000Z

179

EGS 01-01: Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

180

Nuclear weapons in Ukraine: Hollow threat, wasting asset  

SciTech Connect

When Ukrainian Prime Minister Leonid Kuchma declared on June 3 at a closed session of the Ukrainian parliament (Rada) that it should ratify START I and the May 1992 Lisbon Protocol, but temporarily retain some of the nuclear weapons on Ukrainian territory, concern increased over Kiev`s delay in carrying out its commitments to become a non-nuclear-weapon state. These continuing delays threaten an arms control process codified in START I and START II with far broader security implications. The delays and constant mixed signals from Kiev can be explained two ways, but a closer examination of each of the alternative security options Ukrainians are discussing shows they are built on false premises and would ultimately be counterproductive to genuine Ukrainian security.

Kincade, W.H.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Long range planning at former nuclear weapon plants  

SciTech Connect

This paper discusses the approach to planning the cleanup of former nuclear weapon manufacturing plants. The limit of backward planning is the knowledge horizon. Extension of backward planning beyond this horizon is futile. Forward planning is the customary method for planning missions extending beyond that horizon. Planning the future of former plant sites is a political activity by political decision makers. Scientists, professional planners, and public interest groups have an advisory role in this activity.

Vrouwes, J.H. [EG & G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

182

Use of commercial manipulator to handle a nuclear weapon component  

SciTech Connect

Pacific Northwest Laboratory (PNL) has developed a manipulator workcell to load and unload nuclear weapon pit assemblies from a cart. To develop this workcell, PNL procured a commercially available manipulator, equipped it with force-sensing and vision equipment, and developed manipulator control software. Manipulator workcell development demonstrated that commercially available manipulator systems can successfully perform this task if the appropriate manipulator is selected and the manipulator workcell tooling and software are carefully designed.

Baker, C.P.

1994-08-01T23:59:59.000Z

183

Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences  

Energy.gov (U.S. Department of Energy (DOE))

This report described each step in the cycle of nuclear weapons production and defined for the first time a planned disposition path for all waste streams generated prior to 1992 as a result of weapons production.

184

AIM-98-3464 RECEIVED THE HISTORY OF NUCLEAR WEAPON SAFETY DEVICES  

Office of Scientific and Technical Information (OSTI)

the thermal weaklink. The dual magnetic stronglink was fielded in the last weapon to enter the nuclear weapon stockpile. See Figure 6. Figure 6. MC383 1 Dual Stronglink Review...

185

Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?  

SciTech Connect

In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

186

Radioactive ''hot spots'' from nuclear weapons test fallout  

SciTech Connect

In a paper presented on January 8, 1985, at the Health Physics Society Midyear Symposium, Franke and Alvarez claimed that radioactivity observed on the Savannah River Plant site on March 14, 1955, was the result of a reactor accident. The source of the observed radioactivity was, in fact, rainwater containing radioactive products from a nuclear weapon test made two days earlier in Nevada. The weapon test TEAPOT HORNET was shown to be the source of the contamination at the time, and this has been corroborated in two recent papers. The aim of this review is to show that the highly-localized radioactive fallout on the Savannah River Plant site was not unique but part of a widespread phenomenon occurring all over the United States in the 1950s and early 1960s. 18 references, 2 figures, 2 tables.

Sanders, S.M.

1985-02-11T23:59:59.000Z

187

A hazard separation system for dismantlement of nuclear weapon components  

SciTech Connect

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

Lutz, J.D.; Purvis, S.T.; Hospelhorn, R.L.; Thompson, K.R.

1995-04-01T23:59:59.000Z

188

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Testing Resumes | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

189

The Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean  

SciTech Connect

The Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean, known as the Treaty of Tlatelolco, seeks to establish a nuclear-weapon-free zone (NWFZ) that will extend from the US-Mexican border to Antarctica`s territorial boundaries, including large areas of open ocean. Under the treaty, signatory states pledge not to test, use, produce, manufacture or acquire nuclear weapons; to use nuclear materials and facilities {open_quotes}exclusively for peaceful purposes;{close_quotes} and not to permit the stationing or development of nuclear weapons on their territories.

NONE

1994-03-01T23:59:59.000Z

190

Nonproliferation & Forensics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation & Nuclear Forensics Argonne strives to strengthen the nation's ability to detect, prevent, and interdict proliferation of nuclear, radiological, chemical, and...

191

Nonproliferation through delegation  

E-Print Network (OSTI)

Weapons Reductions and Nuclear Security Cooperation. Sarov,of Foreign Nuclear Installations: National Security Archive.Past: Nuclear Proliferation and American Security Policy.

Brown, Robert Louis

2008-01-01T23:59:59.000Z

192

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons and Global Security Data Analysis Nuclear Weapons and Global Security Data Analysis Physics Division applies advanced imaging techniques to many applications, from brain imaging to neutron imaging in inertial fusion to threat detection from airborne cameras. A particular strength is the quantitative analysis of penetrating radiography using techniques such as the Bayesian Inference Engine (BIE). An example from the Nuclear Event Analysis Team shows a test object (Figure 1) that is subsequently radiographed using the Dual-Axis Radiography Hydrodynamic Test (DARHT) facility. Figures 2 and 3 show the radiograph and the inferred density of the object using the BIE, which can be compared to the known object to determine accurate error estimation. Test object Figure 1. The test object consists of a 1 cm-radius cavity void surrounded by a 4.5 cm radius surrogate fissile material of tungsten, tantalum, or depleted uranium. This sphere is surrounded by a 6.5 cm-radius copper sphere. At is thickest point, the tantalum test object has an areal density of 180 g/cm2, equivalent to 9" of steel.

193

2002-2003 Engineering Accomplishments: Unconventional Nuclear Weapons Detection  

SciTech Connect

The Defense Threat Reduction Agency, DTRA, is a federal agency charged with safeguarding the nation from weapons of mass destruction, in particular nuclear weapons such as crude devices, and radiological dispersal devices (RDD), also known as dirty bombs. Both of which could be delivered using unconventional means such as by transporting them by a car or boat. Two years ago DTRA partnered with NNSA to evaluate commercially available technologies that could be deployed quickly to defend against threats posed by unconventional nuclear weapons under a program called the Unconventional Nuclear Warfare Defense (UNWD) Program. Lawrence Livermore National Laboratory (LLNL) was one of several National laboratories that participated in this program, which consisted in developing, deploying, and demonstrating detection systems suitable for military base protection. Two key contributions to this program by the LLNL team were the development of two Radiation Detection Buoys (RDB) deployed at Naval Base in Kings Bay in Georgia, and the Detection and Tracking System (DTS) demonstrated at Fort Leonard Wood Missouri, headquarters for the Total Force's Maneuver Support Center (MANSCEN). The RDB's were designed to detect the potential transportation of an unconventional nuclear or radiological weapon by a boat. The RDB's consisted of two commercial marine buoys instrumented with several types of detectors sensitive to gamma rays and neutrons, two key modes of energy emitted by radioactive materials. The engineering team selected a standard marine buoy as the overall system platform for this deployment since buoys are already designed to sustain the harsh marine environment, and also for their covertness, since once deployed, they look just like any other buoy on the water. Since this was the first time such a system was ever deployed, the team choose to instrument the buoys with a suite of different types of detectors with the goal to learn which detectors would be best suited for future deployments of this kind. This goal has now being achieved, and through a combination of computer modeling and experimental data, the team has gain the necessary knowledge to better understand the capabilities and limitations of RDB's, and the tradeoffs involve in the selection of the different detectors. The two LLNL RDB's are currently operational at Kings Bay, and the team is looking forward to another opportunity to design the next generation RDB's.

Hernandez, J E; Valentine, J

2004-04-09T23:59:59.000Z

194

The Linkage Between Non-Proliferation, Deterrence Policy, Nuclear Testing and the Arms Race  

Science Journals Connector (OSTI)

A major focal point for strengthening the Non-Proliferation Treaty (NPT), which is the central legal and political basis of the non-proliferation regime has been negotiation of a comprehensive test ban (CTB). ...

Lawrence Scheinman

1990-01-01T23:59:59.000Z

195

Regime Security Theory: Why Do States With No Clear Strategic Security Concerns Obtain Nuclear Weapons? .  

E-Print Network (OSTI)

??Current realist explanations of why states decide to develop nuclear weapons cannot account for the behavior of states that lack a clear strategic threat. An… (more)

Beasley, Matthew

2009-01-01T23:59:59.000Z

196

Abolishing the taboo: President Eisenhower and the permissible use of nuclear weapons for national security.  

E-Print Network (OSTI)

??As president, Dwight Eisenhower believed that nuclear weapons, both fission and fusion, were permissible and desirable assets to help protect U.S. national security against the… (more)

Jones, Brian Madison

2008-01-01T23:59:59.000Z

197

COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton University The United States and eight other countries...

198

Strategic culture and non-nuclear weapon outcomes: the cases of Australia, South Africa and Sweden .  

E-Print Network (OSTI)

??This thesis uses a "strategic culture" approach to gain insights into non-nuclear weapon outcomes in Australia, South Africa and Sweden. Strategic culture refers to the… (more)

Poore, S.E.

2000-01-01T23:59:59.000Z

199

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Weapons Strategy Delivered to Congress Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

200

U.S. Nuclear Weapons Strategy Delivered to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress U.S. Nuclear Weapons Strategy Delivered to Congress July 24, 2007 - 2:55pm Addthis WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman joined the U.S. Secretaries of Defense and State in sending to Congress the Bush Administration's nuclear weapons strategy. This document not only describes the history of nuclear deterrence during the Cold War, but reinforces how deterrence applies to present and future security threats, and what a nuclear stockpile of the 21st century will need to look like in order to meet those threats. The strategy emphasizes President Bush's goal of maintaining a credible nuclear deterrent with the lowest possible number of nuclear weapons. It is consistent with the Moscow Treaty that sets U.S. and Russian

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National Certification Methodology for the Nuclear Weapons Stockpile  

SciTech Connect

Lawrence Livermore and Los Alamos National Laboratories have developed a common framework and key elements of a national certification methodology called Quantification of Margins and Uncertainties (QMU). A spectrum from senior managers to weapons designers has been engaged in this activity at the two laboratories for on the order of a year to codify this methodology in an overarching and integrated paper. Following is the certification paper that has evolved. In the process of writing this paper, an important outcome has been the realization that a joint Livermore/Los Alamos workshop on QMU, focusing on clearly identifying and quantifying differences between approaches between the two labs plus developing an even stronger technical foundation on methodology, will be valuable. Later in FY03, such a joint laboratory workshop will be held. One of the outcomes of this workshop will be a new version of this certification paper. A comprehensive approach to certification must include specification of problem scope, development of system baseline models, formulation of standards of performance assessment, and effective procedures for peer review and documentation. This document concentrates on the assessment and peer review aspects of the problem. In addressing these points, a central role is played by a 'watch list' for weapons derived from credible failure modes and performance gate analyses. The watch list must reflect our best assessment of factors that are critical to weapons performance. High fidelity experiments and calculations as well as full exploitation of archival test data are essential to this process. Peer review, advisory groups and red teams play an important role in confirming the validity of the watch list. The framework for certification developed by the Laboratories has many basic features in common, but some significant differences in the detailed technical implementation of the overall methodology remain. Joint certification workshops held in June and December of 2001 and continued in 2002 have proven useful in developing the methodology, and future workshops should prove useful in further refining this framework. Each laboratory developed an approach to certification with some differences in detailed implementation. The general methodology introduces specific quantitative indicators for assessing confidence in our nuclear weapon stockpile. The quantitative indicators are based upon performance margins for key operating characteristics and components of the system, and these are compared to uncertainties in these factors. These criteria can be summarized in a quantitative metric (for each such characteristic) expressed as: (i.e., confidence in warhead performance depends upon CR significantly exceeding unity for all these characteristics). These Confidence Ratios are proposed as a basis for guiding technical and programmatic decisions on stockpile actions. This methodology already has been deployed in certifying weapons undergoing current life extension programs or component remanufacture. The overall approach is an adaptation of standard engineering practice and lends itself to rigorous, quantitative, and explicit criteria for judging the robustness of weapon system and component performance at a detailed level. There are, of course, a number of approaches for assessing these Confidence Ratios. The general certification methodology was publicly presented for the first time to a meeting of Strategic Command SAG in January 2002 and met with general approval. At that meeting, the Laboratories committed to further refine and develop the methodology through the implementation process. This paper reflects the refinement and additional development to date. There will be even further refinement at a joint laboratory workshop later in FY03. A common certification methodology enables us to engage in peer reviews and evaluate nuclear weapon systems on the basis of explicit and objective metrics. The clarity provided by such metrics enables each laboratory and our common customers to understand the meaning and logic

Goodwin, B T; Juzaitis, R J

2006-08-07T23:59:59.000Z

202

Nuclear Nonproliferation,  

NLE Websites -- All DOE Office Websites (Extended Search)

for Wireless Sensing, Sensory Substitution, Multi-rotor Damage Detection, Drill Vibration Reduction, Laser Ultrasonics for Non Destructive Evaluation T y p i c a l P r o j e...

203

Steps toward a Middle East free of nuclear weapons  

SciTech Connect

In the aftermath of the Gulf War, all eyes are focused on the dangers of proliferation in the Middle East. President Bush, in his postwar address to Congress, called for immediate action to control the proliferation of weapons of mass destruction and the missiles used to deliver them, warning that it would be tragic if the nations of the Middle East and Persian Gulf were now, in the wake of war, to embark on a new arms race. Secretary of State James Baker has recently returned from a tour of the region, and consultations on proliferation were reportedly high on his agenda. At the same time, the fierce political antagonisms and unbridled military competitions that have long characterized the Middle East leave many skeptical as to what can realistically be done. While all states in the region - including Israel - have publicly supported the idea of establishing a nuclear-weapon-free zone (NWFZ) in the Middle East, doubt over the feasibility of the proposal runs high. Why on earth, it is asked, would Israelis give up the protection of their nuclear monopoly What assurances from their Arab adversaries or from the US could possibly replace this ultimate deterrent

Leonard, J.

1991-04-01T23:59:59.000Z

204

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IV. Commercial potential  

SciTech Connect

This volume of the Nonproliferation Alternative Systems Assessment Program (NASAP) report provides time and cost estimates for positioning new nuclear power systems for commercial deployment. The assessment also estimates the rates at which the new systems might penetrate the domestic market, assuming the continuing viability of the massive light-water reactor network that now exists worldwide. This assessment does not recommend specific, detailed program plans and budgets for individual systems; however, it is clear from this analysis that any of the systems investigated could be deployed if dictated by national interest.

Not Available

1980-06-01T23:59:59.000Z

205

Plus c`est la meme chose: The future of nuclear weapons in Europe  

SciTech Connect

Since the end of the Cold War, the United States perhaps more than any other nuclear weapon state has deeply questioned the future role of nuclear weapons, both in a strategic sense and in Europe. It is probably the United States that has raised the most questions about the continuing need for and efficacy of nuclear weapons, and has expressed the greatest concerns about the negative consequences of continuing nuclear weapons deployment. In the US, this period of questioning has now come to a pause, if not a conclusion. In late 1994 the United States decided to continue to pursue reductions in numbers of nuclear weapons as well as other changes designed to reduce the dangers associated with the possession of nuclear weapons. But at the same time the US concluded that some number of nuclear forces would continue to be needed for national security for the foreseeable future. These necessary nuclear forces include a continuing but greatly reduced stockpile of nuclear bombs deployed in Europe under NATO`s New Strategic Concept. If further changes to the US position on nuclear weapons in Europe are to occur, it is likely to be after many years, and only in the context of dramatic additional improvements in the political and geo-political climate in and around Europe. The future role of nuclear weapons in Europe, as discussed in this report, depends in part on past and future decisions by the United States. but it must also be noted that other states that deploy nuclear weapons in Europe--Britain, France, and Russia, as well as the NATO alliance--have shown little inclination to discontinue their deployment of such weapons, whatever the United States might choose to do in the future.

