Sample records for nuclear weapons council

  1. UN Security Council: Iran violating ban on nuclear weapons programs

    E-Print Network [OSTI]

    UN Security Council: Iran violating ban on nuclear weapons programs 7 September 2011 Denouncement comes after International Atomic Energy Agency submits a report claiming Iran continues to make advances denounced Iran's failure to abide by United Nations resolutions demanding an end to the possible

  2. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09T23:59:59.000Z

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  3. Nuclear weapons and nuclear war

    SciTech Connect (OSTI)

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01T23:59:59.000Z

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  4. Identification of nuclear weapons

    DOE Patents [OSTI]

    Mihalczo, J.T.; King, W.T.

    1987-04-10T23:59:59.000Z

    A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

  5. Peace, Stability, and Nuclear Weapons

    E-Print Network [OSTI]

    Waltz, Kenneth N.

    1995-01-01T23:59:59.000Z

    presumably steal nuclear weapons or buy them on the blackEven if they buy or steal the weapons, they will have to

  6. US nuclear weapons policy

    SciTech Connect (OSTI)

    May, M.

    1990-12-05T23:59:59.000Z

    We are closing chapter one'' of the nuclear age. Whatever happens to the Soviet Union and to Europe, some of the major determinants of nuclear policy will not be what they have been for the last forty-five years. Part of the task for US nuclear weapons policy is to adapt its nuclear forces and the oganizations managing them to the present, highly uncertain, but not urgently competitive situation between the US and the Soviet Union. Containment is no longer the appropriate watchword. Stabilization in the face of uncertainty, a more complicated and politically less readily communicable goal, may come closer. A second and more difficult part of the task is to deal with what may be the greatest potential source of danger to come out of the end of the cold war: the breakup of some of the cooperative institutions that managed the nuclear threat and were created by the cold war. These cooperative institutions, principally the North Atlantic Treaty Organization (NATO), the Warsaw Pact, the US-Japan alliance, were not created specifically to manage the nuclear threat, but manage it they did. A third task for nuclear weapons policy is that of dealing with nuclear proliferation under modern conditions when the technologies needed to field effective nuclear weapons systems and their command and control apparatus are ever more widely available, and the leverage over some potential proliferators, which stemmed from superpower military support, is likely to be on the wane. This paper will make some suggestions regarding these tasks, bearing in mind that the unsettled nature of that part of the world most likely to become involved in nuclear weapons decisions today must make any suggestions tentative and the allowance for surprise more than usually important.

  7. Nuclear weapon detection categorization analysis

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  8. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  9. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

  10. Nuclear weapons are legal tools

    SciTech Connect (OSTI)

    Almond, H.H. Jr.

    1985-05-01T23:59:59.000Z

    Responding to an article by Elliot Meyrowitz stating that nuclear weapons are illegal threats, the author observes that international law does not forbid the possession or use of nuclear weapons, whose existence operates as part of the checks and balances process that maintains deterrence. Because nuclear weapons have never been identified among states as illegal, either by treaties or by customary international law, attempts by opposing states to establish illegality through declarations fall short of an effectively shared strategy. The author concludes that we must use the time that deterrence permits to forcefully promote policies optimizing the claims of people for human dignity rather than focusing on the fruitless search to make nuclear weapons illegal.

  11. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect (OSTI)

    Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2014-05-09T23:59:59.000Z

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  12. Nuclear weapons and NATO-Russia relations

    SciTech Connect (OSTI)

    Cornwell, G.C.

    1998-12-01T23:59:59.000Z

    Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountability and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.

  13. Control of Nuclear Weapon Data

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Cancels DOE O 5610.2.

  14. Nuclear Weapons Complex reconfiguration study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  15. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05T23:59:59.000Z

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  16. Nuclear weapons are illegal threats

    SciTech Connect (OSTI)

    Meyrowitz, E.L.

    1985-05-01T23:59:59.000Z

    Challenging Harry Almond's position that nuclear deterrence is workable, the author contends that there is no historical basis for believing that anticipation of the horrors of war will be an effective deterrent. He questions the belief that the nuclear balance of terror has maintained the peace for the past 40 years because an arms race is inherently unstable. The argument that the pursuit of national interests takes precedence over any limitation imposed by international law reflects a perception of international law that is comparable to the Third Reich. The bases for a legal evaluation of the status of nuclear weapons under international law come from express and implicit treaty provisions, international custom, general principles of international law, judicial decisions, resolutions at the United Nations, and the opinions of qualified jurists as well as military necessity.

  17. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

  18. Toward a nuclear weapons free world?

    SciTech Connect (OSTI)

    Maaranen, S.A. [Los Alamos National Lab., NM (United States). Center for International Security Affairs

    1996-09-01T23:59:59.000Z

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  19. Laboratory's role in Cold War nuclear weapons testing program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

  20. Linking Legacies: Connecting the Cold War Nuclear Weapons Production...

    Office of Environmental Management (EM)

    Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons...

  1. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  2. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  3. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-05-14T23:59:59.000Z

    This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

  4. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17T23:59:59.000Z

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  5. Management of the Department of Energy Nuclear Weapons Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-08T23:59:59.000Z

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

  6. New details on nuclear weapons program bared

    SciTech Connect (OSTI)

    Hileman, B.

    1994-07-11T23:59:59.000Z

    In a continuing effort to be more candid about Department of Energy nuclear weapons programs, Energy Secretary Hazel R. O'Leary recently declassified a substantial amount of information. On June 27, she revealed details about total US weapons-grade uranium production, testing of a bomb made of reactor-grade plutonium, radiation experiments conducted on humans since the 1920s, and underground and atmospheric nuclear weapons tests. O'Leary explains the new revelations by saying thousands of people in meetings across the country this year have told her that openness in government is very important. DOE is responding today in a manner that both satisfies the strong public interest and respects critical national security requirements.

  7. Y-12, the Cold War, and nuclear weapons dismantlement ? Or:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Cold War, and nuclear weapons dismantlement - Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger) The Cold War heated up over the years with such...

  8. Managing nuclear weapons in the United States

    SciTech Connect (OSTI)

    Miller, G.

    1993-03-16T23:59:59.000Z

    This report discusses the management and security of nuclear weapons in the post-cold war United States. The definition of what constitutes security is clearly changing in the US. It is now a much more integrated view that includes defense and the economy. The author tries to bring some semblance of order to these themes in this brief adaptation of a presentation.

  9. The monitoring and verification of nuclear weapons

    SciTech Connect (OSTI)

    Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2014-05-09T23:59:59.000Z

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  10. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  11. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  12. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  13. GeoffBrumfiel,Washington Nuclear watchdogs and former weapons

    E-Print Network [OSTI]

    is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

  14. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    SciTech Connect (OSTI)

    Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

  15. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19T23:59:59.000Z

    The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

  16. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

  17. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  18. A thousand suns : political motivations for nuclear weapons testing

    E-Print Network [OSTI]

    Raas, Whitney

    2006-01-01T23:59:59.000Z

    Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are far from easy to bear, however: economic sanctions can be crippling ...

  19. Enforcement Guidance Supplement 01-01, Nuclear Weapon Program...

    Office of Environmental Management (EM)

    OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

  20. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

  1. atmospheric nuclear weapon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coles, Taylor Marie 2014-04-27 26 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

  2. america nuclear weapons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power plant Laughlin, Robert B. 27 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

  3. atmospheric nuclear weapons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coles, Taylor Marie 2014-04-27 26 A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons CERN Preprints...

  4. Nuclear energy in a nuclear weapon free world

    SciTech Connect (OSTI)

    Pilat, Joseph [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  5. DOE Nuclear Weapon Reliability Definition: History, Description, and Implementation

    SciTech Connect (OSTI)

    Wright, D.L.; Cashen, J.J.; Sjulin, J.M.; Bierbaum, R.L.; Kerschen, T.J.

    1999-04-01T23:59:59.000Z

    The overarching goal of the Department of Energy (DOE) nuclear weapon reliability assessment process is to provide a quantitative metric that reflects the ability of the weapons to perform their intended function successfully. This white paper is intended to provide insight into the current and long-standing DOE definition of nuclear weapon reliability, which can be summarized as: The probability of achieving the specified yield, at the target, across the Stockpile-To-Target Sequence of environments, throughout the weapon's lifetime, assuming proper inputs.

  6. Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01T23:59:59.000Z

    The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

  7. An assessment of North Korea's nuclear weapons capabilities

    E-Print Network [OSTI]

    Sivels, Ciara (Ciara Brooke)

    2013-01-01T23:59:59.000Z

    In February of 2013, North Korea conducted its third nuclear weapons test. Speculations are that this test was conducted to further develop a warhead small enough to fit on an intercontinental ballistic missile. This test ...

  8. Briefing, Classification of Nuclear Weapons-Related Information- June 2014

    Broader source: Energy.gov [DOE]

    This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

  9. The role of nuclear weapons in the year 2000

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

  10. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

    Energy Savers [EERE]

    Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

  11. Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and

    E-Print Network [OSTI]

    Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

  12. Managing nuclear weapons in a changing world: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  13. An analysis of technical and policy drivers in Current U.S. nuclear weapons force structure

    E-Print Network [OSTI]

    Baker, Amanda, S. B. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    U.S. nuclear weapons force structure accounts for the number and types of strategic and nonstrategic weapon systems in various locations that comprise the nuclear arsenal. While exact numbers, locations, and detailed designs ...

  14. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  15. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  16. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  17. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  18. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  19. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  20. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives in UnitedSecurity

  1. Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?

    SciTech Connect (OSTI)

    Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

    2012-07-12T23:59:59.000Z

    In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

  2. Report of the President's Blue Ribbon Task Group on Nuclear Weapons Program Management

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    The President established the Blue Ribbon Task Group on Nuclear Weapons Program Management at the direction of the Congress to address fiscal accountability and discipline in the nation's nuclear weapons program. The Task Group was asked to ''examine the procedures used by DOD and DOE in establishing requirements for, and providing resources for, the research, development, testing, production, surveillance, and retirement of nuclear weapons,'' and to recommend any needed change in coordination, budgeting, or management procedures. The Task Group was also asked to address ''whether DOD should assume the responsibility for funding current DOE weapon activities and material production programs.'' The Task Group found that the present relationship between DOD and DOE for managing the nuclear weapons program is sound. Accordingly, the Task Group sought a process for improving the integrated determination of nuclear weapon requirements and the management of nuclear weapon production.

  3. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include:...

  4. Implications of a North Korean Nuclear Weapons Program

    SciTech Connect (OSTI)

    Lehman, R.F. II

    1993-07-01T23:59:59.000Z

    The Democratic People`s Republic of Korea (DPRK) is one of the Cold War`s last remaining totalitarian regimes. Rarely has any society been as closed to outside influences and so distant from political, economic, and military developments around the globe. In 1991 and in 1992, however, this dictatorship took a number of political steps which increased Pyongyang`s interaction with the outside world. Although North Korea`s style of engagement with the broader international community involved frequent pauses and numerous steps backward, many observers believed that North Korea was finally moving to end its isolated, outlaw status. As the end of 1992 approached, however, delay and obstruction by Pyongyang became intense as accumulating evidence suggested that the DPRK, in violation of the nuclear Non-Proliferation Treaty (NPT), was seeking to develop nuclear weapons. On March 12, 1993, North Korea announced that it would not accept additional inspections proposed by the International Atomic Energy Agency (IAEA) to resolve concerns about possible violations and instead would withdraw from the Treaty. Pyongyang`s action raised the specter that, instead of a last act of the Cold War, North Korea`s diplomatic maneuvering would unravel the international norms that were to be the basis of stability and peace in the post-Cold War era. Indeed, the discovery that North Korea was approaching the capability to produce nuclear weapons suggested that the nuclear threat, which had been successfully managed throughout the Cold War era, could increase in the post-Cold War era.

  5. Plus c`est la meme chose: The future of nuclear weapons in Europe

    SciTech Connect (OSTI)

    Maaranen, S.A.

    1996-07-01T23:59:59.000Z

    Since the end of the Cold War, the United States perhaps more than any other nuclear weapon state has deeply questioned the future role of nuclear weapons, both in a strategic sense and in Europe. It is probably the United States that has raised the most questions about the continuing need for and efficacy of nuclear weapons, and has expressed the greatest concerns about the negative consequences of continuing nuclear weapons deployment. In the US, this period of questioning has now come to a pause, if not a conclusion. In late 1994 the United States decided to continue to pursue reductions in numbers of nuclear weapons as well as other changes designed to reduce the dangers associated with the possession of nuclear weapons. But at the same time the US concluded that some number of nuclear forces would continue to be needed for national security for the foreseeable future. These necessary nuclear forces include a continuing but greatly reduced stockpile of nuclear bombs deployed in Europe under NATO`s New Strategic Concept. If further changes to the US position on nuclear weapons in Europe are to occur, it is likely to be after many years, and only in the context of dramatic additional improvements in the political and geo-political climate in and around Europe. The future role of nuclear weapons in Europe, as discussed in this report, depends in part on past and future decisions by the United States. but it must also be noted that other states that deploy nuclear weapons in Europe--Britain, France, and Russia, as well as the NATO alliance--have shown little inclination to discontinue their deployment of such weapons, whatever the United States might choose to do in the future.

  6. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  7. A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods

    E-Print Network [OSTI]

    Sentell, Dennis Shannon, 1971-

    2002-01-01T23:59:59.000Z

    A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

  8. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect (OSTI)

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01T23:59:59.000Z

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  9. Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon

    E-Print Network [OSTI]

    LaFleur, Adrienne; Charlton, William

    2007-09-17T23:59:59.000Z

    ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Major: Nuclear Engineering April 2007 Submitted to the Office of Undergraduate Research Texas A&M University In partial fulfillment... of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by ADRIENNE MARIE LAFLEUR ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Approved by: Research Advisor...

  10. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | National

  11. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLife Cycle | National

  12. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  13. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect (OSTI)

    Stephens, D.R.

    1995-07-01T23:59:59.000Z

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  14. A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships

    E-Print Network [OSTI]

    Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

  15. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    SciTech Connect (OSTI)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01T23:59:59.000Z

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  16. A {open_quotes}New{close_quotes} regime for nuclear weapons and materials

    SciTech Connect (OSTI)

    Sutcliffe, W.G.

    1994-02-15T23:59:59.000Z

    In this paper, I discuss the principal ideas that I covered in my presentation on December 8, 1993, at the Future of Foreign Nuclear Materials Symposium held by the Naval Postgraduate School in Monterey, California. I was asked to discuss issues related to military inventories of plutonium, and I took this opportunity to describe a possible declaratory regime that could encompass military as well as civilian inventories of plutonium. The {open_quote}new{close_quotes} in the title does not imply that the regime discussed here is an original idea. Rather, the regime will be {open_quotes}new,{close_quotes} when it is adopted. The regime proposed here and in other works is one in which all stocks of nuclear weapons and materials are declared. Originally, declarations were proposed as a traditional arms control measure. Here, declarations are proposed to support the prevention of misuse of nuclear weapons and materials, including support for the nonproliferation regime. In the following, I discuss: (1) Worldwide inventories of nuclear weapons and materials, including the fact that military plutonium must be viewed as part of that worldwide inventory. (2) Life cycles of nuclear weapons and materials, including the various stages from the creation of nuclear materials for weapons through deployment and retirement of weapons to the final disposition of the materials. (3) Mechanisms for making declarations. (4) Risks and benefits to be derived from declarations. (5) Possibilities for supporting evidence or verification.

  17. Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant

    E-Print Network [OSTI]

    Thompson, David Andrew

    1996-01-01T23:59:59.000Z

    of Energy' s P antex Plant near Amarillo, Texas. Upon disassembly of nuclear weapons, the plutonium and highly enriched uranium pits are placed in specially designed storage containers and temporarily stored in heavily secured ammunition magazines. Pits... in the stockpile; ~ Disassembly of nuclear weapons no longer required in military stockpiles; and ~ Interim storage of plutonium pits from dismantled weapons. ~ Waste management and decontamination and decommissioning activities. ~ Assembling nuclear explosive...

  18. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  19. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect (OSTI)

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. [Los Alamos National Lab., NM (United States); Ewing, R.I.; Marlow, K.W. [Sandia National Labs., Albuquerque, NM (United States)

    1991-12-01T23:59:59.000Z

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  20. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect (OSTI)

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. (Los Alamos National Lab., NM (United States)); Ewing, R.I.; Marlow, K.W. (Sandia National Labs., Albuquerque, NM (United States))

    1991-01-01T23:59:59.000Z

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  1. Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.

    SciTech Connect (OSTI)

    Darby, John L.

    2011-05-01T23:59:59.000Z

    As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

  2. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  3. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01T23:59:59.000Z

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  4. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06T23:59:59.000Z

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  5. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  6. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports|7/%2AAdministration Weapons

  7. Office of Weapons Material Protection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  8. United Nations S/RES/1540 (2004) Security Council Distr.: General

    E-Print Network [OSTI]

    Sussex, University of

    The Security Council, Affirming that proliferation of nuclear, chemical and biological weapons, as well against any threat to international peace and security caused by the proliferation of nuclear, chemical or prevent the proliferation of nuclear, chemical or biological weapons and the importance for all States

  9. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

    Broader source: Energy.gov (indexed) [DOE]

    environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study...

  10. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01T23:59:59.000Z

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  11. Sandia National Laboratories: National Security Missions: Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland and NuclearPrograms

  12. Nuclear weapons. The balance of terror, the quest for peace

    SciTech Connect (OSTI)

    Edwards, A.J.C.