Maaranen, S.A.

1996-07-01T23:59:59.000Z

206

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network (OSTI)

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Dombey, Norman

2011-01-01T23:59:59.000Z

207

Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme  

E-Print Network (OSTI)

Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

Norman Dombey

2011-12-10T23:59:59.000Z

208

Gamma-ray identification of nuclear weapon materials  

SciTech Connect

There has been an accelerating national interest in countering nuclear smuggling. This has caused a corresponding expansion of interest in the use of gamma-ray spectrometers for checkpoint monitoring, nuclear search, and within networks of nuclear and collateral sensors. All of these are fieldable instruments--ranging from large, fixed portal monitors to hand-held and remote monitoring equipment. For operational reasons, detectors with widely varying energy resolution and detection efficiency will be employed. In many instances, such instruments must be sensitive to weak signals, always capable of recognizing the gamma-ray signatures from nuclear weapons materials (NWM), often largely insensitive to spectral alteration by radiation transport through intervening materials, capable of real-time implementation, and able to discriminate against signals from commonly encountered legitimate gamma-ray sources, such as radiopharmaceuticals. Several decades of experience in classified programs have shown that all of these properties are not easily achieved and successful approaches were of limited scope--such as the detection of plutonium only. This project was originally planned as a two-year LDRD-ER. Since funding for 1997 was not sustained, this is a report of the first year's progress.

Gosnell, T. B., LLNL; Hall, J. M.; Jam, C. L.; Knapp, D. A.; Koenig, Z. M.; Luke, S. J.; Pohl, B. A.; Schach von Wittenau, A.; Wolford, J. K.

1997-02-03T23:59:59.000Z

209

Improving the nuclear data base for non-proliferation and homeland security  

SciTech Connect

Many of the technical advances in non-proliferation and homeland security require calculations of transport of neutrons and gamma-rays through materials. The nuclear data base on which these calculations are made must be of high quality in order for the calculated responses to be credible. At the Los Alamos Neutron Science Center, three spallation neutron sources are being used to provide high-quality cross section and structure data with reactions induced by neutrons. Neutron transmission, neutron-induced fission and capture cross sections, neutron emission in fission, and gamma-ray production by neutrons are principal areas of research. Furthermore, these sources are also being used to validate calculations of the characterization and response of new detectors and detection techniques. Current research activities are summarized here.

Haight, Robert C [Los Alamos National Laboratory; Bitteker, Leo J [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Gavron, Avigdor [Los Alamos National Laboratory; Hill, Tony S [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O'donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory; Ulmann, John L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

210

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A. [Sandia National Labs., Albuquerque, NM (United States). Quality Engineering Department

1993-12-31T23:59:59.000Z

211

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A.

1993-07-01T23:59:59.000Z

212

Assurance and assessment techniques for nuclear weapon related software  

SciTech Connect

Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

Blackledge, M.A.

1993-01-01T23:59:59.000Z

213

International auspices for the storage of spent nuclear fuel as a nonproliferation measure  

SciTech Connect

The maintenance of spent nuclear fuel from power reactors will pose problems regardless of how or when the debate over reprocessing is resolved. At present, many reactor sites contain significant buildups of spent fuel stored in holding pools, and no measure short of shutting down reactors with no remaining storage capacity will alleviate the need for away-from-reactor storage. Although the federal government has committed itself to dealing with the spent fuel problem, no solution has been reached, largely because of a debate over differing projections of storage capacity requirements. Proliferation of weapons grade nuclear material in many nations presents another pressing issue. If nations with small nuclear programs are forced to deal with their own spent fuel accumulations, they will either have to reprocess it indigenously or contract to have it reprocessed in a foreign reprocessing plant. In either case, these nations may eventually possess sufficient resources to assemble a nuclear weapon. The problem of spent fuel management demands real global solutions, and further delay in solving the problem of spent nuclear fuel accumulation, both nationally and globally, can benefit only a small class of elected officials in the short term and may inflict substantial costs on the American public, and possibly the world. (JMT)

O'Brien, J.N.

1981-10-01T23:59:59.000Z

214

A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods  

E-Print Network (OSTI)

A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

Sentell, Dennis Shannon, 1971-

2002-01-01T23:59:59.000Z

215

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Securing NNSA's Nuclear Weapons Complex in a ... Fact Sheet Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World Jan 2, 2009 The National Nuclear Security Administration (NNSA) has several missions

216

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network (OSTI)

planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

217

U.S. nuclear nonproliferation policy in the Northeast Asian region during the cold war: The South Korean case  

Science Journals Connector (OSTI)

In over forty years of relations with the United States, South Korean decision-makers have had plenty of time to estimate the costs and benefits of acquiring nuclear weapons. The puzzle becomes why South Korea...

Michael J. Siler

1998-09-01T23:59:59.000Z

218

Tags and seals for controling nuclear materials, Arms control and nonproliferation technologies. Second quarter 1993  

SciTech Connect

This issue of Arms Control and Nonproliferation Technologies summarizes demonstrations and addresses related topics. The first article, ``Basic Nuclear Material Control and Accountability Concepts as Might be Applied to the Uranium from the US-Russian HEU Purchase,`` describes safeguards sybsystems necessary for effective nuclear material safeguards. It also presents a general discussion on HEU-to-low-enrichment uranium (LEU) commingling processes and suggests applicable key measurement points. The second article, ``A Framework for Evaluating Tamper-Indicating-Device Technologies (TIDs),`` describes their uses, proper selection, and evaluation. The final three articles discuss the tags and seals applications and general characteristics of several nuclear material containers: the Type 30B uranium hexafluoride container, the AT-400R container, and the DOT Specification 6M container for SNM. Finally, the Appendix displays short descriptions and illustrations of seven tags and seals, including: the E-cup and wire seal, the python seal, the secure loop inspectable tag/seal (SLITS), bolt-and-loop type electronic identification devices, and the shrink-wrap seal.

Staehle, G; Talaber, C; Stull, S; Moulthrop, P [eds.

1993-12-31T23:59:59.000Z

219

Nuclear fuel reprocessing and the problems of safeguarding against the spread of nuclear weapons  

SciTech Connect

In 1977, the executive branch reversed its long-standing support for nuclear fuel reprocessing, primarily because of the rick of spreading nuclear weapons. GAO reviewed safeguards technology designed to reduce such risks in Federal reprocessing facilities and found that concerns are warranted. Material in sufficient quantities to construct a nuclear weapon could be diverted and go undetected for a long time. Effective international control and safeguards over the production, storage, and use of separated plutonium are lacking. The United States should increase its efforts to: develop and ensure the use of effective safeguards for reprocessing facilities; and establish, in conjunction with major nuclear fuel users, suppliers, and reprocessors, an international system to control the storage and use of excess plutonium.

Staats, E.B.

1980-03-18T23:59:59.000Z

220

Nuclear non-proliferation regime effectiveness : an integrated methodology for analyzing highly enriched uranium production scenarios at gas centrifuge enrichment plants  

E-Print Network (OSTI)

The dramatic change in the international security environment after the collapse of the bipolar system has had a negative impact on the effectiveness of the existing nuclear non-proliferation regime. Furthermore, the success ...

Kwak, Taeshin (Taeshin S.)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Office of Weapons Material Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

that gradually transfers responsibility for maintaining the security systems to Russia. Related Topics material protection MPC&A SLD second line of defense weapons material...

222

Final text of the African nuclear-weapon-free zone treaty  

SciTech Connect

In early 1996, African leaders will travel to Cairo, Egypt, to sign the African nuclear-weapon-free zone treaty, capping African countries` 35-year effort to ban all such weapons on the continent. Informally called the Pelindaba Treaty (ironically, the site of the South African nuclear research center where some of Pretoria`s nuclear weapons work was conducted), the accord will prohibit the development, manufacture, acquisition or possession of any nuclear explosive device as well as the dumping of radioactive material within the zone. Once it enters into force-after the 28th state deposits its instrument of ratification-Africa will become the world`s fourth nuclear-weapon-free zone. The treaty`s final text is printed provided.

NONE

1996-01-01T23:59:59.000Z

223

Source terms for plutonium aerosolization from nuclear weapon accidents  

SciTech Connect

The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

Stephens, D.R.

1995-07-01T23:59:59.000Z

224

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

225

Technical solutions to nonproliferation challenges  

SciTech Connect

The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2014-05-09T23:59:59.000Z

226

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network (OSTI)

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

227

The Myth of Strategic Superiority: Us Nuclear Weapons and Limited Conflicts, 1945-1954.  

E-Print Network (OSTI)

??The nuclear age provided U.S. soldiers and statesmen with unprecedented challenges. the U.S. military had to incorporate a weapon into strategic calculations without knowing whether… (more)

Morse, Eric

2012-01-01T23:59:59.000Z

228

Total Quality Management and nuclear weapons: A historian`s perspective  

SciTech Connect

Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

Meade, R.A.

1993-11-01T23:59:59.000Z

229

Iraqi nuclear weapons development program. Final report, October 1, 1992--September 30, 1993  

SciTech Connect

This is an abstract of the final report focusing on the collection, collation, analysis, and recording of information pertaining to Iraqi nuclear weapons development and on the long term monitoring of Iraq.

Not Available

1993-09-30T23:59:59.000Z

230

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network (OSTI)

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

231

Nuclear proliferation after the Cold War  

SciTech Connect

Today, former Soviet republics threaten to gain control over nuclear weapons sited on their territories, and reports on North Korea, Pakistan, India, and Iraq reveal current or recent weapon development programs. This document offers a timely assessment of the prospects for nuclear nonproliferation.

Reiss, M.; Litwak, R.S.

1994-01-01T23:59:59.000Z

232

Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426  

SciTech Connect

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

2012-07-01T23:59:59.000Z

233

Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Robert C. Seamans, Jr. Appointed to Lead ... Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program January 19, 1975

234

U.S. Department of Energy and NTI Announce Key Nonproliferation Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy and NTI Announce Key Nonproliferation U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan September 29, 2006 - 9:01am Addthis Agreement Reached To Downblend HEU and Convert Reactor WASHINGTON, D.C. - The U.S. Department of Energy and the Nuclear Threat Initiative (NTI) today announced that they have reached an important agreement-in-principle with the Government of Kazakhstan to move forward with the down-blending of highly enriched uranium (HEU) currently stored at Kazakhstan's Institute of Nuclear Physics. The agreement also calls for the conversion of the VVR-K research reactor to operate on low enriched uranium fuel instead of HEU, which can be used in nuclear weapons. The

235

Notice of Intent to Revise DOE O 452.4B, Security and Control of Nuclear Explosives and Nuclear Weapons, dated 1-11-2010  

Directives, Delegations, and Requirements

Recent events have revealed that there are organizations that are seeking to insert malicious software and/or components into the nuclear weapon supply chain that can alter the functionality of the weapon and possible cause DAU.

2014-09-18T23:59:59.000Z

236

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Energy.gov (U.S. Department of Energy (DOE))

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

237

Atoms for peace and the nonproliferation treaty: unintended consequences  

SciTech Connect

In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMD related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logge

Streeper, Charles Blamires [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

238

Non-Proliferation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Proliferation Non-Proliferation Non-Proliferation GC-52 provides legal advice to DOE regarding the transfer, storage or disposition of nuclear materials recovered by DOE for public health, safety or nonproliferation purposes. DOE's National Nuclear Security Administration (NNSA) operates several domestic and international programs aimed at securing vulnerable nuclear materials, such as orphan and disused sealed sources and foreign research reactor fuel, in support of nuclear nonproliferation and nuclear security initiatives. GC-52 also supports DOE in its interactions with other federal agencies, state and local governments, and the public. Applicable Laws Atomic Energy Act of 1954 Nuclear Non-Proliferation Act of 1978 National Nuclear Security Administration Act Further Information

239

Laboratory's role in Cold War nuclear weapons testing program focus of  

NLE Websites -- All DOE Office Websites (Extended Search)

70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. Contact Steve Sandoval Communications Office (505) 665-9206 Email "Los Alamos National Laboratory's role in conjunction with the Department of Defense in meeting this challenge with new nuclear weapon

240

Nuclear weapons: Emergency preparedness planning for accidents can be better coordinated  

SciTech Connect

Nuclear weapons will be carried on some of the ships the Navy plans to add to existing and new U.S. homeports. Coordination and planning with states and localities for public safety in the event of a nuclear weapon accident varies by service. The Navy and Army generally have not coordinated this planning as they have for other types of disasters because they believe to do so would compromise national security. The Air Force coordinates its emergency planning for all types of disasters. DOD believes that while it is possible for Navy homeports to coordinate preparedness plans on an unclassified basis it is not possible to do so at nuclear weapons storage sites because of security constraints.

Not Available

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

242

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing  

SciTech Connect

This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without.

Not Available

1980-06-01T23:59:59.000Z

243

Siegfried S. Hecker, Plutonium, and Nonproliferation  

Office of Scientific and Technical Information (OSTI)

Siegfried S. Hecker, Plutonium Siegfried S. Hecker, Plutonium and Nuclear Nonproliferation Resources with Additional Information · Awards Siegfried S. Hecker Photo Credit: Courtesy of Los Alamos National Laboratory LeRoy Sanchez On September 17, 2009, U.S. Energy Secretary Steven Chu named Siegfried S. Hecker as a winner of the Enrico Fermi Award 'in recognition for his contributions to plutonium metallurgy, his broad scientific leadership and for his energetic and continuing efforts to reduce the danger of nuclear weapons around the globe. Dr. Hecker is credited with resolving a long-standing controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium that arose from significant discrepancies between U.S. and former USSR research on plutonium metallurgy.'1

244

Managing nuclear materials from retired weapons: An overview of U.S. plans, programs and goals  

SciTech Connect

In September 1993, the Congressional Office of Technology Assessment (OTA) published a report entitled ``Dismantling the Bomb and Managing the Nuclear Materials``. That study evaluated the current activities as well as the future challenges inherent in retiring many thousands of nuclear weapons in the US and Russia; dismantling the warheads; and safely and securely disposing of the constituent materials.The warhead dismantlement process has been underway for a few years in both nations but long-range plans and policies are still in the early stages of development. At present both the plutonium and highly-enriched uranium removed from retired weapons is stored temporarily awaiting decisions about its ultimate fate.

Johnson, P.A. [Office of Technology Assessment, Washington, DC (United States)

1995-12-31T23:59:59.000Z

245

The origin of Iraq's nuclear weapons program: Technical reality and Western hypocrisy  

E-Print Network (OSTI)

This report is based on a series of papers written between 1980 and 2005 on the origin of Iraq's nuclear weapons program, which was known to one of the authors in the late 1970s already, as well as to a number of other physicists, who independently tried without success to inform their governments and the public. It is concluded that at no point did the Western governments effectively try to stop Iraq's nuclear weapons program, which suggests that its existence was useful as a foreign policy tool, as is confirmed by its use as a major justification to wage two wars on Iraq.

Erkman, S; Hurni, J P; Klement, S; Erkman, Suren; Gsponer, Andre; Hurni, Jean-Pierre; Klement, Stephan

2005-01-01T23:59:59.000Z

246

NIF system-design requirements for nuclear-weapons physics experiments  

SciTech Connect

One of the objectives of the National Ignition Facility (NIF) is to provide an aboveground experimental capability for conducting weapons-physics experiments, for maintaining nuclear competence. To achieve the high-energy-density regimes needed for a science-based stockpile stewardship program, NIF must produce conditions similar to those in nuclear weapon explosions. This imposes fundamental facility design requirements on NIF. This document summarizes those requirements for opacity, radiation-flow, equation-of-state, non-LTE and x-ray laser, hydrodynamic, and capsule-implosion experiments.