    1985-01-01T23:59:59.000Z

    This book provides a study from first principles of nuclear strategy and the balance of terror. This book addresses the most fundamental issues of our time - what is the balance of terror. How did it come to be. Is it necessary. How has it affected world politics. Will it keep the world at peace. Is it stable in an intrinsic and a dynamic sense. How real a threat is a first strike advantage. What can arms control agreements contribute. What should the objectives of such agreements be. How might a nuclear conflict begin. What would be the chance of containing such a conflict once begun. What are the advantages and disadvantages of the balance of terror. Are there any alternatives to a balance of terror, such as general or nuclear disarmament, which would be both attainable and preferable. If not, what can be done to make a better balance of terror. What are the main threats to stability. What should the West's policies be. What role is there for the independent nuclear deterrents of smaller countries. And how have recent developments such as the American 'star-wars' programme and the 'nuclear winter' hypothesis affected the answers to all these questions.

  13. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland and

  14. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland andSafety &

  15. Five minutes past midnight: The clear and present danger of nuclear weapons grade fissile materials

    SciTech Connect (OSTI)

    Roberts, G.B.

    1996-02-01T23:59:59.000Z

    Growing stockpiles of nuclear weapons grade fissile materials (plutonium and highly enriched uranium) are a `clear and present danger` to international security. Much of this material is uncontrolled and unsecured in the former Soviet Union (FSU). Access to these materials is the primary technical barrier to a nuclear weapons capability since the technology know-how for a bomb making is available in the world scientific community. Strategies to convince proliferators to give up their nuclear ambitions are problematic since those ambitions are a party of largest regional security. There is no national material control and accounting in Russia. No one knows exactly how much fissile materials they have, and if any is missing. A bankrupt atomic energy industry, unpaid employees and little or no security has created a climate in which more and more fissile materials will likely be sold in black markets or diverted to clandestine nuclear weapons programs or transnational terrorist groups. Control over these materials will ultimately rely on the continuous and simultaneous exercise of several measures. While there is little one can do now to stop a determined proliferator, over time international consensus and a strengthened non-proliferation regime will convince proliferators that the costs outweigh the gains.

  16. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

    2010-04-16T23:59:59.000Z

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratorys (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

  17. The PEACE PIPE: Recycling nuclear weapons into a TRU storage/shipping container

    SciTech Connect (OSTI)

    Floyd, D.; Edstrom, C. [Manufacturing Sciences Corp. (United States); Biddle, K.; Orlowski, R. [BNFL, Inc. (United States); Geinitz, R. [Safe Sites of Colorado, Golden, CO (United States); Keenan, K. [USDOE-RFFO (United States); Rivera, M. [Science Applications International Corp./LATA (United States)

    1997-03-01T23:59:59.000Z

    This paper describes results of a contract undertaken by the National Conversion Pilot Project (NCPP) at the Rocky Flats Environmental Technology Site (RFETS) to fabricate stainless steel ``pipe`` containers for use in certification testing at Sandia National Lab, Albuquerque to qualify the container for both storage of transuranic (TRU) waste at RFETS and other DOE sites and shipping of the waste to the Waste Isolation Pilot Project (WIPP). The paper includes a description of the nearly ten-fold increase in the amount of contained plutonium enabled by the product design, the preparation and use of former nuclear weapons facilities to fabricate the components, and the rigorous quality assurance and test procedures that were employed. It also describes how stainless steel nuclear weapons components can be converted into these pipe containers, a true ``swords into plowshare`` success story.

  18. Gordon Assesses Security At Nuclear Weapons Complex News...

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofrAdministrationNational NuclearAnson

  19. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity AdministrationNuclear Security

  20. Sandia Weapon Intern Program visits KCP | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed |Nuclear

  1. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signedhosts annualNational Nuclear

  2. Weapons Intern Program participants visit Pantex | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives inAdministrationSecurity

  3. Neutralization of chemical and biological weapons of mass destruction using nuclear methods

    E-Print Network [OSTI]

    McAffrey, Veronica Lynn

    2002-01-01T23:59:59.000Z

    of these radioactive particles would be carried into the upper atmosphere and would undergo decay and fall to the earth very slowly. Thus, they would likely not pose an immcd(a(e danger to health, although there (s potential for a long-term hazard (Glasstone... the differences in results. This information could be used to validate the MCNP inodel so thai it can be used in future research in neutralization using nuclear devices. REFERENCFS Glasstone, S. and Dolan, P. J. , ed. The El'fects of Nuclear Weapons. 3rd...

  4. Nuclear Safety Design Principles & the Concept of Independence: Insights from Nuclear Weapon Safety for Other High-Consequence Applications.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2014-05-01T23:59:59.000Z

    Insights developed within the U.S. nuclear weapon system safety community may benefit system safety design, assessment, and management activities in other high consequence domains. The approach of assured nuclear weapon safety has been developed that uses the Nuclear Safety Design Principles (NSDPs) of incompatibility, isolation, and inoperability to design safety features, organized into subsystems such that each subsystem contributes to safe system responses in independent and predictable ways given a wide range of environmental contexts. The central aim of the approach is to provide a robust technical basis for asserting that a system can meet quantitative safety requirements in the widest context of possible adverse or accident environments, while using the most concise arrangement of safety design features and the fewest number of specific adverse or accident environment assumptions. Rigor in understanding and applying the concept of independence is crucial for the success of the approach. This paper provides a basic description of the assured nuclear weapon safety approach, in a manner that illustrates potential application to other domains. There is also a strong emphasis on describing the process for developing a defensible technical basis for the independence assertions between integrated safety subsystems.

  5. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect (OSTI)

    Moon, Duk-ho (Korean Consulate General in New York)

    2003-12-01T23:59:59.000Z

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  6. Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons

    SciTech Connect (OSTI)

    Johnson, M.W. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

    1995-08-01T23:59:59.000Z

    In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

  7. Nuclear Weapons in Regional Contexts: The Cases of Argentina and Brazil

    E-Print Network [OSTI]

    Junior, Olival Freire; Moreira, Ildeu C; Barros, Fernando de Souza

    2015-01-01T23:59:59.000Z

    South America is a region which is free from nuclear weapons. However, this was not an inevitable development from the relationships among its countries. Indeed, regional rivalries between Brazil and Argentina, with military implications for both countries, lasted a long time. After WWII these countries took part in the race to obtain nuclear technologies and nuclear ambitions were part of the game. In the mid 1980s, the end of military dictatorships and the successful establishing of democratic institutions put an end to the race. Thus regional and national interests in addition to the establishment of democracies in Latin America have been responsible for the building of trust between the two countries. Meaningful international initiatives are once again needed in the framework of worldwide cooperation. This cooperation is better developed when democratic regimes are in place.

  8. A Sandia nuclear weapon knowledge management program plan for FY 1998--2003. Volume 1: Synopsis

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This volume contains a synopsis and briefing charts for a five-year plan which describes a Knowledge Management Program needed to meet Sandia`s responsibility for maintaining safety, security, reliability, and operational effectiveness of the nuclear weapon stockpile. Although the knowledge and expertise required to maintain and upgrade the stockpile continues to be critical to the country`s defense, Sandia`s historical process for developing and advancing future knowledge and expertise needs to be addressed. This plan recommends implementing an aggressive Knowledge Management Program to assure retention and furtherance of Sandia`s expertise, beginning in fiscal year 1998, as an integrated approach to solving the expertise dilemma.

  9. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect (OSTI)

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01T23:59:59.000Z

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  10. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect (OSTI)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15T23:59:59.000Z

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  11. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01T23:59:59.000Z

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  12. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect (OSTI)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01T23:59:59.000Z

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  13. American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.

    SciTech Connect (OSTI)

    Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Silva, Carol L. (University of Oklahoma, Norman, OK)

    2011-03-01T23:59:59.000Z

    We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

  14. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11T23:59:59.000Z

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  15. Physical and Mathematical Description of Nuclear Weapons Identification System (NWIS) Signatures

    SciTech Connect (OSTI)

    Mattingly, J.K.; Mihalczo, J.T.; Mullens, J.A.; Valentine, T.E.

    1997-09-26T23:59:59.000Z

    This report describes all time and frequency analysis parameters measured with the new Nuclear Weapons Identification System (NWIS) processor with three input channels: (1) the 252Cf source ionization chamber (2) a detection channel; and (3) a second detection channel for active measurements. An intuitive and physical description of the various functions is given as well as a brief mathematical description and a brief description of how the data are acquired. If the fill five channel capability is used, the number of functions increases in number but not in type. The parameters provided by this new NWIS processor can be divided into two general classes: time analysis signatures including multiplicities and frequency analysis signatures. Data from measurements with an 18.75 kg highly enriched uranium (93.2 wt 0/0, 235U) metai casting for storage are presented to illustrate the various time and frequency analysis parameters.

  16. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01T23:59:59.000Z

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  17. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect (OSTI)

    Robison, W.L. (ed.) (Lawrence Livermore National Lab., CA (USA)); Schultz, V. (Washington State Univ., Pullman, WA (USA)); Schultz, S.C. (Oregon Univ., Eugene, OR (USA))

    1991-04-01T23:59:59.000Z

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. Primary sources of information in preparing this bibliography were bibliographies on Oceania, citations in published papers, CIS Index and Abstracts, Monthly Catalog of United States Government Publications, Nuclear Science Abstracts, Energy Research Abstracts, numerous bibliographies on radiation ecology, and suggestions by many individuals whom we contacted. One goal in this bibliography is to include complete documentation of the source of congressional reports and other government-related publications. In addition, page numbers for material in this bibliography are provided in parentheses when the subject matter of a book or document is not restricted to nuclear weapons testing in the Marshall Islands.

  18. A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons

    E-Print Network [OSTI]

    Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

    2002-01-01T23:59:59.000Z

    It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

  19. The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium

    E-Print Network [OSTI]

    Kenna, Timothy C

    2002-01-01T23:59:59.000Z

    This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

  20. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04T23:59:59.000Z

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  1. ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems

    E-Print Network [OSTI]

    Andr Gsponer; Jean-pierre Hurni

    2004-01-01T23:59:59.000Z

    This paper contains two parts: (I) A list of points highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

  2. U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmericaAdministrationLastNATIONAL NUCLEAR For

  3. COUNCIL JOINT ACTION 2006/243/CFSP of 20 March 2006

    E-Print Network [OSTI]

    Sussex, University of

    Commission of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) in the area of training Nuclear- Test-Ban Treaty (CTBT), adopted by the General Assembly of the United Nations on 10 September Proliferation of Weapons of Mass Destruction THE COUNCIL OF THE EUROPEAN UNION, Having regard to the Treaty

  4. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    SciTech Connect (OSTI)

    Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

  5. Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon

    E-Print Network [OSTI]

    LaFleur, Adrienne; Charlton, William

    2007-09-17T23:59:59.000Z

    attributes assessed are the uranium isotopics (considering 234U, 235U, 236U, and 238U) and the enrichment process used to create the material (e.g., gaseous diffusion, gas centrifuge, etc.). Using the original attributes of the weapon significantly increases...

  6. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect (OSTI)

    Walter, Andrew

    2009-06-01T23:59:59.000Z

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  7. President Truman Orders Development of Thermonuclear Weapon ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?

    SciTech Connect (OSTI)

    Kunsman, D.M.

    1993-03-01T23:59:59.000Z

    We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

  9. On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium

    SciTech Connect (OSTI)

    Kunsman, D.M.

    1993-03-01T23:59:59.000Z

    We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

  10. Applying Agile MethodstoWeapon/Weapon-Related Software

    SciTech Connect (OSTI)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02T23:59:59.000Z

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  11. Toward a more rigorous application of margins and uncertainties within the nuclear weapons life cycle : a Sandia perspective.

    SciTech Connect (OSTI)

    Klenke, Scott Edward; Novotny, George Charles; Paulsen Robert A., Jr.; Diegert, Kathleen V.; Trucano, Timothy Guy; Pilch, Martin M.

    2007-12-01T23:59:59.000Z

    This paper presents the conceptual framework that is being used to define quantification of margins and uncertainties (QMU) for application in the nuclear weapons (NW) work conducted at Sandia National Laboratories. The conceptual framework addresses the margins and uncertainties throughout the NW life cycle and includes the definition of terms related to QMU and to figures of merit. Potential applications of QMU consist of analyses based on physical data and on modeling and simulation. Appendix A provides general guidelines for addressing cases in which significant and relevant physical data are available for QMU analysis. Appendix B gives the specific guidance that was used to conduct QMU analyses in cycle 12 of the annual assessment process. Appendix C offers general guidelines for addressing cases in which appropriate models are available for use in QMU analysis. Appendix D contains an example that highlights the consequences of different treatments of uncertainty in model-based QMU analyses.

  12. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    SciTech Connect (OSTI)

    NONE

    1996-09-23T23:59:59.000Z

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  13. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High EnergyNational NuclearNuclear Security

  14. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  15. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS, AND THE FEDERAL GOVERNMENT - 11052

    SciTech Connect (OSTI)

    Bergren, C.; Flora, M.; Belencan, H.

    2010-11-17T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical Separation Facilities (canyons).

  16. ESTABLISHING FINAL END STATE FOR A RETIRED NUCLEAR WEAPONS PRODUCTION REACTOR; COLLABORATION BETWEEN STAKEHOLDERS, REGULATORS AND THE FEDERAL GOVERNMENT

    SciTech Connect (OSTI)

    Bergren, C

    2009-01-16T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River (SRS) near Aiken, South Carolina. Nuclear weapons material production began in the early 1950s, utilizing five production reactors. In the early 1990s all SRS production reactor operations were terminated. The first reactor closure end state declaration was recently institutionalized in a Comprehensive Environmental Response and Compensation and Liability Act (CERCLA) Early Action Record of Decision. The decision for the final closure of the 318,000 square foot 105-P Reactor was determined to be in situ decommissioning (ISD). ISD is an acceptable and cost effective alternative to off-site disposal for the reactor building, which will allow for consolidation of remedial action wastes generated from other cleanup activities within the P Area. ISD is considered protective by the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), public and stakeholders as waste materials are stabilized/immobilized, and radioactivity is allowed to naturally decay, thus preventing future exposure to the environment. Stakeholder buy-in was critical in the upfront planning in order to achieve this monumental final decision. Numerous public meetings and workshops were held in two different states (covering a 200 mile radius) with stakeholder and SRS Citizens Advisory Board participation. These meetings were conducted over an eight month period as the end state decision making progressed. Information provided to the public evolved from workshop to workshop as data became available and public input from the public meetings were gathered. ISD is being considered for the balance of the four SRS reactors and other hardened facilities such as the chemical processing canyons.

  17. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokie MaStateDOE O 452.2D, NUCLEAR

  18. Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign InNuclear Security Administration

  19. Contracting in the national interest: Establishing the legal framework for the interaction of science, government, and industry at a nuclear weapons laboratory

    SciTech Connect (OSTI)

    Furman, N.S.

    1988-04-01T23:59:59.000Z

    Sandia National Laboratories, the nation's nuclear ordnance laboratory, is operated on a no-profit, no-fee basis by ATandT Technologies, Inc., as a prime contractor for the Department of Energy. This unique arrangement began in 1949 when President Harry Truman personally requested that ATandT assume management of the nuclear weapons laboratory as a service in the national interest. The story of how this unusual relationship came about makes for an interesting chapter in the annals of US legal and institutional history. This report describes the historical background, political negotiations, and prime contract provisos that established the legal framework for the Labs.

  20. Weapons labs in a new world

    SciTech Connect (OSTI)

    Anderson, C.

    1993-10-08T23:59:59.000Z

    This article describes the diversification and downsizing that is taking place in the weapons programs at Los Alamos and Lawrence Livermore now that nuclear weapons testing has been discontinued. R D and testing programs budgets have been reduced and personnel number about half that of 1986. Some scientists will take early retirement, some will move to other projects, and some will continue to do nuclear weapons design without testing.

  1. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  2. Nuclear Weapons Latency

    E-Print Network [OSTI]

    Sweeney, David J

    2014-07-25T23:59:59.000Z

    .S. case of proliferation in the Manhattan Project. Network and operational parameters were found that drove expected Latencies high while others increased the Latency distribution variance. Further confidence was built with historical analyses...

  3. Nuclear Weapons Latency

    E-Print Network [OSTI]

    Sweeney, David J

    2014-07-25T23:59:59.000Z

    was useful but left untreated the time associated with proliferation pathway progression. Further pathway analysis work has been done from an International Atomic Energy Agency (IAEA) safeguards perspective. Listner et al. determine the most preferred... diversion pathway for a state given a specific set of resources and technologies in order to more appropriately allocate IAEA safeguarding resources.25 This methodology employs software to solve a shortest path algorithm with path length characterized...

  4. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder|BRUthENuclear

  5. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76SafeguardsSystems

  6. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

    2012-02-15T23:59:59.000Z

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  7. Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant

    E-Print Network [OSTI]

    Thompson, David Andrew

    1996-01-01T23:59:59.000Z

    , based on 2, 000 weapons dismantled per year. . . . DOE transportation safeguards operations dosimeter history and projected maximum yearly dose. . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of 1993 interzone... made Irom U are eventually returned to the Oak Ridge National Laboratory in Tennessee for reprocessing. Plutonium pits, however, remain on-site at Pantex, where they will be stored for an indefinite period. Plutonium warheads have been arriving...

  8. Early retirement for weaponeers?

    SciTech Connect (OSTI)

    Weisman, J.

    1994-07-01T23:59:59.000Z

    Department of Energy`s Lawrence Livermore Laboratory`s once-vital nuclear weapons division is now in dire straits. The laboratory was established in 1952, during the titanic struggle over the hydrogen bomb, has grown steadily from $7 million to its peak of $1.1 billion in 1991. The future for key members of their most experienced weapons design team is uncertain. Over the past two years, Livermore`s operating budget has fallen by 12.5 percent or $127.6 million. Nearly 750 employees, 10 percent of the work force, accepted early retirement offers last year. Further budget cuts will force another 300 to 600 personnel out by the end of 1995. The future resides in the U.S. Congress.