Perry, T.S. [ed.] [Lawrence Livermore National Lab., CA (United States); Wilde, B.H. [ed.] [Los Alamos National Lab., NM (United States)

1995-04-01T23:59:59.000Z

247

Out of (South) Africa: Pretoria`s nuclear weapons experience. Final report  

SciTech Connect

The primary focus of this paper is the impact of key South African leaders on the successful developments and subsequent rollbacks of South Africa`s nuclear weapons capability. It highlights the key milestones in the development of South Africa`s nuclear weapon capability. It also relates how different groups within South Africa (scientists, politicians, military and technocrats) interacted to successfully produce South Africa`s nuclear deterrent. It emphasizes the pivotal influence of the senior political leadership to pursue nuclear rollback given the disadvantages of its nuclear means to achieve vital national interests. The conclusions drawn from flu`s effort are the South African nuclear program was an extreme response to its own identity Crisis. Nuclear weapons became a means to achieving a long term end of a closer affiliation with the West. A South Africa yearning to be identified as a Western nation and receive guarantees of its security rationalized the need for a nuclear deterrent. The deterrent was intended to draw in Western support to counter a feared total onslaught by Communist forces in the region. Two decades later, that same South Africa relinquished its nuclear deterrent and reformed its domestic policies to secure improved economic and political integration with the West.

Horton, R.E.

1998-04-01T23:59:59.000Z

248

The USâ??India nuclear agreement: progress toward nuclear cooperation with India and a new paradigm in non-proliferation policy  

Science Journals Connector (OSTI)

The enactment of the Henry J. Hyde United Statesâ??India Peaceful Atomic Energy Cooperation Act on December 18, 2006 opened the door to a sea change in US nuclear export policy toward India. The new legislation could reverse three decades of US nuclear non-proliferation policy by facilitating India's exemption from the requirement of full-scope safeguards as a prerequisite for nuclear trade and cooperation. Notwithstanding the Hyde Act, however, major US nuclear exports to India remain unlawful until further implementing steps are taken. This article outlines the history of the estranged nuclear trade relations between the US and India and the motivations for reviving substantial civil nuclear cooperation. It then describes the parties' recent agreements and the changes to US law necessary to fulfill those agreements. Finally, the article discusses the provisions of the Hyde Act itself and the remaining principal obstacles to USâ??India nuclear trade.

Jay R. Kraemer; Frank Aum

2007-01-01T23:59:59.000Z

249

DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Directives, Delegations, and Requirements

The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

250

Revised ROD for FEIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

720 720 Federal Register / Vol. 61, No. 144 / Thursday, July 25, 1996 / Notices 1995 (44 U. S. C. Chapter 35) requires that the Office of Management and Budget (OMB) provide interested Federal agencies and the public an early opportunity to comment on information collection requests. OMB may amend or waive the requirement for public consultation to the extent that public participation in the approval process would defeat the purpose of the information collection, violate State or Federal law, or substantially interfere with any agency's ability to perform its statutory obligations. The Director of the Information Resources Group publishes this notice containing proposed information collection requests prior to submission of these requests to OMB. Each proposed information collection,

251

Safety issues in robotic handling of nuclear weapon parts  

SciTech Connect

Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems.

Drotning, W.; Wapman, W.; Fahrenholtz, J.

1993-12-31T23:59:59.000Z

252

The B61-based "Robust Nuclear Earth Penetrator:" Clever retrofit or headway towards fourth-generation nuclear weapons?  

E-Print Network (OSTI)

It is scientifically and technically possible to build an earth penetrating device that could bury a B61-7 warhead 30 meters into concrete, or 150 meters into earth, before detonating it. The device (based on knowledge and technology that is available since 50 years) would however by large and cumbersome. Better penetrator materials, components able to withstand larger stresses, higher impact velocities, and/or high-explosive driven penetration aids, can only marginally improve the device. It is conclude that the robust nuclear earth penetrator (RNEP) program may be as much motivated by the development of new technology directly applicable to next generation nuclear weapons, and by the political necessity to periodically reasses the role and utility of nuclear weapons, then by the perceived military need of a weapon able to destroy deeply buried targets.

Gsponer, A

2005-01-01T23:59:59.000Z

253

Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants  

SciTech Connect

The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail.

Pyper, J.W.

1984-06-01T23:59:59.000Z

254

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE))

Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues.

255

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B....

256

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled...

257

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A....

258

Utility of tactical nuclear weapons following 1990 Conventional Forces Europe reduction agreement. Final report  

SciTech Connect

Not so long ago, the world was changing rapidly, the Cold War faded. At least one arms agreement, the Intermediate Nuclear Forces (INF) Treaty, which reduced the U.S. Pershing II and the Russian SS-21's missiles in the European theater, was in place. Then the euphoria evaporated. The Kremlin hardliners regained power and balked at signing a Conventional Forces Europe (CFE) agreement - a treaty which only a year ago would have reduced to approximate parity the size of United States and Soviet Forces in Europe. Was America ready for this new Soviet challenge. Thankfully the answer is still yes. The United States continues to maintain its Nuclear Triad -- land, sea and air deliverable nuclear weapons system's. On the European battlefield the U.S. maintains the ability to deliver tactical nuclear weapons to overcome the Russian Army's numerical advantage and remain responsive to the ground commander. All of this should give Kremlin hardliners (strict communist power brokers, primarily in the military and KGB) reason to pause. Given the reemergence of hostile Soviet leaders, this paper addresses the future need for land based Theater Army delivered tactical nuclear weapons in the European Theater and within Regional Theaters. It also, analyzes regional powers, indicating how they might influence nuclear strategy in a world where the Soviet Union may well be moving away from us again.

Keating, A.J.

1991-04-29T23:59:59.000Z

259

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

260

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plutonium gamma-ray measurements for mutual reciprocal inspections of dismantled nuclear weapons  

SciTech Connect

The O`Leary-Mikhailov agreement of March 1994 stated that the U.S. and the Russian Federation would engage in mutual reciprocal inspections (MRI) of fissile materials removed from dismantled nuclear weapons. It was decided to begin with the plutonium (Pu) removed from dismantled weapons and held in storage containers. Later discussions between U.S. and Russian technical experts led to the conclusion that, to achieve the O`Leary-Mikhailov objectives, Pu MRI would need to determine that the material in the containers has properties consistent with a nuclear-weapon component. Such a property is a {sup 240}Pu/{sup 239}Pu ratio consistent with weapons-grade material. One of the candidate inspection techniques under consideration for Pu MRI is to use a narrow region (630-670 keV) of the plutonium gamma-ray spectrum, taken with a high-purity germanium detector, to determine that it is weapons-grade plutonium as well as to estimate the minimum mass necessary to produce the observed gamma-ray intensity. We developed software (the Pu600 code) for instrument control and analysis especially for this purpose. In November 1994, U.S. and Russian scientists met at the Lawrence Livermore National Laboratory for joint experiments to evaluate candidate Pu MRI inspection techniques. In one of these experiments, gamma-ray intensities were measured from three unclassified weapons-grade plutonium source standards and one reactor-grade standard (21% {sup 240}pu). Using our software, we determined the {sup 240}Pu/{sup 239}Pu ratio of these standards to accuracies within {+-}10%, which is adequate for Pu MRI. The minimum mass estimates varied, as expected, directly with the exposed surface area of the standards.

Koenig, Z.M.; Carlson, J.B.; Clark, D.; Gosnell, T.B.

1995-07-01T23:59:59.000Z

262

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surety (NEWS) Program, which was established to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. o452.1E-Draft-8-5-14.pdf --...

263

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

264

Loose Nukes: Nuclear Material Security in G.P.Gilfoyle  

E-Print Network (OSTI)

-standing policy of nuclear nonproliferation. · A nuclear blast would have horrific consequences; loss of lifeLoose Nukes: Nuclear Material Security in Russia G.P.Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Nuclear Weapons 101 2. What are loose nukes and why should you care? 3. What

Gilfoyle, Jerry

265

Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant  

SciTech Connect

Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996.

Guidice, S.J.; Inlow, R.O. [USDOE Albuquerque Operations Office, NM (United States)

1995-12-31T23:59:59.000Z

266

Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors  

SciTech Connect

A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

2010-04-16T23:59:59.000Z

267

A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests  

SciTech Connect

Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics. 10 refs., 1 fig., 2 tabs.

Simon, S.L. [Radiation Effects Research, Washington, DC (United States); Robison, W.L. [Lawrence Livermore National Lab., CA (United States)

1997-07-01T23:59:59.000Z

268

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Energy.gov (U.S. Department of Energy (DOE))

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

269

Technical Nonproliferation Policy Support (TNPS), Nonproliferation and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Nonproliferation Policy Support Technical Nonproliferation Policy Support (TNPS) Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program Technical Nonproliferation Policy Support (TNPS)

270

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect

One of the common waste streams generated throughout the nuclear weapon complex is ``hardware`` originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-03-01T23:59:59.000Z

271

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect

One of the common waste streams generated throughout the nuclear weapon complex is hardware'' originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-01-01T23:59:59.000Z

272

The nuclear dilemma and the just war tradition  

SciTech Connect

This book presents papers on the ethical aspects of nuclear weapons. Topics considered include the concept of a ''just'' war, national defense, political aspects, religion and politics, the failure of deterrence, conventional warfare, nuclear deterrence and democratic politics, the future of the nuclear debate, non-proliferation policy, arms control, national security, and government policies.

O'Brien, W.V.; Langan, J.

1986-01-01T23:59:59.000Z

273

CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing  

Office of Legacy Management (LM)

tudies/B ackground tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada under contract DE-AC08-85NV10384 A p r i l 1988 CONTENTS VOLUME I I. INTRODUCTION 1.1 11. NEVADA TEST SITE TESTING AREAS 2.1 Frenchman Flat (Area 5) 2.1.1 2.2 Yucca Flat (Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, and 15)

274

Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons  

SciTech Connect

Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion.

Pruneda, C.; Humphrey, J.

1993-03-01T23:59:59.000Z

275

Nuclear weapons, proliferation, and terrorism: U.S. response in the twenty-first century  

SciTech Connect

As the remaining superpower in the post-Cold War world, the US needs to re-evaluate its policy toward the growing threat to US national interests and the effects of weapons of mass destruction (WMD), specifically nuclear devices, and their use by terrorist groups against US interests abroad. As the world reacts to the implosion of the former Soviet Union, there are increased numbers of nations and possibly terrorist groups trying to become players in the international arena. This study describes the ease of obtaining the scientific knowledge, plans, and materials to enable a terrorist`s construction of a nuclear device. It also analyzes motivation of terrorist groups, concluding that a nuclear weapon, capable of inflicting violence in the extreme, fulfills the terrorist`s goal of violence in support of a political agenda or to inspire radical change. Given the guidance from the national level, this study proposes a series of policy options available to the NCA for application in an aggressive counterproliferation policy. Finally, the US must rapidly reorganize its counterproliferation structure and methods to streamline a more aggressive approach that is recognized and feared by potential nuclear terrorists; augment current political efforts with a clearly defined counterproliferation military mission and associated doctrine.

DeLawter, D.A.

1998-11-01T23:59:59.000Z

276

Nuclear Weapons  

Science Journals Connector (OSTI)

Each of the enduring warheads in Table 1.6...are being refurbished under the individualized life-extension program (LEP). Their goal is not to make ... be successful, with the exception of the B61 bomb, which is ...

David Hafemeister

2014-01-01T23:59:59.000Z

277

Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons  

SciTech Connect

In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

Johnson, M.W. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

1995-08-01T23:59:59.000Z

278

Aerothermoballistics of pyrophoric metal shrapnel in high speed, high Weber number flows. [From non-nuclear detonation of nuclear weapon  

SciTech Connect

A numerical simulation is presented on the aerothermoballistic behavior of pyrophoric metal shrapnel ejected at supersonic speeds from a non-nuclear detonation of a nuclear weapon. The model predicts the aerodynamic and chemical heat transfer rates and the particle thermal responses including the time and position of melt initiation. Due to the high Weber number environment, the melting particle undergoes liquid layer stripping. The theoretical model, which is incorporated in the PLUTO computer code, predicts the liquid mass loss rate, characteristic liquid droplet diameter, temperature rise across the liquid film, and the coupled particle trajectory.

Connell, L.W.

1984-01-01T23:59:59.000Z

279

Enforcement Guidance Supplement 01-01, Nuclear Weapon Program Enforcement Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS:01-01 Appendix E-Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 15, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement

280

A Sandia nuclear weapon knowledge management program plan for FY 1998--2003. Volume 1: Synopsis  

SciTech Connect

This volume contains a synopsis and briefing charts for a five-year plan which describes a Knowledge Management Program needed to meet Sandia`s responsibility for maintaining safety, security, reliability, and operational effectiveness of the nuclear weapon stockpile. Although the knowledge and expertise required to maintain and upgrade the stockpile continues to be critical to the country`s defense, Sandia`s historical process for developing and advancing future knowledge and expertise needs to be addressed. This plan recommends implementing an aggressive Knowledge Management Program to assure retention and furtherance of Sandia`s expertise, beginning in fiscal year 1998, as an integrated approach to solving the expertise dilemma.

NONE

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nonproliferation and National Security Multimedia - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Bookmark and Share Nonproliferation and National Security: Multimedia Related Resources Nonproliferation and National Security Vulnerability Assessment Team (VAT) Click on the "Date" header to sort the videos/podcasts in chronological order (ascending or descending). You may also search for a specific keyword; click on the reset button refresh to remove the keyword filter and show again all the Videos/Podcasts.

282

U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirm Commitment to Disposing of Weapon-Grade Reaffirm Commitment to Disposing of Weapon-Grade Plutonium U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey Kiriyenko, the director of Russia's Federal Atomic Energy Agency, have signed a joint statement reaffirming their commitment to dispose of 34 metric tons of excess weapon-grade plutonium by irradiation in nuclear reactors. "This statement is a clear sign of our mutual commitment to keeping dangerous nuclear material out of the hands of terrorists. We look forward to working together with the Russians to ensure that this important nonproliferation project moves forward in both Russia and the United States," Secretary Bodman said.

283

On the dangers of C. I. S. specialists with nuclear weapons experience relocating to Third World countries: A Russian view  

SciTech Connect

This newsletter presents information on the effectiveness of rules and regulations; on the role of a qualified consultant in the possible design of a nuclear weapon for a Third World country; and on the possible dangers (and their elimination) of relocating nuclear technologists.

Hogsett, V.; Canavan, B. (eds.)

1993-01-01T23:59:59.000Z

284

The Army before last military transformation and the impact of nuclear weapons on the US Army during the early Cold War .  

E-Print Network (OSTI)

??This thesis analyzes the impact of nuclear weapon on the doctrine and force structure of the US Army during the Early Cold War (1947-1957). It… (more)

Kinman, Bret C.

2004-01-01T23:59:59.000Z

285

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

SciTech Connect

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

286

Classification of Nuclear Weapons-Related Information (Restricted Data and Formerly Restricted Data)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLASSIFICATION OF CLASSIFICATION OF NUCLEAR WEAPONS-RELATED INFORMATION Restricted Data and Formerly Restricted Data (RD and FRD) June 2012 2 3 Purpose To familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing that information as required by  The Atomic Energy Act and  10 Code of Federal Regulation (CFR) Part 1045, Nuclear Classification and Declassification §1045.35 4 Not the Purpose This briefing does not authorize you to classify or declassify documents containing RD or FRD. Additional training is required to classify documents containing RD or FRD or identify RD or FRD within a document for redaction. Only authorized DOE

287

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA)); Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA))

1991-05-01T23:59:59.000Z

288

Nuclear weapons, the end of the cold war, and the future of the international system  

SciTech Connect

The collapse of empires, the overthrow of dynasties, the outbreak of plagues, the onset of revolutions, and even the improvement of the human condition itself - all of these are categories of events, which means that they have happened before and will almost certainly happen again. There are very few occurrences of which it can be said that nothing like them has ever taken place; but surely what took place in the New Mexico desert on July 16, 1945, qualifies as such as occurrence. The first test explosion of an atomic bomb, together with the actual use of that weapon three weeks later against the Japanese cities of Hiroshima and Nagasaki, was as sharp a break from the past as any in all of history. Theory had intersected reality to produce a weapon that was regarded at the time as unlike any other that had ever been invented, and that is still so regarded today, almost half a century later. The result, it now appears, has been a fundamental, and possibly permanent, change in human behavior. `The unleashed power of the atom has changed everything save our modes of thinking,` Albert Einstein wrote in 1946, `and thus we drift toward unparalleled catastrophe.` Einstein would have been as surprised as anyone else who lived through the early Cold War years had he known that Nagasaki would be the last occasion upon which atomic weapons would be used in anger for at least the next four and one-half decades, despite the fact that the great geopolitical rivalry between the United States and the Soviet Union would drag on throughout that length of time. History is full of unexpected developments, but few have been as completely unexpected as that the great powers would produce some 70,000 nuclear weapons between the end of World War II and the present day, without a single one of them having been used. Perfecting the ultimate instrument of war had made the ancient institution of war, for the first time in history, obsolete. Or so it would appear. 23 refs.

Gaddis, J.L. [Ohio Univ., Athens, OH (United States)

1992-12-31T23:59:59.000Z

289

American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.  

SciTech Connect

We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

2011-03-01T23:59:59.000Z

290

EU STRATEGY AGAINST PROLIFERATION OF WEAPONS OF MASS DESTRUCTION  

E-Print Network (OSTI)

EU STRATEGY AGAINST PROLIFERATION OF WEAPONS OF MASS DESTRUCTION At Thessaloniki, the European Council adopted a Declaration on non-proliferation of Weapons of Mass Destruction. Member States made. The proliferation of weapons of mass destruction and their means of delivery such as ballistic missiles

Sussex, University of

291

Physical and Mathematical Description of Nuclear Weapons Identification System (NWIS) Signatures  

SciTech Connect

This report describes all time and frequency analysis parameters measured with the new Nuclear Weapons Identification System (NWIS) processor with three input channels: (1) the 252Cf source ionization chamber (2) a detection channel; and (3) a second detection channel for active measurements. An intuitive and physical description of the various functions is given as well as a brief mathematical description and a brief description of how the data are acquired. If the fill five channel capability is used, the number of functions increases in number but not in type. The parameters provided by this new NWIS processor can be divided into two general classes: time analysis signatures including multiplicities and frequency analysis signatures. Data from measurements with an 18.75 kg highly enriched uranium (93.2 wt 0/0, 235U) metai casting for storage are presented to illustrate the various time and frequency analysis parameters.

Mattingly, J.K.; Mihalczo, J.T.; Mullens, J.A.; Valentine, T.E.

1997-09-26T23:59:59.000Z

292

A Passive Tamper Indicating Enclosure For Use Within A Nuclear Weapons Monitoring Regime  

SciTech Connect

AWE and PNNL are engaged in a technical collaboration investigating techniques to enhance continuity of knowledge over Treaty Accountable Items, with emphasis on a verified nuclear weapons dismantlement process. Tamper Indicating Enclosures (TIE) will likely be deployed as part of a chain of custody regime to indicate an unauthorised attempt to access a Treaty Accountable Item, or secure authenticated monitoring equipment. In 2011, the collaboration presented a paper at the INMM annual conference held in Palm Desert, CA titled “Passive Tamper Indicating Enclosures Incorporating Embedded Optical Fibre”, which discussed the concept of integrating optical fibres into TIEs for use as a passive tamper indicating mechanism. This paper provides an update on the Fibre Optic based TIE and introduces a second passive TIE concept based on the use of Poly(Methyl MethAcrylate) (PMMA). Concepts relating to deployment, tamper indication, and unique identification will be discussed.

White, Helen; Tanner, Jennifer E.; Allen, Keir; Benz, Jacob M.; McOmish, Sarah; Simmons, Kevin L.

2012-10-01T23:59:59.000Z

293

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11T23:59:59.000Z

294

The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility  

SciTech Connect

The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

Maxwell, D.R. [DynCorp of Colorado, Inc., Golden, CO (United States). Rocky Flats Environmental Technology Site

1995-12-31T23:59:59.000Z

295

A guide to archival collections relating to radioactive fallout from nuclear weapon testing  

SciTech Connect

This ninth edition of A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing constitutes History Associates Incorporated's (HAI) final report of its document collection, processing, and declassification efforts for the Nevada Field Office of the Department of Energy. The most significant feature of this edition is the updated HAI collection effort information. We confirmed the accuracy of this information using our screening, processing, and transmittal records. Unlike previous editions, funding limitations prevented us from systematically revising the collection descriptions and point-of-contact information for this final edition. This guide has been prepared by professional historians who have a working knowledge of many of the record collections included in the following pages. In describing materials, they have tried to include enough information so that persons unfamiliar with the complexities of large record systems will be able to determine that nature of the information in, and the quality of, each record collection.

Martin, B.W. (ed.)

1992-09-01T23:59:59.000Z

296

A guide to archival collections relating to radioactive fallout from nuclear weapon testing. Ninth edition  

SciTech Connect

This ninth edition of A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing constitutes History Associates Incorporated`s (HAI) final report of its document collection, processing, and declassification efforts for the Nevada Field Office of the Department of Energy. The most significant feature of this edition is the updated HAI collection effort information. We confirmed the accuracy of this information using our screening, processing, and transmittal records. Unlike previous editions, funding limitations prevented us from systematically revising the collection descriptions and point-of-contact information for this final edition. This guide has been prepared by professional historians who have a working knowledge of many of the record collections included in the following pages. In describing materials, they have tried to include enough information so that persons unfamiliar with the complexities of large record systems will be able to determine that nature of the information in, and the quality of, each record collection.

Martin, B.W. [ed.

1992-09-01T23:59:59.000Z

297

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment  

SciTech Connect

In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

Janeen Denise Robertson

1999-02-01T23:59:59.000Z

298

DOE Order Self Study Modules - DOE O 452.1D, Nuclear Explosive and Weapon Surety Program and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTINUING TRAINING SELF- CONTINUING TRAINING SELF- STUDY PROGRAM DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY DOE O 452.1D and DOE O 452.2D Familiar Level June 2011 1 DOE O 452.1D NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM DOE O 452.2D NUCLEAR EXPLOSIVE SAFETY FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the objectives of implementing U.S. Department of Energy (DOE) O 452.1D? 2. Define the following terms as they apply to this Order: Abnormal environment High explosive detonation 3. What are the objectives of implementing DOE O 452.2D? 4. What are the general requirements of DOE O 452.2D?

299

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring America's Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA.

300

Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime  

SciTech Connect

The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

302

Nuclear proliferation: Lessons learned from the Iraqi case. Master's thesis  

SciTech Connect

The nuclear weapons inspection regime implemented in Iraq following the United Nations coalition victory in Desert Storm is the most intrusive in history. Important conclusions about the current non-proliferation regime can therefore be determined from a study of Iraq's progress. This thesis examines Iraq's efforts to acquire nuclear weapons. The supply side of the equation is also studied, with a concentration upon the contributions of NATO nations. The strategic culture of Iraq is discussed, in an effort to discover why Iraq sought nuclear weapons. Finally, policy prescriptions are advanced. The current non-proliferation regime needs to be improved if the spread of nuclear weapons is to be halted, or even slowed. The most promising way to improve this regime is to involve the U.N. Special Commission and the U.N. Security Council in the management of the problem of nuclear proliferation.... Iraq, Strategic culture, Non-Proliferation treaty, International atomic energy agency, Nuclear weapons, Middle east security, Nuclear suppliers group, United Nations.

Dixon, T.A.

1992-12-01T23:59:59.000Z

303

Nuclear relations in South Asia  

SciTech Connect

The strategic landscape of South Asia changed dramatically in 1998. With the reciprocal testing of nuclear weapons, India and Pakistan emerged from the world of threshold status to an overt posture which has yet to be fully defined. Each claims the status of a nuclear weapon state, yet the contours of that status are unclear. A number of important strategic issues have been raised by these dramatic events. This paper will attempt to examine the implications of this new posture for each country and for the region. First and foremost, the decisions to test nuclear weapons are a product of each individual state making a sovereign decision about its national security needs. Both have made clear for a number of years that their attitudes toward nuclear weapons-and by default, toward nuclear nonproliferation-will not be directed by outsiders. They have rejected the global norms that oppose the further proliferation of nuclear weapons, embodied in the Treaty on the Non- Proliferation of Nuclear Weapons (NPT), and that embrace the ultimate elimination of nuclear weapons, captured in Article VI of that treaty. The decisions reached in New Delhi and lslamabad have been questioned by many, but the tests cannot be undone and it now falls on both countries to make further decisions about what strategies will best serve them, and what obligations they must now assume. Issues such as strategic planning, weaponization, deployment, and command and control, which heretofore were relegated to the back burner, may no longer be deferred.

Joeck, N.

1998-12-18T23:59:59.000Z

304

Is there a future role for tactical nuclear weapon systems in the national military strategy. Study project  

SciTech Connect

This paper reviews the purpose and role that tactical nuclear weapon systems can provide in supporting the National Military Strategy (NMS), and recommends requirements be determined using a strategy based upon political, economic and military national interests versus the current target-based strategy. To draw implications for the NMS, the analysis reviews current strategic policy guidance, summarizes the current definition of deterrence theory, and provides rationales for maintaining tactical nuclear weapon systems for deterrence and warfighting in regional contingency operations against nuclear-capable forces. Based upon this analysis, recommendations are provided for joint planning, doctrine, and training initiatives needed to enhance the efficacy of the armed services in achieving national security policy objectives.

Stobbs, E.E.

1992-04-03T23:59:59.000Z

305

Derivation of models for nuclear weapon terrorist arming and detonation risk analysis  

SciTech Connect

This report investigates "use control" for the on-site arming and detonation, by terrorists, of stored weapon systems. We investigate both components of weapon "use control", which we define as: (1) weapon "use denial" * that we model as a probability, Pj (denial), that represents the chances that terrorists attempting to arm a type j weapon will commit a non-recoverable error, and (2) weapon "use delay" that we model as a random variable, Tj , that represents the arming delay imposed by the use control features of a type j weapon, before detonation can occur. Using information pertaining to the physical security system at a storage site, the postulated terrorist attack force size, and simulated combat engagement outcomes, we formulate the frequency, fj , and probability, P(dj ), of on-site detonation, for generic weapon types j. We derive a model that disjoins the performance of site physical security, from that for weapon use control, if the use control random variable Tj has a Uniform or histogram distribution. This is an especially significant result where most complex distributions can be adequately approximated with a histogram. Hence, we can conduct combat simulations to obtain the physical security performance of a specific storage site independent of the use control features associated with specific weapon types that are stored, or might be stored, at the site. In turn, we can obtain the use control performance for various weapon types, independent of where they are stored and the physical security systems surrounding them. Our models can then mathematically combine physical security performance and weapon use control performance for any combination of storage facility and weapon type.

Parziale, A A

1998-03-01T23:59:59.000Z

306

U.S. Department of Energy, Defense Programs, activities to support the safe, secure dismantlement of nuclear weapons in the Former Soviet Union  

SciTech Connect

In September 1991 President Bush announced sweeping cuts in the US nuclear weapon stockpile as well as changes in deployment to remove significant numbers of weapons from alert status and to return to the US for storage many weapons formerly based abroad in US sites. In October 1991 President Gorbachev announced similar moves for the Soviet Union. Even though the Gorbachev announcement represented a substantial step forward in reducing tension between the US and the Soviet Union, the US continued to be concerned about the deteriorating situation in the Soviet Union and the prospects for internal stability. As a result, in November 1991 the Administration began talks with the Soviets in a number of areas including field disablement of nuclear weapons to prevent unauthorized use, emergency response in the event of a weapons accident, and command and control of nuclear weapons. The Nunn-Lugar legislation assured assistance to the Soviet Union in the safe, secure dismantlement (SSD) of weapons to implement the Gorbachev commitment and in the development of measures to prevent the proliferation of weapons of mass destruction. The Department of Energy (DOE) is supporting and collaborating with the Department of Defense (DOD) in several areas due to the DOE responsibilities for developing, assembling, and dismantling US warheads and as the custodian of the nuclear materials stockpile. Russia, as the successor state to the Soviet Union, controls the nuclear weapons of the Former Soviet Union. Thus, DOE`s nuclear weapon and nuclear materials expertise are being applied particularly to Russia. However, the DOE is also providing assistance to Belarus and is prepared to assist Ukraine and Kazakhstan as well if agreements can be reached. In this paper, the DOE SSD activities in support of DOD as the US Executive Agent will be discussed. Two areas will not be covered, namely, DOD activities and the purchase of highly enriched uranium.

Turner, J.

1993-12-31T23:59:59.000Z

307

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

308

The spread of nuclear-weapon-free zones: Building a new nuclear bargain  

SciTech Connect

The United States (US), France and Britain took a small step in the direction of nuclear disarmament when they announced they would ratify the protocols of the Treaty of Rarotonga, also called the South Pacific nuclear-free-zone treaty. The author examines the protocols of this treaty and the implications for its adoption.

Davis, Z.S.

1996-02-01T23:59:59.000Z

309

Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography  

SciTech Connect

A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. Primary sources of information in preparing this bibliography were bibliographies on Oceania, citations in published papers, CIS Index and Abstracts, Monthly Catalog of United States Government Publications, Nuclear Science Abstracts, Energy Research Abstracts, numerous bibliographies on radiation ecology, and suggestions by many individuals whom we contacted. One goal in this bibliography is to include complete documentation of the source of congressional reports and other government-related publications. In addition, page numbers for material in this bibliography are provided in parentheses when the subject matter of a book or document is not restricted to nuclear weapons testing in the Marshall Islands.

Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA)); Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA))

1991-04-01T23:59:59.000Z

310

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network (OSTI)

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

311

A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications  

E-Print Network (OSTI)

We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3\\,cm (2.500") on a side. Cell boundaries have a 0.127\\,mm (0.005") air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity an...

Lane, C; Blackmon, J; Rasco, C; Mumm, H P; Markoff, D; Jocher, G R; Dorrill, R; Duvall, M; Learned, J G; Li, V; Maricic, J; Matsuno, S; Milincic, R; Negrashov, S; Sakai, M; Rosen, M; Varner, G; Huber, P; Pitt, M L; Rountree, S D; Vogelaar, R B; Wright, T; Yokley, Z

2015-01-01T23:59:59.000Z

312

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I  

Energy.gov (U.S. Department of Energy (DOE))

Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington, D.C.: Department of...

313

Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research  

SciTech Connect

This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle ensemble. This would cause the analysis to be skewed. The use of a gelatin substrate allows the ablation a particle ensemble without disturbing other particles or the gelatin surface. A method to trap and ablate particles on filter paper using collodion was also investigated. The laser was used to dig through the collodion layer and into the particle ensemble. Both of these methods fix particles to allow spatial resolution of the particle ensembles. The use of vanillic acid as a possible enhancement to ablation was also studied. A vanillic acid coating of the particles fixed on top of the gelatin substrate was not found to have any positive effect on either signal intensity or precision. The mixing of vanillic acid in the collodion solution used to coat the filter paper increased ablation signal intensity by a factor of 4 to 5. There was little effect on precision, though. The collodion on filter paper method and the gelatin method of resolving particles have shown themselves to be possible tools in fighting proliferation of nuclear weapons and material. Future applications of LA-ICP-MS are only limited by the imagination of the investigator. Any material that can be ablated and aerosolized is a potential material for analysis by LA-ICP-MS. Improvements in aerosol transport, ablation chamber design, and laser focusing can make possible the ablation and analysis of very small amounts of material. This may perhaps lead to more possible uses in forensics. A similar method to the one used in Chapter 3 could perhaps be used to match drug residue to the place of origin. Perhaps a link could be made based on the elements leached from the soil by plants used to make drugs. This may have a specific pattern based on where the plant was grown. Synthetic drugs are produced in clandestine laboratories that are often times very dirty. The dust, debris, and unique materials in the lab environment could create enough variance to perhaps match drugs produced there to samples obtained off the street. Even if the match was not strong enough to be evidence, the knowledge that many sa

Messerly, Joshua D.