  9. Weapons dismantlement issues in independent Ukraine

    SciTech Connect (OSTI)

    Zack, N.R. [Los Alamos National Lab., NM (United States); Kirk, E.J. [American Association for the Advancement of Science, Washington, DC (United States)

    1994-07-01T23:59:59.000Z

    The American Association for the Advancement of Science sponsored a seminar during September 1993, in Kiev, Ukraine, entitled ``Toward a Nuclear Free Future -- Barriers and Problems.`` It brought together Ukrainians, Belarusians, and Americans to discuss the legal, political, safeguards and security, economic, and technical dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, Ukrainian Parliament non-approval of START I, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues, This paper will highlight and detail the issues, concerns, and possible impacts of the Ukraine`s dismantlement of its nuclear weapons.

  10. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    SciTech Connect (OSTI)

    Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

    2014-05-09T23:59:59.000Z

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  11. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  12. Nuclear winter attracts additional scrutiny

    SciTech Connect (OSTI)

    Smith, R.J.

    1984-07-06T23:59:59.000Z

    Prodded by the Natural Resources Defense Council, Congress has asked the Pentagon to provide what amounts to an environmental impact statement on the potential for nuclear weapons explosions to create enough soot and dust to cause a nuclear winter. The request has implications for arms control and civil defense as well as for weapons procurement and deployment. Little attention was given to the atmospheric and climatic effects of nuclear war until the nuclear winter concept was introduced in October of 1983. Only the Navy and the DOE took steps to follow up until pressure was put on Congress and the Pentagon for further study. Pentagon criticism of the nuclear winter presentation argues that the scenario assumptions that cities will be targeted and that a conflict will involve 5000-6500 megatons are incorrect.

  13. army weapon systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems CiteSeer Summary: This paper contains two parts: (I) A...

  14. alamos thermonuclear weapon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems CiteSeer Summary: This paper contains two parts: (I) A...

  15. Joint Venture Established Between Russian Weapons Plant And the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Established Between Russian Weapons Plant And the Largest Dialysis Provider in the U.S. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  16. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  17. Nuclear Archeology in a Bottle: Evidence of Pre-Trinity U.S. Weapons Activities from a Waste Burial Site

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Douglas, Matthew; Bonde, Steven E.; Briggs, David; Farmer, Orville T.; Greenwood, Lawrence R.; Lepel, Elwood A.; Orton, Christopher R.; Wacker, John F.; Luksic, Andrzej T.

    2009-02-15T23:59:59.000Z

    During World War II, the Hanford Site in Washington was chosen for plutonium production. In 2004, a bottle containing a sample of plutonium was recovered from a Hanford waste trench. Isotopic age dating indicated the sample was separated from the fuel pellet 64 2.8 years earlier. Detectable products of secondary nuclear reactions, such as 22Na, proved useful as 1) a detectable analog for alpha emitting actinides, 2) an indicator of sample splitting, and 3) a measure of the time since sample splitting. The sample origin was identified as the X-10 reactor, Oak Ridge, TN. Corroborated by historical documents, we concluded this sample was part of the first batch of Pu separated at T-Plant, Hanford, the worlds first industrial-scale reprocessing facility, on December 9, 1944.

  18. Strategies for denaturing the weapons-grade plutonium stockpile

    SciTech Connect (OSTI)

    Buckner, M.R.; Parks, P.B.

    1992-10-01T23:59:59.000Z

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  19. U.N. Security Council Resolution 1540: Taking Stock

    SciTech Connect (OSTI)

    Durbin, Karyn R.; Mladineo, Stephen V.

    2006-08-01T23:59:59.000Z

    More than two years have passed since the United Nations (U.N.) Security Council unanimously passed Resolution 1540. This seminal measure requires all U.N. Member States to enact and enforce effective measures to establish domestic controls to prevent the proliferation of nuclear, chemical, biological weapons and their means of delivery. Has this Resolution been successful? Did the 1540 Committee established by the Resolution fulfill its mandate? What does the future hold for Resolution 1540? Will it become an integral part of the web of nonproliferation treaties and regimes or will it recede into history as a well-meaning but unfulfilled attempt to prevent proliferation? These questions are timely and important to the nuclear materials management community and a discourse on their answers is needed.

  20. Recovery of weapon plutonium as feed material for reactor fuel

    SciTech Connect (OSTI)

    Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan [and others

    1994-03-16T23:59:59.000Z

    This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

  1. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect (OSTI)

    Aga Khan, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons proliferation. Topics considered include the Nuclear Non-Proliferation Treaty and its future, the spread of nuclear weapons among nations, the link between horizontal and vertical proliferation, national security, nuclear disarmament, the impact of nuclear weapons on Third World regional conflicts, the global effects of a nuclear war, medical effects on human populations, the nuclear winter, the nuclear arms race, and arms control.

  2. Nuclear winter source-term studies. Volume 1. Ignition of silo-field vegetation by nuclear weapons. Technical report, 1 January 1985-1 February 1986

    SciTech Connect (OSTI)

    Bush, B.W.; Small, R.D.

    1986-02-01T23:59:59.000Z

    Smoke produced by the ignition and burning of live vegetation by nuclear explosions has been suggested as a major contributor to a possible nuclear winter. This report considers the mechanics of live vegetation ignition by a finite-radius nuclear fireball. For specified plant properties, the amount of fireball radiation absorbed by a plant community is calculated as a function of depth into the stand and range from the fireball. The spectral regions of plant energy absorption and the overlap with the emitted fireball thermal spectra are discussed. A simple model for the plant response to the imposed thermal load is developed. First, the temperature is raised; the change depends on the plant structure, moisture content, and plant canopy. Subsequent energy deposition desiccates the plant and finally raises its temperature to the threshold ignition limit. Results show the development of a variable depth ignition zone. Close to the fireball, ignition of the entire plant occurs. At greater distances (several fireball radii) portions of the plant are only partially desiccated, and sustained burning is less probable. Far from the burst, the top of the stand is weakly heated, and only a small transient temperature change results. An estimate of the smoke produced by an exchange involving the U.S. missile fields shows that the burning of live vegetation only slightly increases the total nonurban smoke production.

  3. Weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |andAbout Us /Vision forWayne|

  4. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    Facility (NIF) will extend HEDP experiments to include access to thermonuclear burn conditions's Stockpile Stewardship Program (SSP) through three strategic objectives: Achieve thermonuclear ignition thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  5. cvm magazine Newest Weapon

    E-Print Network [OSTI]

    Langerhans, Brian

    21 cvm magazine Newest Weapon in War on Pet Cancer Radiation Oncology Service includes state tightly around the tumor, minimizing effects to healthy tissue. This is done with a multi-leaf collimator

  6. DOE's Former Rocky Flats Weapons Production Site to Become National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

  7. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    13. The ACRR is a mission critical asset - the only remaining NNSA capability for high-power, short pulse environments needed to simulate nuclear weapons effects on full-scale...

  8. High Explosives Application Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    and counterterrorism. Examples include the following: Stockpile Stewardship, assuring the reliability and safety of our nuclear weapons; Conventional weapon development, including...

  9. Detecting Illicit Nuclear Materials

    SciTech Connect (OSTI)

    Kouzes, Richard T.

    2005-09-01T23:59:59.000Z

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide.

  10. Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium

    E-Print Network [OSTI]

    Koch, William Lawrence

    2013-01-01T23:59:59.000Z

    Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

  11. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 6157Bioenergy »7 LANSCE Weapons

  12. Weapons Program Associate Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKSofthe Geeks:Weapons Program

  13. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16T23:59:59.000Z

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  14. Focus Article Nuclear winter

    E-Print Network [OSTI]

    Robock, Alan

    the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black in recorded human history. Although the number of nuclear weapons in the world has fallen from 70,000 at its and Russia could still produce nuclear winter. This theory cannot be tested in the real world. However

  15. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18T23:59:59.000Z

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  16. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully...

  17. ITAR Categories Category I -Firearms, Close Assault Weapons and Combat Shotguns

    E-Print Network [OSTI]

    and Associated Equipment Category XVI - Nuclear Weapons, Design and Testing Related Items Category XVII, Incendiary Agents and Their Constituents. Category VI - Vessels of War and Special Naval Equipment. Category Energy Weapons Category XIX - [Reserved] Category XX - Submersible Vessels, Oceanographic and Associated

  18. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  19. Assurance Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational ManagementDemand Module This Assurance Council

  20. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect (OSTI)

    Carbajo, J.J.

    2005-05-27T23:59:59.000Z

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  1. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  4. Measurement techniques for the verification of excess weapons materials

    SciTech Connect (OSTI)

    Tape, J.W.; Eccleston, G.W.; Yates, M.A.

    1998-12-01T23:59:59.000Z

    The end of the superpower arms race has resulted in an unprecedented reduction in stockpiles of deployed nuclear weapons. Numerous proposals have been put forward and actions have been taken to ensure the irreversibility of nuclear arms reductions, including unilateral initiatives such as those made by President Clinton in September 1993 to place fissile materials no longer needed for a deterrent under international inspection, and bilateral and multilateral measures currently being negotiated. For the technologist, there is a unique opportunity to develop the technical means to monitor nuclear materials that have been declared excess to nuclear weapons programs, to provide confidence that reductions are taking place and that the released materials are not being used again for nuclear explosive programs. However, because of the sensitive nature of these materials, a fundamental conflict exists between the desire to know that the bulk materials or weapon components in fact represent evidence of warhead reductions, and treaty commitments and national laws that require the protection of weapons design information. This conflict presents a unique challenge to technologists. The flow of excess weapons materials, from deployed warheads through storage, disassembly, component storage, conversion to bulk forms, and disposition, will be described in general terms. Measurement approaches based on the detection of passive or induced radiation will be discussed along with the requirement to protect sensitive information from release to unauthorized parties. Possible uses of measurement methods to assist in the verification of arms reductions will be described. The concept of measuring attributes of items rather than quantitative mass-based inventory verification will be discussed along with associated information-barrier concepts required to protect sensitive information.

  5. The role of the DOE weapons laboratories in a changing national security environment: CNSS papers No. 8, April 1988

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-01-01T23:59:59.000Z

    The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security. 9 refs.

  6. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE

  7. Development of a Bayesian Network to monitor the probability of nuclear proliferation

    E-Print Network [OSTI]

    Holcombe, Robert (Robert Joseph)

    2008-01-01T23:59:59.000Z

    Nuclear Proliferation is a complex problem that has plagued national security strategists since the advent of the first nuclear weapons. As the cost to produce nuclear weapons has continued to decline and the availability ...

  8. Nuclear Deterrence in the Age of Nonproliferation

    SciTech Connect (OSTI)

    Richardson, J

    2009-01-21T23:59:59.000Z

    The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

  9. AEC and control of nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project on January 1, 1947. This shift from the military control to civilian government control was a major shift in power, yet did not initially impact the former Manhattan...

  10. Working toward a world without nuclear weapons

    SciTech Connect (OSTI)

    Drell, Sidney D. [SLAC National Accelerator Laboratory and the Hoover Institute, Stanford University, Stanford, California (United States)

    2014-05-09T23:59:59.000Z

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  11. Debunking Six Big Myths about Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David TurnerCitizen:DeborahDebunking Six

  12. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter | ¡ ¢warheadprotection

  13. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter | ¡

  14. Weapons engineering tritium facility overview

    SciTech Connect (OSTI)

    Najera, Larry [Los Alamos National Laboratory

    2011-01-20T23:59:59.000Z

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  15. DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY

    E-Print Network [OSTI]

    DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Compiled by Greta E. Marlatt Dudley Knox Library://www.nps.edu/Library/Research%20Tools/Bibliographies/index.html #12;DIRECTED ENERGY WEAPONS (DEWs): A BIBLIOGRAPHY Complied INTENTIONALLY LEFT BLANK #12;4 Table of Contents DIRECTED ENERGY WEAPONS GENERAL

  16. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  17. Introduction to Pits and Weapons Systems (U)

    SciTech Connect (OSTI)

    Kautz, D. [Los Alamos National Laboratory

    2012-07-02T23:59:59.000Z

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutonium is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.

  18. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  19. Hegemony and nuclear proliferation

    E-Print Network [OSTI]

    Miller, Nicholas L. (Nicholas LeSuer)

    2014-01-01T23:59:59.000Z

    Contrary to longstanding of predictions of nuclear tipping points, the number of states interested in nuclear weapons has sharply declined in recent decades. In contrast to existing explanations, this dissertation argues ...

  20. Not So Permafrost Viewport for Nuclear Fusion

    E-Print Network [OSTI]

    nuclear weapons. Nuclear weapons brought the war to a rapid and decisive close, and played an important ceased nuclear testing and the Laboratory entered an era of stockpile stewardship. Today, the LaboratoryNot So Permafrost Under Fire Viewport for Nuclear Fusion Hassle-Free Uranium 1663 LOS ALAMOS

  1. Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which

    E-Print Network [OSTI]

    Laughlin, Robert B.

    , North Korea, Pakistan, and South Africa. (South Africa abandoned its nuclear weapons in 1991. Libya of setting up its own enrichment or spent-fuel treat- ment facilities is enormous. Countries with a new

  2. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration...

  3. NNSA implements nondestructive gas sampling technique for nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  4. Weapons Program Associate Directors named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout UsWeapons Program

  5. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  6. A simple method for rapidly processing HEU from weapons returns

    SciTech Connect (OSTI)

    McLean, W. II; Miller, P.E.

    1994-01-01T23:59:59.000Z

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  7. Code Analyses Supporting PIE of Weapons-Grade MOX Fuel

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL; Bevard, Bruce Balkcom [ORNL; Spellman, Donald J [ORNL; McCoy, Kevin [AREVA Federal Services LLC

    2010-01-01T23:59:59.000Z

    The U.S. Department of energy has decided to dispose of a portion of the nation's surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating the fuel in commercial power reactors. Four lead test assemblies (LTAs) were manufactured with weapons-grade mixed oxide (WG-MOX) fuel and irradiated in the Catawba Nuclear Station Unit 1, to a maximum fuel rod burnup of ~47.3 GWd/MTHM. As part of the fuel qualification process, five rods with varying burnups and initial plutonium contents were selected from one assembly and shipped to the Oak Ridge National Laboratory (ORNL) for hot cell examination. ORNL has provided analytical support for the post-irradiation examination (PIE) of these rods via extensive fuel performance modeling which has aided in instrument settings and PIE data interpretation. The results of these fuel performance simulations are compared in this paper with available PIE data.

  8. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  9. Copyright 2006 by Rich Janow Page 1 A First-Principles Model for Estimating Atmospheric Nuclear

    E-Print Network [OSTI]

    Janow, Rich

    26, 2006 Page 2 REFERENCES 1. Glasstone, S. and P. Dolan, eds., 'The Effects of Nuclear Weapons', 3rd

  10. Research Councils UK Transforming

    E-Print Network [OSTI]

    Berzins, M.

    Research Councils UK Transforming our energy future #12;Research funded by the Research Councils in 2002 to create a viable renewable energy research community to foster industrial engagement of research, expertise and the business capability to develop and exploit them commercially. Energy and its

  11. MN4602 Crouch 2004 REASSESSING WEAPON SYSTEM

    E-Print Network [OSTI]

    MN4602 Crouch 2004 REASSESSING WEAPON SYSTEM OPERATIONAL TEST & EVALUATION METHODOLOGIES LTC Thom support assessing a weapon systems true cost and performance characteristics? S1: Can/should cost, operational effectiveness and suitability be assessed independent of one another? S2: Do current test

  12. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons. #12;Some Bits of History US develops and uses nuclear weapons on Japan at the end of World War II

  13. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    . Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The Test Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons Bits of History US develops and uses nuclear weapons on Japan at the end of World War II (1945). Other

  14. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons Colloquium - January 20, 2012 ­ p. #12;Some Bits of History US develops and uses nuclear weapons on Japan

  15. United Nations S/RES/1810 (2008) Security Council Distr.: General

    E-Print Network [OSTI]

    Sussex, University of

    2008-01-01T23:59:59.000Z

    for in the United Nations Charter, Reaffirming its decision that none of the obligations in resolution 1540 (2004 to the Nuclear Non-Proliferation Treaty, the Chemical Weapons Convention and the Biological and Toxin Weapons Convention or alter the responsibilities of the International Atomic Energy Agency or the Organization

  16. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

  17. Council High LevelCouncil High Level IndicatorsIndicators

    E-Print Network [OSTI]

    to the Columbia.to the Columbia. Abundance of adult fish in the Council'sAbundance of adult fish in the Council.Harvest number and rate. Harvest of hatchery fish in the Council'sHarvest of hatchery fish in the Council theSurvival rates through the hydrosystemhydrosystem for adultfor adult and juvenile fish passing

  18. The New Nuclear Threat John Deutch

    E-Print Network [OSTI]

    Deutch, John

    The New Nuclear Threat John Deutch FOREIGN AFFAIRS Volume 71 Number 4 Foreign AffairsThe contents. Deutch THE NEW NUCLEAR THREAT he threat of nuclear weapons spread across the world has displaced the fear

  19. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect (OSTI)

    Anne C. Fitzpatrick

    1999-07-01T23:59:59.000Z

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.

  20. Celebrating 15 years | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    established NNSA in 2000 as a separately organized agency within the Department of Energy to manage and ensure the security of the Nation's nuclear weapons stockpile, advance...

  1. Accident Response Group | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    involving nuclear weapons. The ARG staff includes scientists, engineers, technicians, health physics and safety specialist from NNSA's and the Department of Energy's national...