2008-08-26T23:59:59.000Z

314

Nuclear Proliferation And The Nuclear Deterrent: Will The Non-Proliferation Treaty Ever Achieve Total Nuclear Disarmament? Is The Nuclear Deterrent Worth Keeping?.  

E-Print Network (OSTI)

?? In 2009 President Obama outlined his utopic vision of a nuclear-free world, admitting that this would not be possible within his lifetime he claimed that while… (more)

Eckford, James

2012-01-01T23:59:59.000Z

315

Non-Proliferation Treaty at 25  

SciTech Connect

This article is a review of nuclear nonproliferation issues during the 25 years that have passed since the signing of the first nonproliferation treaty. A historical background is provided, both declared and undeclared nuclear powers are noted, and considerable attention is given to issues brought about by the dissolution of the Soviet Union and by the renegade actions of a number of signatories, e.g. Iraq, and several of the non-signatories. Present/future policies are discussed, as is the impact of the present Administration in Washington.

Cooper, M.H.

1995-01-20T23:59:59.000Z

316

Why Model-Based Engineering and Manufacturing Makes Sense for the Plants and Laboratories of the Nuclear Weapon Complex  

SciTech Connect

The purpose of this White Paper is to outline the benefits we expect to receive from Model-Based Engineering and Manufacturing (MBE/M) for the design, analysis, fabrication, and assembly of nuclear weapons for upcoming Life Extension Programs (LEPs). Industry experiences with model-based approaches and the NNSA/DP investments and experiences, discussed in this paper, indicate that model-based methods can achieve reliable refurbished weapons for the stockpile with less cost and time. In this the paper, we list both general and specific benefits of MBE/M for the upcoming LEPs and the metrics for determining the success of model-based approaches. We also present some outstanding issues and challenges to deploying and achieving long-term benefit from the MBE/M. In conclusion, we argue that successful completion of the upcoming LEPs--with very aggressive schedule and funding restrictions--will depend on electronic model-based methods. We ask for a strong commitment from LEP managers throughout the Nuclear Weapons Complex to support deployment and use of MBE/M systems to meet their program needs.

Franklin, K W; Howell, L N; Lewis, D G; Neugebauer, C A; O'Brien, D W; Schilling, S A

2001-05-15T23:59:59.000Z

317

Revision to the Record of Decision for the Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (DOE/EIS-218) (7/19/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767 767 Federal Register / Vol. 65, No. 139 / Wednesday, July 19, 2000 / Notices The office is located in the Pentagon which is guarded. RETENTION AND DISPOSAL: Records are kept until the person is deceased or the person seeks removal of information, whichever is sooner. SYSTEM MANAGER(S) AND ADDRESS: Chief of Naval Operations (N09BC), 2000 Navy Pentagon, Washington, DC 20350-2000. NOTIFICATION PROCEDURE: Individuals seeking to determine whether information about themselves is contained in this system should address written inquiries to the Chief of Naval Operations (N09BC), 2000 Navy Pentagon, Washington, DC 20350-2000. RECORD ACCESS PROCEDURES: Individuals seeking access to information about themselves contained in this system should address written inquiries to the Chief of Naval

318

Nonproliferation Graduate Fellowship Program Attracts High Caliber Young  

National Nuclear Security Administration (NNSA)

Graduate Fellowship Program Attracts High Caliber Young Graduate Fellowship Program Attracts High Caliber Young Professionals to Careers in Nonproliferation and National Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Nonproliferation Graduate Fellowship Program Attracts High Caliber ... Nonproliferation Graduate Fellowship Program Attracts High Caliber Young

319

Use of Lasers to Study the Impact of Fractionation and Condensation on the Toxicity of Nuclear Weapon Fallout  

SciTech Connect

An experimental concept has been developed to collect data to aid in the refinement of simulation programs designed to predict the fallout effects arising from surface and shallowly buried nuclear weapon detonations. These experiments, called the Condensation Debris Experiments (CDE), are intended to study the condensation/fractionation of material that is liberated following an initial deposition of laser energy onto a small, characterized target. The CDE effort also encompasses target development and material studies as well as supporting computational efforts studying radiation hydrodynamics, computational fluid dynamics, and relevant neutron activation processes (not discussed here).

Vidnovic III, T; Bradley, K S; Debonnel, C S; Dipeso, G; Fournier, K; Karpenko, V P; Tobin, M

2005-04-01T23:59:59.000Z

320

U.S. Department of Energy Strategic Plan 13 In 2000, the National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA. Over the next six years, the Department will apply

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

President Truman Orders Development of Thermonuclear Weapon ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

322

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?  

SciTech Connect

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

323

On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium  

SciTech Connect

We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

Kunsman, D.M.

1993-03-01T23:59:59.000Z

324

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

325

U.S. Department of Energy and NTI Announce Key Nonproliferation...  

Office of Environmental Management (EM)

Sign Agreement to Allow Nonproliferation and Threat Reduction Cooperation Secretary Bodman and Rosatom Director Kiriyenko Meet to Discuss U.S.-Russia Nuclear Security Progress...

326

Toward a more rigorous application of margins and uncertainties within the nuclear weapons life cycle : a Sandia perspective.  

SciTech Connect

This paper presents the conceptual framework that is being used to define quantification of margins and uncertainties (QMU) for application in the nuclear weapons (NW) work conducted at Sandia National Laboratories. The conceptual framework addresses the margins and uncertainties throughout the NW life cycle and includes the definition of terms related to QMU and to figures of merit. Potential applications of QMU consist of analyses based on physical data and on modeling and simulation. Appendix A provides general guidelines for addressing cases in which significant and relevant physical data are available for QMU analysis. Appendix B gives the specific guidance that was used to conduct QMU analyses in cycle 12 of the annual assessment process. Appendix C offers general guidelines for addressing cases in which appropriate models are available for use in QMU analysis. Appendix D contains an example that highlights the consequences of different treatments of uncertainty in model-based QMU analyses.

Klenke, Scott Edward; Novotny, George Charles; Paulsen Robert A., Jr.; Diegert, Kathleen V.; Trucano, Timothy Guy; Pilch, Martin M.

2007-12-01T23:59:59.000Z

327

Neutralization of chemical and biological weapons of mass destruction using nuclear methods  

E-Print Network (OSTI)

Nuclear Science Center Reactor. M. S. Thesis. Texas A&M University. August 2001. Kruger, H. and Mcndelsohn, E. Neutralization of Chemical/Biological Ballistic Warheads by Low- Yield Nuclear Interceptors. Lawrence Livermorc National Laboratory; (UCRL...-ID-111403); August 1992. Mendelsohn, E. Neutron Shielding of Chemical/Biological Warheads to Minimize the Effects from Low-yield Nuclear Interceptors. Lawrence Livermore National Laboratory; (UCRL-ID-112014); October 1992. Mendelsohn, E. Effectiveness...

McAffrey, Veronica Lynn

2012-06-07T23:59:59.000Z

328

WEAPONS ON CAMPUS REGULATION WEAPONS ON CAMPUS  

E-Print Network (OSTI)

WEAPONS ON CAMPUS REGULATION CHAPTER 20 WEAPONS ON CAMPUS 8VAC115-20-10. Definitions, including the Virginia Institute of Marine Science. "Weapon" means any firearm or any other weapon listed115-20-20. Possession of weapons prohibited. Possession or carrying of any weapon by any person

Lewis, Robert Michael

329

Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components  

SciTech Connect

Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

1998-05-01T23:59:59.000Z

330

Nonproliferation Boom Gives A Lift to the National Labs  

Science Journals Connector (OSTI)

...Korea over its nascent nuclear weapons program, the...5-megawatt experimental nuclear reactor near theNorth...could extract waste fuel and process it to make plutonium for a nuclear weapon. But ifthe satellite...released during plutonium reprocessing to the thermal signature...

Christopher Anderson

1994-02-04T23:59:59.000Z

331

Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States  

SciTech Connect

The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

332

U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy...  

Office of Environmental Management (EM)

Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation February 24, 2010 -...

333

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

334

Risk in the Weapons Stockpile  

SciTech Connect

When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

335

Nuclear threat on the Korean peninsula: The present and the future. Final report  

SciTech Connect

Forty years after they were divided by the Cold War, South and North Korea are closer to reunification than ever before. However, North Korea's nuclear weapons program might cause South Koreans to be much less sure about reunification. Today the Cold War is over, but the Korean peninsula is still divided into two Koreas despite the new era of reconciliation. Since December 1991 when a non-aggression pact was signed barring nuclear weapons, North Korea has pursued its nuclear weapon development. In March 1993, North Korea declared its intention to withdraw from the Nuclear Non-Proliferation Treaty, and has been refusing a full inspection of its nuclear program. North Korea's nuclear issue is an international issue today. This paper discusses 'what threat we have today' and 'what should be done in the future.'.

Kang, S.

1994-04-01T23:59:59.000Z

336

Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits  

SciTech Connect

The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

1998-01-01T23:59:59.000Z

337

Nonproliferation | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Experts from U.S. Department of Energy National Laboratories, including Sandia...

338

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Related News DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan NIS receives two NAGC awards Charles E. Messick receives the Administrator's Gold...

339

National Security, Weapons Science  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

340

Secondary wastes and high explosive residues generated during production of main high explosive charges for nuclear weapons  

SciTech Connect

This study identifies the sources of high-explosive (HE) residues and hazardous and nonhazardous wastes generated during the production of the main HE charges for nuclear weapons, and estimates their quantities and characteristics. The results can be used as a basis for design of future handling and treatment systems for solid and liquid HE residues and wastes at any proposed new HE production facilities. This paper outlines a general methodology for documenting and estimating the volumes and characteristics of the solid and liquid HE residues and hazardous and nonhazardous wastes. We prepared volume estimates by applying this method to actual past Pantex plant HE production operations. To facilitate the estimating, we separated the HE main-charge production process into ten discrete unit operations and four support operations, and identified the corresponding solid and liquid HE residues and waste quantities. Four different annual HE main-charge production rates of 100, 500, 1000, and 2000 HE units/yr were assumed to develop the volume estimates and to establish the sensitivity of the estimates to HE production rates. The total solids (HE residues and hazardous and nonhazardous wastes) estimated range from 800 to 2800 ft{sup 3}/yr and vary uniformly with the assumed HE production rate. The total liquids estimated range from 73,000 to 1,448,000 gal/yr and also vary uniformly with the assumed production rate.

Jardine, L.J.; McGee, J.T.

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT  

SciTech Connect

The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

Bergren, C

2009-01-16T23:59:59.000Z

342

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network (OSTI)

a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons and certify the stockpile without nuclear testing. The National Ignition Facility (NIF) extends HEDP under extreme conditions that approach the high energy density (HED) environments found in a nuclear

343

IRAQ'S WEAPONS  

Science Journals Connector (OSTI)

AFTER TWO MONTHS OF snap inspections at hundreds of sites, United Nations inspectors cannot say that Iraq has weapons of mass destruction or that it is disarming. Because Iraq has not been forth-coming, questions remain about its chemical, biological, and ...

LOIS EMBER

2003-02-03T23:59:59.000Z

344

Russia`s Great Game in a nuclear South Asia  

SciTech Connect

Lost in the noise of Pakistan`s nuclear weapon tests in the western Baluchistan desert on 28 and 30 May was a surprising diplomatic move by Russia. On 23 May, Russia became the first state to express its willingness to recognize India as a nuclear-weapon state, provided that India commits itself to the international nonproliferation regime. Russia`s Ambassador to India, Albert Chernyshev, stated in the days after the Indian but before the Pakistani nuclear tests that ``India proclaimed itself a nuclear weapons power. One now hopes that India will behave as a nuclear weapons power by acting responsibly. Every nuclear weapons state has some rights. But for getting recognition it must have some obligations. Once it is ready to show these obligations by joining the nonproliferation regime, its recognition as a nuclear weapons power will follow.`` Russia`s Great Game in South Asia in pursuit of short-term economic and other interests appears to be a serious obstacle on the path to dealing effectively with the South Asian nuclear crisis. Grave damage to security, stability and nonproliferation has already resulted from India`s and Pakistan`s actions, but the situation does not have to spiral out of control. It is imperative that the international community respond appropriately to this challenge. The international community is at a crossroads and Russia`s actions will be critical. Will it be willing to go beyond the narrow economic and political calculations reflected in its diplomatic posturing, and take actions that will serve its long-term interests by bridging differences with other great powers in order to demonstrate to India that it has not chosen the right path. If Russia decides it can gain from India`s current, perilous path and blocks or otherwise frustrates appropriate responses, the nuclear danger on the subcontinent will escalate and the global regimes to promote nonproliferation and to ban testing will be seriously, perhaps fatally, weakened with unpredictable regional and global effects.

Pilat, J.F.; Taylor, T.T. [International Inst. for Strategic Studies, London (United Kingdom)

1998-12-31T23:59:59.000Z

345

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Management, Safeguards, and Non-Proliferation Tools Export Control Human Reliability International Collaborations on Nuclear Safeguards Nuclear Forensics Radiation...

346

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 Department of Energy Strategic Plan - Ensuring America's 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials

347

Secondary wastes and high explosive residues generated during production of main high explosive charges for nuclear weapons. Revision 1  

SciTech Connect

This study identifies the sources of high-explosive (HE) residues and hazardous and nonhazardous wastes generated during the production of the main HE charges for nuclear weapons, and estimates their quantities and characteristics. The results can be used as a basis for design of future handling and treatment systems for solid and liquid HE residues and wastes at any proposed new HE production facilities. This paper outlines a general methodology for documenting and estimating the volumes and characteristics of the solid and liquid HE residues and hazardous and nonhazardous wastes. To facilitate the estimating, we separated the HE main-charge production process into ten discrete unit operations and four support operations, and identified the corresponding solid and liquid HE residues and waste quantities. Four different annual HE main-charge production rates of 100, 500, 1000, and 2000 HE units/yr were assumed to develop the volume estimates and to establish the sensitivity of the estimates to HE production rates. The total solids (HE residues and hazardous and nonhazardous wastes) estimated range from 800 to 2800 ft{sup 3}/yr and vary uniformly with the assumed HE production rate. The total liquids estimated range from 73,000 to 1,448.000 gal/yr and also vary uniformly with the assumed production rate. Of the estimated solids, the hazardous wastes (e.g., electrical vehicle batteries and light tubes) were about 2% of the total volumes. The generation of solid HE residues varied uniformly with the HE production rates and ranged from about 20% of the total solids volume for the 100 HE units/yr case to about 60% for the 2000 units/yr case. The HE machining operations generated 60 to 80% of the total solid HE residues, depending on the assumed production rate, and were also the sources of the most concentrated HE residues.

Jardine, L.J.; McGee, J.T.

1995-01-01T23:59:59.000Z

348

A comparative study of 239,240Pu in soil near the former Rocky Flats Nuclear Weapons Facility, Golden, CO  

Science Journals Connector (OSTI)

The Rocky Flats Nuclear Weapons Plant near Golden, CO released plutonium into the environment during almost 40 years of operation. Continuing concern over possible health impacts of these releases has been heightened by lack of public disclosure of the US Department of Energy (DOE) activities. A dose reconstruction study for the Rocky Flats facilities, begun in 1990, provided a unique opportunity for concerned citizens to design and implement field studies without participation of the DOE, its contractors, or other government agencies. The Citizens Environmental Sampling Committee was formed in late 1992 and conducted a field sampling program in 1994. Over 60 soil samples, including both surface and core samples, were collected from 28 locations where past human activities would have minimal influence on contaminant distributions in soil. Cesium-137 activity was used as a means to assess whether samples were collected in undisturbed locations. The distribution of plutonium (as 239,240Pu) in soil was consistent with past sampling conducted by DOE, the Colorado Department of Public Health and Environment, and others. Elevated levels of 239,240Pu were found immediately east of the Rocky Flats Plant, with concentrations falling rapidly with distance from the plant to levels consistent with background from fallout. Samples collected in areas south, west, and north of the plant were generally consistent with background from fallout. No biases in past sampling due to choice of sampling locations or sampling methodology were evident. The study shows that local citizens, when provided sufficient resources, can design and implement technical studies that directly address community concerns where trust in the regulated community and/or regulators is low.