  2. Civil defense implications of nuclear winter

    SciTech Connect (OSTI)

    Chester, C.V.; Broyles, A.A.

    1984-01-01T23:59:59.000Z

    Possible effects of Nuclear Winter on the world's population are summarized. The implications of these effects for strategic weapons planning and civil defense measures are discussed. (ACR)

  3. Depleted-Uranium Weapons the Whys and Wherefores

    E-Print Network [OSTI]

    Gsponer, A

    2003-01-01T23:59:59.000Z

    The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

  4. Reducing the Nuclear Weapons Stockpile | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical Security Systems(PA)About| |

  5. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High EnergyNationalSpring

  6. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: Efficient Water UseEighth ShullD.

  7. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76SafeguardsSystemsTesting Resumes |

  8. Audit Report National Nuclear Security Administration Nuclear Weapons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5Management of National

  9. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to| PrincetonPrinceton Plasma

  10. Nuclear Proliferation and the Deterrence of Conventional War: Justin Pollard

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Nuclear Proliferation and the Deterrence of Conventional War: A Proposal Justin Pollard April 2009) Introduction It seems counterintuitive to think that the spread of nuclear weapons could make the world a safer of ubiquitous nuclear armament is a more dangerous and unstable one. Certainly, a weapon of the nuclear

  11. AMERICAN POLICY AND IRAN'S NUCLEAR PROGRAMME: THE CHINA ANALOGY

    E-Print Network [OSTI]

    Heinke, Dietmar

    . The first Chinese nuclear test explosion took place in October 1964, thus breaking into the monopoly held, the PRC had become the rogue state par excellence. What it might do when it acquired nuclear weapons sent against Chinese nuclear facilities (though use of nuclear weapons was an extra option to assure

  12. PROF WINGFIELD ELECTED TO ASSAF COUNCIL From Tukkievaria 2013

    E-Print Network [OSTI]

    cycle. The Academy of Science of South Africa (ASSAf) is the official national academy of science Nuclear Energy Corporation. He is also a member of the Board of Nuclear Industries Association of SouthPROF WINGFIELD ELECTED TO ASSAF COUNCIL From Tukkievaria 2013 The Academy of Science of South

  13. Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear

    E-Print Network [OSTI]

    and reliability of aged and remanufactured weapons in the absence of nuclear testing. This technology base must degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge and technical support to the directed stockpile work on the nuclear weapons stockpile. Deliverables are defined

  14. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect (OSTI)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14T23:59:59.000Z

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  15. Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium

    E-Print Network [OSTI]

    McCord, Cameron (Cameron Liam)

    2013-01-01T23:59:59.000Z

    .The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it claims that the materials will be used ...

  16. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  17. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect (OSTI)

    Luke, S J

    2011-12-20T23:59:59.000Z

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

  18. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation...

  19. Extension Program Council's Executive Board.

    E-Print Network [OSTI]

    Marshall, Mary G.; Richardson, Burl B.

    1986-01-01T23:59:59.000Z

    ~IB-134'-! II"I~ I~? Extension Program Council's Executive Board Mary G. Marshall and Burl B. Richardson Extension Program Development Specialists The Extension Program Council works with Extension agents to plan, implement, evaluate...

  20. CAMPUS BLUEPRINT ENROLLMENT MANAGEMENT COUNCIL'S

    E-Print Network [OSTI]

    Powers, Robert

    CAMPUS BLUEPRINT ENROLLMENT MANAGEMENT COUNCIL'S STRATEGIC ENROLLMENT MANAGEMENT PLAN 2012'S ENROLLMENT MANAGEMENT COUNCIL'S STRATEGIC ENROLLMENT MANAGEMENT PLAN 2012-2017 Report Outline Building a Big: Student Recruitment Initiatives Sharing Our Story of Quality Improving the Academic Profile and Student

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  3. 2011 Quality Council Annual Report

    Broader source: Energy.gov [DOE]

    DEPARTMENT OF ENERGY QUALITY COUNCIL ANNUAL REPORT For Calendar Year 2011 Office of Health Safety and Security

  4. Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium

    SciTech Connect (OSTI)

    Snider, J.D.

    1996-02-01T23:59:59.000Z

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

  5. Nuclear proliferation after the Cold War

    SciTech Connect (OSTI)

    Reiss, M.; Litwak, R.S.

    1994-01-01T23:59:59.000Z

    Today, former Soviet republics threaten to gain control over nuclear weapons sited on their territories, and reports on North Korea, Pakistan, India, and Iraq reveal current or recent weapon development programs. This document offers a timely assessment of the prospects for nuclear nonproliferation.

  6. Of owl or ostrich. The U.S. policy of calculated ambiguity to deter the use of chemical and biological weapons

    SciTech Connect (OSTI)

    Lakamp, M.A.

    1998-12-01T23:59:59.000Z

    The United States has adopted a policy of calculated ambiguity regarding the role of nuclear weapons in response to a potential chemical or biological weapons (CBW) attack. Many factors affect decisions about the role nuclear weapons play in US counterproliferation strategy. This thesis describes the policy of calculated ambiguity and offers some observations about its prospects and pitfalls. The thesis presents evidence that suggests nuclear weapons could play a positive role in the US counterproliferation strategy, at least in some circumstances. It also explains how such a role could conflict with the US nonproliferation strategy. Such a role would also violate the nuclear taboo and be seen by a majority of countries as illegal and immoral. The United States has chosen a policy of calculated ambiguity in an attempt to retain the deterrent value of nuclear weapons without paying the political, legal, and moral costs of explicit reliance on nuclear weapons to deter the use of CBW. This may have short-term benefits, but ultimately may damage the national interest.

  7. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  8. Implementing the chemical weapons convention

    SciTech Connect (OSTI)

    Kellman, B.; Tanzman, E. A.

    1999-12-07T23:59:59.000Z

    In 1993, as the CWC ratification process was beginning, concerns arose that the complexity of integrating the CWC with national law could cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States as to how the CWC would be carried out. As a result, the author's colleagues and the author prepared the Manual for National Implementation of the Chemical Weapons Convention and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Committee of CWC Legal Experts, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Central Europe, reviewed the Manual. In February 1998, they finished the second edition of the Manual in order to update it in light of developments since the CWC entered into force on 29 April 1997. The Manual tries to increase understanding of the Convention by identifying its obligations and suggesting methods of meeting them. Education about CWC obligations and available alternatives to comply with these requirements can facilitate national response that are consistent among States Parties. Thus, the Manual offers options that can strengthen international realization of the Convention's goals if States Parties act compatibly in implementing them. Equally important, it is intended to build confidence that the legal issues raised by the Convention are finite and addressable. They are now nearing competition of an internet version of this document so that interested persons can access it electronically and can view the full text of all of the national implementing legislation it cites. The internet address, or URL, for the internet version of the Manual is http: //www.cwc.ard.gov. This paper draws from the Manual. It comparatively addresses approximately thirty implementing issues, showing how various States Parties have enacted measures that are responsive to CWC obligations. It is intended to highlight the issues that States Parties must address and to identify trends among States Parties that might be useful to States that have not yet made crucial decisions as to how to resolve key matters. At various points in the text, country names are listed in parenthesis to identify pieces of national legislation that demonstrate the point in the text. It should not be inferred that nations not listed have not addressed the point or have taken a different position. In some cases, a nation's position is explained in somewhat more depth to give specific detail to an assertion in the text. Attached to this paper is a chart which illustrates how States Parties in the Central European region as well as the United States respond to the issues raised. Obviously, in preparing such a chart, many subtle provisions in national legislation must be simplified. The point of the chart is to portray, on a few pages, the major trends of legislation.

  9. Research Councils UK materials

    E-Print Network [OSTI]

    Berzins, M.

    as completely new materials such as super-strong graphene, or developments of traditional materials such as graphene is still being realised, with the Research Councils investing in both the further exploitation to UK growth. For example, the 2004 `discovery' of wonder-material graphene sparked a host of global

  10. National Research Council Canada

    E-Print Network [OSTI]

    Fleming, Michael W.

    National Research Council Canada Institute for Information Technology Conseil national de recherches Canada Institut de technologie de l'information Determining Internet Users' Values for Private in The Second Annual Conference on Privacy, Security and Trust (PST'04). Fredericton, New Brunswick, Canada

  11. Audit Report on "The National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a prime component of the B61 nuclear weapon system. Both the original motor produced...

  12. Nuclear proliferation and testing: A tale of two treaties

    SciTech Connect (OSTI)

    Corden, Pierce S.; Hafemeister, David

    2014-04-01T23:59:59.000Z

    Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

  13. Y-12 employees receive awards recognizing excellence in nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient...

  14. Weapons production | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRatesAbout UsWeapons ProgramWeapons

  15. Non-lethal weapons and the future of war

    SciTech Connect (OSTI)

    Alexander, J.B.

    1995-03-09T23:59:59.000Z

    This presentation provides a discussion of the expanding role of non-lethal weapons as envisioned necessary in future warfare.

  16. Nuclear Futures Analysis and Scenario Building

    SciTech Connect (OSTI)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-07-09T23:59:59.000Z

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

  17. Nuclear bargaining : using carrots and sticks in nuclear counter-proliferation

    E-Print Network [OSTI]

    Reardon, Robert J

    2010-01-01T23:59:59.000Z

    This dissertation explores how states can use positive inducements and negative sanctions to successfully bargain with nuclear proliferators and prevent the spread of nuclear weapons. It seeks to answer the following ...

  18. Aegis Combat and Weapon Systems Overview 24 hours, $1495

    E-Print Network [OSTI]

    Fork, Richard

    SEprocessensuresthatsystemsaredevelopedtomeet affordable, operationally effective, and timely mission objectives. FocusonengineeringtheWeaponAegis Combat and Weapon Systems Overview 24 hours, $1495 Launched from the Advanced Surface Missile that led to the initiation of Aegis. Topics Include: AegisOverviewandHistory AegisBMD AegisWeapon

  19. Towards Optimal Placement of Bio-Weapon Chris Kiekintveld

    E-Print Network [OSTI]

    Ward, Karen

    . Vice versa, our objective is to minimize the potential effect of a bio-weapon attack. CommentTowards Optimal Placement of Bio-Weapon Detectors Chris Kiekintveld Department of Computer Science, USA Email: lolerma@episd.edu Abstract--Biological weapons are difficult and expensive to detect

  20. Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report

    SciTech Connect (OSTI)

    Pitts, J.H.; Choi, J.S.

    1994-11-14T23:59:59.000Z

    This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO{sub 2}; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition.

  1. COUNCIL JOINT ACTION 2004/495/CFSP of 17 May 2004

    E-Print Network [OSTI]

    Sussex, University of

    expertise, -- to strengthen the detection of and response to illicit traf- ficking of nuclear materials in non-Nuclear Appli- cations, -- the States' capabilities for Detection and Response to Illicit, and the detection of and response to illicit trafficking contribute to preventing the Prolif- eration of Weapons

  2. QuarterlyCouncil Continued on page 2

    E-Print Network [OSTI]

    QuarterlyCouncil Continued on page 2 98 > In this issue Council Decisions > Updates on Council ­ or mishandled, in his opinion ­ important issues such as education funding. He's concerned about

  3. Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium

    SciTech Connect (OSTI)

    Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

    1998-07-01T23:59:59.000Z

    This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

  4. Dartmouth College Greek Leadership Council

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Dartmouth College Greek Leadership Council Helpful Hints Get to know your class well in the first six weeks Chi, Kappa Kappa Kappa, Phi Delta Alpha, Psi Upsilon, Sigma Alpha Epsilon, Sigma Nu, Sigma Phi Epsilon Kappa Theta, Kappa Delta, Kappa Delta Epsilon, Kappa Kappa Gamma, Sigma Delta Coed Council Chapters

  5. University of Toronto Governing Council

    E-Print Network [OSTI]

    Boonstra, Rudy

    fiVO AR BO R VELUT University of Toronto Governing Council W eb C opy UNIVERSITY FUNDS INVESTMENT://www.governingcouncil.utoronto.ca/ #12;UNIVERSITY FUNDS INVESTMENT POLICY June 21, 2007 Table of Contents 1. DESCRIPTION OF UNIVERSITY.....................................................................................................6 W eb C opy University of Toronto Governing Council--Web version 2 #12;UNIVERSITY FUNDS INVESTMENT

  6. About Singapore Green Building Council

    E-Print Network [OSTI]

    About Singapore Green Building Council About SGBC Green Building Conference Conference Programme Green Building Conference In line with the mission of the Singapore Green Building Council (SGBC is please to present the inaugural SGBC Green Building Conference 2010 to be held from 13 ­ 16 September

  7. Council of University Transportation Centers

    E-Print Network [OSTI]

    Nagurney, Anna

    Council of University Transportation Centers 13th Anniversary CUTC Awards Banquet January 9, 2010 Omni Shoreham Hotel Washington, D.C. #12;Council of University Transportation Centers 13th Anniversary Awards Banquet Saturday, January 9, 2010 Welcome Stephen Albert, CUTCVice-President WesternTransportation

  8. Dissertation Completion Fellowships Council for

    E-Print Network [OSTI]

    Qian, Ning

    Mellon-CES Dissertation Completion Fellowships Council for European Studies The Council for European Studies (CES) invites eligible graduate students to apply for the 2013 Mellon-CES Dissertation and candidacy fees. Winners of the Mellon-CES Dissertation Completion Fellowships are also expected

  9. Measures to implement the Chemical Weapons Convention

    SciTech Connect (OSTI)

    Tanzman, E.; Kellman, B.

    1999-11-05T23:59:59.000Z

    This seminar is another excellent opportunity for those involved in preventing chemical weapons production and use to learn from each other about how the Chemical Weapons Convention (CWC) can become a foundation of arms control in Africa and around the world. The author is grateful to the staff of the Organization for the Prohibition of Chemical Weapons (OPCW) for inviting him to address this distinguished seminar. The views expressed in this paper are those of the authors alone, and do not represent the position of the government of the US nor or of any other institution. In 1993, as the process of CWC ratification was beginning, concerns arose that the complexity of integrating the treaty with national law would cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States Parties in how the Convention would be carried out. As a result the Manual for National Implementation of the Chemical Weapons Convention was prepared and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Manual was reviewed by the Committee of Legal Experts on National Implementation of the Chemical Weapons Convention, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Mica. In February 1998, the second edition of the Manual was published in order to update it in light of developments since the CWC entered into force on 29 April 1997. The second edition 1998 clarified the national implementation options to reflect post-entry-into-force thinking, added extensive references to national implementing measures that had been enacted by various States Parties, and included a prototype national implementing statute developed by the authors to provide a starting point for those whose national implementing measures were still under development. Last month, the Web Edition of the Manual was completed. It's internet address, or URL, is http://www.cwc.anl.gov/.

  10. Monitoring under the Plutonium Management and Disposition Agreement : the prospects of antineutrino detection as an IAEA verification metric for the disposition of weapons-grade plutonium in the United States

    E-Print Network [OSTI]

    Copeland, Christopher Michael, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    After the end of World War II, the world entered an even more turbulent period as it faced the beginnings of the Cold War, during which the prospect of mutually assured destruction between the world's largest nuclear weapon ...

  11. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect (OSTI)

    Bowman, C.D.; Venneri, F.

    1993-11-01T23:59:59.000Z

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  12. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    Following the discovery of nuclear fission in the late 1930products produced by a nuclear fission re- action present apathways to a nuclear fission weapon. In a nutshell, the

  13. National Research Council NUCLEAR SCIENCE SERIES

    E-Print Network [OSTI]

    #12;CONTENTS I. General Reviews of'the Inorganlo and Analytiml chemistry of Uranium II. General of Uranium Chemistry of Chlei' IntereBt to the Radloohemiat A. Metallic uranium 1. Preparation ;. PhyOloal propertlea . chemical properties B. Compound6 of Uranium c. The Chemistry of Uranium In Solutlon 1. oxidation

  14. Nuclear World Order and Nonproliferation

    SciTech Connect (OSTI)

    Joeck, N

    2007-02-05T23:59:59.000Z

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  15. Quantitative Methodology for Assessing State-Level Nuclear Security Measures

    E-Print Network [OSTI]

    Myers, Christopher 1985-

    2012-11-29T23:59:59.000Z

    international agreements that are either binding or non-binding. Unlike the international safeguards regime, which is governed primarily by the Treaty on Non-Proliferation of Nuclear Weapons, there is no verification regime for nuclear security or even...

  16. Bonus-- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer

    Broader source: Energy.gov [DOE]

    Technologies that are improving our ability to prevent the spread of nuclear weapons and material are also saving lives on a daily basis.

  17. Continuing The Rubber Stamp City Council Chicago City Council Report #6

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Continuing The Rubber Stamp City Council Chicago City Council Report #6 June 8, 2011 - February 13's tenure was characterized by a high degree of control over what was known as a "rubber stamp" council Council Wars and they also didn't want a City Council that would be a rubber stamp."1 Our report seeks

  18. Nuclear conflict and ozone depletion Quick summary

    E-Print Network [OSTI]

    Toohey, Darin W.

    Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

  19. air weapon fatalities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    re-kindled with the advent of advanced virtual prototyping of radio frequency (RF) sources for use in high power microwave (HPM) weapons technology. Air breakdown phenomena are...

  20. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  1. National Day of Remembrance HSS Honors Former Nuclear Weapons...

    Energy Savers [EERE]

    veterans were intrigued by a brief account of the history of Oak Ridge presented by Ray Smith, the Y-12 Oak Ridge National Laboratory Historian. Those in attendance also enjoyed...

  2. Gordon Assesses Security At Nuclear Weapons Complex News.....

    National Nuclear Security Administration (NNSA)

    levels of security. During his trip Wednesday and Thursday (Sep. 19-20), he visited the Savannah River Site near Aiken, S. C., the Y-12 National Security Site in Oak Ridge,TN,...

  3. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases NNSA Administrator Gordon Assesses Security...

  4. DOE's Nuclear Weapons Complex: Challenges to Safety, Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thereby, adversely impacting the effectiveness and efficiency of their operations. The heart of these assertions is that oversight of contractors has been excessive, overly...

  5. LANL | Physics | Nuclear Weapons and Global Security Data Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    void surrounded by a 4.5 cm radius surrogate fissile material of tungsten, tantalum, or depleted uranium. This sphere is surrounded by a 6.5 cm-radius copper sphere. At is...

  6. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIADepartment ofBattlefield of the Cold

  7. Briefing, Classification of Nuclear Weapons-Related Information |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: Challenges andAcknowledgmentsEnergy

  8. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphicNIF &

  9. NNSA implements nondestructive gas sampling technique for nuclear weapon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us /Administrationcomponents

  10. Linking Legacies: Connecting the Cold War Nuclear Weapons Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions EstimatesLindsey Geisler

  11. Sandia completes major overhaul of key nuclear weapons test facilities |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder|BRUthE NIttYDM

  12. National Day of Remembrance HSS Honors Former Nuclear Weapons Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley About Us NancyForumNationalWorkers

  13. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE: Record of Decision4: Supplement

  14. Y-12 employees receive awards recognizing excellence in nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute moredetectionSecurityprogram | Y-12

  15. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE FOrdersServices| DepartmentEnforcement »

  16. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE FOrdersServices| DepartmentEnforcement »Issues |

  17. Linking Legacies: Connecting the Cold War Nuclear Weapons Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department ofEnergyEnergy9LinacProcesses

  18. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices | Department of36CoolEERE Website

  19. Seventy Years of Computing in the Nuclear Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the Stage for the NextSevenSeventy

  20. Assessing the nuclear age

    SciTech Connect (OSTI)

    Ackland, L.; McGuire, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons and arms control. Topics considered include historical aspects, the arms race, nuclear power, flaws in the non-proliferation treaty, North-South issues, East-West confrontation, Soviet decision making with regard to national defense, US and Soviet perspectives on national security, ballistic missile defense (''Star Wars''), political aspects, nuclear winter, stockpiles, US foreign policy, and military strategy.

  1. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect (OSTI)

    Morris, Tommy J. [Los Alamos National Laboratory

    2012-07-05T23:59:59.000Z

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  2. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline The Problem Nuclear Energy Trends Energy Economics Life Cycle Analysis Nuclear Sustainability Nuclear Energy in Greece? #12;National Research

  3. The Nuclear Posture Review (NPR) : are we safer?

    SciTech Connect (OSTI)

    Brune, Nancy E.

    2010-07-01T23:59:59.000Z

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world less safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.

  4. Council's Regional Hydropower Potential Scoping

    E-Print Network [OSTI]

    Council's Regional Hydropower Potential Scoping Study Generating Resources Advisory Committee 11 to determine potential, and draw conclusions Determine if realistic, reasonable assumption for hydropower at existing non-powered dams, and upgrades at existing hydropower facilities #12;Questions Asked Can

  5. Research Councils UK Engaging Young

    E-Print Network [OSTI]

    Rambaut, Andrew

    Research Councils UK Engaging Young People with Cutting Edge Research: a guide for researchers to the feel-good factor researchers can have a hand in inspiring the next generation of researchers, to secure

  6. National Coal Council Presentation/Prepared Remarks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks More Documents &...

  7. Assessing alternative strategies for the disposition of weapons-grade uranium and plutonium

    SciTech Connect (OSTI)

    Chow, B.G.

    1995-12-31T23:59:59.000Z

    Highly-enriched uranium (HEU) from dismantled nuclear weapons and military inventory can be blended down into proliferation-resistant low-enriched uranium and used economically as fuel in current nuclear reactors. However, the US can no longer expect the agreement to purchase and resell the uranium blended down from 500 metric tons of Russia`s HEU to be budget neutral. The authors recommend that other countries participate in the repurchase of blended-down uranium from the US and that a multilateral offer to Russia, which acts on behalf of all four former Soviet nuclear republics, be made for the purchase of the blended-down uranium from Russia`s remaining HEU. Since spent fuel in temporary storage worldwide contains enough plutonium to fuel breeders on any realistic buildup schedule in the event that breeders are needed, there is no need to save the weapons-grade plutonium for the future. This paper compares the costs of burning it in existing light water reactors, storing it indefinitely, and burying it after 20 years of storage. They found that the present-valued cost is about $1 to 2 billion in US dollars for all three alternatives. The deciding factor for selection should be an alternative`s proliferation resistance. Prolonged plutonium storage in Russia runs the risk of theft and, if the Russian political scene turns for the worse, the risk of re-use in its nuclear arsenal. The most urgent issue, however, is to determine not the disposition alternative but whether Russia will let its weapons-grade plutonium leave the former Soviet Republics (FSRs). The US should offer to buy and remove such plutonium from the FSRs. If Russia refuses even after the best US efforts, the US should then persuade Russia to burn or bury the plutonium, but not store it indefinitely for future breeder use.

  8. Just war and nuclear weapons : just war theory and its application to the Korean nuclear weapons issue in Korean Christianity

    E-Print Network [OSTI]

    Son, Changwan

    2009-01-01T23:59:59.000Z

    of Just War has developed over the last two thousand years, adapting as first Christianity became the state religion of the Roman Empire, through the break down of any enforceable norms in Europes 'Dark Ages, to the emergence of the concept of the modern...

  9. ORISE: Preparing Nations to Fight Nuclear Smuggling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal circulation and could be used to kill tens or hundreds of thousands of people. ORISE...

  10. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01T23:59:59.000Z

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  11. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27T23:59:59.000Z

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  12. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28T23:59:59.000Z

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  13. (Acts adopted under Title V of the Treaty on European Union) COUNCIL COMMON POSITION 2005/329/PESC

    E-Print Network [OSTI]

    Sussex, University of

    element in the further deve- lopment of nuclear energy applications for peaceful purposes. (2) On 17 adopted Common Position 2000/297/CFSP relating to the 2000 Review Conference of the Parties to the Treaty to the Verification Agreement between the Non-Nuclear-Weapon States of the European Atomic Energy Community (EURATOM

  14. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States). Nuclear Engineering Dept.; Gellene, G.I. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

    1999-05-01T23:59:59.000Z

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  15. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  16. Geothermal Resources Council Annual Meeting - Doug Hollett Presentatio...

    Office of Environmental Management (EM)

    Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote...

  17. 4-H Club Officer Handbook - Council Delegate

    E-Print Network [OSTI]

    Howard, Jeff W.

    2006-08-09T23:59:59.000Z

    This section from the 4-H Club Officer Handbook features the multi-faceted role of the Council Delegate. It explains the purpose of the County 4-H Council and outlines the delegate's various duties....

  18. Nuclear War. The moral dimension

    SciTech Connect (OSTI)

    Child, J.W.

    1985-01-01T23:59:59.000Z

    U.S. nuclear policy has become the target of increasing criticism during the past decade. Critics often argue that the use of nuclear weapons would be irrational, would destroy humankind, and thus could not serve any rational policy goal. Other critics point to the immortality of the use of nuclear weapons. Both groups condemn U.S. military policy. In Nuclear War, James Child considers and rejects both these lines of criticism. He argues that a policy of deterrence can be both rational and moral; that U.S. nuclear policy is, on balance, based on rational and moral foundations. Child examines near-term consequences of a nuclear war and finds them ghastly but not unthinkable or incomparable to the havoc produced by previous wars. He also analyzes long-term consequences, such as those proposed by the ''nuclear winter'' theory, and finds the fear of total annihilation of humankind to be unfounded.

  19. Nuclear deterrence: New risks, new opportunities

    SciTech Connect (OSTI)

    Kelleher, C.M.; Kerr, F.J.; Quester, G.H.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons strategy. Topics considered include new technologies, arms control, risk assessment, nuclear winter, nuclear deterrence, military strategy, ballistic missile defense, proliferation, global military balance, West European politics, the Chinese view, non-proliferation policy, and first-use.

  20. Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance

    SciTech Connect (OSTI)

    Poling, J.

    2012-05-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

  1. Nuclear Physics and National Security in an Age of Jerry Gilfoyle

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Bombs How does it hurt me? Massive release of energy (blast, light) that can cause hundreds of thousands;Nuclear Weapons 101 What Is Radiation? Emission or release of energy from atomic nuclei in the form of sub with unmatched speed. food processing. waste stream treatment. F&M - June 6, 2009 ­ p. 3/2 #12;Nuclear Weapons

  2. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  3. QuarterlyCouncil > In this issue

    E-Print Network [OSTI]

    QuarterlyCouncil > In this issue Council Decisions > Updates on Council progress in June and July system.The plant is capable of producing enough power for about 208,000 homes. At a dedication ceremony for cooling -- about 1,300 gallons per minute, or about the same volume that would be used in that area

  4. Ghana Green Building Council public launch

    E-Print Network [OSTI]

    Ghana Green Building Council public launch examples of green buildings in South Africa eric noir, WSP GBD 17 August 2011 #12;Ghana Green Building Council public launch | examples of green buildings in South Africa GREEN by DESIGN PLATINUM GOLD MAJORSPONSORS #12;Ghana Green Building Council public launch

  5. John T. Mihalczo PhD. in Nuclear Engineering : University of Tennessee, 1970

    E-Print Network [OSTI]

    , just as his early work in experiments for nuclear criticality safety for Y-12 impacted national in nuclear criticality safety, nuclear weapons identification, nuclear materials processing, and nuclearJohn T. Mihalczo PhD. in Nuclear Engineering : University of Tennessee, 1970 Masters in Physics

  6. Y-12 weapons work expands in 1950s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons work expands in 1950s During the era immediately following the end of World War II, as early as 1946, evidence of the Cold War was emerging. Russia was working on its own...

  7. The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon

    E-Print Network [OSTI]

    Huey, Raymond B.

    REVIEW The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor the effect of the global rising of temperatures on the genetic composition of populations. Indeed, the long

  8. Paradigms of Development and Employment of Weapon Systems

    E-Print Network [OSTI]

    Gillespie, Daniel M.

    2008-10-23T23:59:59.000Z

    Weapons procurement decisions are extremely complex, with an unmanageable quantity of variables to take into account. The human brain, unable to process such a complex problem in a strictly rational way, seeks mechanisms ...

  9. Arms Control: US and International efforts to ban biological weapons

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  10. Modeling fabrication of nuclear components: An integrative approach

    SciTech Connect (OSTI)

    Hench, K.W.

    1996-08-01T23:59:59.000Z

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  11. GOVERNING COUNCIL Asbestos Management Policy

    E-Print Network [OSTI]

    Boonstra, Rudy

    : The University will establish an Asbestos Management Program which will outline a comprehensive system to actively manage and stringently control all asbestos-containing materials in University buildings, and allGOVERNING COUNCIL Asbestos Management Policy June 23, 2011 To request an official copy

  12. National Advisory Council Member Biographies

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Shark Study in partnership with the University of California, Davis; and developed a Climate Change's Council on American Politics, Californians Building Bridges and the Green Music Center at Sonoma State new ventures to build upon the unique brand of California. He has spearheaded a series of innovative

  13. University of Toronto Governing Council

    E-Print Network [OSTI]

    Sun, Yu

    , overall cost estimate and sources of funds) as defined in the Project Planning Report Business BoardfiVO AR BO R VELUT University of Toronto Governing Council W eb C opy Policy on Capital Planning and Capital Projects June 28, 2001 To request an official copy of this policy, contact: The Office

  14. RESEARCH MANAGEMENT COUNCIL SEPTEMBER 2014

    E-Print Network [OSTI]

    Kroll, Kristen L.

    or price --analysis > $150K Construction --- ---projects Price is a major ---factor > $150K FixedRESEARCH MANAGEMENT COUNCIL SEPTEMBER 2014 PRESENTED BY SPONSORED PROJECTS ACCOUNTING 1 #12. Conflict of Interest E. Documentation i. Cost & Price Analysis ii. Vendor Selection Procurement "Claw

  15. Budget Council Chair: Florin Curta

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    Budget Council Chair: Florin Curta #12;What does it do? Deals with budget and fiscal matters as they involve the academic mission of the University Makes recommendations of budget priorities involving of academic programs Collects and disseminates information about University budgeting and planning Monitors

  16. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  17. Weapons Activities/ Advanced Simulation and Computing Campaign FY 2011 Congressional Budget

    E-Print Network [OSTI]

    of the entire weapons lifecycle, from design to safe processes for dismantlement. The ASC simulations play

  18. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  19. A tennis ball size quantity of nuclear fuel commonly

    E-Print Network [OSTI]

    Kemner, Ken

    technologies can reduce the cost and duration of storing and managing nuclear waste significantly, whileA tennis ball size quantity of nuclear fuel commonly used in commercial nuclear plants can power, to generate the same 250 MWe of power. #12;Reducing the threat of nuclear weapon proliferation Argonne

  20. The long darkness: Psychological and moral perspectives on nuclear winter

    SciTech Connect (OSTI)

    Grinspoon, L.

    1986-01-01T23:59:59.000Z

    This book presents papers on the risks of nuclear weapons. Topics considered include nuclear war and climatic catastrophe, evolutionary and developmental considerations, a biological comment on Erikson's notion of pseudospeciation, national security, unexamined assumptions and inescapable consequences, opposing the nuclear threat (the convergence of moral analysis and empirical data), and nuclear winter.

  1. Nuclear deterrence and disarmament after the Cold War

    SciTech Connect (OSTI)

    Lehman, R.F. II

    1995-03-01T23:59:59.000Z

    During the Cold War, nuclear arms control measures were shaped significantly by nuclear doctrine. Consequently, the negotiation of arms control agreements often became a battleground for different nuclear strategies. The Cold War between the United States and the Soviet Union has been declared over. Today, both nuclear weapons policies and arms control objectives are again being reviewed. This document discusses points of this review.

  2. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  3. Station blackout at nuclear power plants: Radiological implications for nuclear war

    SciTech Connect (OSTI)

    Shapiro, C.S.

    1986-12-01T23:59:59.000Z

    Recent work on station blackout is reviewed its radiological implications for a nuclear war scenario is explored. The major conclusion is that the effects of radiation from many nuclear weapon detonations in a nuclear war would swamp those from possible reactor accidents that result from station blackout.

  4. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01T23:59:59.000Z

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  5. Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication

    SciTech Connect (OSTI)

    Toevs, J.W.

    1997-12-31T23:59:59.000Z

    This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

  6. Technical advantages and political necessity of public involvement in environmental remediation: The case of the U.S. and Russian weapons complexes

    SciTech Connect (OSTI)

    Shideler, J.C. [JK Research Associates, Inc., Arlington, VA (United States)

    1993-12-31T23:59:59.000Z

    Environmental remediation is an enormous challenge for the governments of the US, Russia, and other states in eastern and central Europe. Historically, governments have withheld issues related to nuclear weapons from public policy debate. As a result of revelations about human health impacts and environmental contamination, serious credibility problems exist for managers of weapons facilities. However, public involvement can contribute to better definition of problems, to identification of a range of potential solutions, and to increased public acceptance of outcomes. Decision makers can maximize the benefits of public involvement by integrating specific processes into their environmental remediation project planning and management.

  7. Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach

    SciTech Connect (OSTI)

    Martz, Joseph C [Los Alamos National Laboratory; Stevens, Patrice A [Los Alamos National Laboratory; Branstetter, Linda [SNL; Hoover, Edward [SNL; O' Brien, Kevin [SNL; Slavin, Adam [SNL; Caswell, David [STANFORD UNIV

    2010-01-01T23:59:59.000Z

    Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spread of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

  8. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect (OSTI)

    Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

    1997-09-01T23:59:59.000Z

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  9. The National Nuclear Security Administration's B61 Spin Rocket...

    Broader source: Energy.gov (indexed) [DOE]

    cf Energy's Sandia National Laboratories are refurbishing the Spin Rocket Motor, a 1:rime component of the B61 nuclear weapon system. Both the originai motor produced i2 i906 and...

  10. Thomas Roser Community Advisory Council

    E-Print Network [OSTI]

    Homes, Christopher C.

    for RHIC #12;2 RHIC NSRL LINAC Booster AGS Tandems STAR 6:00 o'clock PHENIX 8:00 o'clock 10:00 o'clock Jet Proton beam in AGS: July 1960 (50 years) Ion beam in AGS: 1987 AGS Booster: 1991 RHIC Construction: 1993Thomas Roser Community Advisory Council October 14, 2010 Collisions of Uranium at RHIC Discoveries

  11. EN Official Journal of the European Communities19.4.2000 L 97/1 (Acts adopted pursuant to Title V of the Treaty on European Union)

    E-Print Network [OSTI]

    Sussex, University of

    of the Parties to the Treaty on the Non-proliferation of Nuclear Weapons (2000/297/CFSP) THE COUNCIL Conference of the Parties to the Treaty on the Non-proliferation of Nuclear Weapons (2). (4) The 1995 Review and Extension Conference of the Parties to the Treaty on the Non-proliferation of Nuclear Weapons adopted

  12. U.S. Council for Energy Awareness 1992-1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report of the US Council for Energy Awareness covers the following main topics. (1) Electricity and Economic growth: growth of these has been roughly parallel. New electric generating capacity will be needed if the US is to sustain economic growth. All resources - coal, oil, natural gas, renewables, energy efficiency, and nuclear energy - have a role to play. (2) Nuclear Energy and the Environment: Nuclear energy is one of the cleanest sources of electric power. (3) Nuclear Power and Energy Independence: Nuclear energy is partly responsible for the dramatic reduction in oil use by electric utilities over the past 20 years. (4) Nuclear Energy: Insurance for the future: As US utilities plan to meet the growing need for electric power, they face major uncertainties (increased competion; the extent that demand-side management and efficiency can reduce need; future price and supply of natural gas; impact of the 1990 Clean Air Act amendments; possibility of increased fossil fuel restrictions) Nuclear energy represents prudent, strategic planning against these uncertainties.