Todd D. Margulies; Niels D. Schonbeck; Normie C. Morin-Voillequé; Katherine A. James; James M. LaVelle

2004-01-01T23:59:59.000Z

349

A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375  

SciTech Connect

Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

Parker, Frank L. [Vanderbilt University (United States)

2012-07-01T23:59:59.000Z

350

Nonproliferation through delegation  

E-Print Network (OSTI)

and Tomoko Yasaka. 2007. Iraq Profile: Nuclear Overview [webe_research/profiles/Iraq/Nuclear/index.html. Findlay,Intelligence, verification and Iraq's WMDs. In Verification

Brown, Robert Louis

2008-01-01T23:59:59.000Z

351

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

352

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

353

Nonproliferation Graduate Fellowship Program, Annual Report, Class of 2012  

SciTech Connect

This 32-pp annual report/brochure describes the accomplishments of the Class of 2012 of the Nonproliferation Graduate Fellowship Program (the last class of this program), which PNNL administers for the National Nuclear Security Administration. The time period covers Sept 2011 through June 2013.

McMakin, Andrea H.

2013-09-23T23:59:59.000Z

354

Former Nonproliferation Graduate Fellow Served at U.S. Mission  

SciTech Connect

Because of her training and professional experiences, Rosalyn Leitch, a Security Specialist at Pacific Northwest National Laboratory and former Nonproliferation Graduate Fellow with NIS (2012-2013) was able to transition into temporary assignment as UNVIE Acting Nuclear Security Attaché from November 2013 through February 2014.

Brim, Cornelia P.

2014-10-15T23:59:59.000Z

355

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

356

Nuclear Weapons Latency  

E-Print Network (OSTI)

......................................................................... 14 Fig. 4. Conceptual flow of Latency tool Petri Net simulation. ........................................ 18 Fig. 5. Overall flow of Latency Tool. .............................................................................. 19 Fig. 6. Latency... density function bound simulations. .............. 43 xi Fig. 14. The expansion of one transition into a series of transitions. A simple Petri net with (a) 1 transition T1, (b) T1 replaced by two transitions in series, T1a and T1b, both half...

Sweeney, David J

2014-07-25T23:59:59.000Z

357

Safeguarding and Protecting the Nuclear Fuel Cycle  

SciTech Connect

International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

Trond Bjornard; Humberto Garcia; William Desmond; Scott Demuth

2010-11-01T23:59:59.000Z

358

Bret Knapp to head combined Weapons Engineering, Weapons Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership...

359

Nuclear power and safeguards at a crossroad  

SciTech Connect

After several decades of existence, both nuclear power for electricity generation and safeguards for assuring non-proliferation undergo a phase of transition, each on its own and to a lesser extent with each other. In many part of the world, nuclear power stagnates and its future seems to be put in question, while in areas with high population densities and strong economic development its use is being expanded. As to safeguards, the discovery of the clandestine weapon programme in Iraq raises questions about its ultimate effectiveness and sets the stage for an in-depth reassessment of the assumptions and methodologies used in the verification system.

Pellaud, B.

1994-12-31T23:59:59.000Z

360

PHIL 20628/ Ethics of Emerging STV 20228 Weapons Technologies  

E-Print Network (OSTI)

PHIL 20628/ Ethics of Emerging STV 20228 Weapons Technologies Spring 2011 Prof. Don Howard theirpeople, especially the poor. " Benedict joined every Pope since Pius XII in condemning nuclear weapons as inherently immoral because the nature of the technology is such that nuclear weapons inherently violates

Howard, Don

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ITAR Categories Category I -Firearms, Close Assault Weapons and Combat Shotguns  

E-Print Network (OSTI)

ITAR Categories Category I - Firearms, Close Assault Weapons and Combat Shotguns Category II - Guns and Associated Equipment Category XVI - Nuclear Weapons, Design and Testing Related Items Category XVII Energy Weapons Category XIX - [Reserved] Category XX - Submersible Vessels, Oceanographic and Associated

362

Weapons of mass distraction: Magicianship, misdirection, and the dark side of legitimation  

E-Print Network (OSTI)

Los Angeles Times 27: A1. Weapons of Mass Distraction Weber,G. Dawson, (Orig. pub. 1634). Weapons of Mass DistractionCentury Encounter with Nuclear Weapons. Columbus: Ohio State

Freudenburg, William R.; Alario, Margarita

2007-01-01T23:59:59.000Z

363

Charles McMillan to lead Los Alamos National Laboratory's Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

McMillan to Lead Weapons Program Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program...

364

Nuclear & Radiological Activity Center (NRAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

365

Nonproliferation through delegation  

E-Print Network (OSTI)

G. 1973. Historical Evolution of International Safeguards.In International Safeguards and Nuclear Industry, edited by1998. The Evolution of IAEA Safeguards. Vienna, Austria: The

Brown, Robert Louis

2008-01-01T23:59:59.000Z

366

Nonproliferation through delegation  

E-Print Network (OSTI)

designs. For example, CANDU-type nuclear reactors are morenegotiations with Canada for a CANDU reactor and with Franceearlier acquisition of a CANDU reactor, did the US become

Brown, Robert Louis

2008-01-01T23:59:59.000Z

367

Ban On Foreign Scientists' Visits To Weapon Labs Lifted  

Science Journals Connector (OSTI)

Ban On Foreign Scientists' Visits To Weapon Labs Lifted ... Once again, foreign scientists from "sensitive" countries may be able to work with U.S. scientists at Department of Energy nuclear weapons laboratories. ...

JEFF JOHNSON

2000-09-04T23:59:59.000Z

368

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

369

Supplement Analysis for the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A SUPPLEMENT ANALYSIS FOR THE FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE PANTEX PLANT AND ASSOCIATED STORAGE OF NUCLEAR WEAPON COMPONENTS DOE/EIS-0225/SA-03 United States Department of Energy National Nuclear Security Administration Pantex Site Operations P.O. Box 30030 Amarillo, Texas 79120-0030 February 2003 i Summary The U.S. Department of Energy's (DOE's) National Environmental Policy Act (NEPA) Implementing Procedures at 10 CFR 1021.330(d) require evaluation of its site-wide environmental impact statements (EISs) at least every 5 years by preparation of a supplement analysis (SA), as provided in 10 CFR 1021.314. Based on the SA, a determination is made as to whether the existing EIS remains

370

Sandia National Laboratories/Production Agency Weapon Waste Minimization Plan  

SciTech Connect

This Plan describes activities to reduce the usage of hazardous materials and the production of hazardous material waste during the development, production, stockpile, and retirement phases of war reserve nuclear weapons and nuclear weapon test units. Activities related to the development and qualification of more benign materials and processes for weapon production and the treatment and disposal of these materials from weapon retirement are described in separate plans.

Skinrood, A.C.; Radosevich, L.G.

1991-07-01T23:59:59.000Z

371

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

372

Strategic Trade Control: Nonproliferation Engagement and Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Engagement and Training Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program Technical Nonproliferation Policy Support (TNPS)

373

Nuclear Materials Management and Safeguards System (NMMSS)  

SciTech Connect

This paper describes the Nuclear Materials Management and Safeguards System (NMMSS) which is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The system serves national security and program management interests, and international interests in the programs for the peaceful application of nuclear energy and non-proliferation of nuclear weapons. Within the scope of the NMMSS are found all nuclear materials applied and controlled under United States law and related international agreements, including U.S. nuclear materials production programs and US private nuclear industrial activities. In addition, its national and international scope enables it to provide services to other organizations such as the Arms Control and Disarmament Agency, the Department of State, and the US Congress.

Jacobsen, S.E.; Matthews, W.B. III; McKamy, E.D.; Pedigo, R.B.

1991-01-01T23:59:59.000Z

374

International control of tritium to prevent horizontal proliferation and to foster nuclear disarmament  

SciTech Connect

In this paper, an approach to control tritium systematically on the international level is proposed. The first goal is to prevent the military use of tritium in states other than the five recognized nuclear weapons states. An {open_quotes}International Tritium Control System{close_quotes} (ITCS) would control all civilian facilities producing or handling tritium. The second goal is to restrict the availability of fresh tritium supplies for nuclear weapons programs as a means to avoid vertical proliferation in states that possess nuclear weapons, and as a step towards complete nuclear disarmament. This can be achieved by including tritium in a future weapons-usable materials production cutoff agreement and the approach proposed here is called an {open_quotes}Integrated Cutoff{close_quotes} (ICO). The simultaneous implementation of the ITCS and ICO aims at avoiding any new discrimination against non-nuclear weapon states. This paper will discuss the possible political and technical modalities to achieve both goals. The rules and decision making procedures are outlined for both control approaches and the implications for the nuclear non-proliferation regime are shown. Various control tasks are derived from a comprehensive analysis covering all diversion paths which can yield more than one gram of tritium within one year. In the appendix to this paper, the impact of a tritium shortage on the U.S. nuclear arsenal is illuminated. The extreme case of complete elimination of all tritium would result in a large yield reductions of the arsenal.

Kalinowski, M.B.; Colschen, L.C. [Institut fuer Kernphysik, Darmstadt (Germany)

1995-11-01T23:59:59.000Z

375

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network (OSTI)

, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability models that are used to assess and certify the stockpile without nuclear testing. The National Ignition that approach the high-energy density (HED) environments found in a nuclear explosion. Virtually all

376

Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation  

SciTech Connect

This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

2011-06-01T23:59:59.000Z

377

Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site  

SciTech Connect

The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose{hor_ellipsis}prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives.

Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

1995-11-01T23:59:59.000Z

378

Nonproliferation - Tell-tale seals | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARE SHARE Nonproliferation - Tell-tale seals Using an Oak Ridge National Laboratory technology, inspectors of containers of nuclear material will be able to know with unprecedented confidence whether an intruder has tampered with a seal. The system uses a light source of entangled photons to verify the continuity of a fiber-based seal, according to Travis Humble, who led the development team. Entanglement is a feature of quantum physics that describes how two spatially disparate systems exhibit strong correlations in otherwise independent behaviors. The work, sponsored by the Defense Threat Reduction Agency, is vital to ensure compliance with nonproliferation treaties because inspectors must confirm the uninterrupted containment and surveillance of any nuclear material.

379

Improving weapons of mass destruction intelligence Arnold Kanter  

E-Print Network (OSTI)

1 Improving weapons of mass destruction intelligence Arnold Kanter The Scowcroft Group 900;2 Combating the spread of weapons of mass destruction (WMD) is one of the most important foreign policy of nuclear capability by sub-national states and the security of WMD weapons, materials, and technology

Deutch, John

380

Office of the Assistant General Counsel for Civilian Nuclear...  

Energy Savers (EERE)

(HLW) and Spent Nuclear Fuel (SNF) Management of Nuclear Materials and Non-HLW Nuclear Fuel Cycle Energy Research and Development Non-Proliferation Nuclear Regulatory Commission...

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it  

SciTech Connect

In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

NONE

1996-01-01T23:59:59.000Z

382

NNSA Timeline | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Timeline | National Nuclear Security Administration Timeline | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NNSA Timeline Home > About Us > Our History > NNSA Timeline NNSA Timeline The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

383

Our History | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

History | National Nuclear Security Administration History | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our History Home > About Us > Our History Our History The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

384

Nuclear disarmament, disposal of military plutonium and international security problems  

SciTech Connect

One of the major issues of the current debate deals with the question: what does real nuclear disarmament actually involve? It becomes more and more obvious for many experts that it can no longer be limited to the reduction or elimination of delivery vehicles alone, but must necessarily cove the warheads and the fissile materials recovered from them, which should totally or partially be committed to peaceful use and placed under appropriate international safeguards, thus precluding their re-use for as weapons. There are various options as to how to solve the problems of disposal of fissile materials released from weapons. The optimal choice can only be made on the basis of a thorough study. This study should treat the disposal of weapon-grade plutonium and weapon-grade uranium as separate problems. The possible options for plutonium disposition currently discussed are as follows: (a) Storage in a form or under conditions not suitable for use in the production of new types of nuclear weapons. This option seems to be most natural and inevitable at the first phase, subject to determination of storage period, volume, and technology. Besides, the requirements of the international nuclear weapons nonproliferation regime could be met easily. Safe, secure, and controlled temporary storage may provide an appropriate solution of disposal of weapon-grade plutonium in the near future. (b) Energy utilization (conversion) of weapon-grade plutonium. The most efficient option of utilization of plutonium appears to be for nuclear power generation. This option does not exclude storage, but considers it as a temporary phase, which can, however, be a prolonged one: its length is determined by the political decisions made and possibilities existing to transfer plutonium for processing.

Slipchenko, V.S.; Rybatchenkov, V. [Ministry of Foreign Affairs of the Russian Federation, Moscow (Russian Federation). Arms Control and Disarmament Dept.

1995-12-31T23:59:59.000Z

385

International Nonproliferation Export Control Program (INECP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and Nonproliferation and National Security Program > TNPS > Strategic Trade Control > International Programs > INECP Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr

386

Annular Core Research Reactor - Critical to Science-Based Weapons...  

National Nuclear Security Administration (NNSA)

Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

387

DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on UK Government's "Road to 2010" Report on Nuclear Statement on UK Government's "Road to 2010" Report on Nuclear Security DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security July 17, 2009 - 12:00am Addthis WASHINGTON, DC - Thomas P. D'Agostino, the Department of Energy's Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration, today applauded the British government's new report on advancing the global nuclear security agenda. Issued yesterday, "The Road to 2010 - Addressing the Nuclear Question in the Twenty First Century" outlines a strategy for addressing the threat posed by the proliferation of nuclear weapons ahead of the 2010 Nuclear Non-Proliferation Treaty (NPT) Review Conference. Among other steps, it includes the creation of a UK Center for Nuclear

388

Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets  

E-Print Network (OSTI)

A nuclear terrorist attack is one of the most serious threats to the national security of the United States, and in the wake of an attack, attribution of responsibility will be of the utmost importance. Plutonium, a by-product in spent nuclear...

Osborn, Jeremy

2014-08-13T23:59:59.000Z

389

NPT Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Signed | National Nuclear Security Administration Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NPT Signed NPT Signed March 05, 1970 New York, United States NPT Signed The United States, Great Britain, the Soviet Union, and forty-five other nations sign the Treaty for the Nonproliferation of Nuclear Weapons

390

Consequence Management, Safeguards & Non-Proliferation Tools | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the gamma radiation field in a mock-up of a UF-6 enrichment facility. The solution was generated on a desktop computer using ORNL's Denovo SN transport code and ADVANTG interface, using geometry and material descriptions from an NRL SWORD input file. ORNL is a leader in developing state-of-the-art radiation transport modeling and simulation tools and in applying these tools to solve challenging problems in national and global nuclear security. Recent developments in high-performance, high-fidelity, deterministic Monte Carlo, and hybrid Monte Carlo/deterministic radiation transport codes within

391

BUILDING A CHEMICAL LASER WEAPON  

Science Journals Connector (OSTI)

BUILDING A CHEMICAL LASER WEAPON ... Under fire, Airborne Laser program director confronts challenges of revolutionary weapons system ...

WILLIAM G. SCHULZ

2004-12-20T23:59:59.000Z

392

Characterization of U/Pu Particles Originating From the Nuclear Weapon Accidents at Palomares, Spain, 1966 And Thule, Greenland, 1968  

SciTech Connect

Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-ray analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.

Lind, O.C.; Salbu, B.; Janssens, K.; Proost, K.; Garcia-Leon, M.; Garcia-Tenorio, R.

2007-07-10T23:59:59.000Z

393

Model-Based Calculations of the Probability of a Country's Nuclear Proliferation Decisions  

SciTech Connect

The first nuclear weapon was detonated in August 1945 over Japan to end World War II. During the past six decades, the majority of the world's countries have abstained from acquiring nuclear weapons. However, a number of countries have explored the nuclear weapons option, 23 in all. Among them, 14 countries have dropped their interest in nuclear weapons after initiating some efforts. And nine of them today possess nuclear weapons. These countries include the five nuclear weapons states - U.S., Russia, U.K., France, and China - and the four non- NPT member states - Israel, India, Pakistan, and North Korea. Many of these countries initially used civilian nuclear power technology development as a basis or cover for their military program. Recent proliferation incidents in Iraq, Iran, and North Korea brought the world together to pay much attention to nuclear nonproliferation. With the expected surge in the use of nuclear energy for power generation by developing countries, the world's nuclear nonproliferation regime needs to be better prepared for potential future challenges. For the world's nuclear nonproliferation regime to effectively cope with any future proliferation attempts, early detection of potentially proliferation-related activities is highly desirable. Early detection allows the international community to respond and take necessary actions - ideally using political and diplomatic influences without resorting to harsh measures such as sanctions or military actions. In this regard, a capability to quantitatively predict the chance of a country's nuclear proliferation intent or activities is of significant interest. There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. These efforts have shown that information about the political issues surrounding a country's security along with economic development data can be useful to explain the occurrences of proliferation decisions. However, predicting major historical proliferation events using model-based predictions has been unreliable. Nuclear proliferation decisions by a country is affected by three main factors: (1) technology; (2) finance; and (3) political motivation [1]. Technological capability is important as nuclear weapons development needs special materials, detonation mechanism, delivery capability, and the supporting human resources and knowledge base. Financial capability is likewise important as the development of the technological capabilities requires a serious financial commitment. It would be difficult for any state with a gross national product (GNP) significantly less than that of about $100 billion to devote enough annual governmental funding to a nuclear weapon program to actually achieve positive results within a reasonable time frame (i.e., 10 years). At the same time, nuclear proliferation is not a matter determined by a mastery of technical details or overcoming financial constraints. Technology or finance is a necessary condition but not a sufficient condition for nuclear proliferation. At the most fundamental level, the proliferation decision by a state is controlled by its political motivation. To effectively address the issue of predicting proliferation events, all three of the factors must be included in the model. To the knowledge of the authors, none of the exiting models considered the 'technology' variable as part of the modeling. This paper presents an attempt to develop a methodology for statistical modeling and predicting a country's nuclear proliferation decisions. The approach is based on the combined use of data on a country's nuclear technical capability profiles economic development status, security environment factors and internal political and cultural factors. All of the information utilized in the study was from open source literature. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David N. [Department of Nuclear Engineering North Carolina State University (United States)

2007-07-01T23:59:59.000Z

394

Nonproliferation  

National Nuclear Security Administration (NNSA)

p>

Representatives at the workshop were from Australia, Brazil, Canada, Japan, Jordan, Mexico, South Africa, Taiwan, The Netherlands, United Arab Emirates, United Kingdom...

395

Deputy Secretary Poneman's Remarks at the Third Annual Nuclear Deterrence  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the Third Annual Nuclear at the Third Annual Nuclear Deterrence Summit - As Prepared for Delivery Deputy Secretary Poneman's Remarks at the Third Annual Nuclear Deterrence Summit - As Prepared for Delivery February 17, 2011 - 3:49pm Addthis Third Annual Nuclear Deterrence Summit Thursday, February 17, 2011 Arlington, Virginia "Nuclear Energy and Nonproliferation" "We face a choice between the quick and the dead." These are the words that Bernard Baruch used to introduce his plan to prevent the spread of nuclear weapons, at the opening session of the UN Atomic Energy Commission, at Hunter College in NYC, in June 1946. Fortunately, throughout the intervening decades, we have been quick, or at least quick enough. Indeed, sometimes we seemed to be just a step or

396

Nuclear Detection and Sensor Testing Center | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor...

397

National Center for Nuclear Security - NCNS  

ScienceCinema (OSTI)

As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

None

2015-01-09T23:59:59.000Z

398

National Center for Nuclear Security - NCNS  

SciTech Connect

As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

None

2014-11-12T23:59:59.000Z

399

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

400

October 2014 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Governance of Nuclear Technology  

SciTech Connect

Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to be successful. Regaining that consensus on the other hand means alleviating some fundamental insecurity on the part of states, and weakening the hold that terrorist groups have on some state governments. This in turn requires that some fundamental issues be addressed, with recognition that these are part of a suite of complex and dynamic interactions. Among these issues are: How will states provide for their own security and other central interests while preventing further proliferation, protecting against the use of nuclear weapons, and yet allowing for the possible expansion of nuclear power?; How best can states with limited resources to fight terrorist activities and safeguard nuclear materials be assisted in securing their materials and technologies?; What is the future role of international inspections? Does the IAEA remain the right organization to carry out these tasks? If not, what are the desired characteristics of a successor agency and can there be agreement on one?; How confident can we be of nonproliferation as latent nuclear weapon capabilities spread? The policies to address these and other issues must explicitly deal with NPT members who do not observe their obligations; NPT non-members; illicit trade in SNM and weapon technologies and the possibility of a regional nuclear war.

Vergino, E S; May, M

2003-09-22T23:59:59.000Z

402

Generalized weapon effectiveness modeling .  

E-Print Network (OSTI)

??In this thesis, we compare weapon effectiveness methods to determine if current effectiveness models provide accurate results. The United States Military currently adheres to a… (more)

Anderson, Colin M.

2004-01-01T23:59:59.000Z

403

E-Print Network 3.0 - atomic weapon tests Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

By dissembling random nuclear weapons in the stockpile and closely inspecting and testing... explosives and nuclear materials at the Nevada Test Site to gather diagnostic...

404

Strategies for denaturing the weapons-grade plutonium stockpile  

SciTech Connect

In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

Buckner, M.R.; Parks, P.B.

1992-10-01T23:59:59.000Z

405

2005 Carnegie International Nonproliferation Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2005 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference November 7, 2005 - 12:36pm Addthis Remarks Prepared for Energy Secretary Sam Bodman I am very glad to be with all of you today. Let me just say to Rose and to everyone associated with the Carnegie Endowment that the Bush Administration values the work that you do. This is particularly so with this series of conferences dedicated to exploring the complicated issues of nonproliferation policy. And allow me to offer the congratulations of my Department to Director General El Baradei and the International Atomic Energy Agency for the award conferred last month by the Nobel Foundation. We should applaud the Agency's staff and all the member nations that come

406

2005 Carnegie International Nonproliferation Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Carnegie International Nonproliferation Conference 5 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference November 7, 2005 - 12:36pm Addthis Remarks Prepared for Energy Secretary Sam Bodman I am very glad to be with all of you today. Let me just say to Rose and to everyone associated with the Carnegie Endowment that the Bush Administration values the work that you do. This is particularly so with this series of conferences dedicated to exploring the complicated issues of nonproliferation policy. And allow me to offer the congratulations of my Department to Director General El Baradei and the International Atomic Energy Agency for the award conferred last month by the Nobel Foundation. We should applaud the Agency's staff and all the member nations that come

407

Cooperative efforts to improve nuclear materials accounting, control and physical protection at the National Science Center, Kharkov Institute of Physics and Technology  

SciTech Connect

The US Department of Energy (DOE) and the Ukrainian Government are engaged in a program of cooperation to enhance the nonproliferation of nuclear weapons by developing a strong national system of nuclear material protection, control, and accounting (MPC and A). This paper describes the capabilities and work of the Kharkov Institute of Physics and Technology (KIPT) and cooperative efforts to improve MPC and A at this facility. It describes how these cooperative efforts grew out of Ukraine`s decision to become a non-nuclear weapon state and the shortcomings in MPC and A that developed at KIPT after the disintegration of the former Soviet Union. It also envisions expanded future cooperation in other areas of nuclear materials management.

Zelensky, V.F.; Mikhailov, V.A. [Kharkov Inst. of Physics and Technology (Ukraine). National Science Center

1996-12-31T23:59:59.000Z

408

The consequences of alternative environmental management goals: A non-linear programming analysis of nuclear weapons legacy clean-up at Oak Ridge National Laboratory  

Science Journals Connector (OSTI)

Prioritization of projects within the U.S. Department of Energy's (DOE) Weapons Complex Clean-up Program, exemplified with data from the Oak Ridge National Laboratory, is quite sensitive to overall goals. Non-...

Donald W. Jones; Kenneth S. Redus…

409

Some facts about “weapon focus”  

Science Journals Connector (OSTI)

Weapon focus” refers to the concentration of acrime witness's attention on a weapon, and the resultant reduction in ability to ... that subjects made more eye fixations on the weapon than on the check, and fixat...

Elizabeth F. Loftus; Geoffrey R. Loftus; Jane Messo

1987-03-01T23:59:59.000Z

410

Nonproliferation, Nuclear Security, and the Insider Threat  

SciTech Connect

Insider threat concept is evolving and getting more attention: (1) Domestically, internationally and in foreign countries, (2) At the government, academia, and industry levels, and (3) Public awareness and concerns are also growing. Negligence can be an insider's action. Technology advancements provide more opportunities, new tools for the insider. Our understanding of the insider is shaped by our cultural, social and ethnic perceptions and traditions. They also can limit our recognition of the issues and response actions.

Balatsky, Galya I. [Los Alamos National Laboratory; Duggan, Ruth [SNL

2012-07-12T23:59:59.000Z

411

Nonproliferation Graduate Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

about the program and application information and deadlines, please visit the NGP web site off site link or call Program Manager Phyllis B. Byrd at (202) 586-2061 or e-mail...

412

Plutonium Pits | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

To ensure the reliability, safety, and security of nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken...

413

Recovery of weapon plutonium as feed material for reactor fuel  

SciTech Connect

This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan [and others

1994-03-16T23:59:59.000Z

414

Weapons Program Associate Directors named  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Associate Directors named Bob Webster has been named Associate Director for Weapon Physics and John Benner has been named Associate Director for Weapon Engineering and...

415

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

of smuggling. Today, nuclear security is significantly morecritical importance of nuclear security, stating that thereJ. Doyle. Nuclear Safeguards, Security and Nonproliferation:

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

416

Y-12 National Security Complex | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Locations > Y-12 National Security Complex Home > About Us > Our Locations > Y-12 National Security Complex Y-12 National Security Complex http://www.y12.doe.gov/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. Y-12 supports the Nuclear Security Enterprise through nuclear material processing, manufacturing and storage operations and nuclear nonproliferation activities and provides enriched uranium feedstock for the U.S. Navy. National Security Complex: The Y-12 National Security Complex (Y-12) serves as the nation's only source of enriched uranium nuclear weapons components and provides enriched uranium for the U.S. Navy. Y-12 is a leader in materials science and precision manufacturing and serves as the

417

National Laboratory's Weapons Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal...

418

North Korea: The next nuclear nightmare  

SciTech Connect

The crisis in the Persian Gulf has reawakened concerns over the spread of nuclear arms. Even before its invasion of Kuwait, Iraq's history of aggression and support for international terrorism triggered fears in Washington that its acquisition of nuclear weapons might damage international stability and US interests far more than the emergence of India, Israel, Pakistan, and South Africa as de facto nuclear powers. Thus, when the Gulf War began on January 16, Iraq's nuclear sites were among the first attacked by allied air strikes. Unfortunately, Iraq has not been the only hostile proliferator looming on the horizon. North Korea, which has been no less dedicated than Iraq to the use of violence to advance its expansionist goals, has also tenaciously pursued a nuclear-weapons capability. Moreover, the North Korean program is considerably closer to bearing fruit than the Iraqi effort. And although North Korea, like Iraq, has signed the Nuclear Nonproliferation Treaty, unlike Iraq it has refused to conclude the safeguards agreement with the International Atomic Energy Agency that the treaty requires.

Spector, L.S.; Smith, J.R.

1991-03-01T23:59:59.000Z

419

Alarm Response Training Academy opens at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

420

Nuclear Material Recovery | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear material domestically and internationally is one part of Y-12's nuclear nonproliferation business. Miscellaneous scrap material is a diverse group of scrap materials...

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)  

SciTech Connect

The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

Casey, Leslie A.

2014-01-13T23:59:59.000Z

422

Systems engineering analysis of kinetic energy weapon concepts  

SciTech Connect

This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

Senglaub, M.

1996-06-01T23:59:59.000Z

423

DOE's Former Rocky Flats Weapons Production Site to Become National...  

Energy Savers (EERE)

Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

424

hemical and biological weapons are rightly re-garded with a special sense of horror. Their  

E-Print Network (OSTI)

C hemical and biological weapons are rightly re- garded with a special sense of horror spread through a population. Moreover, chemical and biological weapons are especially attractive alter- natives for groups that lack the ability to construct nuclear weapons. The 1995 release of sarin gas

Spirtes, Peter

425

Nonproliferation Test and Evaluation Complex - NPTEC  

SciTech Connect

The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.

None

2014-11-10T23:59:59.000Z

426

Nonproliferation Test and Evaluation Complex - NPTEC  

ScienceCinema (OSTI)

The Nonproliferation Test and Evaluation Complex, or NPTEC, is the world's largest facility for open air testing of hazardous toxic materials and biological simulants. NPTEC is used for testing, experimentation, and training for technologies that require the release of toxic chemicals or biological simulants into the environment.

None

2015-01-09T23:59:59.000Z

427

Nuclear presence and crisis escalation stability: prospects for peace?.  

E-Print Network (OSTI)

??This thesis examines the relationship between crisis escalation and the presence of nuclear actors. Nuclear weapons are typically viewed as the ultimate weapons of mass… (more)

Sanchez, Victoria Justine

2010-01-01T23:59:59.000Z

428

Y-12 and the National Nuclear Security Administration make continuing...  

NLE Websites -- All DOE Office Websites (Extended Search)

the safety, security and performance of the U.S. nuclear weapons stockpile without nuclear testing; reduces the global danger from weapons of mass destruction; provides the...

429

Welcome to the Los Alamos Field Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce global danger from weapons of mass destruction; provides...

430

Rapid Sampling Tools - Nuclear Engineering Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia > Rapid Sampling Tools Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Nonproliferation and National Security - Multimedia Bookmark and Share NPNS Multimedia, a collection of videos and audios featuring activities related to Nonproliferation and National Security

431

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove andor...

432

material consolidation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives.Material Protection, Control, and Accounting (MPC&A) Upgrades:...

433

E-Print Network 3.0 - atomic weapons research Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and model nuclear weapon performance in three dimensions. LIFE EXTENSION PROGRAMS: By upgrading Source: Rhoads, James - Space Telescope Science Institute Collection: Physics 9...

434

ASSESSING IRAQ'S WEAPONS  

Science Journals Connector (OSTI)

IN THE MONTHS LEADING UP TO THE March 2003 invasion of Iraq, President George W. Bush and his top officials issued a litany of serious allegations about Iraq's weapons of mass destruction (WMD) and the threat they posed to the U.S. But their prime ...

LOIS R. EMBER

2004-10-25T23:59:59.000Z

435

Multiple smart weapons employment mechanism  

SciTech Connect

A digital communications armament network adaptor is described for carrying multiple smart weapons on a single wing pylon station of an aircraft, comprising: an aircraft having a weapons controller configured in compliance with MIL-STD 1553; multiple wing-mounted pylons on said aircraft, each providing a weapons station with communications and ejection and release mechanisms electrically connected to said controller for the airborne launch of smart weapons; a multiple ejector rack affixed to at least one pylon, said rack holding a plurality of smart weapons; and an electronic digital network connected between the controller and said rack-mounted smart weapons, said network located in said rack and including circuitry which receives coded digital communications from said controller and selectively rebroadcasts said communications to one of said smart weapons on said rack designated by said coded communications, thereby controlling all required functions of said designated smart weapon.

McGlynn, M.P.; Meiklejohn, W.D.

1993-07-20T23:59:59.000Z

436

IRAQ'S WEAPONS OF MASS DESTRUCTION  

Science Journals Connector (OSTI)

DESPITE SEVEN YEARS OF INtrusive United Nations inspections and decimation of Iraq's weapons of mass destruction, Iraq was able to sequester sizable stocks of chemical and biological weapons, some missiles to deliver them, and the scientific and technical ...