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01T23:59:59.000Z

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  14. Part IV Council on Environmental Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at http:www.gao.govproductsGAO-13- 242; see also the International Center for Technology Assessment, Natural Resources Defense Council, and Sierra Club Petition...

  15. QER- Comment of Dakota Resource Council

    Broader source: Energy.gov [DOE]

    Attached are comments from the Dakota Resource Council, a membership-based organization of North Dakotans. Thank you for the opportunity to comment on the Infrastructure Constraints.

  16. Council on Environmental Quality - Guidance for Environmental...

    Open Energy Info (EERE)

    for Environmental Assessments of Forest Health Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Council on Environmental Quality - Guidance...

  17. Council on Environmental Quality - Regulations for Implementing...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Council on Environmental Quality - Regulations for Implementing the Procedural Provisions of the NEPALegal...

  18. Sandia National Laboratories: American Council of Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Council of Engineering Companies Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage,...

  19. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  20. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  1. CITY COUNCIL ORDINANCE NUMBER # -09 ORDINANCE OF THE CITY COUNCIL OF THE CITY OF UNION CITY

    E-Print Network [OSTI]

    potential in Union City is moderate. These local features contribute to the Bay Area's status#12;#12;CITY COUNCIL ORDINANCE NUMBER # -09 ORDINANCE OF THE CITY COUNCIL OF THE CITY OF UNION CITY BUILDING AND LANDSCAPING REQUIREMENTS FOR PUBLICLY FUNDED PROJECTS THE CITY COUNCIL OF THE CITY OF UNION

  2. DOE weapons laboratories' contributions to the nation's defense technology base

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-04-01T23:59:59.000Z

    The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

  3. The future of nonnuclear strategic weapons. Final summary report

    SciTech Connect (OSTI)

    Brody, R.; Digby, J. [Pan Heuristics, Marina del Rey, CA (United States)

    1989-01-31T23:59:59.000Z

    In this brief study, Pan Heuristics (PAN) has (1) evaluated the future importance of nonnuclear strategic weapons (NNSW), (2) considered their impact on forces and operations, and (3) investigated the technical requirements to support NNSW. In drawing conclusions, PAN has emphasized aspects that might be important to Los Alamos National Laboratory over the long run. It presents them here in a format similar to that used in a briefing at the laboratory. This paper reflects independent PAN research as well as conclusions drawn from discussions with other offices and individuals involved in nonnuclear strategic weapons development.

  4. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    SciTech Connect (OSTI)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04T23:59:59.000Z

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  5. Responsible stewardship of nuclear materials

    SciTech Connect (OSTI)

    Hannum, W.H.

    1994-10-01T23:59:59.000Z

    The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

  6. amending council directive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Council Columbia River Basin Fish and Wildlife Program Power Transmission, Distribution and Plants Websites Summary: recommendations for amendments to the Council's...

  7. President's Council on Jobs and Competitiveness Announces Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council on Jobs and Competitiveness Announces Industry Leaders' Commitment to Double Engineering Internships in 2012 President's Council on Jobs and Competitiveness Announces...

  8. Council on Environmental Quality Collaboration in NEPA A Handbook...

    Energy Savers [EERE]

    Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners...

  9. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  10. Canada-United States Regulatory Cooperation Council Webinar:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Canada-United States Regulatory Cooperation Council Webinar: Proposed Approach for Energy Efficiency Standards Canada-United States Regulatory Cooperation Council Webinar: Proposed...

  11. White House Council of Economic Advisers and Energy Department...

    Office of Environmental Management (EM)

    House Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters White House Council of Economic Advisers and...

  12. US strategic nuclear forces in the post strategic arms reduction talk world: Is there a future for nuclear deterrence. Research report

    SciTech Connect (OSTI)

    Filler, R.J.

    1998-06-01T23:59:59.000Z

    Following victory in the Cold War, the Soviet threat that shaped United States` nuclear deterrent strategy for the past 40 years, is gone. That defined, monolithic threat has been replaced by a diverse array of new challenges including proliferation of nuclear, chemical and biological Weapons of Mass Destruction (WMD) among regional powers, rogue states and non-state actors. In the face of this emerging WMD threat, the United States is dismantling its chemical and biological weapons stockpile and remains committed to further reductions in its nuclear arsenal. Can a reduced U.S. nuclear weapons arsenal provide a credible deterrent to the growing threat posed by proliferation of WMD. Finally, in light of the current Revolution in Military Affairs (RMA), is it time to reduce our dependence on nuclear weapons and pursue other deterrent options.

  13. COGR Council on Governmental Relations

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM,ofCO2COGR COUNCIL

  14. Reevaluating nuclear safety and security in a post 9/11 era.

    SciTech Connect (OSTI)

    Booker, Paul M.; Brown, Lisa M.

    2005-07-01T23:59:59.000Z

    This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

  15. A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation

    E-Print Network [OSTI]

    #12;A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation Paul I. Bernstein, biological, radiological, nuclear, and high explosives) by providing capabilities to reduce, eliminate affirmed "America's intention to seek the peace and security of a world without nuclear weapons" and stated

  16. Oregon Business Council Presented By: Elizabeth Redman

    E-Print Network [OSTI]

    Levinson, David M.

    to markets Energy Maintain Oregon's competitive advantage in energy costs while creating energy jobsOregon Business Council Presented By: Elizabeth Redman IHS Global Inc. OBC Cluster Strategy How has the Oregon Business Council promoted cluster based economic development? What has our work

  17. Council's Columbia River Fish and Wildlife Program

    E-Print Network [OSTI]

    Walleye Smallmouth bass Northern pike Others 5 Native and Non-native Fish Predators #12; At dams#12;#12;#12;#12;#12;#12;#12;Council's Columbia River Fish and Wildlife Program Summary of Predation Event Center #12;Council's 2009 Fish and Wildlife Program Piscivorous Predator Control Implement

  18. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the Environmental, Health and Safety (EHS) Center of Excellence at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  19. Disposition of weapons-grade plutonium in Westinghouse reactors

    SciTech Connect (OSTI)

    Alsaed, A.A.; Adams, M. [Texas A& M Univ., College Station, TX (United States)] [Texas A& M Univ., College Station, TX (United States)

    1998-03-01T23:59:59.000Z

    The authors have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. They have designed three transition Cycles from an all LEU core to a partial MOX core. They found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. The authors have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the {open_quotes}spent fuel standard.{close_quotes} One unit is capable of consuming 0.462 MT of weapons-grade plutonium per year. Preliminary analyses showed that important reactor physics parameters for the three transitions cycles are comparable to those of LEU cores including boron levels, reactivity coefficients, peaking factors, and shutdown margins. Further transient analyses will need to be performed.

  20. Proceedings of the Tungsten Workshop for Hard Target Weapons Program

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

    1995-06-01T23:59:59.000Z

    The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

  1. Hot Cell Examination of Weapons-Grade MOX Fuel

    SciTech Connect (OSTI)

    Morris, Robert Noel [ORNL; Bevard, Bruce Balkcom [ORNL; McCoy, Kevin [Areva NP

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured with weapons-grade MOX and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg. As part of the fuel qualification process, five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This is the first hot cell examination of weapons-grade MOX fuel. The rods have been examined nondestructively with the ADEPT apparatus and are currently being destructively examined. Examinations completed to date include length measurements, visual examination, gamma scanning, profilometry, eddy-current testing, gas measurement and analysis, and optical metallography. Representative results of these examinations are reviewed and found to be consistent with predictions and with prior experience with reactor-grade MOX fuel. The results will be used to support licensing of weapons-grade MOX for batch use in commercial power reactors.

  2. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

    2014-05-09T23:59:59.000Z

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  3. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H. (ed.)

    1987-06-01T23:59:59.000Z

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  4. Probabilistic Representation of the Threat and Consequences of Weapon Attacks on Commercial

    E-Print Network [OSTI]

    Wang, Hai

    Probabilistic Representation of the Threat and Consequences of Weapon Attacks on Commercial of the Threat and Consequences of Weapon Attacks on Commercial Aircraft CREATE Report 29 November 2005 John P Security has determined that external weapon threats due to surface-air missiles, as well as some

  5. Title: Weapons on Campus Effective Date: October 1, 2011 Responsible Office: William & Mary Police

    E-Print Network [OSTI]

    Shaw, Leah B.

    Title: Weapons on Campus Effective Date: October 1, 2011 Responsible Office: William & Mary Police the prohibition on weapons, firearms, combustibles, and explosives. II. PURPOSE The purpose of this policy by restricting weapons possession on university property. III.DEFINITIONS "law enforcement officials" means

  6. Research Literature: Effects of Conducted Energy Weapons (CEWs) | p. 1/82 Biomedical research literature

    E-Print Network [OSTI]

    Adler, Andy

    Research Literature: Effects of Conducted Energy Weapons (CEWs) | p. 1/82 Biomedical research literature with respect to the effects of Conducted Energy Weapons Andy Adler, David P Dawson, Maimaitjian: Institutions involved in research on CEWs 82 #12;Research Literature: Effects of Conducted Energy Weapons (CEWs

  7. Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak

    SciTech Connect (OSTI)

    Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

    2003-05-01T23:59:59.000Z

    Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

  8. Impacts of a nuclear war in South Asia on rice production in Mainland China

    E-Print Network [OSTI]

    Robock, Alan

    on agriculture is to avoid nuclear war, and this can only be guaranteed with a nuclear-weapon-free world. 1 climate changes due a small regional nuclear war could significantly influence agricultural productivityImpacts of a nuclear war in South Asia on rice production in Mainland China Lili Xia & Alan Robock

  9. ReseaRch at the University of Maryland Nuclear Safety Research at the University of Maryland

    E-Print Network [OSTI]

    Hill, Wendell T.

    Research on nuclear energy started at the University of Maryland just after World War II, when and nuclear weapons was followed by controversial accidents and regulation. Today, nuclear power is considered that analyze the risks involved in the use of nuclear energy. Understanding and Using Radiation The ionizing

  10. Techniques and methods in nuclear materials traceability

    SciTech Connect (OSTI)

    Persiani, P.J.

    1996-08-01T23:59:59.000Z

    The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

  11. Superpower nuclear minimalism

    SciTech Connect (OSTI)

    Graben, E.K.

    1992-01-01T23:59:59.000Z

    During the Cold War, the United States and the Soviet Union competed in building weapons -- now it seems like America and Russia are competing to get rid of them the fastest. The lengthy process of formal arms control has been replaced by exchanges of unilateral force reductions and proposals for reciprocal reductions not necessarily codified by treaty. Should superpower nuclear strategies change along with force postures President Bush has yet to make a formal pronouncement on post-Cold War American nuclear strategy, and it is uncertain if the Soviet/Russian doctrine of reasonable sufficiency formulated in the Gorbachev era actually heralds a change in strategy. Some of the provisions in the most recent round of unilateral proposals put forth by Presidents Bush and Yeltsin in January 1992 are compatible with a change in strategy. Whether such a change has actually occurred remains to be seen. With the end of the Cold War and the breakup of the Soviet Union, the strategic environment has fundamentally changed, so it would seem logical to reexamine strategy as well. There are two main schools of nuclear strategic thought: a maximalist school, mutual assured destruction (MAD) which emphasizes counterforce superiority and nuclear war- fighting capability, and a MAD-plus school, which emphasizes survivability of an assured destruction capability along with the ability to deliver small, limited nuclear attacks in the event that conflict occurs. The MAD-plus strategy is based on an attempt to conventionalize nuclear weapons which is unrealistic.

  12. REPORT NO. 3 health implications

    E-Print Network [OSTI]

    REPORT NO. 3 health implications of fallout from nuclear weapons testing through 1961 May 1962 on radiation doses and possible health effects of atmospheric nuclear weapons testing. Before discussing weapons testing through 1961 May1962 Report of the FEDERAL RADIATION COUNCIL For sale

  13. Security and Use Control of Nuclear Explosives and Nuclear Weapons (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-24T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 3-5-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 3-3-15.

  14. President Obama Calls for an End to Nuclear Weapons | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergy use is projectedEnergyPresidentSecurity

  15. Defining nuclear security in the 21st century

    SciTech Connect (OSTI)

    Doyle, James E [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A conference devoted to Reducing the Risks from Radioactive and Nuclear Materials presupposes that such risks exist. Few would disagree, but what are they? While debate on the nature and severity of risks associated with nuclear energy will always remain, it is easy to define a set of risks that are almost universally acknowledged. These include: (1) Nuclear warfare between states; (2) Continued proliferation of nuclear weapons and weapons-grade nuclear materials to states and non-state actors; (3) Terrorists or non-state actor acquisition or use nuclear weapons or nuclear materials; (4) Terrorists or non-state actors attack on a nuclear facility; and (5) Loss or diversion of nuclear weapons or materials by a state to unauthorized uses. These are listed in no particular order of likelihood or potential consequence. They are also very broadly stated, each one could be broken down into a more detailed set of discrete risks or threats. The fact that there is a strong consensus on the existence of these risks is evidence that we remain in an era of nuclear insecurity. This becomes even clearer when we note that most major trends influencing the probability of these risks continue to run in a negative direction.

  16. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect (OSTI)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01T23:59:59.000Z

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  17. Chinese strategic weapons and the plutonium option (U)

    SciTech Connect (OSTI)

    Lewis, John W.; Xui Litai

    1988-04-01T23:59:59.000Z

    In their article "Chinese Strategic Weapons and the Plutonium Option," John W. Lewis and Xue Litai of the Center for International Security and Arms Control at Stanford University's International Strategic Institute present an unclassified look at plutonium processing in the PRC. The article draws heavily on unclassified PRC sources for its short look at this important subject. Interested readers will find more detailed information in the recently available works referenced in the article.

  18. SNL/NM weapon hardware characterization process development report

    SciTech Connect (OSTI)

    Graff, E.W.; Chambers, W.B.

    1995-01-01T23:59:59.000Z

    This report describes the process used by Sandia National Laboratories, New Mexico to characterize weapon hardware for disposition. The report describes the following basic steps: (1) the drawing search process and primary hazard identification; (2) the development of Disassembly Procedures (DPs), including demilitarization and sanitization requirements; (3) the generation of a ``disposal tree``; (4) generating RCRA waste disposal information; and (5) documenting the information. Additional data gathered during the characterization process supporting hardware grouping and recycle efforts is also discussed.

  19. QER- Comment of ND Ethanol Council

    Broader source: Energy.gov [DOE]

    To whom it may concern, Attached please find comments from the North Dakota Ethanol Council regarding infrastructure constraints in preparation for the OER Public Meeting, which will be held in Bismarck, N.D., on August 8. Sincerely, Deana Wies

  20. Graduate Council Meeting Agenda June 7, 2012

    E-Print Network [OSTI]

    Graduate Council Meeting Agenda June 7, 2012 Electronic Vote 1. Approval of May 2012 Graduate of Biological Waste Treatment Systems c. CVEN 684 Professional Internship d. ECEN 687 VLSI Physical Design

  1. The COUNCIL of The COLLEGE of

    E-Print Network [OSTI]

    Saskatchewan, University of

    as the Council of the College tries to takes stock of the changes that are occurring. If it is to continue with ordination. Most candidates for ministry were encouraged to take an undergraduate university degree followed

  2. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23T23:59:59.000Z

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to diver

  3. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    SciTech Connect (OSTI)

    NONE

    1995-03-29T23:59:59.000Z

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  4. Feasibility of very deep borehole disposal of US nuclear defense wastes

    E-Print Network [OSTI]

    Dozier, Frances Elizabeth

    2011-01-01T23:59:59.000Z

    This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

  5. Preliminary review of the TTAPS nuclear winter scenarios

    SciTech Connect (OSTI)

    Chester, C.V.; Kornegay, F.C.; Perry, A.M.

    1984-07-01T23:59:59.000Z

    The paper by Turco, Toon, Ackerman, Pollock and Sagan (TTAPS) on Global Consequences of Nuclear War was reviewed. The possibility of climate upset must be taken seriously but the uncertainties are larger than the postulated effects. The effects if real would fall more heavily on the Soviet Union than on the US and would provide incentive for smaller, more accurate weapons, avoiding cities, and earth-penetrating weapons.

  6. (Acts adopted under Title V of the Treaty on European Union) COUNCIL JOINT ACTION 2006/418/CFSP

    E-Print Network [OSTI]

    Sussex, University of

    , such as the International Atomic Energy Agency (IAEA). (3) On 17 November 2003 the Council adopted Common Position 2003 an important objective to be pursued. (7) In July 2005, States Parties and the European Atomic Energy Community of 12 June 2006 on support for IAEA activities in the areas of nuclear security and verification

  7. (Acts adopted pursuant to Title V of the Treaty on European Union) COUNCIL COMMON POSITION 2003/805/CFSP

    E-Print Network [OSTI]

    Sussex, University of

    (Acts adopted pursuant to Title V of the Treaty on European Union) COUNCIL COMMON POSITION 2003 that terrorists will acquire chemical, biological, radiological or nuclear materials adds a new dimension would serve as a yardstick in the negotiations of EU positions in international forums

  8. President's CouncilPresident s Council Autumn 2008 TokyoAutumn 2008, Tokyo

    E-Print Network [OSTI]

    Miyashita, Yasushi

    . Social Linkage President's Council Autumn 20088 #12;InitiativesInitiatives 1. G8 University Summit Management Program 4. Policy Alternative Research Institute President's Council Autumn 20089 #12;G8 University Summit 2008G8 University Summit 2008 35 Universities from 14 G8 and Outreach Countries Sapporo

  9. City Council Memorandum TO: HONORABLE MAYOR AND CITY COUNCIL DATE: MAY 14, 2013

    E-Print Network [OSTI]

    RESOURCES ACT ISSUE: The item for City Council consideration is approval of a Renewable Portfolio Standard Resources Act. RECOMMENDATIONS: That the City Council: 1. Adopt the Riverside Public Utilities Renewable renewable resources by 2017. California SB 107, enacted in 2006, accelerated the renewable procurement goal

  10. THE MC AND A COUNCIL AT SSC RF - IPPE AS A COORDINATING BODY FOR SYSTEM SUSTAINABILITY.

    SciTech Connect (OSTI)

    FISHBONE,L.VALENTE,J.HANLEY,T.HIRSCHI,E.J.RUSS,P.SCHERER-KATZ,C.