LOIS EMBER

2002-09-16T23:59:59.000Z

437

IRAQ HAD NO ILLICIT WEAPONS  

Science Journals Connector (OSTI)

TESTIFYING BEFORE THE SENate Armed Services Committee, chief U.S. weapons inspector Charles A. Duelfer outlined key findings of a report on Iraq's prewar weapons holdings that sharply undercut the Bush Administration's primary reason for invading Iraq....

LOIS EMBER

2004-10-11T23:59:59.000Z

438

Antineutrino Detection for Nuclear Monitoring  

E-Print Network (OSTI)

covertly acquire these special nuclear materials from: Assembled weapons Raw uranium ore Enriched uranium antineutrino monitoring infrastructure will help avert the spread of covert nuclear reactors and weaponsAntineutrino Detection for Nuclear Monitoring Draft #12;Graphic courtesy Lawrence Livermore

Mcdonough, William F.

439

'Civil' nuclear programme – serving the dual objectives of retaining the state's hegemony on citizens' basic energy needs and assuring supply of weapon grade ingredients: a case study on India  

Science Journals Connector (OSTI)

Political leaders of ambitious emerging economies of India and China, where the state has not yet reached the maturity stage, prefer nuclear power to other alternative energy sources, as it serves the dual purpose of retaining the state's hegemony on citizens' basic energy needs and assures supply of weapon grade ingredients. In contrast to North America and most of Western Europe, where growth of nuclear power has levelled out for many years, the 'greatest growth in nuclear generation' in the near future is expected in China, Japan, South Korea and India. It would be naive to believe that the political establishments are not aware of the negative consequences of nuclear power. The question may then arise as to why have the emerging economies of India, China, Brazil, etc., aligned themselves with the nuclear establishment without fully exploiting other alternative energy sources? Taking India as a case, this paper analyses secondary data and findings of various previous studies to explore an answer to this question.

Dipankar Dey

2010-01-01T23:59:59.000Z

440

Test Procedure Conducted Energy Weapons  

E-Print Network (OSTI)

Test Procedure for Conducted Energy Weapons Version 1.1 2010/07/31 #12;Contents Page 0.0 Disclaimer A TASER M26 13 Appendix B TASER X26 23 #12;1 Test Procedure for Conducted Energy Weapons 0.0 Disclaimer Energy Weapons ("CEWs") in a controlled and repeatable manner across jurisdictions. The consistent

Adler, Andy

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy...

442

Framework for Proliferation Resistance and Physical Protection for Nonproliferation Impact Assessments.  

SciTech Connect

This report describes a framework for proliferation resistance and physical protection evaluation for the fuel cycle systems envisioned in the expansion of nuclear power for electricity generation. The methodology is based on an approach developed as part of the Generation IV technical evaluation framework and on a qualitative evaluation approach to policy factors similar to those that were introduced in previous Nonproliferation Impact Assessments performed by DOE.

Bari,R.

2008-03-01T23:59:59.000Z

443

DOE/CF-0084  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Volume 1 Department of Energy FY 2014 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Weapons Activities Defense Nuclear Nonproliferation Naval Reactors April 2013 Office of Chief Financial Officer Volume 1 DOE/CF-0084 Volume 1 Department of Energy FY 2014 Congressional Budget Request National Nuclear Security Administration Office of the Administrator Weapons Activities Weapons Activities Defense Nuclear Nonproliferation Naval Reactors April 2013 Office of Chief Financial Officer Volume 1 Printed with soy ink on recycled paper Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors

444

Audit Report National Nuclear Security Administration Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Nuclear Weapons Systems Configuration Management DOEIG-0902 March 2014 U.S. Department of Energy Office of Inspector General Office of...

445

Engagement and disarmament: A US National Security Strategy for biological weapons of mass destruction. Strategy research project  

SciTech Connect

The specter of biological weapons -- one of the three weapons of mass destruction (WMD) -- is an unusual and extraordinary threat to the national security of the United States. Since the U.S. unilaterally renounced biological warfare in 1969, biotechnology advances, aggressive nation-states, and terrorism have complicated a precarious balance of world and regional stability. U.S. shortfalls in biological warfare preparedness during the Persian Gulf War may convince potential adversaries that the U.S. is incapable of protecting its vital interests from biological assault. This paper examines the menace of biological weapons and global challenges to nonproliferation and counterproliferation. Analysis concludes that the United States can dissuade, deter, and defend against biological warfare and terrorism with an integrated national security strategy for Biological Weapons Engagement and Disarmament.

Moilanen, J.H.; McIntyre, A.J.; Johnson, D.V.

1995-04-18T23:59:59.000Z

446

Nuclear Ukraine  

Science Journals Connector (OSTI)

... SIR - Your article (Nature 365, 599; 1993) on the US-Ukraine stalemate over nuclear weapons prompts the following remarks. The United States made a mistake ... nuclear weapons prompts the following remarks. The United States made a mistake in not recognizing Ukraine as a legitimate successor state to the Soviet nuclear arsenal and is still insisting that ...

Arno Arrak

1994-01-13T23:59:59.000Z

447

Bret Knapp to head combined Weapons Engineering, Weapons Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Engineering, Weapons Physics Directorates Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

448

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

Organizations, accidents, and nuclear weapons. Princeton,the likelihood of a nuclear accident (Sagan 1993, 1995). “potential for a nuclear accident. Yet it seems implausible

Kroenig, Matthew

2006-01-01T23:59:59.000Z

449

COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

MBG Auditorium COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons Dr. Alan Robock Rutgers University A nuclear war between India and Pakistan, with...

450

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

451

Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Aspects of Wet Storage of Safety Aspects of Wet Storage of Spent Nuclear Fuel OAS-L-13-11 July 2013 Department of Energy Washington, DC 20585 July 10, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Safety Aspects of Wet Storage of Spent Nuclear Fuel" BACKGROUND The Department of Energy (Department) is responsible for managing and storing spent nuclear fuel (SNF) generated by weapons and research programs and recovered through nonproliferation programs. The SNF consists of irradiated reactor fuel and cut up assemblies containing uranium, thorium and/or plutonium. The Department stores 34 metric tons of heavy metal SNF primarily

452

Administrator Highlights U.S.-Georgian Nuclear Security Cooperation in Tbilisi  

ScienceCinema (OSTI)

NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." In order to meet that challenge, the President's FY2011 Budget Request includes close to $2.7 billion for the National Nuclear Security Administration's Defense Nuclear Nonproliferation program -- an increase of 25.7 percent over FY2010. Included in that request is NNSA's Second Line of Defense (SLD) program, which works around the world to strengthen the capability of foreign governments to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime shipping system.

Thomas D'Agostino

2010-09-01T23:59:59.000Z

453

Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium  

E-Print Network (OSTI)

Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

Koch, William Lawrence

2013-01-01T23:59:59.000Z

454

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which  

E-Print Network (OSTI)

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle of proliferation: The more places in which this work is done, the harder it is to monitor. Weapons have been, North Korea, Pakistan, and South Africa. (South Africa abandoned its nuclear weapons in 1991. Libya

Laughlin, Robert B.

455

FAQS Job Task Analyses - Weapons Quality Assurance Community  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NA-121.3 Weapons Quality Assurance Community NA-121.3 Weapons Quality Assurance Community Consolidated JOB/TASK Analysis 12/2011 Job Analysis Worksheet for Tasks WQA Specialist Task Source Import. Freq. #1 Monitors, inspects, analyzes and investigates complex electrical, electronic, mechanical, electro-mechanical, and nuclear components, subassemblies, and assemblies associated with the manufacture of nuclear weapons and other non-nuclear components as applicable QC-1, WQAPM, DesgnDefn 4 3 #2 Conducts Quality Assurance Surveys (including Product Acceptance) and oversight activities of contractor operations QC-1, WQAPM 5 2 #3 Performs verification inspection (including Contractor Acceptance Verification) of product manufactured by NNSA Contractors, QAIP development, QADRs, nonconformance activities/requirements

456

DOE's Former Rocky Flats Weapons Production Site to Become National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Rocky Flats Weapons Production Site to Become National Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge July 12, 2007 - 2:54pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a decade of environmental cleanup work, the transfer creates the Rocky Flats National Wildlife Refuge, 16 miles northwest of Denver, Colorado, and marks completion of the regulatory milestones to transform a formerly contaminated site into an environmental asset. "The Department of Energy's environmental cleanup of the Rocky Flats

457

CRAD, Configuration Management - Los Alamos National Laboratory Weapons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Los Alamos National Laboratory Configuration Management - Los Alamos National Laboratory Weapons Facility CRAD, Configuration Management - Los Alamos National Laboratory Weapons Facility April 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Configuration Management - Los Alamos National Laboratory Weapons Facility More Documents & Publications CRAD, Configuration Management - Los Alamos National Laboratory TA 55 SST

458

Weapons assessment efficiencies through use of nondestructive laser gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons assessment efficiencies through use of nondestructive laser Weapons assessment efficiencies through use of nondestructive laser gas sampling Weapons assessment efficiencies through use of nondestructive laser gas sampling Nondestructive laser welding process far less expensive, no underground testing. June 8, 2012 Nondestructive Laser Gas Sampling Nondestructive Laser Gas Sampling is expected to save several million dollars per year and requires no underground testing. "We're continually innovating and working to improve the way we do business, and NDLGS is a big step for us," said National Nuclear Security Administration Deputy Administrator for Defense Programs Don Cook. New weapons assessment technology engineered: nondestructive laser welding process far less expensive, no underground testing Valveless Laser Processing

459

The Office of Nuclear Verification | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nuclear Verification | National Nuclear Security Nuclear Verification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Verification Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Verification The Office of Nuclear Verification

460

The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation  

SciTech Connect

The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.

Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

2010-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear weapons nonproliferation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Weapon focus, arousal, and eyewitness memory  

Science Journals Connector (OSTI)

Weapon focus refers to the decreased ability to ... by an eyewitness because of attention to a weapon present during that crime. In the first ... viewed a mock crime scene in which a weapon was either highly visi...

Thomas H. Kramer; Robert Buckhout; Paul Eugenio

1990-04-01T23:59:59.000Z

462

Eyewitness identification: Simulating the “Weapon effect”  

Science Journals Connector (OSTI)

The present experiment investigates the effect of weapons on eyewitness recall and recognition using a ... experimental paradigm in which a syringe serves as weapon simulation. Contrary to previous weapon manipul...

Anne Maass; Günther Köhnken

1989-12-01T23:59:59.000Z

463

Security implications of the proliferation of weapons of mass destruction in the Middle East. Final report  

SciTech Connect

The author argues that the Arab-Israeli conflict, the Iran-Iraq rivalry, and the lack of progress in the peace process are strong incentives for nations in the region to acquire weapons of mass destruction (WMD). He documents Israeli, Iranian, and Arab WMD programs and capabilities, referencing use of WMD in the region. He discusses the reasons why the major regional powers seek WMD capabilities and examines the nature of the proliferation dynamic as well as nonproliferation and counterproliferation approaches applicable to the region. The author offers several recommendations designed to strengthen these efforts and deal more effectively with causes of proliferation.

Hajjar, S.G.

1998-12-17T23:59:59.000Z

464

Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences  

E-Print Network (OSTI)

of nuclear weapons states, with additional states trying to develop nuclear arsenals. We use a modern climate and upper stratosphere, producing a long aerosol lifetime. The indirect effects of nuclear weapons would. [2007], who showed that a regional nuclear conflict using 100 Hiroshima-size (15 kt) nuclear weapons

Stenchikov, Georgiy L.

465

THUMBS DOWN ON DRUG WAR WEAPON  

Science Journals Connector (OSTI)

THUMBS DOWN ON DRUG WAR WEAPON ... Mycoherbicides have been viewed as a potentially potent weapon in the worldwide war on illicit drugs. ...

CHERYL HOGUE

2011-12-05T23:59:59.000Z

466

Numerical simulation investigations in weapon delivery probabilities .  

E-Print Network (OSTI)

??The study of weapon delivery probabilities has historically been focused around analytical solutions and approximations for weapon delivery accuracy and effectiveness calculations. With the relatively… (more)

Peterson, Kristofer A.

2008-01-01T23:59:59.000Z

467

Weapons production | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons production Weapons production An effective production infrastructure is critical to national security. Y-12 continues to replace World War II-era facilities to increase...

468

Weapons in the City: Weapon Use in Chicago Homicide Cases.  

E-Print Network (OSTI)

??This study used data from the homicides in Chicago 1965-1995 dataset (N=9,340) to examine the relationship between the use of certain types of weapons in… (more)

Johnson, Natalie Jo

2007-01-01T23:59:59.000Z

469

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

470

Ionospheric measurements for the Non-Proliferation Experiment  

SciTech Connect

The detection of explosions using ionospheric techniques relies on measuring perturbations induced in radio propagation by acoustics waves which disturb the electron density of the ionosphere. Such techniques have been applied to the detection of atmospheric explosions, underground nuclear tests, earthquakes, and surface mining explosions. The nighttime ionosphere presents a difficulty for the detection of explosions because in the absence of solar ionization radiation the electron density in the altitude range of 90 to 200 km decays after sunset and perturbation effects are correspondingly reduced. On the other hand, acoustic waves produced by weak sources reach a maximum amplitude in the altitude range of 100 to 150 km and are highly attenuated at altitudes above 200 km. For safety reasons, most planned explosions are conducted during daylight which has limited the experimental measurements during nighttime. However a recent opportunity for a nighttime measurement occurred in connection with the Non-Proliferation Experiment which consisted of the detonation of a large chemical charge underground at the Nevada Test Site near midnight local time. the results, based on a new technique of using medium frequency radio transmissions provided by commercial broadcasts to detect explosion effects, were negative. The most likely explanation for the negative result is that the radio transmissions did not reflect at a low enough altitude to sense the perturbations produced by the acoustic waves.

Fitzgerald, T.J.

1994-05-01T23:59:59.000Z

471

EA-1238: Proposed Construction and Operation of the Nonproliferation and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

38: Proposed Construction and Operation of the 38: Proposed Construction and Operation of the Nonproliferation and International Security Center, Los Alamos, New Mexico EA-1238: Proposed Construction and Operation of the Nonproliferation and International Security Center, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to construct and operate the Nonproliferation and International Security Center within the U.S. Department of Energy's Los Alamos National Laboratory Technical Area 3 located at Los Alamos, New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1999 EA-1238: Finding of No Significant Impact Proposed Construction and Operation of the Nonproliferation and International Security Center July 22, 1999

472

SciTech Connect: Arms control and nonproliferation technologies...  

Office of Scientific and Technical Information (OSTI)

Non-Proliferation Experiment (NPE), conducted by the Department of Energy at the Nevada Test Site. Through an introduction and pictorial walk-through, Marv Denny and Jay Zucca of...

473

Chapter 13 -Firearms, Weapons, Destructive Devices  

E-Print Network (OSTI)

53 Chapter 13 - Firearms, Weapons, Destructive Devices The Oregon Administrative Rules contain OAR Definitions (1) "Firearm" means a weapon or device, by whatever name known, which is designed to expel chemical action, and which is readily capable for use as a weapon. (2) "Weapon" means any knife having

474

FY 2007 Volume 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chief Financial Officer Chief Financial Officer Volume 1 DOE/CF-002 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Printed with soy ink on recycled paper Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer Volume 1 DOE/CF-002 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Department of Energy/ National Nuclear Security Administration FY 2007 Congressional Budget

475

FY 2011 Volume 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 DOE/CF-0047 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Department of Energy FY 2011 Congressional Budget Request February 2010 Office of Chief Financial Officer Volume 1 DOE/CF-0047 Volume 1 National Nuclear Security Administration Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Printed with soy ink on recycled paper Department of Energy FY 2011 Congressional Budget Request Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Office of the Administrator Weapons Activities Defense Nuclear Nonproliferation Naval Reactors Department of Energy/ National Nuclear Security Administration FY 2011 Congressional Budget