    2004-07-18T23:59:59.000Z

    The State Scientific Center of the Russian Federation--Institute of Physics and Power Engineering's (SSC RF-IPPE) practice of nuclear material control and accounting (MC&A) has undergone significant changes during the period of cooperation with U.S. national laboratories from 1995 to the present. These changes corresponded with general changes of the Russian system of state control and accounting of nuclear materials resulting from the new Concept of the System for State Regulating and Control of Nuclear Materials (1996) and further regulatory documents, which were developed and implemented to take into account international experience in the MC&A [1]. During the upgrades phase of Russian-U.S. cooperation, an MC&A laboratory was specially created within the SSC RF IPPE for the purpose of guiding the creation of the upgraded MC&A system, coordinating the activities of all units involved in the creation of this system, and implementing a unified technical policy during the transition period. After five years of operation of the MC&A laboratory and the implementation of new components for the upgraded MC&A system, it was decided that a greater degree of attention must be paid to the MC&A system's operation in addition to the coordination activities carried out by the MC&A laboratory. To meet this need, an organization for operation of the nuclear material (NM) control and accounting system was created as part of the Division of NM Transportation and Storage. It was also recognized that a new mechanism was required for effective coordination of MC&A activities in IPPE, including the implementation of a unified MC&A policy in methodological, technical and practical areas. This mechanism should allow the IPPE management to gain an objective evaluation of the MC&A system status and provide leading specialists with objective recommendations on maintenance of MC&A system and on basic directions for further improvements. Preliminary discussions indicated that such a mechanism could be created through the establishment of an MC&A Council at SSC RF-IPPE. The MC&A Council has been created in SSC RF-IPPE as an advisory body without administrative functions. However it is stated in the Council Regulations that if the IPPE Director General or his Deputy responsible for NM control and accounting approves Council recommendations, the recommendations become obligatory. In this paper, the experience of the Council and its initial activities are presented and discussed in, as are possible activities and roles the Council could play in the future.

  11. Nuclear threats from small states

    SciTech Connect (OSTI)

    Kahan, J.H.

    1994-06-13T23:59:59.000Z

    What are the policy implications regarding proliferation and counter proliferation of nuclear weapons among Third World states. How does deterrence operate outside the parameters of superpower confrontation as defined by the cold war elaborate system of constraints enforced by concepts like mutual assured destruction, and counter-value and counter-force targeting. How can US policymakers devise contingencies for dealing with nuclear threats posed by countries like North Korea, Libya, Iraq, Iran, and Syria. These are some of the unsettling but nevertheless important questions addressed by the author in this monograph. In his analysis, Mr. Jerome Kahan examines the likelihood that one or more of these countries will use nuclear weapons before the year 2000. He also offers a framework that policymakers and planners might use in assessing US interests in preempting the use of nuclear weapons or in retaliating for their use. Ironically, with the end of the cold war, it is imperative that defense strategists, policymakers, and military professionals think about the `unthinkable`. In the interest of fostering debate on this important subject, the Strategic Studies Institute commends this insightful monograph.

  12. Report # 3232 To: Faculty Council

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    Vehicles CHE567H Risk Based Safety Management CHE1533H Nuclear Chemical Engineering CHE1800Y M.Eng. Project APS510H (CIV) Innovative Technologies and Organizations in Global Energy Systems CIV1001H M.Eng. Project I CIV1002Y M.Eng. Project II ECE2500Y M.Eng. Project MIE1740H Smart Materials and Structures MIE

  13. Reliability guarantees, demonstration, and control for weapon systems proposals

    E-Print Network [OSTI]

    Lanier, Ross Edwin

    1959-01-01T23:59:59.000Z

    LIBRARY A AIA OOI. ' gsE IIR TEXA5 RELIABILITY GUARAMTMsS ~ Dr3EOMS' HAT IOM ~ AKD COMTROL ZOR ViIMAPOM SYST3QKS PROPOSALS A Thesis ROSS EII5tIM LAMIER Submitted to the Graduate Sohool of the Agrioultural and Mechanical College of Texas... in partial fulfillment oi the requirements for the PHOPASSIOMAL LbiGkhr IM MMGIMKKRIMG January 1959 Ma)or Sub)sets Sleotrioal MngineeriIIg RELIABILITY GUARANIS, ISMONSTRATION& A53 CONTROL POR WEAPON SYSTEMS PROPOSALS ROSS ~~' WIN LANI' APProved...

  14. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    SciTech Connect (OSTI)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01T23:59:59.000Z

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  15. FAQS Job Task Analyses - Weapons Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:Department of Energy SecurityWeapons

  16. FAQS Qualification Card - Weapon Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |ExelonFAQ:DepartmentDepartment of EnergyWeapon

  17. Weapons assessment efficiencies through use of nondestructive laser gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTURE LOOKSofthe Geeks:Weapons

  18. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05T23:59:59.000Z

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most dont really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  19. Identification and evaluation of the nonradioactive toxic components in LLNL weapon designs, Phase 1

    SciTech Connect (OSTI)

    Johnson, J.A.; Lipska-Quinn, A.E.

    1994-01-01T23:59:59.000Z

    The proper industrial hygiene strategy and response to a weapons accident is dependent upon the nonradioactive toxic materials contained in each weapon system. For example, in order to use the proper sampling and support equipment, e.g., personal protective and air sampling equipment, the Accident Response Group (ARG) Team needs a detailed inventory of nonradioactive toxic and potentially toxic materials in the weapon systems. The DOE Albuquerque Office or Operations funded the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL) and Sandia National Laboratory to identify and evaluate the nonradioactive toxic components of their respective weapons designs. This report summarizes LLNL`s first year`s activities and results.

  20. Network-centric Warfare and the Globalization of Technology: Transforming simple tools into dangerous weapons

    E-Print Network [OSTI]

    Oh, Ann

    2009-01-01T23:59:59.000Z

    simple tools into dangerous weapons New applications ofprogressive, but also dangerous when applied to warfare. Theabove, also a powerful and dangerous tool for terrorists to

  1. Research Councils UK Joint Vision For Collaborative Training

    E-Print Network [OSTI]

    Berzins, M.

    Research Councils UK Joint Vision For Collaborative Training Objectives: Research Council Collaborative Training will provide doctoral students with a first- rate, challenging research training organisations in the private, public and civil society sectors. Benefits to the student Collaborative Training

  2. Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council

    E-Print Network [OSTI]

    Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council December 9 Coalition [Nancy Hirsh] Renewable Northwest Project[Rachel Shimshak] Natural Resources Defense Council Power Administration in Power Supply The Northwest Energy Coalition, Renewable Northwest Project, Sierra

  3. Energy Department creates Jobs Strategy Council to Focus on Job...

    Energy Savers [EERE]

    creates Jobs Strategy Council to Focus on Job Growth in Energy Economy Energy Department creates Jobs Strategy Council to Focus on Job Growth in Energy Economy January 23, 2015 -...

  4. Independent Scientific Review Panel for the Northwest Power & Conservation Council

    E-Print Network [OSTI]

    , 2010 To: Bruce Measure, Chair, Northwest Power and Conservation Council From: Eric Loudenslager, ISRP in funding estuary restoration work and how the Trust uses the guidelines in the Council's Fish and Wildlife

  5. Greek Leadership Council Sexual Misconduct Policy Approved February 12th

    E-Print Network [OSTI]

    Greek Leadership Council Sexual Misconduct Policy Approved February and Dartmouth Bystander Initiative (DBI) training. The Greek Leadership Council (GLC) must approve other trainings not listed above. #12; 2.0 Leadership Training The President and a designee from each

  6. Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Snieder, Roel

    Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

  7. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect (OSTI)

    Nuckolls, J.H.

    1994-06-01T23:59:59.000Z

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  8. Metadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Explosions

    E-Print Network [OSTI]

    Foulger, G. R.

    Administration, Beijing, China 6 Introduction 7 The original development of nuclear weapons, and their 8 first,000 10 nuclear test explosions were conducted. About 500 of 11 these were carried out in the atmosphere with some regional concentra- 14 tions, and aroused widespread public opposition to 15 nuclear testing

  9. Site-specific EIS ordered but injunctive relief deined in nuclear waste storage case

    SciTech Connect (OSTI)

    Barnhart y Chavez, S.

    1980-01-01T23:59:59.000Z

    The Energy Research and Development Administration (ERDA) received appropriations in 1976-77 to construct 22 tanks for storage of high level radioactive wastes generated by its nuclear weapons materials production program. The tanks were to replace older, leaking tanks at the Hanford Reservation in Richland, Washington and the Savannah River Plant in Aiken, South Carolina. The Natural Resources Defense Council (NRDC) had unsuccessfully requested that ERDA obtain a construction permit from the Nuclear Regulatory Commission (NRC). NRDC also petitioned NRC to exercise its licensing authority over the tanks under Section 202(4) of the Energy Reorganization Act of 1974. In response to the NRDC request, ERDA claimed the tanks were only for short-term storage and therefore a license was unnecessary. NRC claimed it lacked jurisdiction over the tanks. NRDC filed suit in United States District Court for the District of Columbia, alleging that ERDA had violated Section 102(2)(C) of the National Environmental Policy Act, and that both ERDA and NRC had violated Section 202(4) of the Energy Reorganization Act. NRDC requested an injunction against further construction of the tanks. Although ERDA did not have to obtain an NRC construction permit for the nuclear waste storage tanks at Hanford Reservation and Savannah River Plant, the programmatic Environmental Impact Statement submitted was insufficient and site-specific statements must be prepared. Injunctive relief pending the statements was denied for the social and economic costs of delaying the tanks project. NRC decisions even remotely connected to its licensing power should be contested in federal courts of appeals, not district courts. The court gave NRDC a hollow victory by ordering a more specific EIS, but denying an injunction.

  10. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  11. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  12. Seaborne Delivery Interdiction of Weapons of Mass Destruction (WMD)

    SciTech Connect (OSTI)

    Glauser, H

    2011-03-03T23:59:59.000Z

    Over the next 10-20 years, the probability of a terrorist attack using a weapon of mass destruction (WMD) on the United States is projected to increase. At some point over the next few decades, it may be inevitable that a terrorist group will have access to a WMD. The economic and social impact of an attack using a WMD anywhere in the world would be catastrophic. For weapons developed overseas, the routes of entry are air and sea with the maritime vector as the most porous. Providing a system to track, perform a risk assessment and inspect all inbound marine traffic before it reaches US coastal cities thereby mitigating the threat has long been a goal for our government. The challenge is to do so effectively without crippling the US economy. The Portunus Project addresses only the maritime threat and builds on a robust maritime domain awareness capability. It is a process to develop the technologies, policies and practices that will enable the US to establish a waypoint for the inspection of international marine traffic, screen 100% of containerized and bulk cargo prior to entry into the US if deemed necessary, provide a palatable economic model for transshipping, grow the US economy, and improve US environmental quality. The implementation strategy is based on security risk, and the political and economic constraints of implementation. This article is meant to provide a basic understanding of how and why this may be accomplished.

  13. Public perspectives on nuclear security. US national security surveys, 1993--1997

    SciTech Connect (OSTI)

    Herron, K.G.; Jenkins-Smith, H.C. [Univ. of New Mexico, Albuquerque, NM (United States). UNM Inst. for Public Policy

    1998-08-01T23:59:59.000Z

    This is the third report in a series of studies to examine how US attitudes about nuclear security are evolving in the post-Cold War era and to identify trends in public perceptions and preferences relevant to the evolution of US nuclear security policy. It presents findings from three surveys: a nationwide telephone survey of randomly selected members of the US general public; a written survey of randomly selected members of American Men and Women of Science; and a written survey of randomly selected state legislators from all fifty US states. Key areas of investigation included nuclear security, cooperation between US and Russian scientists about nuclear issues, vulnerabilities of critical US infrastructures and responsibilities for their protection, and broad areas of US national science policy. While international and US national security were seen to be slowly improving, the primary nuclear threat to the US was perceived to have shifted from Russia to China. Support was found for nuclear arms control measures, including mutual reductions in stockpiles. However, respondents were pessimistic about eliminating nuclear armaments, and nuclear deterrence continued to be highly values. Participants favored decreasing funding f/or developing and testing new nuclear weapons, but supported increased investments in nuclear weapons infrastructure. Strong concerns were expressed about nuclear proliferation and the potential for nuclear terrorism. Support was evident for US scientific cooperation with Russia to strengthen security of Russian nuclear assets. Elite and general public perceptions of external and domestic nuclear weapons risks and external and domestic nuclear weapons benefits were statistically significantly related to nuclear weapons policy options and investment preferences. Demographic variables and individual belief systems were systematically related both to risk and benefit perceptions and to policy and spending preferences.

  14. The Conduct Code for the Inter-Fraternity Council

    E-Print Network [OSTI]

    Swaddle, John

    . The Selection Committee shall then submit the slate of proposed Board members to the President's Council. The whole slate of Board members must then be approved by a majority vote of the President's Council that is on the slate of Board members that has been submitted to the President's Council, must be submitted in writing

  15. Independent Scientific Review Panel for the Northwest Power Planning Council

    E-Print Network [OSTI]

    Independent Scientific Review Panel for the Northwest Power Planning Council 851 SW 6th Avenue memorandum, the Northwest Power Planning Council (Council) requested that the ISRP conduct additional review in which TPL would purchase the property from the developer, convey the conservation easement to WDFW

  16. Michael F. Maglich Assistant to the Chief Engineer for Missile

    E-Print Network [OSTI]

    , develop, test and evaluate, operate, support, and maintain the Strategic Weapons System. A major focus, launcher, missile, reentry, and test and evaluation functions that affect the Strategic Weapons System and served as the first Director, SSP action officer to the Nuclear Weapons Council. Mr. Maglich has Masters

  17. Nuclear winter: Asymmetrical problems and unilateral solutions

    SciTech Connect (OSTI)

    Reule, F.J.

    1986-09-01T23:59:59.000Z

    Nuclear winter creates a dilemma for policymakers. Awareness of that dilemma may not be new, however. Long before the phrase nuclear winter became popular, policymakers may well have been aware of the possibility that the indirect effects of a nuclear exchange could be more damaging than the direct effects. Nevertheless, the more widespread public awareness of such a possibility deepens the dilemma and makes it more apparent. The policymakers' dilemma arises from their requirement to create a perception of security from any and all threats. To do this they must be able to credibly threaten to use nuclear weapons in order to deter their use by others. These threats can be tacit, arising from the very existence of nuclear delivery systems, or direct, as evidenced by the instances of missile rattling that have occurred over the years. In either case, such threats begin to ring hollow if the policymakers are known to believe that carrying them out could result in nuclear winter. If policymakers keep secret their personal beliefs about nuclear winter they can still credibly threaten to use nuclear weapons but they have difficulty believing their own threats. Further, they cannot capitalize on the deterrent value of nuclear winter and must live in fear that their bluff may some day be called or that any of the other nuclear powers could cause a nuclear winter out of ignorance.

  18. 2013 NNSA Defense Programs Science Council | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA News ○

  19. 2015 NNSA Defense Programs Science Council | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental DirectivesWorkNNSA News

  20. Detection and treatment of chemical weapons and/or biological pathogens

    DOE Patents [OSTI]

    Mariella Jr., Raymond P.

    2004-09-07T23:59:59.000Z

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  1. Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon

    E-Print Network [OSTI]

    Chu, Peter C.

    Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon Fuse To support the development and evaluation of the Stand-off Assault Breaching Weapon Fuse Improvement (SOABWFI for developing an effective system for use against IEDs and mines. The Joint Direct Attack Munition (JDAM

  2. Western Michigan University is a weapon free school. By order of the Board of Trustees: "No person shall possess on university property any firearms or other dangerous weapons with the exception of

    E-Print Network [OSTI]

    de Doncker, Elise

    person shall possess on university property any firearms or other dangerous weapons with the exception considered a dangerous weapon. Stun gun or taser, or any device that produces electrical current intended

  3. NORTHWEST POWER PLANNING COUNCIL BRIEFING BOOK

    E-Print Network [OSTI]

    : Endangered Salmon and the People of the Pacific Northwest, 1995, Page 30. The Northwest Power Act, in theoryNORTHWEST POWER PLANNING COUNCIL BRIEFING BOOK January 2001 #12;2 Northwest Authors Comment. The 1980 Northwest Power Act seem positively prescient in reducing the utility industry's role

  4. QuarterlyCouncil > In this issue

    E-Print Network [OSTI]

    December 2012 03 04 11 Northwest Power and Conservation Council > Fall 2012 STRIKING A BALANCE BETWEEN the cost of other types of new resources. 2.Development of renewable resources,mainly wind power Resources, Northwest Power Supply Should Be Adequate 06 Northwest Q & A > Interview with Paul Kline07 which

  5. Estuary Restoration Act Estuary Habitat Restoration Council

    E-Print Network [OSTI]

    US Army Corps of Engineers

    stream restoration activities. Recommend NOOA fund. 11. Scaling-Up Native Oyster Will restore 4 acresEstuary Restoration Act Estuary Habitat Restoration Council Ranked Proposal Recommendation May 13, 2011 Project Name Description 1. Riverside Ranch Restoration Will restore 356 acres of estuarine

  6. Northwest Power and Conservation Council Briefing Book

    E-Print Network [OSTI]

    Northwest Power and Conservation Council Briefing Book January 2007 Northwest Power Conservation conservation but has had a more difficult time gaining consensus on saving salmon. -- William Dietrich through measures that impose the least economic and environmental cost on the region, while taking

  7. COUNCIL OF GRADUATE Michigan State University

    E-Print Network [OSTI]

    COUNCIL OF GRADUATE STUDENTS Michigan State University Student Services Bldg. 556 E. Circle Dr STUDENTS OF MICHIGAN STATE UNIVERSITY Michigan State University Student Services Bldg. 556 E. Circle Dr to Michigan State University for the 2014- 2015 school year. We hope you had an enriching and relaxing summer

  8. Academic Planning Council Minutes September 21, 2010

    E-Print Network [OSTI]

    Guest: Steve Ventura Dean Jahn reminded the Academic Planning Council (APC) members. Steve Ventura provided some background on the proposal. The process has been moving slowly to allow? Other thoughts or comments should be emailed to Steve Ventura. The APC will be voting

  9. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01T23:59:59.000Z

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  10. Measured responses of internal enclosures and cables due to burnthrough penetration of weapon cases by lightning

    SciTech Connect (OSTI)

    Schnetzer, G.H.; Fisher, R.J. [Sandia National Labs., Albuquerque, NM (United States); Dinallo, M.A. [Quatro Corp., Albuquerque, NM (United States)

    1994-08-01T23:59:59.000Z

    The electrical effects of lightning penetration of the outer case of a weapon on internal structures, such as a firing set housing, and on samples of a flat, flexline detonator cable have been investigated experimentally. Maximum open-circuit voltages measured on either simulated structures (126 V) or the cable (46 V) located directly behind the point of penetration were well below any level that is foreseen to create a threat to nuclear safety. On the other hand, it was found that once full burnthrough of the barrier occurred, significant fractions of the incident continuing currents coupled to both the simulated internal structure (up to 300 A) or to the cable sample (69 A) when each was electrically connected internally to case ground. No occurrence was observed of the injection of large amplitude currents from return strokes occurring after barrier penetration. Under circumstances in which small volumes of trapped gases exist behind penetration sites, rapid heating of the gas by return strokes occurring after burnthrough has been shown to produced large mechanical impulses to the adjacent surfaces.

  11. Nonlethal weapons as force options for the Army

    SciTech Connect (OSTI)

    Alexander, J.B.

    1994-04-01T23:59:59.000Z

    This paper suggests that future challenges to US national security will be very different from those previously experienced. In a number of foreseeable circumstances, conventional military force will be inappropriate. The National Command Authority, and other appropriate levels of command, need expanded options available to meet threats for which the application of massive lethal force is counterproductive or inadvisable. It is proposed that nonlethal concepts be developed that provide additional options for military leaders and politicians. Included in this initiative should be exploration of policy, strategy, doctrine, and training issues as well as the development of selected technologies and weapons. In addition, civilian law enforcement agencies have similar requirements for less-than-lethal systems. This may be an excellent example for a joint technology development venture.

  12. Trouble in the Family: New Zealand's Anti-Nuclear Policy

    E-Print Network [OSTI]

    Hanson, F. Allen

    1987-01-01T23:59:59.000Z

    or deny that a given vessel is carrying nuclear weapons, the port ban effectively barred most U.S. naval craft from docking in New Zealand's ports. Although New Zealand is small, remote, and not strategically located, the significance of this diplomatic.... The matter came to a head in February 1985 when New Zealand refused to accept a visit by the conventionally powered U.S. destroyer Buchanan, on the grounds that the ship might have been carrying nuclear weapons. This was the first test of New Zealand...

  13. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  14. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    SciTech Connect (OSTI)

    Pruet, J; Lange, D

    2007-01-03T23:59:59.000Z

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons.

  15. Subject:Persons With Weapons at UW Madison Date:Wed, 19 Oct 2011 14:27:43 -0400 (EDT)

    E-Print Network [OSTI]

    Balser, Teri C.

    law goes into effect on November 1, 2011 all weapons will remain prohibited in UW Madison buildingsSubject:Persons With Weapons at UW Madison Date:Wed, 19 Oct 2011 14:27:43 -0400 (EDT) From. If you see a person who is not a police officer in uniform carrying a weapon in a UW Madison building

  16. vol. 166, no. 3 the american naturalist september 2005 Weapon Performance, Not Size, Determines Mating Success and Potential

    E-Print Network [OSTI]

    Husak, Jerry F.

    with bite force. These results indicate that weapon performance has far stronger effects on fitness thanvol. 166, no. 3 the american naturalist september 2005 Weapon Performance, Not Size, Determines the head (i.e., jaws and associated musculature) as a weapon when territorial interactions escalate

  17. Some policy implications of nuclear winter

    SciTech Connect (OSTI)

    Gertler, J.J.

    1985-01-01T23:59:59.000Z

    The theory of nuclear winter has had as checkered a history as any new idea since Darwin published The Origin of Species. There have been questions of its scientific validity, reviews both laudatory and damning, pleas for arms reductions, hosannahs for a newfound hope that nuclear war has at least been rendered completely unthinkable, and frustration that two generations of human toil in weapons laboratories and think tanks have been rendered by a natural doomsday machine. Some have even suggested that nuclear winter might be used as an offensive weapon. Disturbingly, a substantial number of commentators have concluded that nuclear winter carries no immediate implications for policy, because to their way of thinking, nuclear winter is a (a) just one more of the many undesirable effects of nuclear war; (b) the ulimate deterrent to nuclear use, and therefore should be welcomed rather than compensated for; or (c) an unproven theory, meaning that consideration of policy questions is premature. Those who overlook the policy questions are following a dangerous path. The nuclear winter theory contains serious short- and long-term implications for United States foreign and strategic policy. Although the theory may never be confirmed or refuted, discussion of these policy questions should begin now because many of the potential effects of nuclear winter - particularly in foreign policy - will come about regardless of whether or not the phenomenon can actually exist.

  18. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect (OSTI)

    Albright, David

    2004-09-15T23:59:59.000Z

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  19. Information Management Governance Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIANManagement Governance Council Information

  20. Assessing the risk from the depleted uranium weapons used in Operation Allied Force

    E-Print Network [OSTI]

    Liolios, T E

    1999-01-01T23:59:59.000Z

    The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances . The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment.

  1. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18T23:59:59.000Z

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  2. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central and Technology Center (UCLA) President, Council of Energy Research and Education Leaders, CEREL (USA) With input

  3. Planet earth in jeopardy: environmental consequences of nuclear war

    SciTech Connect (OSTI)

    Dotto, L.

    1986-01-01T23:59:59.000Z

    An attempt is made to describe the details of what nuclear war could actually mean for the world. The events during and following a possible large-scale exchange of nuclear weapons and all the associated uncertainties are presented. The first major uncertainty involves how many nuclear weapons could be used in the event of war. The discussion chooses half the world's stockpile, or 6000 megatons, as a basis for judging nuclear war's effects. Shock waves, an electromagnetic pulse, searing heat, and ionizing radiation account for the initial deaths and destruction. Petroleum and other organic materials combust to set up a nuclear winter and all the disturbances to agriculture, forests, waters, etc. This is where the book's greatest message comes through: the seriousness of the aftereffects, especially on agriculture, could far exceed the immediate effects.

  4. Recommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    to operate the FCRPS to maximize energy revenue so Bonneville can pay its nuclear power plant gambling debtsRecommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power to the Northwest Power Planning Council's March 14, 2001 request for recommended amendments to the mainstem

  5. Nuclear winter and nuclear policy: implications for US and Soviet deterrence strategies. Master's thesis

    SciTech Connect (OSTI)

    Griffin, G.A.

    1987-09-01T23:59:59.000Z

    Nuclear weapons were rapidly incorporated into the policies for maintaining the national security objectives of both the Soviet Union and the United States--in spite of poorly understood nuclear-weapons effects. The nuclear winter hypothesis, the basis of which was first proposed in 1982, directed scientific research into the consequences of massive amounts of dust and smoke, from nuclear detonations, on the earth's climate and subsequently on the ecology of the earth. This thesis presents the evolution of the nuclear winter hypothesis in order to elucidate its unique aspects for global devastation and the consensus of plausibility which the hypothesis holds in the scientific community. The hypothesis has aroused a flurry of debate on its implications for nuclear policy. With the historical aspects of the nuclear era as a backdrop, the question of incorporating new scientific information on the consequences of nuclear war into policy is discussed. The observed responses of the U.S. and Soviet Union and the implications for future actions in response to the nuclear winter hypothesis are examined-- leading to the conclusion that the hypothesis will have little or no impact on U.S. and Soviet nuclear policy.

  6. Deterring regional threats from nuclear proliferation

    SciTech Connect (OSTI)

    Spector, L.S.

    1992-03-12T23:59:59.000Z

    The most prominent shift in the National Military Strategy is from the global Soviet threat to a new focus on regional contingencies. No threat looms larger in these contingencies than the proliferation of nuclear weapons and ballistic missiles. This study examines proliferation trends and proposes a predominately diplomatic strategy for containing the problem. Dr. Spector identifies three waves of proliferation: the first is the five states with declared weapons and doctrine-the United States, Russia, Great Britain, France, and China; the second includes a less visible group that developed a covert capability, without testing weapons or declaring a doctrine of deterrence-for example, Israel, India, and probably Pakistan; and, a third wave of would-be proliferators includes radical states like Iraq, Iran, Libya, and North Korea. Spector's political approach is based on the common interest of wave one and two states to prevent further proliferation. Political-economic incentives have already worked in the cases of Brazil, Argentina, Taiwan, and South Africa-states which appear to have abandoned their nuclear weapons programs. Spector does not rule out the option of military force. Force, especially under international sanctions, can be a powerful tool to back diplomatic efforts. Use of force, however, remains a last resort.

  7. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26T23:59:59.000Z

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  8. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04T23:59:59.000Z

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  9. Improving weapons of mass destruction intelligence Arnold Kanter

    E-Print Network [OSTI]

    Deutch, John

    of Chemistry, Room 6-208 Massachusetts Institute of Technology Cambridge, MA 02139 [jmd@mit.edu] A paper. For example, acquiring a nuclear explosive capability depends upon obtaining highly enriched uranium (HEU

  10. Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium

    E-Print Network [OSTI]

    Cerefice, Gary Steven

    1999-01-01T23:59:59.000Z

    Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

  11. Mission emphasis and the determination of needs for new weapon systems

    E-Print Network [OSTI]

    Gillespie, Daniel Mark

    2009-01-01T23:59:59.000Z

    Efforts to understand the determination of needs of new weapon systems must take into account inputs and actions beyond the formally documented requirements generation process. This study analyzes three recent historical ...

  12. President Louisiana State Building and Construction Trades Council

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert "Tiger" Hammond President Louisiana State Building and Construction Trades Council Panel Discussion: "Workforce Issues as a Vulnerability to Energy Development" U.S....

  13. Western Riverside Council of Governments- Large Commercial PACE (California)

    Broader source: Energy.gov [DOE]

    Western Riverside Council of Governments (WRCOG) is offering business owners in WRCOG participating jurisdictions an opportunity to finance energy and water efficiency projects for their commercial...

  14. The New Mexico Building and Construction Trades Council and Los...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL sign labor agreements September 21, 2012 Unions, LANL sign labor agreements The New Mexico Building and Construction Trades Council and Los Alamos National Security LLC, have...

  15. alberta research council: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals to Students' Council and to the University Secretariat regarding: a. The number of students involved of planning an executing a "Get Out The Vote" provincial election...

  16. Council on Environmental Quality - Memorandum for Heads of Federal...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Memorandum: Council on Environmental Quality - Memorandum for Heads of Federal Departments and Agencies Abstract This...

  17. Council on Environmental Quality - Forty Most Asked Questions...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Memorandum: Council on Environmental Quality - Forty Most Asked Questions Concerning CEQ's NEPA Regulations Abstract...

  18. Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR...

    Open Energy Info (EERE)

    to library Legal Document- Secondary Legal SourceSecondary Legal Source: Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR 1500 - 1518Legal Author CEQ Published NA...

  19. QER- Comment of Large Public Power Council 2

    Broader source: Energy.gov [DOE]

    Attached please find comments by the Large Public Power Council for the record regarding the April 11thQER meeting.

  20. QER- Comment of Large Public Power Council 1

    Broader source: Energy.gov [DOE]

    Attached are the Comments of the Large Public Power Council on the QER. Please feel to contact me if you have any questions.

  1. Interagency Wild and Scenic Rivers Coordinating Council's WSRA...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Instructions: Interagency Wild and Scenic Rivers Coordinating Council's WSRA Section 7(a) FlowchartsPermitting...

  2. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2

    SciTech Connect (OSTI)

    Biegalski, S; Buchholz, B

    2009-08-26T23:59:59.000Z

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

  3. Nuclear Materials Management Program at the NNSS

    SciTech Connect (OSTI)

    ,

    2012-06-08T23:59:59.000Z

    The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the gaps and stand up a functional and compliant NMM Program at the NNSS.

  4. Nuclear materials safeguards for the future

    SciTech Connect (OSTI)

    Tape, J.W.

    1995-12-31T23:59:59.000Z

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  5. THE RISK OF NUCLEAR TERRORISM AND NEXT STEPS TO REDUCE THE DANGER

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Breach at Necsa on 08 November 2007," Nuclear Energy Corporation of South Africa, 13 November 2007 nuclear facility in South Africa, where hundreds of kilograms of weapon-grade highly enriched uranium (HEU, and then disappeared through the same hole they had cut in the fence. No one on either team was shot or captured. South

  6. Prioritizing Network Interdiction of Nuclear Dennis P. Michalopoulos, David P. Morton, and J. Wesley Barnes

    E-Print Network [OSTI]

    Morton, David

    to obtain a nuclear weapon. An International Atomic Energy Agency (IAEA) database on illicit trafficking, Energy, and Logistics. H.I. Gassmann, S.W. Wallace, and W.T. Ziemba (eds.), World Scientific. #12, and Al Qaeda has repeatedly attempted to obtain nuclear material, technology, and expertise. Osama bin

  7. NRDC: Good Wood: How Forest Certification Helps the Environment The Natural Resources Defense Council works to protect wildlife and wild places and to ensure a healthy environment for all life on earth.

    E-Print Network [OSTI]

    Health Environmental Justice U.S. Law & Policy Nuclear Weapons, Waste & Energy Smart Growth their buying power for good. 1. Why is it important to protect forests? 2. What is forest certification and how I buy FSC-certified wood products? 1. Why is it important to protect forests? Forests are more than

  8. The Church,the Councils,& Reform TheChurch,theCouncils,

    E-Print Network [OSTI]

    Pukelsheim, Friedrich

    TroDUCTion / TheConciliarTraditionandEcumenicalDialogue 1 GeraldChristianson Part I. HIstorICal PersPeCtIves Introduction 25 ThomasM.Izbicki 1. Councils of the Catholic Reformation:A Historical Survey 27 Nelson. The Conciliar Heritage and the Politics of Oblivion 82 FrancisOakley Part II. sourCes Introduction 99 Thomas

  9. Council on Environmental Quality | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPractices inCosts IncurredCouncil on

  10. Council on Foreign Relations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPractices inCosts IncurredCouncil

  11. Jefferson Lab Leadership Council - Joe Scarcello

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.Council

  12. Council on Environmental Quality | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAsAmanda McAlpin SopAmerica TopforCouncil on

  13. Council, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil, Idaho: Energy Resources Jump to:

  14. World Fuel Cell Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin Polysilicon Co LtdWorld Fuel Cell Council

  15. Revisiting Vyacheslav Danilenko: His Origins in the Soviet Nuclear Weapons Complex

    E-Print Network [OSTI]

    Mark Gorwitz

    2012-01-01T23:59:59.000Z

    methods were initially contained only in secret reports from Chelyabinsk-70. Danilenko also conducted

  16. Quality at Y-12, part 3 -- Or: Quality goes beyond nuclear weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managers were listening to the ideas of industry experts like Dr. W. E. Deming and Dr. Joseph Juran who both embraced the use of technical tools and statistical methods to...

  17. Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility

    E-Print Network [OSTI]

    Batson, Vicky Lynn

    1994-01-01T23:59:59.000Z

    , such as the Department of Energy's Savannah River Site (SRSl, Aiken, South Carolina, is a major environmental concern. At SRS, the contamination of soil and rivers was compounded by inadequate regulations during early years of facility operation. As our knowledge...-Steed Pond System Tims Branch is a second-order stream located in the A/M-area of the northwestern section of SRS (Fig. 1). It drains an area of approximately sixteen square kilometers of the drainage basin of the Savannah River and its tributaries. Tims...

  18. Detecting terrorist nuclear weapons at sea: The 10th door problem

    SciTech Connect (OSTI)

    Slaughter, D R

    2008-09-15T23:59:59.000Z

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platforms that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.

  19. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin caustin@pppl.gov Dennis Mueller, Chair mueller@pppl.gov Elena Belova,...

  20. ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation

    E-Print Network [OSTI]

    Andr Gsponer; Jean-pierre Hurni

    2004-01-01T23:59:59.000Z

    militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear